Graphene: Relativistic transport in a nearly perfect quantum liquid

Markus Müller

in collaboration with
Lars Fritz (Harvard)
Subir Sachdev (Harvard)
Jörg Schmalian (Iowa)
Sean Hartnoll (Harvard)
Pavel Kovtun (Victoria)

ICMP 09, Prague 3rd August, 2009
Outline

• Relativistic physics in graphene, quantum critical systems and conformal field theories

• Strong coupling features in collision-dominated transport

• Comparison with strongly coupled fluids (via AdS-CFT)

• Graphene: an almost perfect quantum liquid
Dirac fermions in graphene
(Semenoff ’84, Haldane ‘88)

Honeycomb lattice of C atoms

Tight binding dispersion
Dirac fermions in graphene

(Semenoff ’84, Haldane ‘88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom ↔ pseudospin)

Close to the two Fermi points K, K':

$$H \approx v_F \left(\vec{p} - \vec{K} \right) \cdot \vec{\sigma}_{\text{sublattice}}$$

$$\rightarrow E_p = v_F |\vec{p} - \vec{K}|$$
Dirac fermions in graphene

(Honeycomb lattice of C atoms)

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom ↔ pseudospin)

Fermi velocity (speed of light”)

\(v_F \approx 1.1 \times 10^6 \text{ m/s} \approx \frac{c}{300} \)

Close to the two Fermi points \(K, K' \):

\[
H \approx v_F (\vec{p} - \vec{K}) \cdot \vec{\sigma}_{\text{sublattice}}
\]

\[
E_p = v_F |\vec{p} - \vec{K}|
\]
Dirac fermions in graphene

\(\text{(Semenoff '84, Haldane '88)}\)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom \(\leftrightarrow\) pseudospin)

Close to the two Fermi points \(\mathbf{K}, \mathbf{K}'\):

Fermi velocity (speed of light"")

Coulomb interactions: Fine structure constant

\[
H \approx v_F (\mathbf{p} - \mathbf{K}) \cdot \mathbf{\sigma}_{\text{sublattice}}
\]

\[
E_p = v_F |\mathbf{p} - \mathbf{K}|
\]

\[
v_F \approx 1.1 \cdot 10^6 \text{ m/s} \approx \frac{c}{300}
\]

\[
\alpha \equiv \frac{e^2}{\varepsilon \hbar v_F} = O(1)
\]
Relativistic fluid at the Dirac point

- Relativistic plasma physics of interacting particles and holes!
Relativistic fluid at the Dirac point

- Relativistic plasma physics of interacting particles and holes!
- Strongly coupled, nearly quantum critical fluid at $\mu = 0$
Relativistic fluid at the Dirac point

- Relativistic plasma physics of interacting particles and holes!
- Strongly coupled, nearly quantum critical fluid at $\mu = 0$

Very similar as at quantum criticality (with $z=1$, e.g. SIT) and the associated CFT's
Graphene – Fermi liquid?

1. Tight binding kinetic energy
 → massless Dirac quasiparticles

\[H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^\dagger(k) \gamma_{\lambda a}(k) \]

2. Coulomb interactions:
 Unexpectedly strong!
 → nearly quantum critical!

\[V(q) = \frac{2\pi e^2}{\varepsilon |q|} \]

\[H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_{a}^\dagger(k_2 - q) \Psi_{a}(k_2) V(q) \Psi_{b}^\dagger(k_1 + q) \Psi_{b}(k_1) \]
Graphene – Fermi liquid?

1. Tight binding kinetic energy
 → massless Dirac quasiparticles

\[H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}(k) \gamma_{\lambda a}(k) \]

2. Coulomb interactions:
 Unexpectedly strong!
 → nearly quantum critical!

\[V(q) = \frac{2\pi e^2}{\varepsilon |q|} \]

Coulomb only marginally irrelevant for \(\mu = 0 \)!
Graphene – Fermi liquid?

1. Tight binding kinetic energy
 \rightarrow massless Dirac quasiparticles

\[
H_0 = \sum_{\lambda = \pm} \sum_{\alpha = 1}^N \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma^\dagger_{\lambda\alpha}(k) \gamma_{\lambda\alpha}(k)
\]

2. Coulomb interactions:
 Unexpectedly strong!
 \rightarrow nearly quantum critical!

\[
V(q) = \frac{2\pi e^2}{\varepsilon |q|}
\]

\[
H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi^\dagger_{a}(k_2 - q) \Psi_a(k_2) V(q) \Psi^\dagger_b(k_1 + q) \Psi_b(k_1)
\]

Coulomb only marginally irrelevant for $\mu = 0$!

RG: $\mu = 0$

\[
\frac{d\alpha}{d\ell} = -\frac{\alpha^2}{4} + \mathcal{O}(\alpha^3)
\]

\[
\alpha(T) = \alpha^0 \frac{4}{1 + (\alpha^0/4) \ln(\Lambda/T)} \sim \frac{4}{\ln(\Lambda/T)}
\]

Strong coupling!

Cb marginal!
Graphene – Fermi liquid?

1. Tight binding kinetic energy
 → massless Dirac quasiparticles

\[H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma^\dagger_{\lambda a}(k) \gamma_{\lambda a}(k) \]

2. Coulomb interactions:
 Unexpectedly strong!
 → nearly quantum critical!

\[V(q) = \frac{2\pi e^2}{\varepsilon |q|} \]

\[H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi^\dagger_a(k_2 - q) \Psi_a(k_2) V(q) \Psi^\dagger_b(k_1 + q) \Psi_b(k_1) \]

Coulomb only marginally irrelevant for \(\mu = 0 \)!

\[\frac{d\alpha}{dl} = -\frac{\alpha^2}{4} + O(\alpha^3) \]

\[\alpha(T) = \frac{\alpha^0}{1 + (\alpha^0/4) \ln(\Lambda/T)} \sim \frac{4}{\ln(\Lambda/T)} \]

RG:
(\(\mu = 0 \))
(\(\mu > 0 \) \(T < \mu \): Screening kicks in, short ranged \(C_b \) irrelevant

Strong coupling!
Quantum critical liquid
Hole Fermi liquid
Electron Fermi liquid
Interactive-dominated (hydrodynamic)
Disorder dominated
Strong coupling in undoped graphene

MM, L. Fritz, and S. Sachdev, PRB ‘08.

Inelastic scattering rate
(Electron-electron interactions)

\[\tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T^2}{\hbar \mu} \]

\(\mu > T \): standard 2d Fermi liquid
Strong coupling in undoped graphene

Inelastic scattering rate
(Electron-electron interactions)

\[\tau^{-1}_{ee} \sim \alpha^2 \frac{k_B T^2}{\hbar \mu} \]

Relaxation rate \(\sim T \),
like in quantum critical systems!
Fastest possible rate!

\(\mu > T \): standard 2d Fermi liquid

\(\mu < T \): strongly coupled relativistic liquid
Inelastic scattering rate
(Electron-electron interactions)

Relaxation rate \(\sim T \),
like in quantum critical systems!

Fastest possible rate!

\[\tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T^2}{\hbar \mu} \]

\(\mu > T \): standard 2d Fermi liquid

\(\mu < T \): strongly coupled relativistic liquid

“Heisenberg uncertainty principle for well-defined quasiparticles”

\[E_{qp} (\sim k_B T) \geq \Delta E_{\text{int}} = \hbar \tau_{ee}^{-1} \sim \alpha^2 k_B T \]
Strong coupling in undoped graphene

MM, L. Fritz, and S. Sachdev, PRB ‘08.

Inelastic scattering rate
(Electron-electron interactions)

\[\tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T^2}{\hbar \mu} \]

\[\alpha \tau_h \ll T \rightarrow \text{Nearly universal strong coupling features in transport,} \]

Relaxation rate \(\sim T \),
like in quantum critical systems!

Fastest possible rate!

\(\mu > T \): standard 2d Fermi liquid

\[\mu < T \]: strongly coupled relativistic liquid

“Heisenberg uncertainty principle for well-defined quasiparticles”

\[E_{qp} \sim k_B T \geq \Delta E_{\text{int}} = \hbar \tau_{ee}^{-1} \sim \alpha^2 k_B T \]

As long as \(\alpha(T) \sim 1 \), energy uncertainty is saturated, scattering is maximal

\(\rightarrow \) Nearly universal strong coupling features in transport,

similarly as at the 2d superfluid-insulator transition [Damle, Sachdev (1996, 1997)]
Consequences for transport

1. Collisionlimited conductivity σ in clean undoped graphene

2. Graphene - a perfect quantum liquid: very small viscosity η!
Consequences for transport

1. Collisionlimited conductivity σ in clean undoped graphene

2. Graphene - a perfect quantum liquid: very small viscosity η!

3. Emergent relativistic invariance at low frequencies!
 Despite the breaking of relativistic invariance by
 • finite T,
 • finite μ,
 • instantaneous $1/r$ Coulomb interactions
Consequences for transport

1. Collisionlimited conductivity σ in clean undoped graphene

2. Graphene - a perfect quantum liquid: very small viscosity η!

3. Emergent relativistic invariance at low frequencies!

Despite the breaking of relativistic invariance by
- finite T,
- finite μ,
- instantaneous $1/r$ Coulomb interactions

Collision-dominated transport \rightarrow relativistic hydrodynamics:

a) Response fully determined by covariance, thermodynamics, and σ, η

b) Collective cyclotron resonance in small magnetic field (low frequency)

Hydrodynamic regime: (collision-dominated)

$\tau_{ee}^{-1} \gg \tau_{imp}^{-1}, \omega_c^{\text{typ}}, \omega_{AC}$
Collision-limited conductivity

Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!
Collision-limited conductivity

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!

- Key: Charge current without momentum

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]

- Finite collision-limited conductivity:
 \[\sigma(\mu = 0) < \infty \quad ; \quad \sigma(\mu \neq 0) = \infty \]

and

- Infinite thermal conductivity:
 \[\kappa(\mu = 0) = \infty \quad ; \quad \kappa(\mu \neq 0) < \infty \]

(true also in pure semiconductors)

Collision-limited conductivity

Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!

- Key: Charge current without momentum

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]

- Finite collision-limited conductivity!
- Only marginal irrelevance of Coulomb:
 Maximal possible relaxation rate, set only by temperature

\[\tau_{ee}^{-1} \approx \alpha^2 \frac{k_B T}{\hbar} \]
Collision-limited conductivity

Finite conductivity in a pure system at particle-hole symmetry \((\rho = 0)!\)

- Key: Charge current without momentum

\[
\vec{J} \neq 0, \quad \vec{P} = 0
\]

- Finite collision-limited conductivity! \(\sigma(\mu = 0) < \infty \); \(\sigma(\mu \neq 0) = \infty\)
- Only marginal irrelevance of Coulomb: Maximal possible relaxation rate, set only by temperature

\[
\tau_{ee}^{-1} \approx \alpha^2 \frac{k_B T}{\hbar}
\]

→ Nearly universal conductivity at strong coupling
Collision-limited conductivity

Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!

- Key: Charge current without momentum

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]

- Finite collision-limited conductivity!
- Only marginal irrelevance of Coulomb:
 Maximal possible relaxation rate, set only by temperature

Pair creation/annihilation leads to current decay

\[\tau_{ee}^{-1} \approx \alpha^2 \frac{k_B T}{\hbar} \]

→ Nearly universal conductivity at strong coupling

\[\sigma_{Drude} = \frac{e}{m} \rho \tau \rightarrow \sigma(\mu = 0) \sim \frac{e}{k_B T} \frac{e}{\sqrt{\hbar v^2}} \left(\frac{k_B T^2}{(\hbar v)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{\hbar} \]
Collision-limited conductivity

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!

- Key: Charge current without momentum

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]

- Finite collision-limited conductivity! \[\sigma(\mu = 0) < \infty \quad ; \quad \sigma(\mu \neq 0) = \infty \]

- Only marginal irrelevance of Coulomb:
 - Maximal possible relaxation rate, set only by temperature

\[\tau_{ee}^{-1} \approx \alpha^2 \frac{k_B T}{\hbar} \]

→ Nearly universal conductivity at strong coupling

\[\sigma_{\text{Drude}} = \frac{e}{m} \rho \tau \rightarrow \sigma(\mu = 0) \sim \frac{e}{k_B T / \sqrt{2}} \left(\frac{e (k_B T)^2}{(\hbar v)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{\hbar} \]

Marginal irrelevance of Coulomb:

\[\alpha \approx \frac{4}{\log(\Lambda/T)} < 1 \]
Collision-limited conductivity

Damle, Sachdev, (1996).
Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particle-hole symmetry ($\rho = 0$)!

- Key: Charge current without momentum

\(\vec{J} \neq 0, \quad \vec{P} = 0 \)

- Finite collision-limited conductivity!
 - Only marginal irrelevance of Coulomb:
 Maximal possible relaxation rate, set only by temperature

$\tau_{ee}^{-1} \approx \alpha^2 \frac{k_B T}{\hbar}$

→ Nearly universal conductivity at strong coupling

\[
\sigma_{\text{Drude}} = \frac{e}{m} \rho \tau \rightarrow \sigma(\mu = 0) \sim \frac{e \left(\frac{\alpha^2 k_B T}{\hbar} \right)}{\sqrt{1+\frac{e^2}{\alpha^2 k_B T}}} \approx 1 \frac{e^2}{\alpha^2 \hbar}
\]

Marginal irrelevance of Coulomb:

\[
\alpha \approx \frac{4}{\log(\Lambda/T)} < 1
\]

Expect saturation as $\alpha \rightarrow 1$, and eventually phase transition to insulator
Boltzmann approach

Boltzmann equation in Born approximation

\[
\left(\partial_t + e \mathbf{E} \cdot \frac{\partial}{\partial \mathbf{k}} \right) f_{\pm}(\mathbf{k}, t) = I_{\text{coll}}^{\text{Cb}}[\mathbf{k}, t | \{ f_{\pm}(\mathbf{k}', t) \}] \propto \alpha^2(T)
\]

Collision-limited conductivity:

\[
\sigma(\mu = 0) = \frac{0.76 e^2}{\alpha^2(T) \hbar}
\]
Beyond weak coupling approximation:

Graphene

⇔

Very strongly coupled, critical relativistic liquids?

AdS – CFT!
Quark-gluon plasma is described by QCD (nearly conformal, critical theory)

Low viscosity fluid!
Compare graphene to Strongly coupled relativistic liquids

Obtain exact results via string theoretical AdS–CFT correspondence

→ Response functions for particular strongly coupled relativistic fluids
 (for maximally supersymmetric SU(N) Yang Mills theory with $N \rightarrow \infty$ colors)
By mapping to weakly coupled gravity problem:

$$\text{AdS} \quad - \quad \text{CFT} [\text{SU}(N\gg 1)]$$

weak coupling \quad - \quad strong coupling
SU(N) transport from AdS/CFT

Gravitational dual to SUSY SU(N)-CFT\(_{2+1}\): Einstein-Maxwell theory

\[
I = \frac{1}{g^2} \int d^4x \sqrt{-g} \left[-\frac{1}{4} R + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{3}{2} \right].
\]

(embedded in M theory as $AdS_4 \times S^7$: $1/g^2 \sim N^{3/2}$)

It has a black hole solution (with electric and magnetic charge):

\[
ds^2 = \frac{\alpha^2}{z^2} [-f(z) dt^2 + dx^2 + dy^2] + \frac{1}{z^2} \frac{dz^2}{f(z)},
\]

\[
F = h \alpha^2 dx \wedge dy + q \alpha dz \wedge dt,
\]

\[
f(z) = 1 + (h^2 + q^2) z^4 - (1 + h^2 + q^2) z^3.
\]

Electric charge q and magnetic charge, h

$\leftrightarrow \mu$ and B for the CFT
SU(N) transport from AdS/CFT

Gravitational dual to SUSY SU(N)-CFT\(_{2+1}\): Einstein-Maxwell theory

\[
I = \frac{1}{g^2} \int d^4x \sqrt{-g} \left[-\frac{1}{4} R + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{3}{2} \right].
\]

(embedded in M theory as \(AdS_4 \times S^7\): \(1/g^2 \sim N^{3/2}\))

It has a black hole solution (with electric and magnetic charge):

\[
ds^2 = \frac{\alpha^2}{z^2} \left[-f(z) dt^2 + dx^2 + dy^2 \right] + \frac{1}{z^2} \frac{dz^2}{f(z)},
\]

\[
F = h \alpha^2 dx \wedge dy + q \alpha dz \wedge dt,
\]

\[
f(z) = 1 + (h^2 + q^2)z^4 - (1 + h^2 + q^2)z^3.
\]

Background \(\leftrightarrow\) Equilibrium

Transport \(\leftrightarrow\) Perturbations in \(g_{tx,ty}, A_{x,y}\).

Response via Kubo formula from \(\delta^2 I/\delta(g, A)^2\).
Compare graphene to
Strongly coupled relativistic liquids

Obtain exact results via string theoretical AdS–CFT correspondence

- Confirm the structure of the hydrodynamic response functions $\sigma(\omega)$ etc.
- Allow to calculate the transport coefficients for a strongly coupled theory!

\[
\text{SUSY - SU(N): } \sigma(\mu = 0) = \sqrt{\frac{2}{9}} N^{3/2} \frac{e^2}{\hbar}
\]
Compare graphene to
Strongly coupled relativistic liquids

Obtain exact results via string theoretical AdS–CFT correspondence

- Confirm the structure of the hydrodynamic response functions $\sigma(\omega)$ etc.
- Allow to calculate the transport coefficients for a strongly coupled theory!

\[
\text{SUSY - SU(N): } \sigma(\mu = 0) = \sqrt{\frac{2}{9}} N^{3/2} \frac{e^2}{\hbar} ; \eta_{\text{shear}}^{s}(\mu = 0) = \frac{1}{4\pi} \frac{\hbar}{k_B}
\]
Graphene – a nearly perfect liquid!

Anomalously low viscosity (like quark-gluon plasma)

\[\frac{\eta}{s} \sim E_{qp} \tau \geq 1 \]

“Heisenberg”

Measure of strong coupling:

shear viscosity \[
\eta > \frac{\hbar}{k_B} \frac{1}{4\pi}
\]

entropy density \[
\frac{s}{\eta} > \frac{\hbar}{k_B} \frac{1}{4\pi}
\]

Conjecture from AdS-CFT:

Graphene – a nearly perfect liquid!

Anomalously low viscosity (like quark-gluon plasma)

Conjecture from AdS-CFT:

\[
\eta \sim \frac{E_{qp}}{s} \tau \geq 1
\]

“Heisenberg”

Measure of strong coupling:

\[
\text{shear viscosity} \quad \frac{\eta}{s} \quad > \quad \frac{\hbar}{k_B} \frac{1}{4\pi}
\]

\[
\text{entropy density} \quad \frac{s}{\eta} \quad \propto \quad \frac{1}{k_B T}
\]

Doped Graphene & Fermi liquids:

\[
\eta \sim n \cdot mv^2 \cdot \tau \quad \rightarrow \quad n \cdot E_F \cdot \frac{\hbar E_F}{(k_B T)^2}
\]

\[
\eta \sim k_B n \frac{T}{E_F}
\]

\[
\eta \sim \frac{\hbar}{k_B} \left(\frac{E_F}{T} \right)^3
\]
Graphene – a nearly perfect liquid!

Anomalously low viscosity (like quark-gluon plasma)

\[\frac{\eta}{s} \sim E_{qp} \tau \geq 1 \]

“Heisenberg” Measure of strong coupling:

\[\frac{\eta}{s} > \frac{\hbar}{k_B} \frac{1}{4\pi} \]

Conjecture from AdS-CFT:

\[\frac{\eta}{s} \propto \frac{T}{E_F} \]

Doped Graphene & Fermi liquids: (Khalatnikov etc)

\[\eta \propto n \cdot m v^2 \cdot \tau \rightarrow n \cdot E_F \cdot \frac{\hbar E_F}{(k_B T)^2} \]

\[s \propto k_B n T \]

\[\eta \propto \frac{\eta}{s} \sim \frac{\hbar}{k_B} \left(\frac{E_F}{T} \right)^3 \]

Undoped Graphene:

\[\eta \propto n \cdot m v^2 \cdot \tau \rightarrow n_{th} \cdot \frac{k_B T}{\alpha^2 k_B T} \cdot \frac{\hbar}{\alpha^2} = \frac{\hbar}{\alpha^2} n_{th} \]

\[s \propto k_B n_{th} \]

Exact (Boltzmann-Born Approx):

\[\frac{\eta}{s} = \frac{\hbar}{k_B} \cdot \frac{0.449\pi}{9\zeta(3)\alpha^2(T)} = \frac{\hbar}{k_B} \cdot \frac{0.13}{\alpha^2(T)} \]
Electronic consequences of low viscosity?

Electronic turbulence in clean, strongly coupled graphene?
(or at quantum criticality!)

Reynolds number:

$$\text{Re} = \frac{s/k_B}{\eta/\hbar} \times \frac{k_B T}{\hbar v/L} \times \frac{u_{\text{typ}}}{v}$$
Electronic consequences of low viscosity?

Electronic turbulence in clean, strongly coupled graphene?
(or at quantum criticality!)

Reynolds number:

$$ Re = \frac{s/k_B}{\eta/\hbar} \times \frac{k_BT}{\hbar v/L} \times \frac{u_{typ}}{v} $$

Strongly driven mesoscopic systems: (Kim’s group [Columbia])

- $L = 1\mu m$
- $u_{typ} = 0.1v$
- $T = 100K$

$Re \sim 10 - 100$

Complex fluid dynamics!
(pre-turbulent flow)

New phenomenon in an electronic system!
Summary

• Undoped graphene is strongly coupled in a large temperature window!

• Nearly universal strong coupling features in transport; many similarities with strongly coupled critical fluids (described by AdSCFT)

• Emergent relativistic hydrodynamics at low frequency

• Graphene: Nearly perfect quantum liquid!
 → Possibility of complex (turbulent?) current flow at high bias