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Outline

* Review oftransportexperiments on the
iInsulating side of the SIT

* Discussion where and why masiandard
scenarios fall

e Proposal for a mechanism explaingigiple
activation as well a®ver-activation
(using ideas of many-body localization)
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D. Shahar, Z. Ovadyahu, PRB, 10971 (1992).
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Activated transport near the SIT

D. Shahar, Z. Ovadyahu, PRIB, 10971 (1992).
Insulating InQ

Simple activation!—
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Fit to variable range hopping over
small range of high T is unjustified!

D. Kowal and Z. Ovadyahu, Sol. St. Con®@).783 (1994).



Activated transport near the SIT

Insulating INnQ B-dependence
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Activated transport near the SIT

V. F. Gantmakher, M. V. Golubkov, J. Lok, A. K. Ge&ov. Phys. JETB2, 951 (1996).

Insulating InQ

Origin of simple activation?
R. M2 .

__+ GapiathePOS

 Or: mobility edge¢

 Electrons or pairs?
* Nearest neighbor hopping?
* Why no variable range hopping?
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Remark on high field behavior

V. F. Gantmakher, M. V. Golubkov, J. Lok, A. K. Ge&ov. Phys. JETB2, 951 (1996).
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Remark on high field behavior

V. F. Gantmakher, M. V. Golubkov, J. Lok, A. K. Ge&ov. Phys. JETB2, 951 (1996).

Tendency to
subactivation at
high B fields, low T

Most likely interpretation:

Single electron transport: activation
% == b (depairing) from pairs

B (cf., fractal SCM. Feigelman et a).

005 10 15 20 25 30 and subsequent variable range hopping
T,




Activated transport near the SIT

T. |. Baturina et al., PRI99, 257003 (2007)
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Activated transport near the SIT

T. |. Baturina et al., PRI99, 257003 (2007)
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Summary

1. Closeto SIT thetransport isessentially smply activated

(Essential ingredient for the theory of the thredraid heating bistability!
See Alt'shuler, Kravtsov et al., condn810.4312)

Why?

2. Beyond the MR peak transport becomes subactivated at
low enough T

But thisis not the full picture yet!



Trend to overactivation

G. Sambandamurthy, L.W. Engel, A. Johansson, aifghBhar, PRI97, 107005 (2004).

Deviation from simple towards

5]
(11 A A b} )
overactivation
! g
!f
’.'(
af 16 Y
g o
< x
g Y
T 14 "
5 1 4 .
£ ‘f‘
& F T #
; al B=0T
_? - o - . .
. W oot Ins- INQ,
8 10
4 12 14
1T [1K] gl

-T T : .
0.0 0.2 0.4 06 08

D. Kowal and Z. Ovadyahu, Sol. St. Con®@).783 (1994).
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Trend to overactivation close to SIT

B. Sacepé et al. (unpublished - 2008).
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Trend to overactivation close to SIT

T. Baturina et al. (condmat 0810.4351).
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Summary |l

» Transport issimply activateatlow T over several orders of
magnitude

* There is a tendency to
- overactivatiorclose to the SIT
(saturating to simple activation at low T)

Highly unusual in a disordered system!

- subactivatiorbeyond the MR peak (at lowest T)
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Transport must be by pairs close to
the SIT
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B (T)

1. Bt — Pairs are less superconducting (less delocalizedpsitive MR
/./ If transport were carried by electrons, MR wdoddnegative:
it becomes easier to depair electrons at higher fields.
/Z.)Shrinking wavefunctions (negative MR in the larahel) is irrelevant.

‘ — Transport must be by pairs close to the SIT (cﬂe\sééa)‘

« Why? Pairs survive in the insulator! (Pairingime-reversed localized
wavefunctions (Anderson 1956, Feigelman et al.) — aSrooed by STM).
 As long as E.< E 4t neverpays todepair electrons at lowest T




Scenarios for simple activation in the
ositive MR regime
2 P Jme 5

A. Global charge gap?

- effectively granular material?
- Wigner crystal?
B. Nearest neighbor transport?

If none of the above applies:
C. Why is variable range hopping not observgd?

— Proposal: Activation to the pair mobility edfje
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A. Global charge gap |
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Scenarii for simple activation:
A. Global charge gap |

Vinokur et al. (2007/2008).

Postulates:
» |. Effective granularity:
Superconducting puddles with low transparency tbjumetions.

* ll.Weak disorder W < E — Incompressible system

— Simple activation due to charge
gap (Coulomb blockade)

— Relatively large if nearest

neighbor capacitance >> self-
@ .E.SH capacitance (“superinsulator”)
o Q (I) can occur in strong disorder (see
Boris Shklovskii's talk),
but(ll) isvery hard to justify in the
absence of clean physical grains.




Scenarii for simple activation:
A. Global charge gap Il

Charged pairs (2¢e) in a weak background potentiait@wnoise)

Intermediate between
Falco, Nattermann, Pokrovsky (2008) [neutral bosaingte noise]
Muller and Shklovskii (2008) [charged bosons, chdrgapurities]
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Charged pairs (2¢e) in a weak background potentiait@wnoise)

Intermediate between
Falco, Nattermann, Pokrovsky (2008) [neutral bosaingte noise]
Muller and Shklovskii (2008) [charged bosons, chdrgapurities]
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A. Global charge gap Il

— Essentially simple activation (charge gap of the \Wigmgstal)
— Overactivation due to gradual opening of the chaa®

(diminishing screening at decreasing T)

Compare to standard Mott insulator:
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e Wigngstal)
— Overactivation due to gradual opening of the chaa®

[diminishing screening at decreasing T)

Compare to standard Mott insulator:
Transport properties of an organic Mott insulator

B-(BEDT-TTF),ICl, I'(K)
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I
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Partial conclusion:

» Global charge gap seems unlikely in a non-granurar f
(including the physics of regular Josephson junctivays)

* Requires very weak effective disorder

« Should in principle be detectable by pinning frexgcy of
vibration modes of the charge ordered structure (@ngrystal)
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R=R,exfdT,/T] with R >>h/e’
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Hopping from puddle to puddle (in strong disorder):
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Determines activation energy




C. Activation to a mobillity edge
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Hopping between droplets

Lowest T: Variable range hopping

Activation + Tunnelihg
1

R=Rexd(T,/T)| = > (esn)

Subactivation ! (Shklovskii 1973)



Activation to mobility edge —

Without variable range hopping but
overactivation instead ? !

* Review of essentials of VRH
* Necessity of a continuous bath!

» Argue that there 1510 BATH: get simple and over-activation!



How to understand that variable
? range hopping is not seen, but?
Instead overactivation?

Essential ingredient into VRH:
Continuous bath which activates the hops!

wwwwww
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Candidates for the bath:
« Phonons: at low T for pair hopping are excessivedfficient! R,,, [ y§—ph
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Localization despite interactions?

Fleishman, Anderson, Licciardello (1980, 1982)
Basko et al., Gornyi et al. (2005, 2006)
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Localization despite interactions?

Fleishman, Anderson, Licciardello (1980, 1982)
Basko et al., Gornyi et al. (2005, 2006)

Is theremany-body localizatiolocalization in Hilbert
space)— absence of diffusigrevenat finite T?

- TR AT gy Y

mismatch

Assumptions:

1. Low dimensions- all single particle states are localized
2. Weak short range interactions

3. No phonons

Answer: For T < 55//] (A <<1: interaction parameter)
* Energy conservation impossibelectrons do not constitute a continuous batfj!
 All many body excitations remaitiscretein energy!
» Conductivity = Oeven at finite T!




Why to expect many body
localization at the SIT?

e Electrons are bound in localized pairs

* Phase volume for inelastic processes Is stroreglyced as
compared to the single electron problem MIT
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Coulomb

—_ Much less phase space for delocalization
Many body localization is easier at the SIT!
Probably important difference with the MIT!
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Why to expect many body
localization at the SIT?

e Electrons are bound in localized pairs

* Phase volume for inelastic processes Is stroreglyced as
compared to the single electron problem MIT
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« At strong magnetic field pairs are dissolve _

— Many body localization eventually disappears
— (electronically activated) VRH is possible again.
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E~T, \ *-
\ el

T (K)
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| / B, disorder




Transport in the collective insulator

“Bose glass”
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Transport in the collective insulator

Single boson mobility edge
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Simple activation!
T, ~ typical hopping strength of preformed p4irs
~ T, close to SIT (Ma + Lee!)
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Transport in the collective insulator

Single boson mobility edge Ec
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Diffusion already at energy where
Loa (T E (7)< £(E°(T))
E(T)=E,-AT"-... (y=2wd)

Over activation! (cf.: Semiconductors: Mott, Thomas, Overhof, 19§
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Transport in the collective insulator

Transport on large scales:
c Single boson mobility edge

7{— = - “x

—

— —_— —_— i —

» Essential ingredienElementary stepf transport isimply activatedno VRH)!
» Eventual d.c. transport jgzrcolative in naturas in ANY disordered insulator
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Experimental recall: Summary |

» Transport issimply activateatlow T over several orders of

magnitude Activation to mobility edge of pairs!

* There Is a tendency to

- overactivatiorclose to the SIT

(saturating to simple activation at low T)

Highly unusual in a disordered system!
T-induced lowering of diffusion edge

- subactivatiorbeyond the MR peak (at lowest T)

VRH of depaired electrons,

Destruction of manybody localization due to single
electrons and their stronger tendency to delocalize.



Overactivation near the SIT

B. Sacépé et al. (unpublished - 2008) —JnO
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Overactivation near the SIT

B. Sacepe et al. (unpublished - 2008) — InO
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Approximate: E'(T)=E.-BT-...

—> Prefactor: R, 45 —C '—¢(§T) exd- B]<<1
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Summary

Global charge gap for pairs unlikely due to diswrgexcept for
distorted Wigner crystal of pairs or granular supercahals):

— Remaining consistent model for simple activation:
Conductivity of pairs at their mobility edge.

Variable range hopping excludeg remnant omany body
localizationin the low energy sector.

Dephasing of nearly delocalized states
— diffusion below the mobility edge

— might explain observedveractivatiorand an apparently very
small pre-exponential factor,R

Destruction of many body localization by depairihgy( B)
reestablishes VRH of single e*s subactivation
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