
Problem Sheet 2

I. THE IDEAL GAS

The ideal gas is a theoretical idealization. It assumes point-like particles (no spatial

extension) with essentially no interactions (apart from some infinitesimal interaction which

is necessary to ensure equilibration).

A. Equation of state

Derive the equation of state

P =
N

V
T = nT (1.1)

(kB = 1) from kinetic considerations. (Here N is the number of point-like gas particles.)

Namely: Calculate what is the average momentum change (= force impulse ∆p = F∆t)

which particles receive when reflecting from the wall? Determine how many particles reflect

under certain angles from a wall, per unit time and unit area. Average over the angles.

In the end you will get an answer which contains the average of the square of the velocity

component in one direction, v2x, which we will compute below.

Using that the total energy E(pi, qi) is only made of kinetic energy, E =
∑

i p
2
i /2m, and

using the distribution function ρ(p, q) = ρ(Ep,q) ∼ exp[−βE(p, q)] (with β = 1/T ) derive

the equipartition theorem for the kinetic energy in the form

mv2x
2

=
T

2
(1.2)

Show that

E =
3

2
TN (1.3)

independent of volume! How do you understand the independence of the volume? Will that

still be true in non-ideal gases, and if no, why not? Do you expect that the energy increases

or decreases with the volume? What does it depend on?

The specific heat is defined as CV = dQ/dT |V and CP = dQ/dT |P depending on whether

V or P is held constant. Show that the specific heat per particle is CV /N = 3/2 at constant

volume and Cp/N = 5/2. Is CP always bigger than CV ? If yes, explain why!

[Remark: if the gas particles are not exactly point-like this is not true. The rotational

degrees of freedom more complicated molecules will then also contribute to the kinetic energy,

by T/2 per degree of freedom: 2 per molecule in linear molecules, and 3 in non-collinear

molecules. - For those who like a challenge: How would you prove this?]



II. THERMODYNAMIC DERIVATIVES

For any three variables which satisfy a constraint f(X, Y, Z) = 0 (e.g., the equation of

state P − fP (V, T ) = 0) one has the relation(
∂X

∂Y

)
Z

(
∂Y

∂Z

)
X

(
∂Z

∂X

)
Y

= −1. (2.1)

Prove this! Check it explicitly in the case of the ideal gas X, Y, Z = P, V, T .

III. REVERSIBLE PROCESSES OF AN IDEAL GAS

Below we always consider an ideal gas in a closed container whose volume can be changed

by a piston. The container is either considered as thermally isolated (δQ = 0) or we consider

that it can exchange heat (reversibly) with another heat reservoir (much bigger container at

the same temperature).

A. Isothermal expansion

Let the gas start with a volume V1 and at temperature T1. Let it expand to volume

V2 > V1, maintaining the temperature.

How much work does the expanding gas do? How much heat does it absorb? What is

the change in internal energy? Has the entropy of the gas in the container changed? By

how much?

B. Isobaric compression

Take the gas at T = T1, V = V2 and compress it at constant pressure back to V1 (and let

it exchange heat with the reservoir). What is the final temperature T2? How much work was

done? What is the final internal energy? How much heat was exchanged, and how much

entropy has the gas lost?

C. Isochoric heating (V = const)

Imagine to finally heat reversibly the container of gas at fixed volume V1 back to T1. This

completes a cyclic process. What is the [rather unpractical] condition for reversibility in this

last step?

By how much do pressure and entropy increase? How much work is done? How much

heat is absorbed?
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D. Reversible cycle

Take the above three steps together. Verify that the changes in state functions such as

entropy, internal energy, pressure, volume and temperature all add up to zero, as it must

be.

Determine how much work (W ) was extracted over the whole cycle! How much heat (Q)

went into the system during step 1 and 3 together? Note that the result that W 6= 0, Q 6= 0

shows that work and heat are not functions of the thermodynamic state only, but of the way

the system is prepared and processes!

Carnot tells us that the maximal efficiency of a heat engine working between reservoirs

T1 and T2 < T1 is

W

Q
≤ T1 − T2

T1
. (3.1)

Verify that you get a result that is strictly lower than Carnot’s bound! Why must that be

so?

(The ratio for the above cycle should come out to be:

W

Q
=

lnx− 1 + 1/x

lnx+ 3/2(1− 1/x)
(3.2)

where x = V2/V1 > 1.)
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