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Velocity-force characteristics of a driven interface in a disordered medium
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Using a dynamic functional renormalization group treatment of driven elastic interfaces in a disordered
medium, we investigate several aspects of the creep-type motion induced by external forces below the depin-
ning thresholdf c . ~i! We show that in the experimentally important regime of forces slightly belowf c the
velocity obeys an Arrhenius-type lawv;exp@2U(f)/T# with an effective energy barrierU( f )}( f c2 f ) van-
ishing linearly whenf approaches the thresholdf c . ~ii ! Thermal fluctuations soften the pinning landscape at
high temperatures. Determining the corresponding velocity-force characteristics at low driving forces for
internal dimensionsd51,2 ~strings and interfaces! we find a particular non-Arrhenius-type creepv
;exp@2„f c(T)/ f …m# involving the reduced threshold forcef c(T) alone. Ford53 we obtain a similarv-f
characteristic, which is, however, nonuniversal and depends explicitly on the microscopic cutoff.
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I. INTRODUCTION

The influence of disorder on the static and dynamic pr
erties of elastic systems has been intensely studied in re
years.1,2 Various physical systems including flux lattices
superconductors,3 domain walls in magnets,4,5 and charge
density waves in solids6 significantly change their propertie
upon introduction of even a small amount of disorder. S
ject to a disorder landscape, these systems transform
glassy state characterized by a nontrivial scaling of the
placement correlation functions7 and a vanishing linear re
sponse to external driving forces,8–11 e.g., the current in-
duced Lorentz force acting on vortices or the magnetic fi
driving the domain walls in magnets. The determination
the velocity-force characteristics of a driven elastic manif
subject to a disorder landscape is a challenging probl
while the behavior at small distances and large drives is a
nable to perturbation theory, the most interesting lo
distance/weak drive regime can be attacked only via non
turbative methods. In this paper, we consider some aspec
the creep-type dissipative motion of a driven elastic interf
with d internal dimensions, moving along one transverse
rection in a disorder landscape@(d11)-dimensional random
manifold problem#.

Depending on the value of the temperatureT and the ex-
ternal forcef several regimes can be distinguished~see Fig.
1!. At T50, the velocityv is zero as long asf does not
exceed the critical forcef c , whereas forf . f c the system
starts moving,v( f )Þ0. In particular, one findsv( f )}
( f 2 f c)

b near the threshold~the depinning transition!, with a
nontrivial critical exponentb.12–15For large drivesf @ f c the
disorder becomes irrelevant and the velocity-force charac
istic turns linear,v; f /h, with h the friction coefficient
characteristic of the dissipative dynamics.

At finite temperaturesT.0, thermal fluctuations induce
creep-type motion resulting in an exponentially small b
finite velocity even below thresholdf , f c ~see Fig. 1!.
At small drives f→0 an Arrhenius-type law v( f )
}exp@2U(f)/T# holds, with a diverging activation barrie
U( f→0)→` ~glassy response!.
0163-1829/2001/63~18!/184305~9!/$20.00 63 1843
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Close to thresholdf ; f c one may distinguish two inter
esting regimes.~i! Fixing the forcef at its critical valuef
5 f c , thermal fluctuations smooth the depinning transiti
and the velocityv f c

(T)}T1/d is expected to scale as a pow
of temperature.16,17~ii ! Fixing the temperatureT and increas-
ing the force toward thresholdf→ f c , a creep-type respons
is expected with a vanishing activation barrierU( f→ f c)
}( f c2 f )a→0; here we are interested in the seco
situation.

The scaling theory of creep8–11 predicts thatU( f→0)
}Uc( f c / f )m, with a characteristic energy scaleUc set by the
disorder landscape. On the other hand, when the forcef ap-
proachesf c from below one expects that the barrier behav
like

FIG. 1. Velocity-force characteristic of a driven interface
various temperatures (Tdp denotes the depinning temperature abo
which thermal fluctuations smear the disorder landscape!. The thick
solid line is the zero-temperature result with a threshold forcef c

below which the velocity vanishes. Beyondf c the velocity first rises
following the scaling lawv}( f 2 f c)

b and then crosses over to th
linear dissipative regime withv} f . The thin line shows the behav
ior at finite but low temperaturesT,Tdp with a creep regime at low
forces f ! f c , v}exp@2(Uc /T)(fc /f)m#. Close to threshold we find
that the creep barriers scale linearly inf, v}exp@2(Uc /T)(12f/fc)#.
At high temperatures (T.Tdp, dash-dotted line! thermal fluctua-
tions become particularly important in dimensionsd51,2; the
threshold forcef c(T) is strongly reduced by thermal fluctuation
and we find a non-Arrhenius glassy response at small drive w
v}exp@2(fc(T)/f)m# determined by the renormalized critical forc
alone.
©2001 The American Physical Society05-1
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U~ f !}~ f c2 f !a, ~1!

with a an exponent depending on the dimensionality of
space and the elastic manifold. The parametera determines
the relaxation of magnetization in superconductors at c
rents close to the critical one. In his original description
magnetic relaxation, Anderson18 assumed thata51 and ex-
plained the famous logarithmic decay of the magnetic fi
trapped inside a superconductor.19 Note that the regimef
. f c is an experimentally important one: the observation
the system response at small driving forcesf ! f c involves
long relaxation times}exp@(Uc /T)(fc /f)m# and hence this re
gime is more difficult to access experimentally. More qua
titatively, the maximal creep barrierU that can be observe
after a waiting timet is given byU(t)'T ln(11t/t0) with t0
a characteristic time scale involving details of the critic
state.20,3 For the vortex creep problem this time scale ty
cally is of order 1026 s and thus the experimentally attai
able value ofU/T is limited to factors;30–40.

From a theoretical point of view the calculation of th
barrier exponenta in Eq. ~1! near criticality still remains a
problem. In fact, one may expect that critical fluctuations
the manifold near the threshold will affect the creep motio
In this paper we study the behavior ofU( f ) near the thresh-
old using dynamical renormalization group theory15 and
show that if the pinning of the manifold is due to a sho
range correlated random potential~e.g., due to pointlike im-
purities! the effective barrier behaves as

U~ f !.Uc~12 f / f c!, f→ f c , ~2!

with Uc a characteristic energy scale set by the disor
landscape. This result is independent of the dimensionalit
the manifold and confirms the original assumption
Anderson.18

In addition, we investigate creep at high temperatur
again using the dynamical functional renormalization gro
technique. In this case, the dimensionality of the manifold
particularly important: It is well known that the mean the
mal displacement̂u2& th of a manifold with internal dimen-
siond>3 is bounded, the maximum displacement depend
on the microscopic short-scale cutoff of the elastic syste
Strings and surfaces (d51,2), however, exhibit thermal fluc
tuations^@u(z)2u(0)#2& that grow unboundedly with sepa
rationz. At high temperatures, the manifold probes an eff
tive disorder landscape averaged over thermal displacem
that are bounded only through the disorder-induced pinn
at large scales, resulting in a strongly reduced disor
strength. In particular, the critical forcef c(T) is found to
decrease as a power law with increasing temperature,f c(T)
; f c(Tdp/T)k with k57 ~2! in d51 ~2! dimensions~see Fig.
1!. The characteristic temperatureTdp determining the cross
over from the low to the high temperature regime is given
the bare disorder energy scaleUc , Tdp5Uc . For the effec-
tive barrier ind51,2 we find

U~ f !.T$@ f c~T!/ f #m21%, ~3!

depending only on the renormalized pinning forcef c(T),
confirming the results obtained previously via scaling e
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mates~see Ref. 3!. As for the lowT creep, the exponentm
5(d12z22)/(22z) again is determined through the stat
roughness exponentz. The large thermal fluctuations modif
the characteristic energy scaleUc of the problem toUc→T,
leading to a peculiar non-Arrhenius form for thev-f charac-
teristic in the highT creep regime. Ford53 the velocity-
force characteristic also takes a non-Arrhenius form but w
an exponent additionally modified through the temperat
dependence of the creep barrierUc(T)@T. Note, however,
that Eqs.~2! and~3! make sense only if the temperatureT is
still small enough to produce an exponentU( f )/T@1.

In Sec. II below we will first analyze creep near the cri
cal force and derive Eq.~2! while Sec. III is devoted to the
study of creep at high temperatures with a derivation of
result Eq.~3! for the creep barrier.

II. CREEP NEAR THRESHOLD

In the following we will concentrate on the case of (d
11)-dimensional elastic media, withd internal dimensions
and one single transverse direction. Typical realizations
strings confined to a plane@a (111)-dimensional manifold#
or two-dimensional membranes embedded in thr
dimensional space@a (211)-dimensional manifold#. These
models describe domain walls in thin film and bulk rando
magnets, for example. The motion of the elastic manifold
governed by the equation

h] tu5c¹z
2u1 f pin~u,z!1z~z,t !1 f , ~4!

where the friction and external driving forces are given
h] tu and f, respectively, and the additional forces acting
the manifold are those due to elasticityc¹z

2u, pinning
f pin(u,z), and thermal fluctuationsz(z,t); h andc denote the
viscosity and the elasticity per unit volume. We assume t
the pinning force is a Gaussian random variable with z
mean and a correlator̂ f (u,z) f (u8,z8)&5D(u2u8)dd

(z2z8) of width j, the typical length scale of the disorde
landscape. The statistics of the stochastic forcez(z,t) is
Gaussian as well and the correlator is related to the visco
h and the temperatureT via ^z(z,t)z(z8,t8)&52hTdd

(z2z8)d(t2t8).
The calculation of the average velocityv5^] tu& as a

function of f andT is a difficult problem in the creep regim
f , f c since most of the time the manifold is pinned by t
random potential and only rarely will a strong thermal flu
tuation drive it into a neighboring metastable state. Ob
ously, this type of motion cannot be described perturbative
However, it can be rigorously proved that the velocity-for
characteristic is unique.21

A powerful method to study random elastic manifolds
the functional renormalization group22–24 ~FRG! with vari-
ous extensions dealing with finite temperature25 and
velocity.12–15 For dimensionalitiesd of the manifold larger
than 4, the effect of disorder can be taken into account p
turbatively, whereas in fewer than four dimensions ane ex-
pansion allows one to study the properties of the system
small e542d. The FRG has provided numerous results
the investigation of static and dynamic properties of elas
5-2
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manifolds. The static wandering exponent22 z as well as the
dynamic exponent14 z have been determined for differen
types of disorder. Furthermore, the depinning transition
T50 has been analyzed and the critical exponentb in the
depinning lawv}( f 2 f c)

b has been calculated.12–15

The dynamical extension of the FRG by Chauveet al.15

allows investigation of the creep regime and confirms
creep lawU( f )}Uc( f c / f )m derived earlier via scaling argu
ments. In addition, it turns out that the method allows for
determination of different characteristics of the manifold
dynamics without additional physical assumptions~cf. Refs.
12–14!. The dynamical FRG starts from a Martin-Siggi
Rose action26 obtained from the equation of motion Eq.~4!
and proceeds with the elimination of large momentum fl
tuations. Thereby the parameters entering Eq.~4! are renor-
malized and characterize a system for which disorder is
and less relevant. Finally, the flow is cut off at a scale wh
the effect of disorder can be taken into account pertur
tively.

Our starting point is the system of equations derived
Ref. 15 describing the renormalization of the parameters
tering Eq.~4!, to lowest nontrivial order,

] lD̃ l~u!5~e22z!D̃ l~u!1zuD̃ l8~u!1T̃lD̃ l9~u!

1E
s.0, s8.0

e2s2s8$D̃ l9~u!@D̃ l„l l~s82s!…

2D̃ l„u1l l~s82s!…#2D̃ l8~u2l ls8!D̃ l8~u1l ls!

1D̃ l8„l l~s81s!…@D̃ l8~u2l ls8!2D̃ l8~u1l ls!#%,

~5!

] l ln l l522z2E
s.0

e2ssD̃ l9~l ls!, ~6!

] l f̃ l5~22z! f̃ l1cL2E
s.0

e2sD̃ l8~l ls!, ~7!

] l ln T̃l52u1E
s.0

e2sl lsD̃ l-~l ls!, ~8!

with D̃ l(u)5(AdLd24/c2)D l(u), l l5(hv) l /cL2, T̃l

5AdLd22Tl /c, and f̃ l5 f l2(hv) l . The exponentsz andu
5d2212z describe the scaling of the roughness and
energy, respectively.Ad is the surface of the unit sphere ind
dimensions andL denotes the short-scale cutoff of th
theory. Note the important effect of the dynamics in rend
ing the equations nonlocal on the scalel l proportional to the
center of mass velocityv of the manifold@note that the latter
involves the dynamical exponentz in its scaling relation
] lv l5(z2z)v l ; on the other hand, the dynamical expone
disappears from the combinationhv#. The main goal of this
section is to investigate these equations in the limit when
external force acting on the manifold is slightly below t
threshold force,f , f c .
18430
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We first analyze the system of equations~5!–~8! for the
case of an infinitesimal velocityv501 and concentrate on
low temperatures. Equations~5! and ~8! then reduce to
the static FRG equations22

] lD̃ l~u!5~e22z!D̃ l~u!1zuD̃ l8~u!1T̃lD̃ l9~u!1D̃ l9~u!

3@D̃ l~0!2D̃ l~u!#2D̃ l8~u!2, ~9!

] l T̃l52uT̃l . ~10!

The flow takes the correlatorD̃ l through a special
point l c'(1/e)ln$e/@3uD̃09(0)u#%, Lc'L21el c'$ec2j2/
@AdD0(0)#%1/(42d), where it becomes singular at the origin
the limit T→0; this is easily seen from the equation

] lD̃ l9~0!'eD̃ l9~0!23D̃ l9~0!2, ~11!

satisfied by the second derivative of the correlator at l
temperatures; exploiting the fact thatD̃09(0),0 we have

uD̃ l9(0)u'uD̃09(0)uee l /$12@3uD̃09(0)u/e#(ee l21)%. The cur-

vature D̃ l9(0) diverging at l c marks the occurrence of
nonanalyticity at the origin which is reflected in the appe
ance of a cusp inD̃ l . l c

at u50. Although the initial cor-

relatorD̃0(u) is usually an analytic and even function of th
coordinateu with vanishing odd derivatives at the origin, th
function D̃ l . l c

has a cusp with a nonzero slopeD̃ l8(01)

,0 at the origin whenT50. Asymptotically, D̃ l(u) ap-
proaches a zero-temperature ‘‘cuspy’’ fixed pointD̃* (u) de-
scribing the disordered phase with a nontrivial roughn
exponentz. If the rough shape of the fixed point functio
D̃* (u) is assumed at the Larkin scalel c we can easily find its
characteristics. The width

j* 'j exp~2z l c! ~12!

of D̃* (u) follows from integrating the second term in Eq
~9!. Comparing terms in Eq.~9! at the originu50 we find
D̃* 82(01);eD̃* (0), andcombining this with the relation
uD̃* 8(01)uj* ;D̃* (0) we find the estimatesD̃* (0)
;ej2 exp(22zlc) and

uD̃* 8~01 !u'eje2z l c. ~13!

Let us then analyze the force flow~7! in the light of these
results. The scalel c divides the flow into two distinct re-
gimes, the Larkin regime at small scalesl , l c and the ran-
dom manifold regime (l . l c). For l , l c we have D̃ l8(0)

5D̃ l8(01)50 and the forcef̃ l obeys the equation] l f̃ l5(2

2z) f̃ l , i.e., f̃ l5e(22z) l c f̃ grows exponentially. At the poin
l 5 l c the integral term on the right-hand side of Eq.~7!
jumps from zero to a finite value, since the slope of t
correlator at the origin does not vanish any longer. If th
contribution overcompensates the scaling term, i
cL2uD l c

8 (01)u.(22z)e(22z) l cf , the force will start renor-

malizing to zero while in the opposite case it will continue
5-3
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increase. This can be interpreted in the following way. If t
initial value f of the external force is smaller than a critic
value f c the force will eventually renormalize downward an
cannot move the manifold. Forf . f c the manifold starts
moving and one should take into account Eq.~6! since the
problem is not static any more. We therefore com
to the conclusion that for a system with a dynam
described by Eq. ~4! there exists a finite threshol
force f c at T50. Using the above condition
one easily finds f c'@cL2uD̃* 8(01)u/(22z)#e2(22z) l c

'@e/(22z)#cj/Lc
2 with Lc5L21el c. Note that the expres

sion for f c coincides with the result obtained from simp
scaling estimates.3

At finite temperaturesT.0 it is no longer possible to
define the critical force densityf c as the threshold below
which there is no center of mass motion of the manifold,
thermally activated jumps lead to an average velocityv.0
at any finite forcef. Of course, at low temperatures the v
locity is exceedingly small, given that it obeys an Arrheniu
type law. Therefore the time needed to observe this velo
might well exceed the time scale of the experiment, i.e., fr
an experimental point of view the critical force density s
exists with the thresholdf c separating creep-type motio
from viscous flow. On the mathematical level the nonex
ence of the critical force density can be explained as follo
At T.0, the slope D̃8(01) remains zero beyondl c ,
D̃ l . l c

8 (01)50, and the renormalized force density will co

tinue to grow beyond the length scalel c even if the initial
force densityf is smaller thanf c . The flow ofl l then has to
be included in our consideration and the renormalization
f̃ l will be found to stop at a larger scale.

Let us then analyze the flow of the correlatorD̃ l , Eq. ~5!,
at finite temperatures in more detail. The nonlocalities int
duced by the finite value ofl l in Eq. ~5! can be neglected a
long asl l is smaller than the length scale introduced by
finite temperature, and we can therefore continue to use
quasistatic equation~9!. Below, we will make use of the flow
equations only in the regime where this condition holds. W
also neglect the disorder contribution to the temperat
renormalization in Eq.~8! since it does not influence th
main result to the accuracy desired here.

At finite but smallT.0 the correlator flow belowl c does
not differ much from the zero-temperature case. Howeve
l c no cusp occurs at the origin—rather, the correlator
mains rounded on a characteristic scaleul

T . Assuming that
outside the thermally dominated region close to the ori
the correlator has approached its zero-temperature fi
point shapeD̃* (u), we may estimateul

T from Eq. ~9! by
equating the third and fourth terms on the right-hand s
~RHS!,

ul
T'

T̃l

uD̃* 8~01 !u
'

AdLd22Te2u l

ecje2z l c
'j*

T

Uc
e2u( l 2 l c),

~14!

with Uc the typical elastic energy on the Larkin scaleLc ,
Uc'(e/Ad) cj2Lc

d22 . Obviously, for low temperature
18430
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T!Uc , the thermal rounding of the cusp involves a scaleul
T

much smaller than the widthj* of the correlator.
The finite temperature curvature of the correlator follo

from a comparison of the termT̃lD̃ l9 with either the fourth or
the last term in Eq.~9!,

D̃ l @ l c
9 ~0!'2

D̃* 8~01 !2

T̃l

.2
Uc

T
eu( l 2 l c); ~15!

the finite temperature fluctuations thus regularize
‘‘cuspy’’ divergence occurring atT50. The above estimate
are correct up to numerical prefactors only; a more rigoro
derivation can be found in Ref. 15.

For the following it is crucial to establish that the beha
ior described by Eq.~15! is valid already soon afterl c , as the
flow equation~6! for l l is quite sensitive to the curvature o
the correlator atu50. Indeed, as we have checked nume
cally ~see Fig. 2!, after a rapid growth within the Larkin
regime, the curvatureD̃ l9(0) saturates at a value;Uc /T
with a slow further growth due to temperature rescalin
D̃ l9(0)}T̃l

21}eu l . As long as we are interested in the thres
old behavior of the barrier close tof c it is sufficient to es-
tablish a rapid crossover of the curvature from a steep gro
below l c to a gentle increase abovel c ~which we will neglect
for small l 2 l c.0). Also note that the crossover occurs e
sentially at the same value ofLc independent of the tempera

FIG. 2. Numerical integration of the curvatureuD̃ l9(0)u in the
force correlator ford51, @see Eq.~9!#. Four initial temperatures
T0,Tdp below thermal depinning atTdp5Uc5cj2/Lc with values
T05Tdp/a, a540,20,10,5 have been chosen, while the high te
perature curve starts withT0520Tdp. The initial growth through
the Larkin regime involves the exponentse53 ande25z th51/2 at
low and high temperatures, respectively. Beyond the Larkin reg

the flow of D̃ l9(0)}21/T̃l is characterized by the temperature e
ponentu52z2150.2495@cf. Eq. ~15! with a wandering exponen
z given by the one-loop fixed point value~Ref. 22! z'0.2083e#.
The crossover at the Larkin scale is sharp and independent of
perature belowTdp; the uniform vertical spacing of the asymptot
curves reflects the temperature independence of the energy
Uc . For high temperatures aboveTdp the crossover is shifted to
l c(T)@ l c and the pinning energyUc(T) depends on temperature

Uc'T @note thatuD̃ l c(T)9 (0)u;1#.
5-4
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ture T, while the uniform vertical spacing of the asymptot
curves reflects the temperature independence of the en
scaleUc .

Let us now analyze the system of equations~5!–~8! for
T.0, v.0 close to criticality f , f c . We assume a fixed
deviation f c2 f from the threshold and a small temperatu
T!Uc . The velocity then is~exponentially! small as well
and represents the smallest parameter in the problem. In
opposite case (T small and fixed whilef c2 f→01! the ve-
locity v}T1/d has been argued to scale as a power
temperature,17,16 the numerical value of the exponentd still
being a matter of controversy.17,27,28

Again, we consider separately the two regimes below
above l c . Throughout the Larkin regime the parameterl l
remains small and can be set to zero in Eqs.~5! and ~7!.
Furthermore, the temperature dependent term in Eq.~9! may
be neglected initially—it will become relevant whenD̃ l9(0)
becomes of the order ofUc /T. The flow of l l through the
Larkin regime then follows from expanding the flow equ
tions for D̃ l9(0) andl l , Eqs.~5! and~6!, to second order in

the small parameterl l and settingT̃l50,

] l@ lnuD̃ l9~0!u23 lnl l #5e23~22z!1O~l l
4!. ~16!

Integrating from 0 tol c and usingD̃ l c
9 (0)'Uc /T we obtain

~up to numerical factors!

l l c
.

hvLc
2

c
e2z l cS Uc

T D 1/3

. ~17!

Note thatl l c
grows as apowerof Uc /T as the temperature

approaches zero, whereas in the following depinning reg
l l will be exponentiallysensitive toT.

Going beyond the Larkin regimel . l c the functionD̃ l(u)
quickly approaches its fixed point form except for a sm
thermally smoothed region of sizeul

T around the origin with
the second derivative given by Eq.~15!. As long asl l,ul

T

one can keepl l50 in the integral on the RHS of Eq.~6! and
a simple integration froml c to l provides the result

l l.l l c
expF ~22z!~ l 2 l c!1

Uc

uT
~eu( l 2 l c)21!G

;l l c
expFUc

T
~ l 2 l c!G , ~18!

where in the last step we have assumed thatT/Uc! l 2 l c
!1.

Turning next to the force equation~7! we note that at
finite temperature the disorder contribution adds in only a
larger scalel d. l c where l l becomes of the order of th
thermal roundingul

T , in contrast to the zero-temperature ca
where disorder jumps in atl c . The condition

l l d
.ul d

T .T̃l d
/uD̃* 8~01 !u ~19!

then determines a relation connecting the crossover scal d
with the initial velocityv,
18430
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f c

h S T

Uc
D 4/3

expF2
Uc

T
~ l d2 l c!G . ~20!

Below l d the flow of f̃ l is determined by the scaling term
alone, ] l f̃ l5(22z) f̃ l , and a simple integration givesf̃ l
5 f exp@(22z)l#, where we have dropped the small corre
tion hv in the definition of f̃ , f̃ 5 f 2hv. At l d the disorder
correction turns on rapidly and we enter the depinn
regime15 at scalesl . l d . In this regime we can substitute th
fixed point correlatorD̃* for D̃ l since nowl l@ul

T . Further-
more, since stilll l!j* we can setl l equal to 01 in Eq. ~7!

and we obtain a disorder correctioncL2D̃* 8(01). As ar-
gued before when determining the threshold forcef c , we
have to prevent the forcef l from running away to6` and
thus the disorder term has to match the scaling term; we t
arrive at a second relation expressingl d in terms of the ap-
plied driving forcef,

f e(22z) l d'
cL2uD̃* 8~01 !u

22z
[ f ce

(22z) l c. ~21!

With l d close to l c we can expand,l d2 l c.(22z)21

(12 f / f c)!1, and combining with Eq.~20! we arrive at the
final result for the average velocityv,

v}expH 2
Uc

T

f c2 f

f c
J , ~22!

where we have dropped an inessential numerical factor
redefinition ofUc . Also, our analysis is not sufficiently pre
cise to specify the prefactor.

Summarizing, we find that close to threshold withT/Uc
!12 f / f c,2/(11m) the velocity obeys an Arrhenius-typ
law with an energy barrier decreasing linearly on approa
ing f c . On the other hand, the usual glassy behaviorU( f )
;Uc( f c / f )m is valid at small forcesf / f c,221/m. In typical
experiments the measured barriers are related to the wa
time t in the experiment,U( f );T ln(t/t0), and only a limited
regime of forces with barriers 5,U( f )/T,30 is available.
This regime is, by making use of an extended tempera
interval, still sufficient to probe both the linear and glas
regimes close to threshold and at low drives, respectiv
~see Fig. 3!.

III. CREEP AT HIGH TEMPERATURES

In this section we consider thermal creep ofd51,2 elastic
interfaces~strings and interfaces moving in one transve
direction! at high temperatures and for small driving force
We show that the velocity-force characteristic exhibits a n
Arrhenius-type behaviorv}exp$2@fc(T)/f#m%. This depen-
dence derives from a creep-type motion with a renormali
activation barrier of the order of temperature,Uc(T);T, and
involves only the renormalized critical forcef c(T). For d
53 the parametersf c(T) andUc(T)@T depend on tempera
ture as well, leading to a non-Arrhenius-type creep tha
nonuniversal, however, with a result depending explicitly
the chosen cutoff. In Sec. III A we show how to calculate t
renormalized energy barrierUc(T) and the threshold force
5-5
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M. MÜLLER, D. A. GOROKHOV, AND G. BLATTER PHYSICAL REVIEW B63 184305
density f c(T) using scaling arguments and then presen
more rigorous analysis using~dynamical! FRG in Secs. III B
and III C.

A. Scaling analysis

While the mean squared displacement^u2& th'TL/pc is
bounded ind53 ~with L21 the intrinsic cutoff of the mani-
fold!, the thermal displacement~or wandering! of strings and
interfaces (d51,2) grows unboundedly, with either distan
z or time t,

^u2~z,t !& th[^@u~z,t !2u~0,0!#2& th

5
2T

c E ddq

~2p!2
q22 Re@12eiq•ze2(c/h)q2t#

55
T

pc
@z21~c/h!t#1/2, d51

T

2pc
lnFz21~c/h!t1L22

L22 G , d52;

~23!

the pinning lengthLc(T) set by the disorder landscape th
has to provide the necessary cutoff, which ind53 is given
by the intrinsic cutoffL21 @note that theq integral in Eq.
~23! is dominated by small~large! q for low ~high! dimen-
sions; hence, depending on the dimensionality of the sys
the amplitude of thermal fluctuations is determined by sh
(d53) or long (d51,2) scales#. This implies the existence
or absence of a separation of scales for thermal and diso
effects: While for d53 these scales are separated,L21

!Lc(T), no such separation is effective in dimensionsd
51,2; thermal effects smearing the disorder landscape
active on scalesL,Lc(T) while disorder takes over forL

FIG. 3. Effective creep barrierU at low temperatures as a func
tion of external forcef. The thin line follows the interpolation for-
mula U( f ).Uc@( f c / f )m21#, properly interpolating between th
glassy and linear regimes at small drives and close to thresh
respectively. The slow relaxation governed by the logarithmic
cay law U( f )'2T ln(11t/t0) limits the experimental window to
the interval 5,U/T,30 depending on temperature. Typically,
low ~high! temperature measurement then probes the linear~glassy
or nonlinear! regime.
18430
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.Lc(T), i.e., at the same scale. The temperature-indu
smoothing of the disorder potential then follows differe
rules in low and high dimensions, as we are going to disc
now.

In order to discuss pinning and creep we have to de
mine the renormalized disorder landscape. Assuming pinn
to involve longer time scales than thermal fluctuations
average the pinning potential over thermal excursions,3

^^Epin
2 ~L !& t&5E

0

t0dt

t0
E

0

t0dt8

t0
E ddzE ddz8

3^V„u~z,t !,z…V„u~z8,t8!,z8…&

5LdE
0

t0dt

t0
E

0

t0dt8

t0
K@ uu~ t !2u~ t8!u#

'LdK~0!S j2

^u2~L21,L !& th
D 1/2

, ~24!

where the mean squared thermal fluctuations^u2(L21,L)& th
are cut off byL21 or L5Lc(T) in high and low dimensions
respectively. Here,K(u) denotes the potential correlato
which is related to the force correlatorD(u) used above via
2K9(u)5D(u). The result~24! tells us that at high tempera
tures thermal fluctuations replace the basic length scalej of
the disorder landscape by the scale^u2(L21,L)& th

1/2.j ~note
that the energy scale of the disorder potential remains
changed!. Comparing this smoothed pinning energy with t
elastic energyc^u2(L21,L)& thL

d22;T we obtain the new
pinning scale replacing theT50 Larkin length Lc
5„c2j4/K(0)…1/(42d),

Lc~T!;LcS c2^u2~L21,L !& th
5/2

K~0!j D 1/(42d)

. ~25!

For high dimensions we findLc(T);Lc(T/Tdp)
1/2jF with the

Flory exponentjF5(42d)/5 and the depinning temperatur
Tdp5cj2/L ~this result follows from simple scalingu}LjF

andu}T1/2). In dimensionsd51, ~2! the corresponding re
sult takes the form~here we concentrate on the casen51;
see Ref. 29 for a discussion of the marginal situation ind
1n5112)

Lc~T!;LcS T

Tdp
D l

, ~26!

with the temperature exponentl55(5/4) and the depinning
temperatureTdp5@cK(0)j2#1/3(cj2). Comparing with the
above Flory exponent we see that thermal fluctuations ind
are much more important ind51, while for d52 the cor-
rections are only logarithmic@not shown in Eq.~26!#.

The energy barrier and the threshold force are renorm
ized correspondingly; for d53 we have Uc(T)
;Uc(T/Tdp)

7/2@T, with Uc5cj2Lc andTdp5cj2/L, while
for d51,2 the barrier ‘‘saturates’’ aboveTdp, Uc(T);T.
The critical force density is renormalized according
f c(T); f c(Tdp/T)9/2 in d53 and takes the form

ld,
-

5-6
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f c~T!;c
^u2@Lc~T!#& th

1/2

Lc~T!2
; f cS Tdp

T D k

, ~27!

with the temperature exponentk57(2) in dimensionsd
51(2), restricting ourselves again to the casen51. Using
the usual creep formulaU( f )/T5(Uc /T)( f c / f )m and insert-
ing the temperature dependent values forUc→T and f c
→ f c(T), we obtain the creep exponent (f c / f )m(Tdp/T)km

producing a non-Arrhenius type creep ind51,2 involving
only the renormalized critical force densityf c(T). For higher
dimensionsd.2 the renormalized barrierUc(T)@T re-
mains large, a consequence of the separation of scales
tioned above. In the following we rederive these scaling
sults via the more rigorous analysis provided by t
~dynamical! FRG scheme.

B. Functional renormalization group

In a first step we rederive the crossover scaleLc(T) via
the functional renormalization group. The nonlinear terms
the flow equations are still small during the initial stage
the RG flow—neglecting them, we first solve the line
equation. The lengthLc(T) then appears as the characteris
length where the nonlinear corrections become of the o
of the linear terms. The analysis is conveniently carried
for the potential correlatorK̃ l(u) which follows the flow
equation

] l K̃ l~u!5~e24z!K̃ l~u!1zuK̃l8~u!1T̃l K̃ l9~u!

1
1

2
K̃ l9~u!22K̃ l9~u!K̃ l9~0!, ~28!

while the temperature flow is given by

] l T̃l52uT̃l . ~29!

Using the ansatz

K̃ l~u!5exp$@e24z2~22d!/2# l %P̃l~ueu l /2!, ~30!

the linear part of the flow transforms into a Fokker-Plan
equation describing the probability distributionP̃l(u) for an
overdamped particle moving in a parabolic potential at c
stant temperatureT̃0,29

] l P̃l~u!5
22d

2
]u@uP̃l~u!#1T̃0]u

2P̃l~u!, ~31!

for which the fundamental solution is well known. Solvin
the initial value problem forP̃l and inserting in Eq.~30!, we
obtain

K̃ l~u!5exp@~42d25z!l #F 22d

4pT̃0e2u l~12e2(22d) l !
G 1/2

3E du8K̃0~u8!expF2
~22d!~u2u8e2z l !2

4T̃0e2u l~12e2(22d) l !
G .
18430
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For high temperatures such thatT̃0e2u l(12e2(22d) l)/(2
2d).j2e22z l the factorK̃0(u8) acts as ad function and can
be extracted from the integral

K̃ l~u!

E K̃0~u! du

'5
e(325z) l

exp@2u2/4T̃0e2u l #

~4pT̃0e2u l !1/2
, d51

e(225z) l
exp@2u2/4T̃0le2u l #

~4pT̃0le2u l !1/2
, d52

e(125z) l
exp@2u2/4T̃0e22z l #

~4pT̃0e22z l !1/2
, d53.

~32!

The above constraint on the temperature simplifies toT̃0

.e2 lj2, T̃0.j2/ l , and T̃0.j2 for d51,2,3, respectively,
wherej is the initial width of the correlatorK̃0; expressing
T̃0 and l through the physical quantitiesT andL we recover
the condition^u2(L21,L)& th.j2.

The solutions~32! still involve the wandering exponentz.
Although the final physical results do not depend on
particular choice, it is a matter of convenience to adopt
thermal valuesz th51/2, u th50 for d51, z th50, u th50 for
d52, andz th50, u th51 for d53 and have the correlato
flow toward a thermal fixed point. The renormalized co
relator~32! then behaves very differently for large and sm
dimensions. Ind53 the transverse scaleu does not change
~as we chosez50) and the initial correlator of widthj is
replaced with a new correlator of widtĥu2& th;T̃05TL/c.
This contrasts with the situation ind51 whereu does res-
cale ~as we chosez51/2) and the physical width of the
correlator increases withl to follow the mean thermal dis
placement amplitudêu2(L)& th;TL/c. For d52 the physi-
cal width grows only logarithmically.

The flow ~32! indicates that the thermal fixed point
unstable as the amplitude of the disorder grows expon
tially under the FRG transformation. As the nonlinear ter
in Eq. ~28! become large beyond the scaleLc(T)
5L21el c(T) we cannot neglect them any longer and the flo
crosses over to approach the disorder dominated fixed p
~the wandering exponentz then has to be modified accord
ingly, z50.2083e for random bond disorder22!. The pinning
lengthLc(T) replaces theT50 Larkin lengthLc and can be
found from a comparison of linear and quadratic terms in
flow equation~28!,

K̃ l c(T)~0!.K̃ l c(T)9 ~0!2, ~33!

making use of the result~32!. It is easily verified that the
crossover condition~33! together with the explicit solution
~32! of the linearized flow equations then yields the resu
~25! for the crossover lengthLc(T) obtained above with the
help of scaling arguments. Note that ford51,2 the linear
term T̃l K̃ l9 in Eq. ~28! gains in importance as we integra
through the Larkin regime; hence thermal rounding pers
on all scalesl , l c(T). On the contrary, ford53 the thermal
rounding term is most important at small scalesl;1 where it
5-7
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quickly replaces the widthj of the correlator by the mea
thermal displacement amplitude^u2& th

1/2; upon further scaling
the effective temperature decreases and at the Larkin s
the thermal term is down by a factor ofe2 l c(T). This again
reflects the different role the temperature plays for differ
internal dimensions of the elastic manifold.

C. Dynamic functional renormalization group

Finally, let us see how the high temperature creep@as
characterized by the temperature dependent critical fo
density f c(T) for d51,2# appears directly from the dynami
FRG treatment. The analysis parallels the treatment at
temperatures; however, we have to be more careful in dis
guishing between the casesd51,2 andd53.

Let us analyze the flow of the force correlatorD̃ l(u)5

2K̃ l9(u). Following the full flow up tol c(T) the force cor-
relator assumes a shape with a height and width as give
Eq. ~32!. At l c(T) the nonlinear terms in the flow equatio
~28! have become important; beyondl c(T) the correlator
quickly flows toward the disorder dominated fixed po
function D̃* (u), the linear temperature termT̃lD̃ l9(u)
smoothing the flow in a region of sizeul

T around the origin.

Assuming again that the fixed point functionD̃* (u) derives
its rough shape from the correlatorD̃ l c(T)(u) at crossover, we
can use the result~32! in combination with the flow equation
~9! to find the characteristic featuresD̃* (0), j* , and
D̃* 8(01) of the fixed point function and the rounding p
rametersD̃ l9(0) andul

T of the cusp.
Using Eq.~32! and the crossover condition~33! we find

the heightD̃* (0)52K̃ l c(T)9 (0)'T̃0. The slope of the fixed

point function at u501 again follows from comparing
terms in the flow equationuD̃* 8(01)u'D̃* (0)1/2 '(T̃0)1/2

and we find the widthj* '(T̃0)1/2 '^u2@Lc(T)#& th
1/2e2z thl c(T)

@see also the result~32!#. The widthul
T of thermal rounding

derives from ul
T'T̃l /uD̃* 8(01)u and we find the resul

ul
T/j* ;e2u„l 2 l c(T)… in d51,2, with u5d2212z andz the

random manifold exponent; thus atl c(T) the width of ther-
mal rounding equals the width of the correlator,ul

T'j* . The

curvature D̃ l9(0);D̃* (0)/T̃l is correspondingly small

D̃ l9(0)'2e„l 2 l c(T)…, ~see Fig. 2!; comparing this result with
Eq. ~15! we conclude that the barriers ‘‘saturate’’ to follo
the temperature,Uc(T)'T. This is quite different from
the case of d53: Here, the thermal rounding affec
only the narrow regime ul

T'j* e2 l c(T)e2u„l 2 l c(T)…

'j* „T/Uc(T)…eu( l 2 l c(T)) around the origin and the curva
tureis already large atl c(T), D̃ l9(0)'2el c(T)eu„l 2 l c(T)…

52„Uc(T)/T…eu„l 2 l c(T)…, where Uc(T)5c^u2& thLc(T)@T.
Thus, as anticipated above, the curvature of the correlato
l c(T) is thermally reduced to the order of 1 ind51,2 while
it is large in d53. Hence ford53 the situation at high
temperaturesT.Tdp is not different from that at low tem
peratures.

Next we integrate the flow for the velocity and force p
rametersl l and f l . We determine the creep scalel d(T)
18430
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twice, using the conditionl l d(T)5ul d(T)
T to relate the velocity

v and the scalel d(T) and a second time from the onset of th
disorder term in the force equation~21!, providing a relation
betweenf and l d(T); combining these results we obtain th
desired velocity-force characteristics. In doing so, we have
be careful to use the above high temperature estimates
D̃* 8(01) in Eqs.~19! and ~21!.

Integrating the flow equation~6! for l l through the Larkin
regime and then up tol d(T) we find the first relation

v}exp@2eu„l d(T)2 l c(T)…#. ~34!

Integrating next the force equation~8! we obtain

f l d(T); f e(22z th) l c(T)1(22z)[ l d(T)2 l c(T)] ~35!

and equating this to the disorder-induced te
cL2uD* 8(01)u in the flow equation~8! we arrive at the
second relation,

f ; f c~T!e2(22z)[ l d(T)2 l c(T)] ~36!

with the critical force densityf c(T)5cT̃0
1/2L2e2(22z th) l c(T)

;c^u2@Lc(T)#& th
1/2/Lc

2(T), in agreement with Eq.~27!. Com-
bining the results~34! and ~36! we find the velocity-force
characteristic describing the non-Arrhenius-type creep
high temperature,

v}H expF2S f c~T!

f D u/(22z)G , d51,2

expF2
Uc~T!

T S f c~T!

f D u/(22z)G , d53;

~37!

In conclusion, using dynamical functional renormalizati
group theory we have derived the linear scaling of the cr
barriers close tof c and have put the non-Arrhenius-type hig
temperature creep of low-dimensional manifolds on a fi
basis. The simple behavior of the creep barrier close
threshold appears surprising—considering the nontriv
threshold exponents due to a diverging nucleus obtained
elastic manifolds trapped in a washboard potential~see Ref.
3! one is tempted to expect a nontrivial exponent for t
random case as well. However, from our analysis we c
clude that there is no new diverging scale associated w
creep near threshold. The linear decay of the creep ba
then follows from a regular expansion and no effects of cr
cal fluctuations are picked up.
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