Compensation driven superconductor-insulator transition

Markus Müller

and Boris Shklovskii

The Abdus Salam
International Center
of Theoretical
Physics, Trieste

ICTP, 20th May, 2009

Superconductivity and Coulomb interactions

Clean, granular systems

```
Josephson junction arrays E_J > E_C \rightarrow Superconductivity
(Fazio, Schön, ...)
                                       E_I < E_C \rightarrow Insulator
```

Simply exponential pair transport (see K. Efetov's talk)

At lowest T:

$$E_J > E_C \rightarrow G = G_0 \exp(T_0 / T)$$

$$E_J < E_C \rightarrow R = R_0 \exp(T_0 / T)$$

What if there is strong disorder (generic)? $\delta E_C \sim E_C$

$$\delta E_C \sim E_C$$

Insulator: gap is destroyed \rightarrow a priori no simple activation!

What if there are no pre-structured grains?

Do "effective grains" form due to the disorder configuration?

SIT in strong disorder:

Localization and delocalization of Cooper pairs in Coulomb disorder

Similar analysis for neutral cold atoms in random disorder potentials, see

Falko, Nattermann and Pokrovskii (08); Shklovskii (08)

Compensated high Tc materials

K. Segawa and Y. Ando, PRB 74, 100508 (2006)

YBa₂Cu₃O_y

Doping n-type carriers by La-substitution for Ba

$$\longrightarrow$$
 $Y_{1-z}La_z(Ba_{1-x}La_x)_2Cu_3O_y$

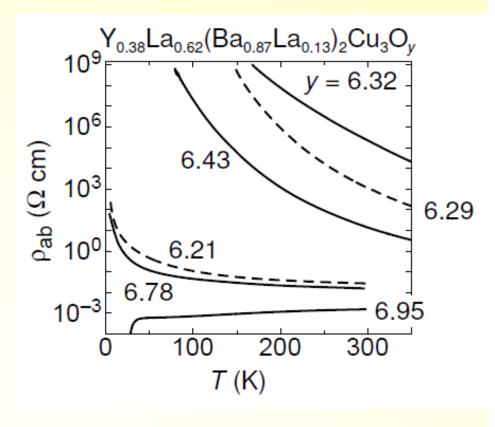
n-type doping controlled by x $Ba^{2+} \rightarrow La^{3+}$

Vary p-type doping by annealing oxygen content *y*

y < 6.32: n-type doping

y = 6.32: fully compensated

6.32 < y: p-type doping



Compensated high Tc materials

K. Segawa and Y. Ando, PRB 74, 100508 (2006)

YBa₂Cu₃O_y

Doping n-type carriers by La-substitution for Ba

$$\longrightarrow$$
 $Y_{1-z}La_z(Ba_{1-x}La_x)_2Cu_3O_y$

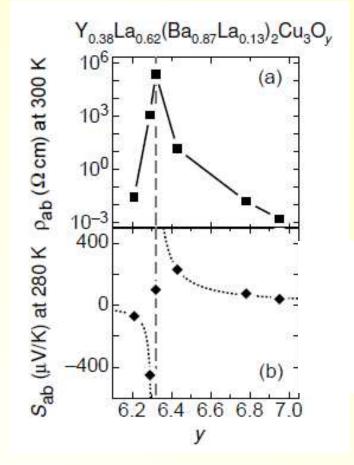
n-type doping controlled by x $Ba^{2+} \rightarrow La^{3+}$

Vary p-type doping by annealing oxygen content *y*

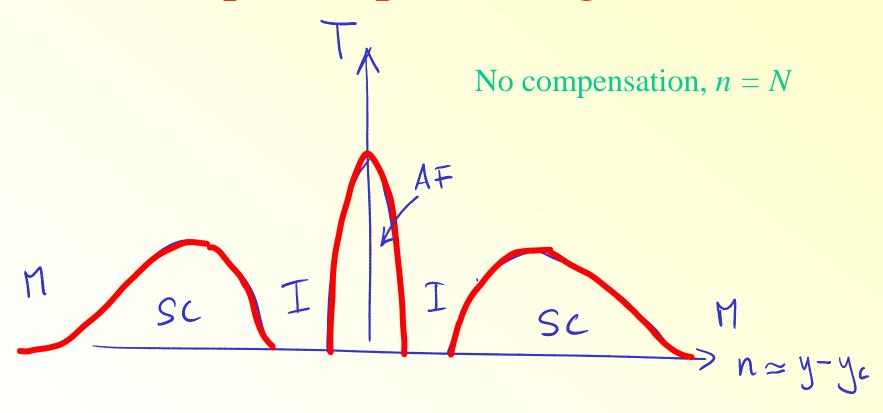
y < 6.32: n-type doping

y = 6.32: fully compensated

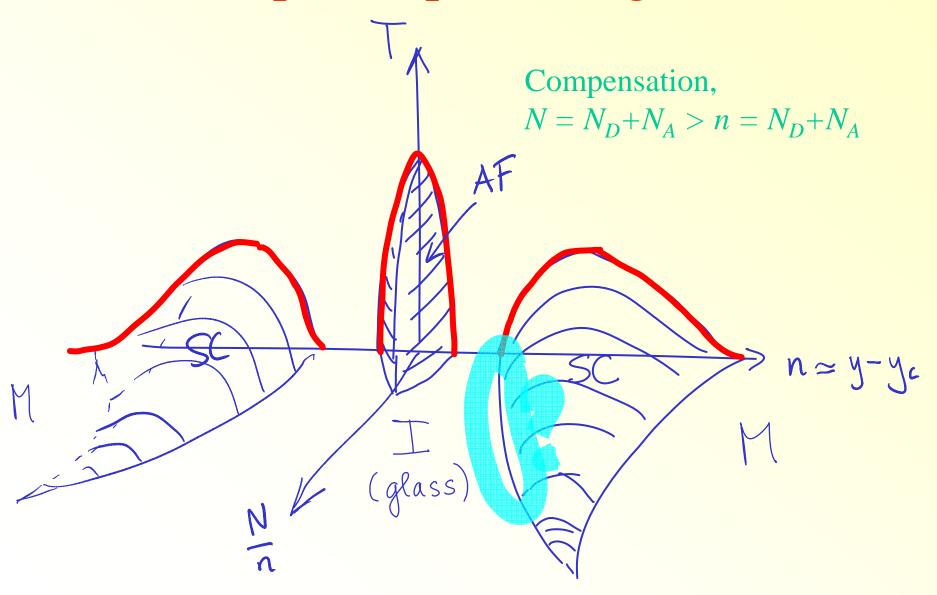
6.21 < y: p-type doping



Expected phase diagram



Expected phase diagram



Analysis of the SIT in terms of a scaling analysis

All numerical prefactors will be neglected

The compensation driven metalinsulator transition (fermions)

Uncompensated semiconductors (3d): Mott's criterion

Effective Bohr radius:
$$a = \frac{\hbar^2 \kappa}{me^2}$$

Metal-insulator transition (MIT): $n_{\text{MIT}}a^3 = N_{D,\text{MIT}}a^3 = 0.02 = O(1)$

Overlapping hydrogen-like wavefunctions → delocalization

With BCS instability in the metal \rightarrow SIT:

$$n_{\rm SIT}a^3 \approx n_{\rm MIT}a^3 \sim 1$$

The compensation driven metalinsulator transition (fermions)

na³

Metal-Insulator transition in strongly compensated semiconductors

Non-trivial regime: $Na^3 >> 1$

Heavy doping $N = N_D + N_A$

Most carriers are captured by doping ions \rightarrow Excess carriers in the conduction band: $n = N_A - N_D << N$

 \rightarrow Strong disorder from N random charged impurities!

Experimentally confirmed in compensated Ge

Delocalization transition upon tuning n:

$$n_{\text{MIT}}(N) = \frac{N}{(Na^3)^{1/3}} = \frac{N^{2/3}}{a} \qquad \to n_{\text{MIT}} a^3 = (Na^3)^{2/3} >> 1$$

$$\to n_{\text{MIT}} a^3 = (Na^3)^{2/3} >> 1$$

MIT: Derivation

Efros and Shklovskii (1971)

1. Non-linear screening of the disorder

Random charge density in volume R^d :

$$n_{\text{net imp}}(R) \sim \frac{\left(NR^3\right)^{1/2}}{R^3}$$

Non-linear screening scale R_s :

$$n_{\text{net imp}}(R) \sim n \rightarrow R_s(n) \sim \frac{N^{1/3}}{n^{2/3}}$$

Roughness of the disorder potential:

$$eV_{\text{dis,Cb}}(R_s) \sim \frac{e^2}{\kappa R_s} (NR_s^3)^{1/2} \sim \frac{e^2 N^{2/3}}{\kappa n^{1/3}}$$

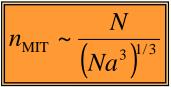
2. Delocalization condition

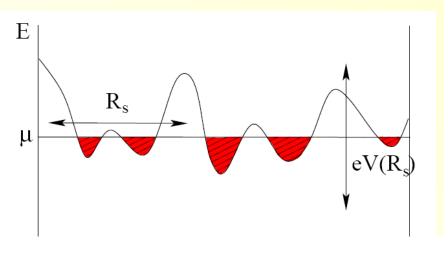
Fermi energy of excess carriers:

$$E_F \sim \hbar^2 n^{2/3} / m$$

Delocalization if disorder is weak enough:

$$E_F \ge V(R_s) \leftrightarrow n_{\text{MIT}} \sim \frac{N}{(Na^3)^{1/3}}$$

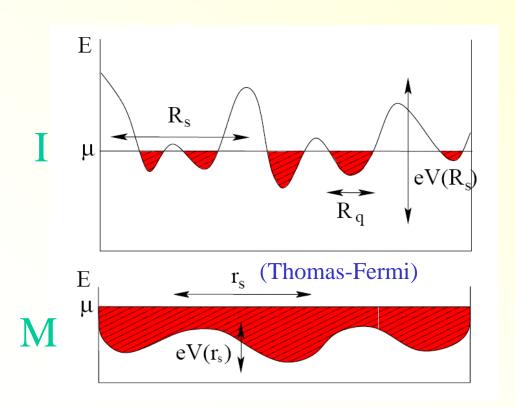




Consistency condition for scaling analysis:

$$NR_s^3 >> 1 \leftrightarrow Na^3 >> 1$$

Droplets in the insulator



In the insulator: $n < n_{\text{MIT}}$

Small droplets (Fermi lakes in the deepest wells) of size $R_q < R_s$!

Typical size of the droplets:

$$\mu(n = (N/R_q^3)^{1/2}) = eV_{Cb}(R_q)$$

$$\to R_q = \frac{a}{(Na^3)^{1/9}} = R_s(n) \cdot (n/n_{MIT})^{2/3}$$

Transport: Variable range hopping between the droplets!

Compensated superconductors with preformed pairs

Assume strong coupling mechanism ("glue")

 \rightarrow preformed Cooper pairs of size ξ (finite pairing energy E_{pair} - no nodal quasiparticles)

Possible systems with preformed pairs:

- Underdoped high Tc materials
- Bipolarons
- [Anderson pseudospins (doubly occupied localized wavefunctions)]
- How do bosons modify non-linear screening and delocalization?
- How does the BEC-BCS crossover manifest itself?

$$n\xi^3 = 1$$

• What is the transport on the insulating side?

BEC – BCS crossover

BEC – BCS crossover: $n\xi^3 \sim 1$

$$n\xi^3 \sim 1$$

- For $n_{SIT}\xi^3 > 1$ the transition remains the same as with fermions
- Distinctly "bosonic" behavior occurs at the SIT when

$$n_{\text{SIT}} \xi^3 < 1 \iff \xi < a$$

→ Needed: small pairs, large Bohr radii

$$\longrightarrow$$
 $n_{SIT}(N) = ?$

BEC regime – 3d SC

1. Nonlinear screening with (2e)'s instead of e's, but otherwise no difference

$$eV_{Cb}(n) = eV_{Cb}(R_s) \sim e^2 N^{2/3} / n^{1/3}$$

E μ R_s $eV(R_s)$

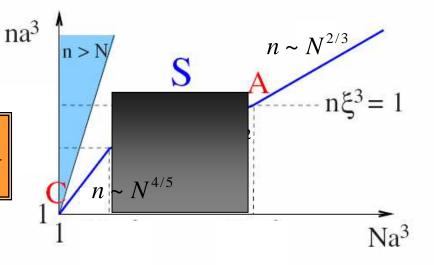
2. Very low density

Energy of confinement to screening volume:

$$\mu(n,R) = \frac{\hbar^2}{mR^2}$$

Delocalization of the BEC condensate:

$$\mu(n, R_s) \sim eV_{Cb}(n)$$
 $\longrightarrow n_{SIT}(N) = \frac{N^{4/5}}{a^{3/5}}$



BEC regime – 3d SC

1. Nonlinear screening with (2e)'s instead of 1e's, but otherwise no difference

$$eV_{Cb}(n) = eV_{Cb}(R_s) \sim e^2 N^{2/3} / n^{1/3}$$

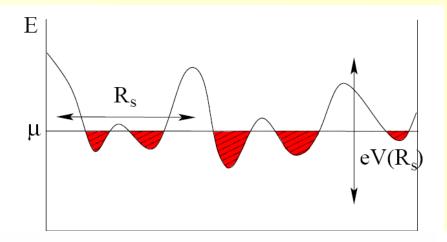
3. Chemical potential for bosons: Bose gas with scattering length ξ

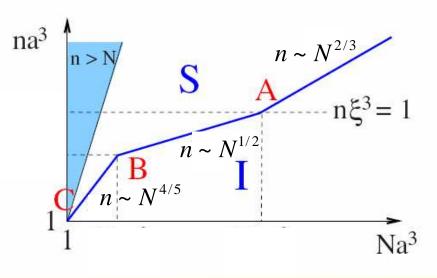
$$\mu(n) = \frac{\hbar^2}{2m} n\xi < E_F(n)!$$

4. Bose delocalization criterion:

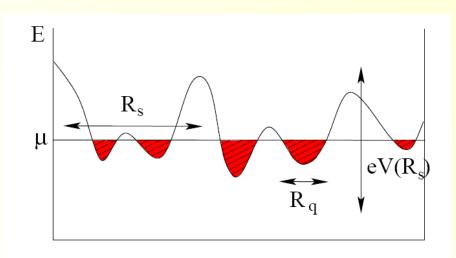
$$\mu(n) \sim eV_{\rm Ch}(n)$$

$$\rightarrow n_{SIT} (N) = \frac{N^{1/2}}{(a\xi)^{3/4}}$$





The Bose insulator



In the insulator: $n < n_{SIT}$

Small droplets (boson lakes in the deepest wells) of size $R_q < R_s$!

Typical size of the droplets:

$$\mu(n = (N/R_q^3)^{1/2}) = eV_{Cb}(R_q)$$

BEC regime:
$$\rightarrow R_q = (a\xi)^{1/2} < R_s(n)$$

Nature of the ground state

Level spacing in a droplet (±1e): $\delta \sim (d\mu/dn R_q^3) = e^2/R_q$

BEC:
$$\xi < a$$

Pair-breaking energy:

$$E_{\rm pair} \sim \hbar^2 / m \xi^2$$

$$ightarrow E_{
m pair} > \delta$$

→ Breaking pairs is unfavorable, all electrons are paired!

Single electron excitations are gapped!

Properties of the insulator

Tunneling

- Single particle gap
- SC spectrum of small droplets (and corresponding coherence peaks)

Transport

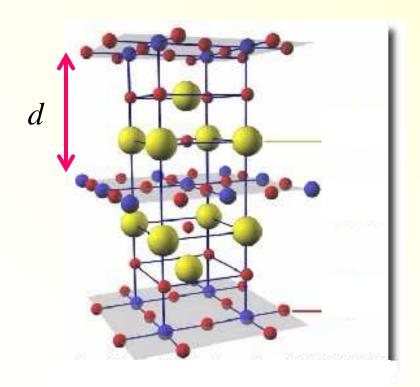
- At low T: Variable range hopping of pairs between droplets!
- In the BEC regime (strong coupling, small pairs): always 2e-transport
- In the BCS regime (weak coupling): 1e-transport when $\Delta < \delta$.

$$\sigma = \sigma_0 \exp[-(T_{ES}/T)^{1/2}]$$

$$T_{ES} = 2.7 \cdot (2e)^2 / \kappa \xi_{2e}$$

Layered superconductors

Examples: Cuprates (CuO compounds), pnictides (FeAs compounds)



d : Distance between layers hosting the carriers

Differences 2d vs. 3d:

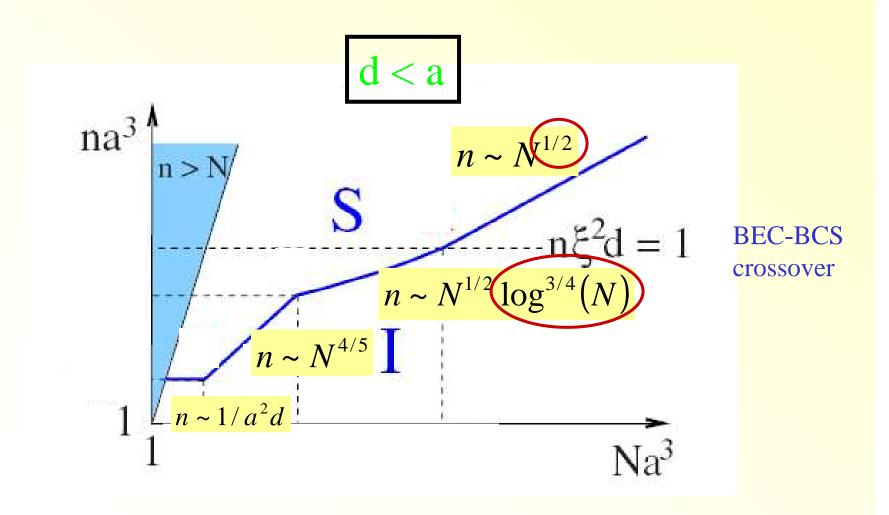
1. Nonlinear screening is modified when $d > R_s$; need to account for anisotropic dielectric constant

2. Delocalization criterion:

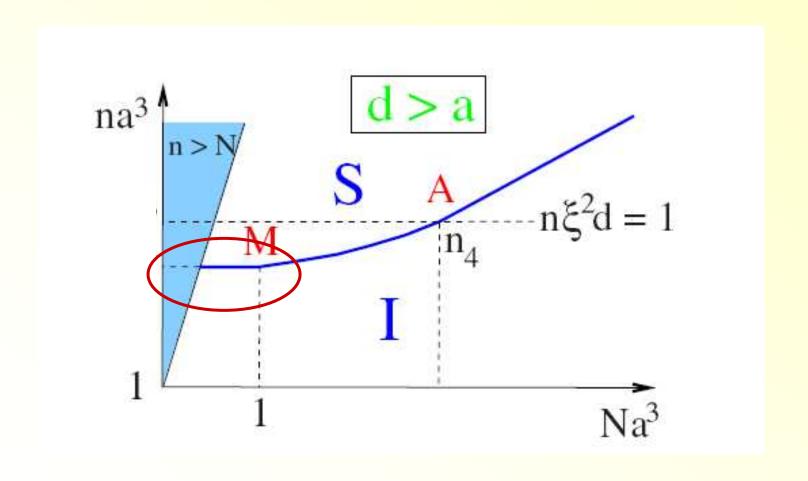
$$\mu_{\rm 2D}(n) = eV_{\rm Cb}(n,N)$$

Only extra log at the BCS-BEC crossover! $\mu_{\text{2D, BEC}}(n) = \frac{\hbar^2 nd}{m \log(1/\xi^2 nd)} = \frac{E_F(n)}{\log(1/\xi^2 nd)}$

SIT Phase diagram – 2D



SIT Phase diagram – 2D



Applicability to high Tc?

Candidate systems:

Condition for the SI transition to occur in the BEC regime:

$$n_{\text{SIT}}\xi^3 < 1 \quad \leftrightarrow \quad \xi < a$$

Parameters for typical underdoped high Tc's:

$$a = \frac{\hbar^2 \kappa}{m_{\text{pair}} (2e)^2}$$
BSCCO: $a \sim 4-5A$

$$\xi_{typ} \approx 1-2\text{nm}$$

At the border of BEC-BCS crossover

BEC-regime in bipolarons

Condition for the SI transition to occur in the BEC regime:

$$n_{\text{SIT}}\xi^3 < 1 \quad \leftrightarrow \quad \xi < a$$

Two independent parameters:

- Electron-phonon coupling: $\alpha > \alpha_c = 2.9$ (in 2d)
- Ratio between electronic and static dielectric constant: $\eta = \kappa_{\rm el}/\kappa$ needs to be $\eta >> 1$:

$$\frac{\xi}{a} \sim \alpha^2 \eta < 1$$

Summary

- SIT in the presence of strong Coulomb disorder:
 Delocalization of preformed pairs in a self-consistently screened disorder potential
- Non-linear screening is less efficient with bosons (exclusion principle less effective in BEC regime)

$$n_{SIT}^{(bosons)} > n_{SIT}^{(fermions)}$$

• Low T transport in the insulator in the BEC regime is always dominated by pairs