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Outline 

•  Philosophy and basic recipes 

•  Strong coupling features in collision-dominated 
transport in AdS-CFT 

•  Strong coupling features at quantum criticality, 
especially in graphene:  
 Graphene as an almost perfect quantum liquid 



The challenge of strong coupling 
in condensed matter theory 

•  Electrons have strong bare interactions (Coulomb)  

•  But: non-interacting quasiparticle picture (Landau-Fermi 
liquid) works very well for most metals 
 Reason: RG irrelevance of interactions, 
 ↔ screening and dressing of quasiparticles 

•  Opposite extreme: Interactions much stronger than the 
Fermi energy ➙ Mott insulators with localized e’s 

•  Biggest challenge: strong coupling physics close to 
quantum phase transitions.  
 Maximal competition between wave and particle character (e.g.: 
high Tc superconductors, heavy fermions, cold atoms, graphene) 



The challenge of strong coupling 
in condensed matter theory 

Idea and Philosophy:  

Study [certain] strongly coupled CFTs (= QFT’s for 
quantum critical systems) by the AdS-CFT 
correspondence  

→ Learn about physical properties of strongly coupled 
theories (beyond ε- and 1/N expansions) 

→ Exotic matter? (Bose fluids, strong coupling 
superconductivity, etc) 

→ Extract the general/universal physics from the particular 
examples to make the lessons useful for condensed 
matter theory.   



Holographic duality 

Maldacena, Gubser, Klebanov, Polyakov, Witten 

D+1 dimensional 
AdS space, 

gravity theory 
A D=d+1 

dimensional 
system at its 

quantum 
critical point, 
(conformal) 

QFT 



Gravity side: Anti de Sitter space 

Sgrav[g] = 1
16πGN

dD+1x g∫ R − 2Λ + ...( )

R Ricci scalar,        Λ cosmological constant

Gravity action (Hilbert-Einstein) – if curvature small compared to string scale 

2Λ = −
D D −1( )

L2
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Anti de Sitter space AdSD+1 

gab :ds2 = L2
−dt 2 + dxi
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Extra dimension: the RG scale of the boundary theory 



Anti de Sitter space AdSD+1 

Remarks: 
•  Metric on the boundary (t,xi, z = 0): Minkowski 
•  Symmetry of the metric: SO(D,2) [AdS can be embedded in RD+2 as symmetric 
hyperboloid] 
•  Dilation symmetry (part of conformal symmery) :  
•  SO(D,2) is also the conformal group in D dimensions! Strong hint that AdSD+1 
is the space to be related with conformal QFT’s in D dimension    

t, xi , z→ λt,λxi ,λz    u→ u λ
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Correspondence 
Quantum gravity (bulk) 
Gravity+extra matter 

Bulk fields 

D+1=d+2 space time dimensions 

Semi-Classical limit (saddle 
point) 

Extra dimension: u 
z=L2/u 

QFT (boundary)  
SU(N) gauge theory 

Operators of the QFT 

D=d+1 space time dimensions 

Non-trivial strong coupling limit (‘t 
Hooft limit)  

Energy scale (RG) 
Length scale 

λ = g2N ,    N →∞



Correspondence 
Quantum gravity (bulk) 
Gravity+extra matter 

Bulk fields 

D+1=d+2 space time dimensions 

Semi-Classical limit (saddle 
point) 

Extra dimension: u 
z=L2/u 

QFT (boundary)  
SU(N) gauge theory 

Operators of the QFT 

D=d+1 space time dimensions 

Non-trivial strong coupling limit (‘t 
Hooft limit)  

Energy scale (RG) 
Length scale 

Zbulk φ(z, x)→ zd−Δδφ 0( ) x( )⎡⎣ ⎤⎦  =  exp i dDxδφ 0( ) x( )Ο x( )∫( )
QFT

Central duality conjecture (taken for granted): 

Large N limit:   easy (classical saddle point, ODE) ↔ hard (non-trivial strong coupling) 

λ = g2N ,    N →∞



The classical limit (“large N”) 
Classical limit (saddle point approximation, “large N limit”) 

Gravity: AdS radius (radius of curvature) much larger than the Planck scale  

Indeed: 

 

Sgrav[g] =
1

16πGN

dD+1x g∫ R − 2Λ + ...( ) ~ L
D−1

Pl
D−1  1

 

LD−1

GN

≈
LD−1

Pl
D−1 ≈ N

2
 1

Holographic principle: (Area of boundary)/GN ~ N2 

N2 >> 1 
↔ (QFT): Number of degrees of freedom per site >> 1 
↔ central charge c of the CFT  c >> 1 



AdSD+1-CFTD dictionary 

 

Quantum gravity (bulk) 
Gravity+extra matter 

Bulk fields 

Graviton 
Global current J 
Scalar/fermionic operator  

QFT (boundary)  
SU(N) gauge theory 

Operators of the QFT 

Energy momentum tensor 
Maxwell field A 
Scalar/fermionic field 

•  N = 4 super Yang-Mills (SU(N)) in D=3+1:  
Content: gauge field, scalars and fermions in the adjoint representation 
(conformal, β(g)=0) 

•  N = 8 super Yang-Mills in D=2+1  
(asymptoticaly conformal strong coupling IR fixed point)  

Best established examples 



Finite T 

 

•  T breaks scale invariance by introducing an IR scale in the CFT 
 ↔ 
IR modification of the AdS metric: horizon at z ~ 1/T! → Black hole solution: 

ds2 =
L2
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Finite T 

 

•  T breaks scale invariance by introducing an IR scale in the CFT 
 ↔ 
IR modification of the AdS metric: horizon at z ~ 1/T! → Black hole solution: 

•  Asymptotic AdS metric is conserved 
•  Event horizon when f(zH)=0;  
•  Boundary condition at zH: only infalling waves! 
•  Precise connection with temperature: 
In Euclidean time: space time is non-singular only if  τ=it is periodic with period  

Δτ ≡
1
T

=
4π
′f zH( ) =

4π zH
d

=
1
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AdS CFT in practice 

 

Zbulk φ(z, x)→ zd−Δδφ 0( ) x( )⎡⎣ ⎤⎦  =  exp i dDxδφ 0( ) x( )Ο x( )∫( )
QFT

Use the correspondence: 

To compute correlation functions in the CFT: 

Zbulk φ(z, x)→ zd−Δδφ 0( ) x( )⎡⎣ ⎤⎦  ≈ exp −Scl δφ 0( ) x( )( )⎡
⎣

⎤
⎦  

Ο x( )Ο y( )
QFT

=
δ 2Scl δφ 0( ) x( )( )
δφ 0( ) x( )δφ 0( ) y( )

δφ 0( ) =0

Transport coefficients (thermo-electric conductivities, viscosity) 
from Kubo formula (retarded Greens functions) 



Application: 

Thermoelectric transport in D=2+1 

Supersymmetric SU(N) 
dual to 

Einstein + Maxwell (dual to the current)  

 



SU(N) transport from AdS/CFT 

It has a black hole solution (with electric and magnetic charge): 

Black hole 

AdS3+1 

z = 0 

(embedded in M theory as                                             ) 

Electric charge q and magnetic charge h 
↔ µ and B for the CFT 

Gravitational dual to SUSY SU(N)-CFT2+1: Einstein-Maxwell theory 



SU(N) transport from AdS/CFT 
Gravitational dual to SUSY SU(N)-CFT2+1: Einstein-Maxwell theory 

Black hole 

AdS3+1 

z = 0 

Background  ↔  Equilibrium 

Transport  ↔  Perturbations in              . 

Response via Kubo formula from                  . 

It has a black hole solution (with electric and magnetic charge): 

(embedded in M theory as                                             ) 



Compare graphene to  
Strongly coupled relativistic liquids  

Obtain exact results via string theoretical AdS–CFT correspondence 

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007) 

•  Thermoelectric response functions σ(ω), resonances: relat. hydrodynamics  

•  Calculate the transport coefficients for a strongly coupled theory!  

SUSY - SU(N): 



Compare graphene to  
Strongly coupled relativistic liquids  

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007) 

SUSY - SU(N): 
 

ηshear

s
µ = 0( ) = 1

4π


kB
; 

Obtain exact results via string theoretical AdS–CFT correspondence 

Interpretation:  effective degrees of freedom, strongly coupled: τT = O(1) 

•  Thermoelectric response functions σ(ω), resonances: relat. hydrodynamics  

•  Calculate the transport coefficients for a strongly coupled theory!  

Anomalously low viscosity (like quark-gluon plasma) 

Measure of strong coupling!   “Heisenberg” 



Quantum critical systems in 
condensed matter 

A few examples  
•  Graphene  
•  High Tc 
•  Superconductor-to-insulator 
transition (interaction driven) 



Dirac fermions in graphene 
Honeycomb lattice of C atoms 

(Semenoff ’84, Haldane ‘88) 

Tight binding dispersion 



Dirac fermions in graphene 
Tight binding dispersion Honeycomb lattice of C atoms 

Close to the two 
Fermi points K, K’: 

 

H ≈ vF  p −

K( ) ⋅ σ sublattice

→    Ep = vF
p −K

2 massless Dirac cones in 
the Brillouin zone: 

(Sublattice degree of 
freedom ↔ pseudospin) 

(Semenoff ’84, Haldane ‘88) 
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Dirac fermions in graphene 
Tight binding dispersion Honeycomb lattice of C atoms 

2 massless Dirac cones in 
the Brillouin zone: 

(Sublattice degree of 
freedom ↔ pseudospin) 

Coulomb interactions: Fine structure constant 

Fermi velocity (speed of light”)  

(Semenoff ’84, Haldane ‘88) 

Close to the two 
Fermi points K, K’: 

 

H ≈ vF  p −

K( ) ⋅ σ sublattice

→    Ep = vF
p −K



D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). 

•  Relativistic plasma physics of interacting particles and holes! 

Relativistic fluid at the Dirac point 



D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). 

•  Relativistic plasma physics of interacting particles and holes! 

Relativistic fluid at the Dirac point 

Crossover: 



•  Relativistic plasma physics of interacting particles and holes! 
•  Strongly coupled, nearly quantum critical fluid at µ = 0 

Strong coupling! 

“Quantum critical”  

D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). 

Crossover: 

Relativistic fluid at the Dirac point 



Other relativistic fluids:  
•  Systems close to quantum criticality (with z = 1) 
  Example: Superconductor-insulator transition (Bose-Hubbard model) 

•  Conformal field theories (QFTs for quantum criticality) 
  E.g.: strongly coupled Yang-Mills theories 
  →  Exact treatment via AdS-CFT correspondence 

Damle, Sachdev (1996, 1997) 
Bhaseen, Green, Sondhi (2007). 
Hartnoll, Kovtun, MM, Sachdev (2007) 

C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son (2007) 
Hartnoll, Kovtun, MM, Sachdev (2007) 

Maximal possible relaxation rate! 



 Quantum criticality in cuprate high Tc’s 

Conformal 
field theory 



Thermoelectric 
measurements. 

Conformal 
field theory 

Example: Anomalously 
large Nernst Effect! 

(“thermal analogue” of 
the Hall effect) 

 Quantum criticality in cuprate high Tc’s 



 Simplest example exhibiting “quantum 
critical” features: 

Graphene  



Relativistic,  
Strong coupling  

regime 

Questions 

•  Transport characteristics in the 
strongly coupled relativistic plasma? 

•  Response functions and transport 
coefficients at strong coupling? 

•  Graphene as a nearly perfect and 
possibly turbulent quantum fluid  
 (like the quark-gluon plasma)? 



Graphene – Fermi liquid? 
1. Tight binding kinetic energy 
  → massless Dirac quasiparticles  

2. Coulomb interactions: 
Unexpectedly strong! 
→ nearly quantum critical! 
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2. Coulomb interactions: 
Unexpectedly strong! 
→ nearly quantum critical! 

Coulomb only marginally irrelevant for µ = 0! 

RG: 
(µ = 0) 
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Graphene – Fermi liquid? 
1. Tight binding kinetic energy 
  → massless Dirac quasiparticles  

2. Coulomb interactions: 
Unexpectedly strong! 
→ nearly quantum critical! 

RG: 
(µ = 0) 

Strong 
coupling! 

(µ > 0) Screening kicks in, short ranged Cb irrelevant 

Coulomb only marginally irrelevant for µ = 0! 



Strong coupling in undoped graphene 

Inelastic scattering rate 
(Electron-electron interactions) 

MM, L. Fritz, and S. Sachdev, PRB ‘08. 

      >> T: standard 2d 
Fermi liquid 

C: Independent of the Coulomb coupling strength! 

µ



Strong coupling in undoped graphene 

Inelastic scattering rate 
(Electron-electron interactions) 

MM, L. Fritz, and S. Sachdev, PRB ‘08. 

Relaxation rate ~ T,  
like in quantum critical systems! 
Fastest possible rate! 

    < T: strongly 
coupled relativistic 

liquid 

      >> T: standard 2d 
Fermi liquid 

µ

µ



Inelastic scattering rate 
(Electron-electron interactions) 

MM, L. Fritz, and S. Sachdev, PRB ‘08. 
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Strong coupling in undoped graphene 

“Heisenberg uncertainty principle for well-defined quasiparticles” 
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Inelastic scattering rate 
(Electron-electron interactions) 

MM, L. Fritz, and S. Sachdev, PRB ‘08. 

Relaxation rate ~ T,  
like in quantum critical systems! 
Fastest possible rate! 

“Heisenberg uncertainty principle for well-defined quasiparticles” 

As long as α(T) ~ 1, energy uncertainty is saturated, scattering is maximal 
→ Nearly universal strong coupling features in transport,  
similarly as at the 2d superfluid-insulator transition [Damle, Sachdev (1996, 1997)] 

Strong coupling in undoped graphene 

    < T: strongly 
coupled relativistic 

liquid 

      >> T: standard 2d 
Fermi liquid 

µ

µ



Consequences for transport 
1. -Collisionlimited conductivity σ in clean undoped graphene; 
    -Collisionlimited spin diffusion Ds at any doping   
2. Graphene - a perfect quantum liquid: very small viscosity η! 



Consequences for transport 

3. Emergent relativistic invariance at low frequencies! 
     Despite the breaking of relativistic invariance by 

•  finite T,  
•  finite µ,  
•  instantaneous 1/r Coulomb interactions 

1. -Collisionlimited conductivity σ in clean undoped graphene; 
    -Collisionlimited spin diffusion Ds at any doping   
2. Graphene - a perfect quantum liquid: very small viscosity η! 



Consequences for transport 

Collision-dominated transport → relativistic hydrodynamics:  
a) Response fully determined by covariance, thermodynamics, and σ, η

b) Collective cyclotron resonance in small magnetic field (low frequency) 

Hydrodynamic regime: 
(collision-dominated) 

3. Emergent relativistic invariance at low frequencies! 
     Despite the breaking of relativistic invariance by 

•  finite T,  
•  finite µ,  
•  instantaneous 1/r Coulomb interactions 

1. -Collisionlimited conductivity σ in clean undoped graphene; 
    -Collisionlimited spin diffusion Ds at any doping   
2. Graphene - a perfect quantum liquid: very small viscosity η! 



Collisionlimited conductivities 
Damle, Sachdev, (1996). 
Fritz et al. (2008), Kashuba (2008) 

Finite charge or spin conductivity in a pure system (for µ = 0 or B = 0) ! 
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•  Key: Charge or spin current without momentum 

Pair creation/annihilation 
leads to current decay 
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Fritz et al. (2008), Kashuba (2008) 

but 
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Collisionlimited conductivities 

Finite charge or spin conductivity in a pure system (for µ = 0 or B = 0) ! 

Damle, Sachdev, (1996). 
Fritz et al. (2008), Kashuba (2008) 

•  Only marginal irrelevance of Coulomb: 
   Maximal possible relaxation rate ~ T 

→  Nearly universal conductivity at strong coupling 

Marginal irrelevance of Coulomb: 

•  Key: Charge or spin current without momentum 

•  Finite collision-limited conductivity! 

•  Finite collision-limited spin diffusivity!  

Pair creation/annihilation 
leads to current decay 

(particle/spin up) 

(hole/spin down) 
but 



Collisionlimited conductivities 

Finite charge or spin conductivity in a pure system (for µ = 0 or B = 0) ! 

Damle, Sachdev, (1996). 
Fritz et al. (2008), Kashuba (2008) 

•  Only marginal irrelevance of Coulomb: 
   Maximal possible relaxation rate ~ T 

→  Nearly universal conductivity at strong coupling 

Marginal irrelevance of Coulomb: 

Saturation  
as α →1, (finally: 
phase transition to 
insulator 

Analog in SU(N): 

•  Key: Charge or spin current without momentum 

•  Finite collision-limited conductivity! 

•  Finite collision-limited spin diffusivity!  

Pair creation/annihilation 
leads to current decay 

(particle/spin up) 

(hole/spin down) 
but 

σ µ = 0( ) = 2
9
N 3 2 e

2

h



Boltzmann approach 
Boltzmann equation in Born approximation 

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB 2008 

Collision-limited conductivity in  
weak coupling! 



Transport and thermoelectric 
response at low frequencies? 

Hydrodynamic regime: 
(collision-dominated) 

Three complementary approaches: 
•  AdS-CFT (strong coupling) 
•  Relativistic hydrodynamics (without fixing transport coefficients) 
•  Boltzmann theory (weak coupling) 

They all agree at the level of the relativistic hydrodynamic 
structure, but have different microscopics. 



Application: thermoelectric 
close to transport at 
quantum criticality 



Nernst effect in High Tc’s 



Nernst effect in High Tc’s 

Underdoped high Tc superconductors: 
Anomalously strong Nernst signal  
up to T=(2-3)Tc 



Theory for  

Nernst Experiments in high Tc’s 

Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006). 

Transverse thermoelectric response:  B, T - dependence 



Graphene versus 
very strongly coupled, critical 

relativistic liquids? 

Are there further similarities? 



Au+Au collisions at RHIC 

Quark-gluon plasma is described 
by QCD (nearly conformal, 

critical theory) 
_ 

Low viscosity fluid! 

η
s
~ 1



Graphene – a nearly perfect liquid! 

(False) conjecture from  
AdS-CFT: 

Anomalously low viscosity (like quark-gluon plasma) 

MM, J. Schmalian, and L. Fritz, (PRL 2009) 

Measure of strong coupling:   “Heisenberg” 

What about graphene? 
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Doped Graphene & 
Usual metals: 
(Khalatnikov etc) 



Graphene – a nearly perfect liquid! 

Anomalously low viscosity (like quark-gluon plasma) 

MM, J. Schmalian, and L. Fritz, (PRL 2009) 

Measure of strong coupling:   “Heisenberg” 

Undoped Graphene: 

Boltzmann-Born Approximation: 

Doped Graphene & 
Usual metals: 
(Khalatnikov etc) 

(False) conjecture from  
AdS-CFT: 



T. Schäfer, Phys. Rev. A 76, 063618 (2007). 
A. Turlapov, J. Kinast, B. Clancy, Le Luo, J. Joseph, J. E. Thomas, J. Low Temp. Phys. 150, 567 (2008) 

Graphene 



Electronic consequences of low viscosity? 
MM, J. Schmalian, L. Fritz, (PRL 2009) 

Electronic turbulence in clean, strongly coupled graphene? 
(or at quantum criticality!) 
 Reynolds number: 



Electronic consequences of low viscosity? 

Electronic turbulence in clean, strongly coupled graphene? 
(or at quantum criticality!) 
 Reynolds number: 

Strongly driven mesoscopic systems: (Kim’s group [Columbia]) 

Complex fluid dynamics! 
(pre-turbulent flow) 

New phenomenon in an 
electronic system!  

MM, J. Schmalian, L. Fritz, (PRL 2009) 



Summary 

•  AdS-CFT helped establish hydrodynamic structure 
 (crossover ballistic to collision-dominated can be 
described, too, tuning ω/T)  

•  Interesting microscopic calculations of transport 
coefficients in strong coupling 

•  Guide for interesting strong coupling phenomenology in 
graphene:  
 - Emergent relativistic hydrodynamics at low frequency 
 - Nearly perfect quantum liquid with possible tendency to 
electronic turbulence! 


