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Outline
•  Crackling, avalanches, and “shocks” in 
  disordered, non-linear systems;  
  Self-organized criticality  

•  Avalanches in the magnetizing process 
  (“Barkhausen noise”) 

•  The criticality of spin glasses at equilibrium – 
   why to expect scale free avalanches 

•  Magnetization avalanches in the Sherrington- 
  Kirkpatrick spin glass – an analytical study. 

•  Outlook: electron glasses, finite dimensions… 



Crackling
Crackling = Response to a slow driving which occurs  
in a discrete set of avalanches, spanning a wide range of sizes. 

Occurs often but not necessarily only out-of equilibrium. 

Examples:  

•  Earthquakes 
•  Crumpling paper 
•  Vortices and vortex lattices in disordered media etc.  
•  Disordered magnet in a changing external field magnetizes in a series of jumps 

Review: Sethna, 
Dahmen, Myers, 
Nature 410, 242 (2001). 
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Crackling = Response to a slow driving which occurs  
in a discrete set of avalanches, spanning a wide range of sizes. 

Occurs often but not necessarily only out-of equilibrium. 

Examples:  

•  Earthquakes 
•  Crumpling paper 
•  Vortices and vortex lattices in disordered media etc.  
•  Disordered magnet in a changing external field magnetizes in a series of jumps 

But: Not everything crackles!  
It is intermediate between snapping (e.g., twigs, chalk, weakly disordered 
ferromagnets, nucleation in clean systems)  
and popping (e.g., popcorn, strongly disordered ferromagnets) 

Review: Sethna, 
Dahmen, Myers, 
Nature 410, 242 (2001). 

Crackling on all scales is generally a signature of a critical state in 
driven, non-linear systems. It can thus be an interesting diagnostic. 



Examples of crackling I
•  Gutenberg-Richter law for strength of earthquakes 
              (jumps of driven tectonic plates) 



Examples of crackling II
•  Depinning of elastic interfaces 

  Liquid fronts, domain walls, charge density waves, vortex lattices: 



Examples of crackling II
•  Depinning of elastic interfaces  

  Liquid fronts, domain walls, charge density waves, vortex lattices: 

Statistics of avalanches:  - mean field theory 
              - recent first steps and successes with FRG 

                                          find non-trivial critical power laws (without scale) 

Depinning as a dynamical critical phenomenon in disordered glassy systems 
Sophisticated theory approach: functional RG “FRG” [D. Fisher, LeDoussal, ...] 



Examples of crackling III
•  Power laws due to self-organized criticality: 
  Dynamics is attracted to a critical state, without fine-tuning of parameters 

Example: sandpile model by Bak, Tang, and Wiesenfeld 



Magnetic systems

•  Crackling noise in the hysteresis loop: “Barkhausen noise” 

•  When does crackling occur in random magnets, and why? 

•  What happens in frustrated spin glasses  
   (as opposed to just dirty ferromagnets)? ? 



Magnetic systems

•  Crackling noise in the hysteresis loop: “Barkhausen noise” 

•  When does crackling occur in random magnets, and why? 

•  What happens in frustrated spin glasses  
   (as opposed to just dirty ferromagnets)? 

Equilibrium avalanches in the hysteresis reflect criticality of 
the glass phase! Noise as a diagnostic of a critical glass state! 

? 



Avalanches in ferromagnetic films
Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films 

Kim, Choe, and Shin (PRL 2003) 

P s( ) = A
sτ

   τ =
4
3

Distribution of 
magnetization jumps 

Cizeau et al.: 
Theoretical model with 
dipolar long range 
interactions 
(believed to be crucial to 
get criticality)  



Model ferromagnets
Random field Ising model (short range): 

•  Generically non-critical 
•  Scale free avalanches require fine tuning of disorder 
  and field 

H = −J sis j −
<ij>
∑ hisi −

i
∑ hext si

i
∑

Δ = hi
2

hext ,crit

Dahmen, Sethna  
Vives, Planes 
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•  Generically non-critical 
•  Scale free avalanches require fine tuning of disorder 
  and field 

H = −J sis j −
<ij>
∑ hisi −

i
∑ hext si

i
∑

Δ = hi
2

hext ,crit

Experiment (disordered ferro) 
Berger et al. (2000) 

Dahmen, Sethna  
Vives, Planes 

(T tunes effective disorder) 

Experiment: 



Why is the random Ising 
model generally non-critical?

Pazmandi, Zarand, Zimanyi (PRL 1999): 

Elastic manifolds and  
ferros with dipolar interactions: 

They have strong frustration: 
- long range interactions with varying signs  and/or  
- strong configurational constraints 

          Glassy systems with arbitrarily high barriers, metastable states 
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Why is the random Ising 
model generally non-critical?

Pazmandi, Zarand, Zimanyi (PRL 1999): 

Elastic manifolds and  
ferros with dipolar interactions: 

They have strong frustration: 
- long range interactions with varying signs  and/or  
- strong configurational constraints 

          Glassy systems with arbitrarily high barriers, metastable states 

In contrast: RFIM is known not to have a spin glass phase  
(Krzakala, Ricci-Tersenghi, Zdeborova) 

Look at spin glasses! (Frustration + 
disorder = glass and criticality? yes!) 



SK criticality

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  
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SK criticality

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

•  Extremely intricate mean field version of the Edwards-Anderson model 
in finite dimensions (but duc = 8) 
•  Known facts: 
-  There is a thermodynamic transition at Tc to a glass phase:  
-  no global magnetization, but broken Ising symmetry: <si> ≠ 0,  
-  measured by Edwards Anderson order parameter 
-  Multitude of metastable states, separated by barriers  
-  Correct equilibrium solution by G. Parisi : Replica symmetry breaking 
-  Glass phase is always critical! (Kondor, DeDominicis) 

QEA =
1
N

si
2

i∑

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N



SK criticality – local fields
H =

1
2

Jijsis j − hext si
i
∑

i, j
∑

Thouless, Anderson and Palmer, 
(1977); Palmer and Pond (1979) 
Parisi (1979), Bray, Moore (1980) 
Sommers and Dupont (1984) 
Dobrosavljevic, Pastor (1999) 
Pazmandi, Zarand, Zimanyi (1999) 
MM, Pankov (2007)  

 
λi ≡ −

∂H
∂si

= − Jijs j + hext
j≠ i
∑

Linear “Coulomb” gap in the 
distribution of local fields 

A first indication of criticality!  

Local field on spin i: 



The linear pseudogap in SK 
Thouless (1977) 

The distribution of local fields must vanish at 
λ=0 at T = 0! 

Stability of ground state with respect to flipping of a pair:  

•  Suppose pseudogap  P λ( )∝ λγ

γ ≥ 1 → At least linear pseudogap! 

→ Smallest local fields  λmin ∝ N −1 1+γ

λ1 λ2

•  2-spin flip cost  Ecos t ∝ λ1 + λ2 − N −1 2   ~   N −1 1+γ − N −1 2   >
!

  0



The linear pseudogap in SK 
Thouless (1977) 

The distribution of local fields must vanish at 
λ=0 at T = 0! 

Stability of ground state with respect to flipping of a pair:  

•  Suppose pseudogap  P λ( )∝ λγ

γ ≥ 1 → At least linear pseudogap! 

→ Smallest local fields  λmin ∝ N −1 1+γ

λ1 λ2

•  2-spin flip cost  Ecos t ∝ λ1 + λ2 − N −1 2   ~   N −1 1+γ − N −1 2   >
!

  0

•  But: γ = 1!  
 Largest possible density of soft spins! 

Distribution is so critical that flipping the 
first spin by an increase of                     can 
trigger a large avalanche!   

Δhext = λmin



“Living on the edge”

Size distribution of avalanches: 

•  Avalanches are large 

•  Only cutoff: system size (N1/2) 

•  Power law: 
  Sign of Self-Organized Criticality 

Pazmandi, Zarand, Zimanyi (1999) 



Review: Criticality and RSB 

Edwards, Anderson (1974)  

SK-model  

Replica trick  −βF = lnZ = lim
n→0

Zn −1
n

H = Jijsis j
i< j
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Edwards, Anderson (1974)  
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Free energy functional 

SK-model  

Replica trick  



Review: Criticality and RSB 

SK-model  

Replica trick  

Parisi ansatz for the saddle point: 
Hierarchical replica symmetry breaking  

Parisi (1979)  
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SK criticality 
Important features of the solution in the glass phase:  

•  The free energy functional is only marginally stable! 
   Collection of zero modes of the Hessian 
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   phase! Found numerically also in finite dimensions!  
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SK criticality 
Important features of the solution in the glass phase:  

•  The free energy functional is only marginally stable! 
   Collection of zero modes of the Hessian 

•   Critical spin-spin correlations in the whole glass  
   phase! Found numerically also in finite dimensions!  

•  Hierarchical structure of phase space and time scales 

•  Replica symmetry is broken continuously (at all scales) 
  A continuous function Q(x), n<x<1, parametrizes Qab 

•  Marginality is directly related to the linear pseudogap  
  The pseudogap can be calculated analytically at low T        
  (Pankov) 

Free energy landscape 
∂2A

∂Qab∂Qcd

sis j
2
~ 1
rij
α

Qab =

x 



After so much critical 
preparation:�

•  Understand shocks in spin glasses

•  Calculate avalanche distribution analytically!

•  Confirm the direct connection of scale free 
avalanches and thermodynamic criticality!

→ Barkhausen noise as a diagnostic tool for a glass phase? 



Stepwise response and shocks in 
spin glass models 

p-spin models [akin to supercooled liquids] 
 - no continuous, but 1-step RSB - 
  Glassy, but much simpler and non-critical 

Yoshino, Rizzo (2008) 
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Stepwise response and shocks in 
spin glass models 

m

Fα h( ) = Fα h = 0( ) − hMαFree energy of metastable state α: 
Equilibrium jump/shock when two states cross:  Fα hshock( ) = Fβ hshock( )

Mesoscopic effect: Susceptibility has spikes and does not self-average! 

p-spin models [akin to supercooled liquids] 
 - no continuous, but 1-step RSB - 
  Glassy, but much simpler and non-critical 

Yoshino, Rizzo (2008) 



A simple picture of shocks
Balents, Bouchaud, Mezard 

u↔ h
V u( )↔ F h( )
f u( ) = − ′V u( )↔ m h( ) = − ′F h( )

Displacement 
Effective potential 
Force 

Magnetic field 
Free energy 
magnetization 

Elastic system Magnetic system 

T = 0 



Detecting shocks 

2nd cumulant of the magnetization (T = 0) 

Non-analytic cusp! 
•  Reflects the probability of shocks. 
•  The cusp is rounded at finite T. 

Yoshino, Rizzo (2008) 
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Detecting shocks 

2nd cumulant of the magnetization (T = 0) 

Closely related effects: 

•  Functional renormalization group for collectively 
pinned elastic manifolds (e.g. vortex lattices): 
Cusp in cumulants of effective potential Veff(ucm)  
at T = 0 and beyond collective pinning scale L> Llarkin 
•  Turbulence: 
Shocks in the velocity field v(x), rounded only by finite 
viscosity η (akin to T above) 

Non-analytic cusp! 
•  Reflects the probability of shocks. 
•  The cusp is rounded at finite T. 

Yoshino, Rizzo (2008) 

D. Fisher (1986) 
LeDoussal, Wiese 
Balents, Bouchaud, 

Mézard 
LeDoussal, MM, Wiese 

Bouchaud, Mézard, 
Parisi 



Strategy of calculation 
kth cumulant of magnetization difference 

Shock density 

Avalanche size cumulants 

Calculate 

Natural scales: 
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Strategy of calculation 
Calculate 

Calculate effective potential of n replicas: Easy to extract in the 
replica limit  n→ 0

             limit:  

Saddle point Qab, sum over replica permutations! 

N →∞

Qab =

 
ha = ha N



Calculation 

•  k’th cumulant: k groups of n → 0 replicas with the same ha 
•  integral representation of W[h] and the magnetization cumulants 
•  limit T → 0: extract non-analytic contribution from shocks 

 Sum over replica permutations π in S(n)  [quite a challenge!]
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Calculation 

•  k’th cumulant: k groups of n → 0 replicas with the same ha 
•  integral representation of W[h] and the magnetization cumulants 
•  limit T → 0: extract non-analytic contribution from shocks 

Final result: 

•  picture of mesoscopic avalanches ~ N1/2 fully confirmed 
•  obtain critical probability distribution of avalanche sizes 

Avalanche exponent 

τ = 1

Obtained from low T solution of the SK model  

 Sum over replica permutations π in S(n)  [quite a challenge!]



Comparison with numerics 
Analytical result (shocks in equilibrium) 

Avalanches in the hysteresis loop (slowly driven, out-of-equilibrium) 

Pazmandi, Zarand, Zimanyi (1999) 

Log(δm) 

Log(δm) 

Lo
g(
δm

 P
(δ

m
))

 

Lo
g(

P(
δm

))
 Many qualitative features agree between  

analytics (equilibrium) and 
numerics (out-of equilibrium) 



Remarks 
Analytical result (shocks in equilibrium) 

Important remarks 

•  The power law arises because of the criticality of the glass 

•  It receives contributions from all scales and distances within the 
hierarchical organization of states 

•  Nearly no dependence on the external field, except in the cutoff scale: 

 The spin glass is critical even in finite field. 



Conclusion 

Spin glass criticality (in the SK model) is prominently 
reflected in scale free response to a slow magnetic 

field change. 

There is a deep connection between various 
manifestations of this criticality: 

Soft gap – avalanches – spin-spin correlations – 
abundant collective low energy excitations 
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Outlook 
•  Finite d spin glasses: 

- Is criticality revealed in avalanches? 
- Experimental probe for criticality via Barkhausen noise? 
- Beyond mean field (SK): Functional RG for spin glasses? 

•  Coulomb glasses: (Localized electrons with Coulomb 
interactions and disorder) 

Close analogies with SK model: 

-  Critical soft gap  (Efros-Shklovskii) 
-  Infinite avalanches (~ L) at T = 0 
-  Mean field: full replica symmetry breaking and critical  
  correlations predicted 
-  Distribution of avalanches? 

•  Avalanches in other complex systems (computer science, 
optimization, economy, etc)   


