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Outline

The many special facets of graphene
Coulomb interactions are strong!

Relativistic hydrodynamics and
collision-dominated transport

Boltzmann theory
Strongly coupled relativistic fluids and AdS-CFT

Graphene: an almost perfect quantum liquid:
turbulence in electrons?

H Ask questions all along the way, pleas%!




Why should we care so much
about graphene?

|s there more to do than repeating all calculations
for metals and semiconductors,
just with a different dispersion relation?

YES |



Graphene: a plethora of new phenomena

Graphene as a 2d crystal or membrane

* Real 2d monolayer!
» 2d ordering of adatoms, melting in 2d
* Buckling of membranes
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Graphene as a 2d crystal or membrane

* Real 2d monolayer!
» 2d ordering of adatoms, melting in 2d
* Buckling of membranes

Non-interacting graphene

Semiconductor and device physics:
» Very clean 2d material, especially when suspended
« Semimetal (between semiconductor and metal)

Relativistic physics:

» Massless, chiral Dirac particles (Weyl equation)

* Klein tunneling, Zitterbewegung, Lensing (negatieéactive index)
* non-trivial Berry phase when circling a coreshift of Landau levels
* QHE at room temperature!

Useful thumb rule for estimates:

Fermiliqguid mv - Graphenek,T, E
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Graphene: a plethora of new phenomena

Localization and disorder:

* Non-localization due to scattering within one Bi@ne despite
disorder < Generalization of this phenomenon: surface states |
topological insulators do not localize!

This lecture:

Graphene with Coulomb interactions

* Interactions are surprisingly strong in neutramnded graphene
* Nearly quantum critical behaviour, despite the@iaity of the
material!

 Strongly coupled, highly relativistic Coulomb phas:

— similarities with the hot quark-gluon plasma of QCD

» Experimental evidence

- Fractional QHE predicted and observed (E. Andrei)

- Coulomb broadening of cyclotron resonances
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Dirac fermions in graphene

(Semenoff '84, Haldane ‘88)

Honeycomb lattice of C atoms Tight binding dispersion
w—( *] [ I;I)i

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom pseudospin)

Fermi velocity (speed of light”) |ve =1100° m/s= ﬁ

g
Coulomb interactions: Fine structure constant “ @ =0




Relativistic fluid at the Dirac point

D. Sheehy, J. Schmalian, Phys. Rev. 96tt226803 (2007).
 Relativistic plasmghysics of interacting particles and holes!

T 4 T=u

Non-degenerate Fermi gas!

Relativistic lguid

Hole Fermi h‘guid‘n‘ Electron Fermi liguid

Interaction dominated (hydrodynamic)
_________ L‘_‘_“—‘_:’L________ Timp~10imp
Disorder dominaied
\“J . ﬂ
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Relativistic fluid at the Dirac point

D. Sheehy, J. Schmalian, Phys. Rev. B8it226803 (2007).

 Relativistic plasmghysics of interacting particles and holes!
 Strongly couplednearlyquantum criticafluid atp =0

Hole Fermi liguig

Strong coupling!
Relativistic lguid

Disorder dominaied

L
LT

" [Electron Fermi liguid

> U

Very similar as for quantum criticality (e.g. Sldnd in their associated CFT




Other relativistic fluids:

e Bismuth (3d Dirac fermions with very small mass)

e Systems close to quantum criticality (with z = 1)
Example: Superconductor-insulator transition (Bblsdbard model)

Maximal possible relaxation rate!
Damle, Sachdev (1996)
Bhaseen, Green, Sondhi (2007).
Hartnoll, Kovtun, MM, Sachdev (2007)

» Conformal field theories (critical points)
E.g.: strongly coupled Non-Abelian gauge theoriesn(&kiQCD):
— Exact treatment via AdS-CFT correspondence!

C. P. Herzog, P. Kovtun, S. Sachdev, and D. T.(Z001/)
Hartnoll, Kovtun, MM, Sachdev (2007)
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Are Coulomb Iinteractions strong?

e 22
= Large!
Env. €

Fine structure constant (QED concept) |&

Ee(n) _Vn€/e _ a .
£ (n) = th\/E = T Small!?

n-independent!

r, (Wigner crystal concept) I

Recall QED/QCD:

* The coupling strength depends on the scale.
» Different theories have different scale behavior!

a Is the high energy limit of the coupling
But we care abowt(T)!
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Are Coulomb Iinteractions strong?

Coulomb interactions:
Unexpectedly strong! V(q) =
— nearly quantum critical!

-

2me”
£lq]

1 [ &k Phy dq o
Boam o Rl U (ko — q) W (k) V(@) ¥ (ke + q) Ty (K,
| e e s — )W)V (@) s+ @) (k)
iy " . = _
RG EZ—?‘FO(G&) a=£7'71VF —O(l)
— O a” T—0 4
(n=0) &(T)/ZlJr(a”/*—l)ln(ﬂ/T) ~ (A7)
/

1 e’ ’
I k) = hivglk
O m (@, k) 48<eoﬁvF> vr k|
|

|
I
! RG flow of - & RG flow ofa

) ) Gonzalez et al.,
“ Coulombonly marginally irrelevant foru = 0! “ PRL77, 3589 (1996)




Are Coulomb Iinteractions strong?

Coulomb interactions:
Unexpectedly strong!
— nearly quantum critical!
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“ Coulombonly marginally irrelevant foru = 0! “
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Gonzalez et

al.,

PRL 77, 3589 (1996)

But: (u> 0) “ For T < u: screening kicks in, short ranged Cb irrelevant“




Are Coulomb Iinteractions strong?

Several studies:

- 2-loop RG
- large N expansion (around N = 4 = 2*2 flavors)
- Numerical study on related square lattice problem

suggest proximity of a quantum critical point arownd O(1)
between a Fermi liquid and a gapped insulator.

Experiments (Fractional QHE!) in suspended graph&tesaiggest
strong Coulomb interactions.



Consequences for transport

1. Collision-limited conductivityo in clean undoped graphene
2. Emergent relativistic invariana low frequencies!

3. Graphene is a perfect quantum liquidry small viscosity)!



Questions

e Transport characteristicg the
relativistic plasma in graphene
and at quantum criticality?

\ Relativistic, 3
*f collisiondominateq - g
Hole Fermi liguic regime Electron Fermi liguid

e Connection betweerelativistic
regime and standard Fermi liquid
at large doping?

e Graphene as iacarly perfect fluid
(like the quark-gluon plasma)?



Hydrodynamic
approach to transport



Time scales

1. Inelastic scattering rate
(Electron-electron interactions)

MM, L. Fritz, and S. Sachdev, PRB ‘08.
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Time scales

MM, L. Fritz, and S. Sachdev, PRB ‘08.

1. Inelastic scattering rate

(Electron-electron interactions)

Relaxation rate ~ T,
like in quantum critical systems!

Fastest possible rate!

U < T: strongly coupled| _;
relativistic liquid ee 7

“Heisenberg uncertainty principle for well-definedegiparticles”

E.o(~keT)2 AE,, =7, ~a’K,T

As long axa(T) ~ 1, energy uncertainty is saturated, scattasmgaximal
— Nearly universal strong coupling features in transport
Similarly as at the 2d superfluid-insulator trangitio




Time scales

MM, L. Fritz, and S. Sachdev, PRB ‘08.

1. Inelastic scattering rate

(Electron-electron interactions)

Relaxation rate ~ T, < T st | led T
like in quantum critical systems! H = !~ STondly couple 7 l~qg? B

: relativistic liquid ee #
Fastest possible rate!

2. Elastic scattering rate . (ZeZ/g)2 Jo . 1
(Scattering from charged impurities) |fimp ~ 7 = a><[T ,u]
Subdominant at high T, low disorder ’




Time scales

MM, L. Fritz, and S. Sachdev, PRB ‘08.

1. Inelastic scattering rate
(Electron-electron interactions)

Relaxation rate ~ T, <T st | ed ”

like in quantum critical systems! H I. >tong 3|/ Co.lép © It ~a? Al

Fastest possible rate! relativistic fiqui - h
2. Elastic scattering rate . (Zez /5)2 Jo . 1
(Scattering from charged impurities) |fimp ~ 7 = a><[T ,u]
Subdominant at high T, low disorder ’
3. Deflection rate due to magnetic field >
(Cyclotron frequency of non-interacting 7~ PP ~ eBve
particles with thermal energy ) g - ma><[T, ,u]




Time scales

MM, L. Fritz, and S. Sachdev, PRB ‘08.

1. Inelastic scattering rate

(Electron-electron interactions)
Relaxation rate ~ T, <T st | led
like in quantum critical systems! H I. >trong 3|' co'zp €
Fastest possible rate! relativistic fiqul

2. Elastic scattering rate

(Scattering from charged impurities)
Subdominant at high T, low disorder

3. Deflection rate due to magnetic field
(Cyclotron frequency of non-interacting
particles with thermal energy )




Hydrodynamics

Hydrodynamic collision-dominated regime

Long times,
Large scales
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Hydrodynamics

Hydrodynamic collision-dominated regimeigs=='¢

Long times,
Large scales

|mp’TB , W

-1 —1‘

{>> [

» Local equilibrium established i (r) . fe(r) : Ueo(r)

 Study relaxation towards global equilibrium

» Slow modes: Diffusion of the density of conserge@ntities:

* Charge
e MOomentum
e Energy



Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Reminder of special relativity:

-1 0 O
Metric: g,=/0 10

O 01
Indices: 4 =0 time

=12 2d-space

Covariance: Physical laws are independent of the inertial fraame
thus under Lorentz transformation.

Here: Lorentz group with “speed of light'C — V. |



Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Energy-momentum tensod®* = (g + P)utu® + Pgh¥ + 7% .
Current 3-vector JH = put + p* .

u” . 3-velocity: ut = (:L0,0) — No energy current

V" . Dissipative current

r*" ! Viscous stress tensor (Reynold’s tensor)



Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Energy-momentum tensod ** = (& + P)u*u® + Pgh¥ + 7

Current 3-vector JH = pu"“ + p*

u” . 3-velocity: ut = (:L0,0) — No energy current
V" . Dissipative current

r*" ! Viscous stress tensor (Reynold’s tensor)

+ Thermodynamic relations

e+ P=Ts+ up, de=Tds+ udp,

Gibbs-Duheme 1stlaw of thermodynamics
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S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

J* = put + v* T"Y = (g + P)utu® + Pg"¥ + 7V
Conservation laws (equations of motion):

é‘ﬁﬂ" =( Charge conservation

0 E, E,
Energy/momentum conservation =1 —-E 0 B
0

d 7" = FFh, Y

E = -k = o, Coulomb interaction



Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

JE = put + v# ™" = (g + P)utu®” + Pgh + 7
Conservation laws (equations of motion):

é‘ﬁﬂ" =( Charge conservation

0 E, E,
Energy/momentum conservation P = —E, B
1 —E, —B 0
. Ov
d, " =F*J +—T L _ .
g “r E=-ik2” 5 Coulomb interaction
imp ‘k‘ k

Weak disorder—» momentum relaxation



Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

J* = put + v T#Y = (g + P)utu® + Pghv + 74V
Conservation laws (equations of motion):

é?“J*“' =( Charge conservation

0 E, E,
Energy/momentum conservation = -E, 0 B
1 —E, =B 0
Ov
3, = P*"], +—T . B
. Yr E=-ik2 5  Coulomb interaction
imp ‘k‘ k
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Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Heat current Q¥ =(g+P)u* — pd#
— Entropy current S# = Q“/T

a,T
V= UQ(g#p + u;&”l})|:(_ amu’ + thuh) + Ju’_.;_:|

74 = — (M + N ot BT F (L = 7) O]

o

Irrelevant for response atk O




Relativistic Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Heat current QY = (8 + P)u” - J”
— Entropy current S# = Q“/T

ad,T
E v“*“’+ u”u”)[(— Db+ Fopit) w#}

™= — {*‘W'Mﬂﬂ& 1) 650 u”]

Irrelevant for response atk O

One singletransport coefficient (instead of twa)!




Meaning of o, ?

» At zero doping (particle-nole symmetry):
0, =0, (p,mp O)<oo !

— Interaction-limited conductivitpf the pure system!

How is it possible thag, (g, =0) isifn??




Collision-limited conductivity

Damle, Sachdev, (1996).
Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particleensymmetry g = 0)!



Collision-limited conductivity

Damle, Sachdev, (1996).
Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particleensymmetry g = 0)!

» Key: Charge current without momentum!

(particle) ® - Pair creation/annihilation
(hole) @ > leads to current decay

J#20, P=0

* Finite collision-limited conductivity!

BUT:

* Infinite thermal conductivity!
(whereas it is usually finite if J=0 is imposed!)
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Collision-limited conductivity

Damle, Sachdev, (1996).
Fritz et al. (2008), Kashuba (2008)

Finite conductivity in a pure system at particleensymmetry g = 0)!

» Key: Charge current without momentum

(particle) @ <

Pair creation/annihilation

(hole) @ > leads to current decay

J#£0, P=0
* Finite collision-limited conductivity!
« Marginal irrelevance of Coulomb:

Maximal possible relaxation rate,
set only by temperature

— Nearly universal conductivity

Marginal irrelevance of Coulomb: -



Back to Hydrodynamics

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Elements discussed so far:

Conservation laws (equations of motion):

é'ﬂJ'”' =() Charge conservation

1

9. T* =F**] +——T%  Energy/momentum conservation
T

imp

Dissipative current (relating electrical and energgrent)

d,T
vt "”’ + u“"u")[(— o+ Fou) + }LL_';T]



Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Charge and heat current:  J¥ = pu” —p*
Q¥ =(e+P)u* - J*

Thermo-electric response

J _ g E = 7= HW) etc.
é - T& _V-)T —Ogzy Ozx

x>



Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phgs. B76, 144502 (2007).

Charge and heat current:  J¥ = pu” —p*

Q¥ =(e+P)u* - J*

Thermo-electric response

/ — c E &(JII JI”) etc.
6)\re i)\ sr




Results from Hydrodynamics



Response functions at B=0

Symmetry z-»-z: o, =a, =k, =0

Longitudinal conductivity:

!':TTTEUJJI'.B—[I.] } _P—I—.'_J_—
Collision-limited conductivity at the q\uwtum ccil pointp =0

Drude-like conductivity, divergent for

OO’CQ — O, ¢ O
Momentum conservatiom£0)! P



Response functions at B=0

Symmetry z—-z: o,,=a,=k,=0

Longitudinal conductivity:

T

2
i

Thermal conductivity:

e 2T
P+esl—wwr

Kaa(w, ki B =0) = ogm + + O(k2),




Response functions at B=0

Symmetry z-»-z: o, =a, =k, =0

Longitudinal conductivity:

_ - f— ﬁg
'fT:_ﬂTf_'-"-'"t“B T [:I] o (EQ+ _P—|—.'_' 1 — E-u.a'-'_)

3 1 a,,
Thermopower: * k2T do,, /du

? L

. = 2y i :

Only valid in thedegenerate e—gaegi/
but violated in theelativisticM 5




B > 0 : Cyclotron resonance

E.g.: Longitudinal conductivity 2}
wlw+ iy +iwlfy)

Oralw) = 00

(w + i7)? —w?

Collective cyclotron frequency of the relativistiapma

oc_ pPB/c . _eB/c N, L
i ] )Y )




E.g.: Longitudinal conductivity
w (w + iy +iwg /7)
(w +iy)" —w?

—_ I~
L

ozzlw) = o0

=

Pole in the respons+ W= ia)CQC -1y

Collective cyclotron frequency of the relativistiagpma

oc_ PB/c . _eB/c N, L
gt L)) )

Intrinsic, interaction-induced broadening B (B/c)

. . . _ y=0
(«> Galilean invariant systems: Q (g+ p) [ v?
No broadening due to Kohn’s theorem)

Observable at room temperature in the GHz regime!



Can the resonance be observed?

W=+ -iy-i/t

Conditions to observe collective cyclotron resomanc
Parameters:

Collison-dominated regime ha, <<a’k,T

Small broadening y, Tt < a)QC

2
Quantum critical regime P Py =
High T: no Landau quantlzatlonE —hv « kT




Does relativistic
hydrodynamics apply?

Do T andu break relativistic invariance?

o Validity at large chemical potential?

» Larger magnetic field?



Boltzmann Approach

MM, L. Fritz, and S. Sachdev, PRB 2008

— Recover and refine the
hydrodynamic description

— Describe relativistic-to-Fermi-
liquid crossover



Boltzmann approach

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB200
Boltzmann equation in Born approximation

(at +e[E+va]Ba%j f(k.t)=a’1G [k ti{f. (k" O]+ Atk ti{f. (k" )}



Boltzmann approach

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB3200

Boltzmann equation in Born approximation

(at+e[E+va]aa%jfi(k,t)= A ONE Y

a.) + i, +, i +i +,1 7,
g :&< HN—1) g HN = 1) :&<
_7j _7j _7j _77:
-) i +i +i
1T X2




Boltzmann approach

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB200
Boltzmann equation in Born approximation

o, +dervxglid Jrbed)=aSlkcu{n .o+ a 1k . 0f

1. Linearization:  f,(k,t)= £2(k,t)+ &, (k,t)
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Boltzmann approach

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB200
Boltzmann equation in Born approximation
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1. Linearization:  f,(k,t)= £2(k,t)+ &, (k,t)

2. Forward scattering diverges logarithmically i ZCutoff atb ~ a< 1)
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Boltzmann approach

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB200
Boltzmann equation in Born approximation

(at +eE+VxB] Ba%j f.(kot) = a1l t L (kO] A gkt (k'
1. Linearization:  f,(k,t)= £2(k,t)+ &, (k,t)

2. Forward scattering diverges logarithmically i ZCutoff atb ~ a< 1)
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Wilkins et al. (1971)

Reduced to simple optimizati
problem for ¢, ¢, ¢, !

MM, L. Fritz, and S. Sachdev, PRB 2




Boltzmann approach

MM, L. Fritz, and S. Sachdev, PRB 2008
Kashuba, PRB 2008

Collision-dominated
conductivity

Gradual disappearance
of relativistic physics
as one crosses over to
degenerate Fermi gas




Boltzmann approach

MM, L. Fritz, and S. Sachdev, PRB 2008
Kashuba, PRB 2008

Collision-dominated
conductivity

Gradual disappearance
of relativistic physics
as one crosses over to
degenerate Fermi gas

— Recover Kohn's
theorem for width of
cyclotron resonance:
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Momentum conservation
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Recovering magnetohydrodynamics

MM, L. Fritz, and S. Sachdev, PRB 2008

Momentum conservation
Exact zero mode of the Coulomb collision integral!

F0(K) =+ o,k E 1k fi- 12(k)|

Recover hydrodynamics by studying the dynamics ofslosestmode!
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Cyclotron resonance revisited

Cyclotron resonance at large fields: beyond hydnadyics:
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coupling (Boltzmann) approximation
[a(T) — 0] ?7?
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What to do beyond the weak
coupling (Boltzmann) approximation
[a(T) — 0] ?7?

Answer until recently: Not much at all!
Newest progress from string theory:

1) Look at “similar”’ theories which are very
strongly coupled, but can be solved exactly

2) Try to extract the “generally valid, universal”
part of the result and use it as a guide

Take it with at least two grains of salt and just gjoy it!



Compare graphene to:
Strongly coupled relativistic liquids

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007)

Obtain exact results via string theoretical AdS—(Ebirespondence

— Response functions in particular strongly coupledixeddic fluids
(for maximally supersymmetric Yang Mills theories with — oo colors):



Compare graphene to:
Strongly coupled relativistic liquids

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007)

Obtain exact results via string theoretical AdS—(CBirespondence

— Response functions in particular strongly coupledixeddic fluids
(for maximally supersymmetric Yang Mills theories with — oo colors):

» Confirm the structure of the hydrodynamic responsetfans such as(w).

 Calculate the transport coefficients for a stroragiypled theory!

2 3/2e2 Nshear (,,— )~ L 7
) - =0)= [EN¥2Z . shear() =)= — "
SUSY - SU(N): a(u=0) SNV T (1=0) k.



Strongly coupled liquids

Same trends as in exdsdS-CFT)results forstrongly coupled relativistic fluids

S. Hartnoll, C. Herzog (2007)
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Strongly coupled liquids

Same trends as in exdsdS-CFT)results forstrongly coupled relativistic fluids

Grapmhene Resonance
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AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimemesi
negatively curved AdS universe is holographicadigresented by
a CFT (the theory of a quantum critical point) t#ilZdimensions
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dimensional
system at its
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critical point

Quantum
critical
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waves in
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Maldacena, Gubser, Klebanov, Polyakov, Witten



AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimemesi
negatively curved AdS universe is holographicadigresented by
a CFT (the theory of a quantum critical point) #iladimensions

A 2+1

dimensional

system at its
guantum

Dissipation in A .
L critical point

guantum
criticality =

waves falling
Into black hole

Kovtun, Policastro, Son



Au+Au collisions at RHIC

Quark-gluon plasmean be
described by QCD (nearly
conformal, critical theory)

Extremely low viscosity fluid!




Au+Au collisions at RHIC

Quark-gluon plasmean be
described by QCD (nearly
conformal, critical theory)

Extremely low viscosity fluid!

SUSY - SU(N):
/7h r = = 1 h
shear (=)= =

S (,u ) 47T K

This IS an extremely low value!
Is there a lowest possible value,
or a “most perfect” liquid?




Further analogy
with AdS-CFT

MM and J. Schmalian, (2008)

Is quantum critical graphene a nearly perfect fluid?
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Anomalously low viscosity? — Yes!
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Further analogy
with AdS-CFT

MM, J. Schmalian, L. Fritz, (2008)

Is quantum critical graphene a nearly perfect fluid?
<>

Anomalously low viscosity? — Yes'
Conjecture from black shear visosity _ n
hole physics: entropydensﬂy S

n_h
a’k.T peall

Undoped Graphene: (g Onmwv G - ny, KT s Okgn,,

| n h(E.Y
: [] |]TN2|]' — [E F s k.n d " | ZE
Doped Graphene: [(BEiN n F%il T7 = < j
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Electronic consequences of low viscosity?

MM, J. Schmalian, L. Fritz, (condmat:0903.4178)
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Electronic consequences of low viscosity?

MM, J. Schmalian, L. Fritz, (condmat:0903.4178)

Electronic turbulence in clean graphene?
Reynolds number:

Complex fluid dynamics!
(pre-turbulent flow)

New phenomenon in a
electronic system!




Summary, A

Relativistic liguid

Strong |}
pling

Hole Fermi ligu id Electron Fermi liguid

nated ’odyrzamic)
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Disorder domminated

¥
=

Undoped graphene is strongly
coupled in a large temperature window!

Nearly universal, strong coupling features in $fzort

Emergent relativistic hydrodynamics at low fregeyen

Graphene: Nearly perfect quantum liquid!
— Possibility of complex (turbulent?) current flow agln bias



