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Outline

* Crackling, avalanches, and “shocks™ in
disordered, non-linear systems;
Self-organized criticality

* Avalanches 1n the magnetizing process
(“Barkhausen noise™)

* The criticality of spin glasses at equilibrium —
why to expect scale free avalanches

* Magnetization avalanches in the Sherrington-
Kirkpatrick spin glass — an analytical study.

* Outlook: finite dimensions, electron glasses,...



Crackling

Crackling = Response to a slow driving which occurs
in a discrete set of avalanches, spanning a wide range of sizes.

Occurs often but not necessarily only out of equilibrium.

Examples:

» Earthquakes
* Crumpling paper
* Vortices and vortex lattices in disordered media etc.

It 1s intermediate between snapping (e.g., twigs, chalk, weakly disordered
ferromagnets, nucleation in clean systems)
and popping (e.g., popcorn, strongly disordered ferromagnets)

Crackling on all scales 1s generally a signature of a critical state in driven,
non-linear systems. It can thus be an interesting diagnostic tool.




Examples of crackling I

* Gutenberg-Richter law for strength of earthquakes
(jumps of driven tectonic plates)
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Examples of crackling 11

Liquid fronts, domain walls, charge density waves, vortex lattices:
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Depinning as a dynamical critical phenomenon in disordered glassy systems
Sophisticated theoretical approach: functional RG [D. Fisher, LeDoussal, etc]

Statistics of avalanches: - mean field theory
- recent first steps and successes with FRG
——> find non-trivial critical power laws (without scale)



Examples of crackling III

* Power laws due to self-organized criticality:
Dynamics 1s attracted to a critical state, without fine-tuning of parameters

Example: sandpile model by Bak, Tang, and Wiesenfeld
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Magnetic systems

* Crackling noise 1n the hysteresis loop: “Barkhausen noise”

* When does crackling occur in random magnets, and why?

* What happens 1n frustrated spin glasses ()
(as opposed to just dirty ferromagnets)? o

Equilibrium avalanches in the hysteresis reflect criticality of
the glass phase! Noise as a diagnostic of a critical glass state?



Avalanches 1n ferromagnetic films

Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films
Kim, Choe, and Shin (PRL 2003)
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Model ferromagnets

Dahmen, Sethna
Vives, Planes

H = —Jz S;S, —z hs, —hextz S,

<ij> I
* Generically non-critical

« Scale free avalanches require fine tuning of disorder A = <hl.2>
and field h
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FIG. 1. M(H) loops measured on a Co/CoO-bilayer structure
for the temperatures indicated. The thin lines are guides to
the eye.




Why 1s the random Ising
model generally non-critical?

Pazmandi, Zarand, Zimanyi (PRL 1999):

Elastic manifolds and
ferromagnets with dipolar interactions:

They have strong frustration:
- long range interactions with varying signs and/or
- strong configurational constraints

—> Glassy systems with arbitrarily high barriers, metastable states

RFIM i1s known not to have a spin glass phase
(Krzakala, Ricci-Tersenghi, Zdeborova)

S Look at spin glasses!
(Frustration + disorder = glass and criticality!?)




SK criticality

VOLUME 83, NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1999

Self-Organized Criticality in the Hysteresis of the Sherrington-Kirkpatrick Model

Ferenc Pazmandi.!>* Gergely Zarand.'* and Gergely T. Zimanyi'

H= %izj:]ljsisj —~ hmzi:si, J; : random Gaussian J; = J*/N
* Extremely intricate mean field version of the Edwards-Anderson model
in finite dimensions (but d,,. = 6)

* Known facts:

- There 1s a thermodynamic transition at T, to a glass phase:

- no global magnetization, but broken Ising symmetry: <si>1 *0,

- measured by Edwards Anderson order parameter Q,, = _2,-<Si>2

- Multitude of metastable states, separated by barriers

- Correct equilibrium solution by G. Parisi : Replica symmetry breaking
- Glass phase 1s always critical! (Kondor, DeDominicis)



SK criticality — local fields

H = %ZJU.SZ.S]. - hethsi
i i

Local field on spin i:
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Linear “Coulomb” gap in the
distribution of local fields

A first indication of criticality!



The linear pseudogap in SK

Stability of ground state with respect to flipping of a pair:

* Suppose pseudogap

— Smallest local fields

* 2-spin flip cost
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Y> 1 — At least linear pseudogap!




log(P(S))

log(D(n))

“Living on the edge”

Pazmandi, Zarand, Zimanyi (1999)
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Review: Criticality and RSB
H =D Jyss)

i<j

—BF =InZ = lim Z -1 Edwards, Anderson (1974)
n—0 n
— " 2 2 2
Z”:exp(—ﬁZH[sa]):exp[ﬁivn+ﬁ2N Z [ZS?S?/N) ]
=l 1<a<b<n i

do,, NA[Q))

Ja<b N2/ B N
AlQl=-nB/4+ P72 D, Q- loglz exp( [32Qabsas”)}

1<a<b<n

Parisi ansatz for the saddle point: 0. =
Hierarchical replica symmetry breaking ¢

Parisi (1979)



SK criticality

Important features of the solution 1n the glass phase:

* The free energy functional is only marginally stable!
— Full family of zero modes of the Hessian _ 9°A

aQaband
* « Critical spin-spin correlations in the whole glass
phase! Found numerically also in finite dimensions!

* Hierarchical structure of phase space and time scales

* Replica symmetry is broken continuously (at all scales)
A continuous function Q(x), n<x<I, parametrizes Q,,

* Marginality is directly related to the linear pseudogap
The pseudogap can be calculated analytically at low T
(Pankov)

Free energy landscape




After so much critical
preparation:

* Understand shocks in spin glasses
* Calculate avalanche distribution analytically!

e Confirm the direct connection of scale free
avalanches and thermodynamic criticality!



Stepwise response and shocks 1n
spin glass models

Yoshino, Rizzo (2008)

p-spin models [physics similar as in supercooled liquids]
- no continuous, but only 1-step Replica Symmetry Breaking
— Glassy, but much simpler and non-critical

Free energy of metastable state a: £, (h) =y (h = 0) —hM,
Equilibrium jump/shock when two states cross:  F, (hshock) = F; (hshock)

Mesoscopic effect: Susceptibility has spikes and does not self-average!



Detecting shocks

(T'=0)

M(h + 0h)M(h — 0h) — M(h)2 o |6h)

Non-analytic cusp! /

* Reflects the probability of shocks.
* The non-analyticity is rounded at finite T.

 Functional renormalization group for collectively
pinned elastic manifolds (e.g. vortex lattices):

Cusp in force correlator  f(u+6u) f (u—6u)— f(u)’ o<|5ul
as a function of center of mass displacement

* Analogy in Turbulence:
Shocks in the velocity field v(x)



How to obtain shocks

and their distribution
for the SK model?



Strategy of calculation

k" cumulant of magnetization difference

h
[M(h) — M (h + 6h)]¥ = Prob(shock € [h, h + 6h]) AME .~ + O (6h%)

Shock density

Prob(shock € [h, h + 6h]) = po|dh|

Avalanche size cumulants

h o0
AME = / d AM|P(AM;h) AM*
0

— [M(R) — M(h +6R)]F  —lpos| P(AM;h)

Oh ~ Apin ~ N —L Distance between shocks

AM ~ yNAh ~ N'/? Magnetization jumps




Strategy of calculation

— [M(h) — M(h+ dh)]*

M(hy)...M(hy) = (=1)%0y, ..

J

exp [W[{ha}]} = exp :—BiF(hQ)}

n

—

Po

P(AM:;h)

O F(h1) ... F(hy)

\ n—0

\

_ n g /82 e /83 n Jc
= ep| = BY_Fha) +5 Y Flh)F() =% Y. Fh)F(h)F(h) "+ }
) a=1 a,b=1 " a,b,e=1
2
-y /H dQus [[ exp [nNﬁzTJ 3Ry <_gng + QangSg> + Zﬁhas;].
{S&} azb i a#b a
W =22 i)Rescale h, =h, /N

11) Saddle point Q,,,, sum over replica permutations!

Qab : H

2 5 5 2 5
exp[W[h] — W[0]] = ) _exp [% > Qavhr(ayhimv) + % PR Qaa)] /> 1
™ ab a T



Calculation

[a real challenge!]

s W[k = W0 = - exp | 2 5 Quiincfiet + - 07201 = Q| / 31
™ ab a 7y

* k’th cumulant: & groups of » — 0 replicas with the same 7,
* integral representation of the magnetization cumulants

mp, "mhp Jc = —p(_T)p /dpyé(z yz)aﬁl "aﬁqu(oa y)

equations:

Generalized Parisi o(x = 1;{y;}) [Z exp (Y ] ;

9o 1 i dgi; ( 9> 4 ¢ 5¢)
2 Qyi0y;  Oy; Oy,

gij(z) = B2Q(z)dh'6hI.



Calculation

[a real challenge!]

s W[k = W0 = - exp | 2 5 Quiincfiet + - 07201 = Q| / 31
™ ab a 7y

* k’th cumulant: & groups of » — 0 replicas with the same 7,
* integral representation of the magnetization cumulants
* limit 7"— 0: expand in nonlinear diffusion term

equations:

Generalized Parisi o(x = 1;{y;}) [Z exp (Y ] ;

00 _ _1 5~ dayg ( P, 0 acb)
2 ayzayj 8% ay]

gij(z) = B2Q(z)dh'6hI.



Calculation

[a real challenge!]

2 5 _ 2 5
exp[Wh] — WI0]] Z exp Z Qavhr(a)hr(p) T+ 7 Z h2(1 = Qaa) /Z 1
2 ab 2 a T

* k’th cumulant: & groups of » — 0 replicas with the same 7,
* integral representation of the magnetization cumulants

* limit 7'— 0: expand in nonlinear diffusion term

* extract non-analytic contribution from shocks

Final result:

* picture of mesoscopic avalanches ~ N2 fully confirmed
* obtain probability distribution of avalanche sizes




Critical traces 1n the avalanche
distribution

Footprint of criticality in the final result:

c* = 0.410802 : obtained from RG-like fixed pointin the SK solution at low T!

(Pankov 2006)
[
0'8 B ] . (K o
i \ Parisi’s solution
06 —\ Qab 7 q(X)
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Comparison with numerics

Analytical result (shocks in equilibrium)

Avalanches in the hysteresis loop (slowly driven, out-of-equilibrium)
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Remarks

Analytical result (shocks in equilibrium)

* The power law arises because of the criticality of the glass

* [t receives contributions from jumps at all scales of the ultrametric
organization of states

* Nearly no dependence on the external field, except in the cutoff scale:
— The SK spin glass 1s critical even 1n finite field.



Remarks
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Conclusion

Spin glass criticality (in the SK model) 1s prominently
reflected in scale free response to a slow magnetic
field change.

There 1s a deep connection between various
manifestations of this criticality:

Soft gap — avalanches — spin-spin correlations —
abundant collective low energy excitations

Avalanches 1n Barkhausen noise:
An interesting experimental diagnostic for spin glass criticality?



Outlook

* Finite d spin glasses:
-Is criticality revealed in avalanches, exp & numerics?
- Beyond mean field: Is there an FRG for spin glasses?

* Coulomb glasses: (Localized electrons with Coulomb
interactions and disorder)

Close analogies with SK model:
- Critical soft gap (Efros-Shklovskii)
- Infinite gate-induced avalanches (~L) at T =0

- Mean field: full RSB, critical correlations predicted

 Avalanches in other complex systems (computer science,
optimization, economy, etc)



