Quantum glasses – Frustration and collective behavior at T = 0

Markus Müller (ICTP Trieste)

Collaborators: Alexei Andreanov (ICTP) Xiaoquan Yu (SISSA) Lev Ioffe (Rutgers)

Universität zu Köln, 17. November 2010

The arrow of time

How to know the direction of increasing time?

- Entropy always increases
- Example: diffusion (continues forever in infinite systems)

 \neq

The arrow of time

How to know the direction of increasing time?

- Entropy always increases
- Example: diffusion (continues forever in infinite systems)

Interesting exception: quantum localized systems \rightarrow time reversal symmetry even in infinite systems!

≠ ←

The arrow of time

How to know the direction of increasing time?

- Entropy always increases
- Example: diffusion (continues forever in infinite systems)

Interesting exception: quantum localized systems \rightarrow time reversal symmetry even in infinite systems!

≠ ←

Ergodicity

The arrow of time

How to know the direction of increasing time?

- Entropy always increases
- Example: diffusion (continues forever in infinite systems)

→_t ≠ ←

Interesting exception: quantum localized systems \rightarrow time reversal symmetry even in infinite systems!

Ergodicity

Fundamental postulate of thermodynamics: State of maximal entropy (=equilibrium) is reached in finite time.

But: NO full equilibration when ergodicity is broken

 $t = \infty$ (Eq)

Occurs in particular in a large class of disordered systems: Glasses \rightarrow configurational entropy, memory, history dependence, etc.

Interrelation between arrow of time and ergodicity?

(both notions associated with time evolution and dynamics)

Look at two types of ergodicity breakers = « glasses »!

- (i) Quantum localized systems (Anderson glasses)
- (ii) Frustrated, disordered or amorphous systems

Two types of glasses

 \rightarrow (i) Quantum localized systems (Anderson glasses)

(ii) Frustrated, disordered or amorphous systems

Single particle QM (Anderson)

$$H = \sum_{i} \varepsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(c_{i}^{+} c_{j} + \text{h.c.} \right)$$

No diffusion at large disorder! **No arrow of time!**

Two types of glasses

 \rightarrow (i) Quantum localized systems (Anderson glasses)

(ii) Frustrated, disordered or amorphous systems

Single particle QM (Anderson)

$$H = \sum_{i} \varepsilon_{i} n_{i} - t \sum_{\langle i,j \rangle} \left(c_{i}^{+} c_{j} + \text{h.c.} \right)$$

No diffusion at large disorder! **No arrow of time!**

Many particles (Anderson, Fleishman, Altshuler et al., Mirlin et al., etc.)

$$H = \sum_{\alpha} \varepsilon_{\alpha} n_{\alpha} - \sum_{\alpha, \beta, \gamma, \delta} V_{\alpha\beta\gamma\delta} \left(c_{\alpha}^{+} c_{\beta}^{+} c_{\gamma} c_{\delta} + \text{h.c.} \right)$$

No diffusion at large disorder! && Transition to 'superinsulator' at finite T?!

Two types of glasses

- (i) Quantum localized systems (Anderson glasses)
- \rightarrow (ii) Frustrated, disordered or amorphous systems

High barriers in complex energy landscape

Examples:

• spin glasses

$$H = \sum_{\langle i,j \rangle} J_{ij} s_i^z s_j^z$$

Two types of glasses

- (i) Quantum localized systems (Anderson glasses)
- → (ii) Frustrated, disordered or amorphous systems

High barriers in complex energy landscape

Examples:

- spin glasses
- electron glasses
- dirty superconductors, underdoped high Tc's
- defectful supersolids (He)

$$H = \sum_{\langle i,j \rangle} J_{ij} s_i^z s_j^z$$
$$H = \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j + \sum_i \varepsilon_i n_i$$

Two types of glasses

- (i) Quantum localized systems (Anderson glasses)
- → (ii) Frustrated, disordered or amorphous systems

High barriers in complex energy landscape

Examples:

- spin glasses
- electron glasses
- dirty superconductors, underdoped high Tc's
- defectful supersolids (He)
- many complex systems beyond physics (biology, economy, society)

$$H = \sum_{\langle i,j \rangle} J_{ij} s_i^z s_j^z$$
$$H = \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j + \sum_i \varepsilon_i n_i$$

Two types of glasses

(i) Quantum localized systems (Anderson glasses)

H

(ii) Frustrated, disordered or amorphous systems

High barriers in complex energy landscape

Examples:

- spin glasses
- electron glasses
- dirty superconductors, underdoped high Tc's
- defectful supersolids (He)
- many complex systems beyond physics (biology, economy, society)

$$= \sum_{\langle i,j \rangle} J_{ij} s_i^z s_j^z$$
$$H = \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j + \sum_i \varepsilon_i n_i$$

Ergodicity breaking!

Transport (diffusion, arrow of time) ?!

Two types of glasses

- (i) Quantum localized systems (Anderson glasses)
- (ii) Frustrated, disordered or amorphous systems

High barriers in complex energy landscape

Examples:

- spin glasses
- electron glasses
- dirty superconductors, underdoped high Tc's
- defectful supersolids (He)
- many complex systems beyond physics (biology, economy, society)

 $+\sum_{ij}t_{ij}c_i^+c_j$

 $H = \sum_{\langle i,j \rangle} J_{ij} s_i^z s_j^z + \Gamma \sum_i s_i^x \text{ [LiYHF] Ergodicity breaking!}$ $H = \sum_{\langle i,j \rangle} \frac{e^2}{r_{ij}} n_i n_j + \sum_i \varepsilon_i n_i \qquad \text{Transport (diffusion, arrow of time) ?!}$

Quantum?
$$\left[H_{cl}, H_{q}\right] \neq 0$$

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers ΔE between metastable states	Too small matrix elements between distant states in Hilbert space

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers ΔE between metastable states	Too small matrix elements between distant states in Hilbert space
Destroyed by large T	Robust to T (if fully localized)
Robust to quantum dephasing/ coupling to environment	Destroyed by a dephasing bath Important to avoid in Q-computing!

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers ΔE between metastable states	Too small matrix elements between distant states in Hilbert space
Destroyed by large T	Robust to T (if fully localized)
Robust to quantum dephasing/ coupling to environment	Destroyed by a dephasing bath Important to avoid in Q-computing!

Non-ergodicity AND no diffusion (no clear arrow of time)

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers ΔE between metastable states	Too small matrix elements between distant states in Hilbert space
Destroyed by large T	Robust to T (if fully localized)
Robust to quantum dephasing/ coupling to environment	Destroyed by a dephasing bath Important to avoid in Q-computing!
\checkmark	
Non-ergodicity, BUT diffusion usually possible (arrow of time there)	Non-ergodicity AND no diffusion (no clear arrow of time)

Frustrated disordered systems	Quantum localized systems
e.g. Spin glass	e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers ΔE between metastable states	Too small matrix elements between distant states in Hilbert space
Destroyed by large T	Robust to T (if fully localized)
Robust to quantum dephasing/ coupling to environment	Destroyed by a dephasing bath Important to avoid in Q-computing!
\checkmark	
Non-ergodicity, BUT diffusion usually possible (arrow of time there)	Non-ergodicity AND no diffusion (no clear arrow of time)
Joining two ingredients of ergodicity breaking: (i) Mutual enhancement or competition?	
(11) Is there many particle-localization in quantum glasses?	

Classical glass: SK model

$$H = -\sum_{i < j=1}^{N} \sigma_i^z J_{ij} \sigma_j^z \qquad \overline{J_{ij}} = 0$$
$$\overline{J_{ij}^2} = \frac{J^2}{N}$$

- Thermodynamic transition at T_c to a glass phase
- Unusual order parameter: $Q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2$
- Many metastable states

Classical glass: SK model

$$H = -\sum_{i < j=1}^{N} \sigma_i^z J_{ij} \sigma_j^z \qquad \overline{J_{ij}} = 0$$
$$\overline{J_{ij}} = -\frac{1}{J_{ij}}$$

- Thermodynamic transition at T_c to a glass phase
- Unusual order parameter: $Q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2$
- Many metastable states

Glass phase is always (self-organized) critical! (SK: Kondor-DeDominicis) Power law correlations in whole glass phase! (Droplets: Fisher-Huse)

Classical glass: SK model

$$H = -\sum_{i < j=1}^{N} \sigma_i^z J_{ij} \sigma_j^z \qquad \qquad \overline{J_{ij}} = 0$$
$$\overline{J_{ij}} = \frac{J_{ij}}{J_{ij}} = \frac{J_{ij}}{J_{ij}}$$

- Thermodynamic transition at T_c to a glass phase
- Unusual order parameter: $Q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2$
- Many metastable states

Glass phase is always (self-organized) critical! (SK: Kondor-DeDominicis) Power law correlations in whole glass phase! (Droplets: Fisher-Huse)

Physical consequences of this criticality:

• Pseudgap in the distribution of local fields! (*Palmer, Sommers*) (electron glasses: Coulomb gap!) (*MM, Ioffe '04, MM, Pankov '07*)⁰²⁰⁰

Classical glass: SK model

$$H = -\sum_{i < j=1}^{N} \sigma_i^z J_{ij} \sigma_j^z \qquad \overline{J_{ij}} = 0$$
$$\overline{J_{ij}} = -\frac{1}{J_{ij}}$$

- Thermodynamic transition at T_c to a glass phase
- Unusual order parameter: $Q_{EA} = \frac{1}{N} \sum_{i} \langle s_i \rangle^2$
- Many metastable states

Glass phase is always (self-organized) critical! (SK: Kondor-DeDominicis) Power law correlations in whole glass phase! (Droplets: Fisher-Huse)

Physical consequences of this criticality:

- Pseudgap in the distribution of local fields! (*Palmer, Sommers*) (electron glasses: Coulomb gap!) (*MM, Ioffe '04, MM, Pankov '07*) ⁰²⁰⁰
- Power law distributed avalanches + Barkhausen noise! (Numeric: Pazmandi et al '99, Analytic: Le Doussal, MM, Wiese '10)

What are the consequences of this criticality in the quantum versions?

Problem: Very little is known about quantum glasses!

= Strongly correlated, disordered quantum systems!

Our strategy:

- 1. Solve mean field models (infinite connectivity) highly non-trivial!
- 2. Obtain physical understanding
- 3. Extend to finite dimensions (large but finite connectivity)

Quantum glass models

Disorder: frustration vs. localization?

• Collective excitations in quantum glasses ?

Transverse field Ising spin glass (Sherrington-Kirkpatrick SK)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x \qquad \overline{J_{ij}} = 0$$
$$\overline{J_{ij}^2} = \frac{J^2}{N}$$

• Glassiness and superfluidity - (spin $\frac{1}{2}$ = hard core bosons) $\sigma_i^z \leftrightarrow 2n_i - 1$

"Superglass" = glassy supersolid

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \frac{t}{N} \sum_{i < j} \sigma_i^x \sigma_j^x$$

Quantum SK: Known properties

Transverse field SK model (fully connected, random Ising)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Goldschmidt, Lai, PRL ('90): Static approximation

There *is* a quantum glass transition also at $\Gamma > 0$

Quantum SK: Known properties

Transverse field SK model (fully connected, random Ising)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Quantum SK: Known properties

Transverse field SK model (fully connected, random Ising)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Understanding the quantum glass MM, Ioffe '07

1. Physical approach

→ Nature of excitations
→ Approach generalizable to finite dimensions

Low energy excitations

XY or Heisenberg ferromagnet:

Goldstone modes:

Soft collective excitations along flat directions of the potential

What about Ising glasses?
Low energy excitations

Two possibilities:

Isolated stable minimum in the potential landscape

Many valleys with rather flat interconnections! (in configuration space)

Low energy excitations

Two possibilities:

Isolated stable minimum in the potential landscape

Many valleys with rather flat interconnections! (in configuration space)

Effective potential

(Thouless, Anderson, Palmer '77: Classical SK model; Biroli, Cugliandolo '01, MM, Ioffe '07)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Effective potential (exact at $N = \infty$)

$$G\left(\left\{\left\langle \sigma_{i}^{z}\right\rangle=m_{i}\right\}\right)=-\Gamma\sum_{i}\sqrt{1-m_{i}^{2}}-\frac{1}{2}\sum_{i\neq j}m_{i}J_{ij}m_{j}-\frac{1}{2}\sum_{i\neq j}J_{ij}^{2}\int_{0}^{\infty}d\tau\chi_{i}(\tau)\chi_{j}(\tau)+O\left(\sqrt{1/N}\right)$$

Static approximation for susceptibility: $\chi_i(\omega \to 0) = dm_i/dh_i \approx \chi_i(m_i)$

Effective potential

(Thouless, Anderson, Palmer '77: Classical SK model; Biroli, Cugliandolo '01, MM, Ioffe '07)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Effective potential (exact at $N = \infty$)

$$G\left(\left\{\left\langle \boldsymbol{\sigma}_{i}^{z}\right\rangle=m_{i}\right\}\right)=-\Gamma\sum_{i}\sqrt{1-m_{i}^{2}}-\frac{1}{2}\sum_{i\neq j}m_{i}J_{ij}m_{j}-\frac{1}{2}\sum_{i\neq j}J_{ij}^{2}\int_{0}^{\infty}d\tau\chi_{i}(\tau)\chi_{j}(\tau)+O\left(\sqrt{1/N}\right)$$

Static approximation for susceptibility: $\chi_i(\omega \to 0) = dm_i/dh_i \approx \chi_i(m_i)$

Local minima $(\partial G/\partial m_i = 0)$ (in static approximation)

$$\frac{\Gamma m_i}{\sqrt{1 - m_i^2}} = \sum_{j \neq i} J_{ij} m_j - m_i \sum_{j \neq i} J_{ij}^2 \chi_j(m_j)$$

Effective field on σ_i in z-direction

N coupled random equations for $\{m_i\}$. With ~ Exp[α N] solutions!

Quantum TAP equations

Thouless, Anderson, Palmer '77 (Classical); Biroli, Cugliandolo '01; MM, Ioffe '07 (quantum)

Local minima $(\partial G/\partial m_i = 0)$

$$\frac{\Gamma m_i}{\sqrt{1-m_i^2}} = \sum_{j\neq i} J_{ij}m_j - m_i \sum_{j\neq i} J_{ij}^2 \chi_j(m_j)$$

Environment of a local minimum

Curvatures (Hessian): $H_{ij} = \partial^2 G / \partial m_i \partial m_j = J_{ij} + diagonal terms$

Quantum TAP equations

Thouless, Anderson, Palmer '77 (Classical); Biroli, Cugliandolo '01; MM, Ioffe '07 (quantum)

Local minima $(\partial G/\partial m_i = 0)$

$$\frac{\Gamma m_i}{\sqrt{1-m_i^2}} = \sum_{j\neq i} J_{ij} m_j - m_i \sum_{j\neq i} J_{ij}^2 \chi_j (m_j)$$

Environment of a local minimum

Curvatures (Hessian): $H_{ij} = \partial^2 G / \partial m_i \partial m_j = J_{ij}$ + diagonal terms Standard resolvent technique Spectrum of "spring constants" in a minimum Gapless spectrum

 $Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$

(at small λ : No Gap!)

Gapless spectrum in the **whole** glass phase, ensured by **marginality of minima**!

Spectrum of "spring constants"

 $Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$

Spectrum of "spring constants"

$$Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$$

Semiclassical picture:

 $\rightarrow N$ collective oscillators with mass M ~ 1/ Γ : Frequency $\omega = \sqrt{\lambda/M}$

Spectrum of "spring constants"

$$Spec\left[H_{ij}\right] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$$

Semiclassical picture:

 $\rightarrow N$ collective oscillators with mass M ~ 1/ Γ : Frequency $\omega = \sqrt{\lambda/M}$

 \rightarrow Mode density $\rho(\omega) = \text{const} \times \frac{\omega^2}{\Gamma J^2}$

Spectrum of "spring constants"

$$Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$$

Semiclassical picture:

 $\rightarrow N$ collective oscillators with mass M ~ 1/ Γ : Frequency $\omega = \sqrt{\lambda/M}$

→ Mode density

 $\rho(\omega) = \operatorname{const} \times \frac{\omega^2}{\Gamma I^2}$

Mean square displacement $\langle r^2 \rangle = \frac{1}{2}$

$$\left. x^2 \right\rangle_{\omega} = \frac{1}{M\omega}$$

Susceptibility:
Collective modes form a bath with Ohmic spectral function

$$\chi^{\prime\prime}(\omega) = \frac{1}{M\omega} \rho(\omega) \sim \frac{\omega}{J^2}$$

Spectrum of "spring constants"

$$Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$$

Semiclassical picture:

 $\rightarrow N$ collective oscillators with mass M ~ 1/ Γ : Frequency $\omega = \sqrt{\lambda/M}$

→ Mode density

 $\rho(\omega) = \text{const} \times \frac{\omega^2}{\Gamma I^2}$

Mean square displacement $\langle x^2 \rangle_{\omega} = \frac{1}{M\omega}$

→ Collective modes form a bath with Ohmic spectral function

$$\chi^{\prime\prime}(\omega) = \frac{1}{M\omega} \rho(\omega) \sim \frac{\omega}{J^2}$$

Physical picture + generalization of a known result at the glass transition! [Miller, Huse (SK model); Read, Ye, Sachdev (rotor models)]

Spectrum of "spring constants"

$$Spec[H_{ij}] \equiv \rho_H(\lambda) = const \times \frac{\sqrt{\lambda\Gamma}}{J^2}$$

Semiclassical picture:

 $\rightarrow N$ collective oscillators with mass M ~ 1/ Γ : Frequency $\omega = \sqrt{\lambda/M}$

→ Mode density

 $\rho(\omega) = \text{const} \times \frac{\omega^2}{\Gamma J^2}$

Mean square displacement $\langle x^2 \rangle_{\omega} = \frac{1}{M\omega}$

Physical picture + generalization of a known result at the glass transition! [Miller, Huse (SK model); Read, Ye, Sachdev (rotor models)]

A. Andreanov, MM, '10

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $n \rightarrow 0$ system copies) $\exp[-\beta F_{\text{eff}}] = \text{Tr } \mathbf{T} \exp S_{\text{eff}}$

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$S_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau)$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Selfconsistency:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Quantum impurity problem!

Full replica symmetry broken solution!

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $n \rightarrow 0$ system copies) $\exp[-\beta F_{\text{eff}}] = \text{Tr } \mathbf{T} \exp S_{\text{eff}}$

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$S_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau) \sigma_a^z(\tau) d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau) \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau) \sigma_a^z(\tau) d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau) \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau) \sigma_a^z(\tau) d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau) \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^z(\tau) \sigma_a^z(\tau) d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_a^z(\tau) + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau) \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^z(\tau) d\tau' \sigma_a$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Selfconsistency:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Quantum impurity problem!

Full replica symmetry broken solution!

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $n \rightarrow 0$ system copies) $\exp[-\beta F_{\text{eff}}] = \text{Tr } \mathbf{T} \exp S_{\text{eff}}$

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$\mathcal{S}_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau)$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Quantum impurity problem!

Selfconsistency:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Full replica symmetry broken solution!

To confirm: $\Gamma \ll \Gamma_c \to \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle = \text{const} \times \frac{|\omega|}{J^2}$

i) Glass always gapless; Ohmic spectral function ii) Const is independent of Γ

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $n \rightarrow 0$ system copies) $\exp[-\beta F_{\text{eff}}] = \text{Tr } \mathbf{T} \exp S_{\text{eff}}$

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$S_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau)$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Selfconsistency:

To confirm:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Full replica symmetry broken solution!

Quantum impurity problem!

 $\Gamma \ll \Gamma_c \to \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle = \text{const} \times \frac{|\omega|}{J^2}$ Ensures i.e. gaple

Ensures marginality, i.e. gaplessness!

i) Glass always gapless; Ohmic spectral function 'ii) Const is independent of Γ

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $\exp[-\beta F_{\text{eff}}] = \operatorname{Tr} \mathbf{T} \exp \mathcal{S}_{\text{eff}}$ $n \rightarrow 0$ system copies)

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$\mathcal{S}_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau)$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Quantum impurity problem!

Selfconsistency:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Full replica symmetry broken solution!

 $\Gamma \ll \Gamma_c \to \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle = \text{const} \times \frac{|\omega|}{J^2}$ To confirm:

i) Glass always gapless; Ohmic spectral function ii) Const is independent of Γ

 \leftarrow Physical insight \rightarrow Find selfconsistent solution for a rescaled problem that is independent of Γ !

A. Andreanov, MM, '10

Mean field equations (exact for $N = \infty$)

(Replica trick: $n \rightarrow 0$ system copies) $\exp[-\beta F_{\text{eff}}] = \text{Tr } \mathbf{T} \exp S_{\text{eff}}$

$$H = -\sum_{i < j} \sigma_i^z J_{ij} \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

$$S_{\text{eff}} = J^2 \iint_0^\beta d\tau d\tau' \left[\sum_{a < b} Q_{ab} \sigma_a^z(\tau) \sigma_b^z(\tau') + \frac{1}{2} \sum_a Q_{aa} (\tau - \tau') \sigma_a^z(\tau) \sigma_a^z(\tau') \right] + \Gamma \sum_a \int_0^\beta d\tau \, \sigma_a^x(\tau)$$

$$Q_{aa}(\tau - \tau') = \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}}$$

Quantum impurity problem!

Selfconsistency:

$$Q_{ab} = \langle \sigma_a^z(\tau) \sigma_b^z(\tau') \rangle_{\mathcal{S}_{\text{eff}}} \to q(x)$$

Full replica symmetry broken solution!

To confirm: $\Gamma \ll \Gamma_c \to \langle \sigma_a^z(\tau) \sigma_a^z(\tau') \rangle = \text{const} \times \frac{|\omega|}{J^2}$

i) Glass always gapless; Ohmic spectral function ii) Const $\cong 0.47$ independent of $\Gamma \leftarrow$ Physical insight \rightarrow Find selfconsistent solution

for a rescaled problem that is independent of Γ !

A. Andreanov, MM, '10

Take home message for mean field (SK):

• Effective potential approach \rightarrow consistent physical picture of the low frequency dynamics

• Quantum glass is "self-organized critical" (gapless)

• The dynamics of active spins (for $\omega < \Gamma$) remains almost independent of Γ , despite mass and spring constants renormalizing!

What survives beyond mean field?

 $SK \leftrightarrow$

What survives beyond mean field?

- Gapless collective modes?
- Spatial properties (localization?)

Expected:

Large connectivity \rightarrow Mean field describes well the spectrum, except at the lowest energies

Beyond mean field

Quantum 'spin glass' with

- Exchange matrix J_{ij} random, $|J_{ij}| \sim J$
- Large connectivity z

Argued to be a relevant model for electron glasses close to Mott-Anderson (M-I) transition MM, Ioffe '07

Beyond mean field

Quantum 'spin glass' with

- Exchange matrix J_{ij} random, $|J_{ij}| \sim J$
- Large connectivity z

Argued to be a relevant model for electron glasses close to Mott-Anderson (M-I) transition MM, Ioffe '07

Repeat effective potential + semi-classics analysis!

Beyond mean field Quantum 'spin glass' with

- Exchange matrix J_{ij} random, $|J_{ij}| \sim J$
- Large connectivity z

Spectrum of spring constants (Hessian H_{ii}) (d>3)

Beyond mean field Quantum 'spin glass' with

- Exchange matrix J_{ij} random, $|J_{ij}| \sim J$
- Large connectivity z

Spectrum of spring constants (Hessian H_{ii}) (d>3)

Beyond mean field?

Conclusions from our reasoning:

- Criticality of quantum glass
 - → large density of soft collective modes delocalized to very low energies
- → Spin glass-type ergodicity breaking counteracts quantum localization!
- → Instead it enhances transport of energy and charge (and decoherence in qubits)!

Beyond mean field?

- Conclusions from our reasoning:
- Criticality of quantum glass
 - → large density of soft collective modes delocalized to very low energies
- → Spin glass-type ergodicity breaking counteracts quantum localization!
- → Instead it enhances transport of energy and charge (and decoherence in qubits)!
- → NO many body localization! (only with weak interactions!) Especially, not to be expected close to the MIT!

Beyond mean field?

- Conclusions from our reasoning:
- Criticality of quantum glass
 - → large density of soft collective modes delocalized to very low energies
- → Spin glass-type ergodicity breaking counteracts quantum localization!
- → Instead it enhances transport of energy and charge (and decoherence in qubits)!
- → NO many body localization! (only with weak interactions) Especially, not to be expected close to the MIT!

Interesting open questions:

- Mobility edge for many body excitations?
- What happens at the quantum phase transition? (cf. MM '09 regarding Bose glass)

$S=1/2 \leftrightarrow$ hard core bosons

Bose condensation in disorder?

S=1/2 ↔ hard core bosons How do glassy order and superfluidity compete?

Possibility of a "superglass"?

= amorphous+glassy supersolid

(e.g. dirty bosons [preformed pairs] with Coulomb frustration)

Motivation

Supersolidity observed in defectful (glassy) quantum solids

(Kim&Chan, Reppy, Dalibard)

Torsional oscillator filled with Helium:

Superfluid fraction observed in the solid phase **via non-classical rotational inertia,** + anomalous shear properties etc.

Superglasses ?!

$$\begin{aligned}
& Xiaoquan Yu, MM '10 \\
& H = -\Gamma \sum_{i} \sigma_{i}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z} \\
& \Psi \\
& \Psi \\
& H = -\frac{t}{N} \sum_{i < j} \sigma_{i}^{x} \sigma_{j}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z} \\
& \Psi \\$$

Superglasses ?!

$$\begin{aligned}
& Xiaoquan Yu, MM '10 \\
& H = -\Gamma \sum_{i} \sigma_{i}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z} \\
& V \\
& H = -\frac{t}{N} \sum_{i < j} \sigma_{i}^{x} \sigma_{j}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z}
\end{aligned}$$

Competing order parameters: $M = \frac{1}{N} \langle \sigma_i^x \rangle$ $q_{\rm EA} = \frac{1}{N} \langle \sigma_i^z \rangle^2$

M signals superfluidity of hard core bosons $\sigma_i^z \leftrightarrow 2n_i - 1$

Superglasses ?!

$$\begin{aligned}
&Xiaoquan Yu, MM '10 \\
&H = -\Gamma \sum_{i} \sigma_{i}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z} \\
&V \\
&H = -\frac{t}{N} \sum_{i < j} \sigma_{i}^{x} \sigma_{j}^{x} - \sum_{i < j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z}
\end{aligned}$$

Competing order parameters: $M = \frac{1}{N} \langle \sigma_i^x \rangle$ $q_{\rm EA} = \frac{1}{N} \langle \sigma_i^z \rangle^2$

M signals superfluidity of hard core bosons $\sigma_i^z \leftrightarrow 2n_i - 1$

If M and q_{EA} exist at same time \rightarrow Meanfield model of a superglass!
« Superglass »

Tam, Geraedts, Inglis, Gingras, Melko, PRL (10)

Carleo, Tarzia, Zamponi PRL (09)

« Superglass »

Tam, Geraedts, Inglis, Gingras, Melko, PRL (10)

Carleo, Tarzia, Zamponi PRL (09)

« Superglass »

Tam, Geraedts, Inglis, Gingras, Melko, PRL (10)

Carleo, Tarzia, Zamponi PRL (09)

?? Low T behavior ? – QPT ? - Local structure of the superglass ??

Mean field superglass

$$q_{\rm EA} = \frac{1}{N} \langle \sigma_i^z \rangle^2$$

Mean field superglass X. Yu, MM '10

• Obtain T = 0 phase transition glass-to-superglass exactly! (BCS instability of glass!)

• For superfluid-to-superglass transition: Use static approximation (but exact upper bound)

• Analytical proof of existence of superglass phase!

Analogue for 1/r (Coulomb gap) in d< ∞ ? Expect different fractality of the condensate!

Local structure of the superglass

• Superfluid and glass try to avoid each other:

 $\langle s_i^x \rangle$ and $\langle s_i^z \rangle^2$ are anticorrelated

Local structure of the superglass

• Superfluid and glass try to avoid each other:

 $\langle s_i^x \rangle$ and $\langle s_i^z \rangle^2$ are anticorrelated

• Superfluid order non-monotonous with T!

Conclusions

• Understanding of collective low energy excitations in quantum glasses

- Glassy order counteracts many particle quantum localization Ergodicity is broken – but arrow of time is intact!
- Frustrated bosons: superfluid and glassy order can coexist

Conclusions

• Understanding of collective low energy excitations in quantum glasses

- Glassy order counteracts many particle quantum localization Ergodicity is broken – but arrow of time is intact!
- Frustrated bosons: superfluid and glassy order can coexist Perspectives

Quantum phase transitions in disordered systems (MIT, SIT, Bose glass, quantum glass transition):

- Nature of excitations and many particle localization? Where/when does it occur? Implications on quantum information?
- New effects due to competition of different orders
- Quantum annealing, adiabatic quantum computation?