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Velocity-force characteristics of a driven interface in a disordered medium
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Using a dynamic functional renormalization group treatment of driven elastic interfaces in a disordered
medium, we investigate several aspects of the creep-type motion induced by external forces below the depin-
ning thresholdf.. (i) We show that in the experimentally important regime of forces slightly belpthe
velocity obeys an Arrhenius-type law~exd —U(f)/T] with an effective energy barridd (f)«(f.—f) van-
ishing linearly wherf approaches the threshold. (ii) Thermal fluctuations soften the pinning landscape at
high temperatures. Determining the corresponding velocity-force characteristics at low driving forces for
internal dimensionsd=1,2 (strings and interfaceswe find a particular non-Arrhenius-type creep
~exd —(f.(T)/f)*] involving the reduced threshold fordg(T) alone. Ford=3 we obtain a similaw-f
characteristic, which is, however, nonuniversal and depends explicitly on the microscopic cutoff.
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[. INTRODUCTION Close to threshold ~f, one may distinguish two inter-
esting regimes(i) Fixing the forcef at its critical valuef
The influence of disorder on the static and dynamic prop=f., thermal fluctuations smooth the depinning transition
erties of elastic systems has been intensely studied in receahd the velocity;fc(T)och’5 is expected to scale as a power
years? Various physical systems including flux lattices in of temperaturd® i) Fixing the temperatur& and increas-
superconductor$,domain walls in magnets? and charge ing the force toward thresholt f., a creep-type response
density waves in solidssignificantly change their properties g expected with a vanishing activation barrigi(f— f.)
upon introduction of even a small amount of disorder. Sub~(f_—f)*—0; here we are interested in the second
ject to a disorder landscape, these systems transform to &, ation.

glassy state characterized by a nontrivial scaling of the dis- Tpe scaling theory of crep' predicts thatU(f— 0)
placement correlation .fu.nctioﬁsmd 1a vanishing linear re- «U,(f./f)*, with a characteristic energy scale set by the
sponse to external driving forcés!! e.g., the current in-  gisorder landscape. On the other hand, when the fbege

duced Lorentz force acting on vortices or the magnetic ﬁeldproachesfc from below one expects that the barrier behaves
driving the domain walls in magnets. The determination ofjj¢

the velocity-force characteristics of a driven elastic manifold
subject to a disorder landscape is a challenging problem:
while the behavior at small distances and large drives is ame-
nable to perturbation theory, the most interesting long
distance/weak drive regime can be attacked only via nonper-
turbative methods. In this paper, we consider some aspects of
the creep-type dissipative motion of a driven elastic interface T>T,, 7 ¢
with d internal dimensions, moving along one transverse di- 4

T=0

L

rection in a disorder landscapéd + 1)-dimensional random Y depinning
manifold problemn. £ £ f
Depending on the value of the temperattirand the ex-
ternal forcef several regimes can be distinguishisee Fig. FIG. 1. Velocity-force characteristic of a driven interface at

1). At T=0, the velocityv is zero as long a$ does not various temperatures(;, denotes the depinning temperature above
exceed the critical forcd,., whereas forf>f, the system which thermal fluctuations smear the disorder landscapee thick
starts moving, v (f)#0 C”'1 particular onecfindSu(f)oc solid line is the zero-temperature result with a threshold fdice
(f—1)? near t'he thresHoIdhe depinnirylg transitionwith a below which the velocity vanishes. Beyofgthe velocity first rises

¢/ " . i i —f)B
nontrivial critical exponenB.lZ‘lsFor large drives > f the following the scaling law o< (f —f.)” and then crosses over to the

linear dissipative regime withof. The thin line shows the behav-

disorder becomes irrelevant and the velocity-force characte%r at finite but low temperatureB< T, with a creep regime at low

istic turn§ I.|near,u~f./77,. WI.'[h n the fr|ct|on coefficient forces f<f., vocex—(U.M(f./f)*]. Close to threshold we find
charagtgrlstlc of the dissipative dynamics. . . that the creep barriers scale linearlyfj «cexd — (U /T)(1—f/f.)].

At finite temperature§ >0, _thermal quctuatllons induce a ¢ high temperaturesT>Tq,, dash-dotted liethermal fluctua-
creep-type motion resulting in an exponentially small butions become particularly important in dimensiods=1,2: the
finite velocity even below threshold<f. (see Fig. 1  threshold forcef (T) is strongly reduced by thermal fluctuations
At small drives f—0 an Arrhenius-type lawuv(f)  and we find a non-Arrhenius glassy response at small drive with
«exd —U(f)/T] holds, with a diverging activation barrier yo«exg—(f(T)/f)“] determined by the renormalized critical force
U(f—0)—x (glassy responge alone.
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U(f)oc(f,—1)e, ) mates(see Ref. B As for the lowT creep, the exponent

_ ) ) ) ) =(d+2¢—2)/(2—¢) again is determined through the static
with o an exponent depending on the dimensionality of theoyghness exponeit The large thermal fluctuations modify
space and the elastic manifold. The parametefetermines  the characteristic energy scale of the problem tdJ,—T,
the relaxation of magnetization in superconductors at Curteading to a peculiar non-Arrhenius form for thef charac-
rents close to the critical one. In his original description ofteristic in the highT creep regime. Fod=3 the velocity-
magnetic relaxation, Andersbhassumed that=1 and ex-  force characteristic also takes a non-Arrhenius form but with
plained the famous logarithmic decay of the magnetic fieldyn exponent additionally modified through the temperature
trapped inside a superconduct8rNote that the regimef dependence of the creep barrlgg(T)>T. Note, however,
=f. is an experimentally important one: the observation ofthat Egs.(2) and(3) make sense only if the temperatFes
the system response at small driving fordesf; involves  gtjj| small enough to produce an exponéhtf)/T>1.
long relaxation times<exd (U./T)(f./f)*] and hence this re- In Sec. Il below we will first analyze creep near the criti-
gime is more difficult to access experimentally. More quan-ca| force and derive Eq(2) while Sec. Il is devoted to the
titatively, the maximal creep barridJ that can be observed stydy of creep at high temperatures with a derivation of the

after a waiting timet is given byU(t)~T In(1+t/ty) with to  result Eq.(3) for the creep barrier.
a characteristic time scale involving details of the critical

state?® For the vortex creep problem this time scale typi-

cally is of order 10° s and thus the experimentally attain-

able value ofU/T is limited to factors~30-40. In the following we will concentrate on the case af (
From a theoretical point of view the calculation of the + 1)-dimensional elastic media, witth internal dimensions

barrier exponentr in Eq. (1) near criticality still remains a and one single transverse direction. Typical realizations are

problem. In fact, one may expect that critical fluctuations ofstrings confined to a plarf@ (1+ 1)-dimensional manifolt

the manifold near the threshold will affect the creep motion.gr two-dimensional membranes embedded in three-

In this paper we study the behavior 0{ f) near the thresh-  dimensional spacga (2+ 1)-dimensional manifol These

old using dynamical renormalization group theSnand  models describe domain walls in thin film and bulk random

show that if the pinning of the manifold is due to a short- magnets, for example. The motion of the elastic manifold is

range correlated random potentielg., due to pointlike im-  governed by the equation

purities the effective barrier behaves as

Il. CREEP NEAR THRESHOLD

—~y2 )
U =U (1-f/fy), fof,, @) ndu=cViu+f,,(u,2)+{(z1)+f, 4

with U, a characteristic energy scale set by the disordewhere the friction and external driving forces are given by

landscape. This result is independent of the dimensionality ofﬁ‘u and;, Irgspectwhely, agd the adc|i|t|o'ngl fcz)rces 'act.mg on
the manifold and confirms the original assumption oft€ manifold are those due to elasticiVzu, pinning
Andersont® fpin(U,2), and thermal fluctuation(z,t); 7 andc denote the

In addition, we investigate creep at high temperaturesViSCOSity and the elasticity per unit volume. We assume that

again using the dynamical functional renormalization groupthe pinning force is a Gaussian ranfjotn variable V)”th Z€ro
technigue. In this case, the dimensionality of the manifold is" €& and a correlator(f(u,2)f(u’,z"))=A(u—-u _)5d
particularly important: It is well known that the mean ther- (2—2) of width &, the typical length scale of the disorder
mal displacementu2),, of a manifold with internal dimen- landscape. The statistics of the stochastic fof¢et) is

siond=3 is bounded, the maximum displacement dependin&a“SSian as well and the cor.relator is related to the viscosity
on the microscopic short-scale cutoff of the elastic system? and the temperaturel via ¢z 1))y =29Ts
Strings and surfacesl 1,2), however, exhibit thermal fluc- (Z—2')8(t=t'). .
tuations([ u(z) —u(0)]2) that grow unboundedly with sepa- = 1he calculation of the average velocity=(du) as a
ration z. At high temperatures, the manifold probes an effecfunction off andT s a difficult problem in the creep regime
tive disorder landscape averaged over thermal displacements-fc Since most of the time the manifold is pinned by the

that are bounded only through the disorder-induced pinnin%ﬁ‘”dom potential and only rarely will a strong thermal fluc-

at large scales, resulting in a strongly reduced disordetuation drive it into a neighboring metastable state. Obvi-
strength. In particular, the critical forck(T) is found to ously, thls'type of motion cannot be described perturbatlvely.
decrease as a power law with increasing temperafy() However, it can be_ rigorously proved that the velocity-force
~fo(Tgp/T)* With k=7 (2) in d=1 (2) dimensiongsee Fig. ~Characteristic is unique. _ L
1). The characteristic temperatufg, determining the cross- A powgrful method to Sthy fa”"'?;‘;' elastic mamfolds IS
over from the low to the high temperature regime is given byth€ functional renormalization grotip ™ (FRG) with vari-

the bare disorder energy scale, Tq=U.. For the effec- ous extensions dealing with finite temperatireand
tive barrier ind=1.2 we find P velocity }2~ For dimensionalities! of the manifold larger

than 4, the effect of disorder can be taken into account per-
U(F)=T{[f(T)/f]*—1}, (3) turbatively, whereas in fewer than four dimensionseagx-
pansion allows one to study the properties of the system at
depending only on the renormalized pinning forgT), small e=4—d. The FRG has provided numerous results in
confirming the results obtained previously via scaling estithe investigation of static and dynamic properties of elastic

184305-2



VELOCITY-FORCE CHARACTERISTICS OF A DRIVEN . .. PHYSICAL REVIEW B3 184305

manifolds. The static wandering exporénf as well as the We first analyze the system of equatioi®s—(8) for the
dynamic exponeft z have been determined for different case of an infinitesimal velocity=0+ and concentrate on
types of disorder. Furthermore, the depinning transition atow temperatures. Equation&) and (8) then reduce to
T=0 has been analyzed and the critical expongrih the  the static FRG equatioffs

depinning lawv = (f — f.)? has been calculatéd-*®

The dynamical extension of the FRG by Chauweteal X A (u)=(e—20)A(u)+ LUl (u)+T/A] (u)+A] (u)
allows investigation of the creep regime and confirms the _ ~ _
creep lawU (f)ocU(f./f)* derived earlier via scaling argu- X[A((0)—A(w)]—A[(u)?, )
ments. In addition, it turns out that the method allows for the
determination of different characteristics of the manifold’s a,T,=—6T,. (10

dynamics without additional physical assumptidos Refs. _

12—-14. The dynamical FRG starts from a Martin-Siggia- The flow takes the correlatord, through a special
Rose actioff obtained from the equation of motion E) point |c~(1/€)|n{6/[3|58(0)|]}, Lo~A"tele~{ec?&?
and proceeds with the elimination of large momentum fluc{ A A ,(0)]}¥“~ 9, where it becomes singular at the origin in

tuations. Thereby the parameters entering @jjare renor-  the limit T—0; this is easily seen from the equation
malized and characterize a system for which disorder is less

and less relevant. Finally, the flow is cut off at a scale where aA](0)~€A[(0)—3A](0)?, (12)
the effect of disorder can be taken into account perturba-
tively. satisfied by the second derivative of the correlator at low

Our starting point is the system of equations derived intemperatures; exploiting the fact thatj(0)<0 we have
Ref. 15 describing the renormalization of the parameters eNAr(0)|~|A;(0)|e/{1—[3|A}(0)|/e](e? —1)}. The cur-

tering Eq.(4), to lowest nontrivial order, vature Z{’(O) diverging atl. marks the occurrence of a

~ ~ -, ~, nonanalyticity at the origin which is reflected in the appear-
A (W)= (e=20)A1(u) + LUl (W) +TA7(u) ance of a cusp i, at u=0. Although the initial cor-

el ~ , relatorAq(u) is usually an analytic and even function of the
+ JS>O’S,>Oe T AN WA (' 9)) coordinateu with vanishing odd derivatives at the origin, the

~ ~ - function A,~, has a cusp with a nonzero sloﬁq((OJr)
=AU+ N (s"=5)]—A/ (U=NS")A{ (U+\S) ¢ : ~

<0 at the origin whenT=0. Asymptotically, A;(u) ap-
+A/ (N (S"+9)[A] (u=NS )= A (u+NS)]}, proaches a zero-temperature “cuspy” fixed pakit(u) de-
scribing the disordered phase with a nontrivial roughness

®) exponent{. If the rough shape of the fixed point function
A*(u) is assumed at the Larkin scdlewe can easily find its
n 7\|=2—§—f e SsAl(\S), (6) characteristics. The width
s>0
& ~&exp(—{lo) (12
—_ _ —_ "'"* . B .
o =(2—OF + AzJ =SK/(\S), 7 of A*(u) fol.lows from_mtegratmg the s_epond term in Eq.
fi=@=Ofi+e s>Oe () @) (9). Comparing terms in Eq9) at the originu=0 we find
A*'2(0+)~eA*(0), andcombining this with the relation
- o |A*'(0+)|&* ~A*(0) we find the estimatesA*(0)
AInT=—60+ e )\|SA| (\S), (8) ~e§2ex 24, and
s>0 p ¥

A’ ~ 7§|c
with A (u)=(AgAY"%/c?)A[(u), N=(q) /cA? T, A% (0 +)[~ege™"e. (13
=A4AY"?T,/c, andf,=f,—(nv),. The exponentg and ¢ Let us then analyze the force flo) in the light of these
=d—2+2{ describe the scaling of the roughness and theesults. The scalé, divides the flow into two distinct re-
energy, respectivelyA, is the surface of the unit spheredn  gimes, the Larkin regime at small scalesl, and the ran-
dimensions andA denotes the short-scale cptoff of the 4om manifold regime I1,). For I1<I, we haveZ{(O)
theory. Note the important effect of the dynamics in render-zz,(oﬂ:0 and the forcd. obevs the equation T —(2
ing the equations nonlocal on the scaleproportional to the R N | ODeY °d e
center of mass velocity of the manifoldnote that the latter — )i, i-e.,f=e{?"'ef grows exponentially. At the point
involves the dynamical exponentin its scaling relation !=lc the integral term on the right-hand side of EQ)
dv,=({—2)v,; on the other hand, the dynamical exponent/Umps from zero tq a finite value, since the slope of the
disappears from the combinatiop ]. The main goal of this correllato.r at the origin does not vanish any longer. If t'h|s
section is to investigate these equations in the limit when thgor;trlbunon overcompzenslates the scaling term, ie.,
external force acting on the manifold is slightly below the CA%[A[ (0+)|>(2—¢)e®~9'f, the force will start renor-

threshold forcef<f.. malizing to zero while in the opposite case it will continue to
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increase. This can be interpreted in the following way. If the 10° , , , ,
initial value f of the external force is smaller than a critical
valuef the force will eventually renormalize downward and
cannot move the manifold. Foir>f, the manifold starts o
moving and one should take into account E@). since the
problem is not static any more. We therefore come
to the conclusion that for a system with a dynamics
described by Eq.(4) there exists a finite threshold 1w’
force f, at T=0. Using the above condition
one easily finds fo~[cA?A* (0+)|/(2—¢)]e B Dl
~[el(2—¢)]cé/L2 with L,=A ~'elc. Note that the expres- et L L ,
sion for f. coincides with the result obtained from simple 0 10 20 30 40 50
scaling estimated. flow parameter /

At finite temperaturesT>0 it is no longer possible to o _ - ]
define the critical force densitf, as the threshold below  FIG. 2. Numerical integration of the curvatufa(0)| in the
which there is no center of mass motion of the manifold, ag_F)rzeTcotr)rellato:hford :Ild' [S_ee_Eq'g]' FS“r "‘f‘g'/?_' ter_':ﬁeralt“res
thermally activated jumps lead to an average velogityO 0= Tgp DEIOW IhETMAT dEPINNING algp= o= C&/L e WIT Values
at any finite forcef. Of course, at low temperatures the ve- 10~ I/ @, @=40,20,10,5 have been chosen, while the high tem-
locity is exceedingly small, given that it obeys an Arrhenius-Perature curve starts Witlio=20Tgp. The initial growth _through
type law. Therefore the time needed to observe this velocitthe Larkin regime involves the exponents 3 ande - 5fy,=1/2at
yp . . - Yow and high temperatures, respectively. Beyond the Larkin regime
might well exceed the time scale of the experiment, |.e.,fromh " £X7(0)— 1%, is ch 7ed by th i
an experimental point of view the critical force density still the flow of Af(0)e | IS characterized by the temperature ex
exists with the threshold. separating creep-type motion pon_entazzgh—1=0.|2495[f_cf. Eq'(.lS) W'tlhg v;/agder[rvl%%%cgent
from viscous flow. On the mathematical level the nonexist-g given by the one-loop fixed point valu&ef. 23 ;~0. !

fth itical f d . b lained as foll The crossover at the Larkin scale is sharp and independent of tem-
ence of the critical force density can be explained as fo 0Wsperature belowl 4,; the uniform vertical spacing of the asymptotic

At T>0, the slopeA’(0+) remains zero beyond., curves reflects the temperature independence of the energy scale
Z|’>|C(0+)=O, and the renormalized force density will con- U.. For high temperatures abovi, the crossover is shifted to
tinue to grow beyond the length scdlgeven if the initial e(T)>1c and thef,'nn'ng energyl(T) depends on temperature,
force densityf is smaller tharf.. The flow of\, then hasto  Ye~T [note that|Af r)(0)] ~1].

be included in our consideration and the renormalization of

T, will be found to stop at a larger scale. T<Uy,, the thermal rounding of the cusp involves a sagle

~ 1 ok
Let us then analyze the flow of the correlatyr, Eq. (5), mu_I(_:rf]] S][T“?t"e: than thte width c;f the (];:ct)rr]relator.l tor foll
at finite temperatures in more detail. The nonlocalities intro- € finite temperature curvature ot the correlator follows

duced by the finite value of; in Eq. (5) can be neglected as from a comparison of the term A} with either the fourth or
long as\, is smaller than the length scale introduced by thethe last term in Eq(9),

finite temperature, and we can therefore continue to use the
guasistatic equatiof®). Below, we will make use of the flow

1A, ()l

: ; : . = _ A*'(0+)2 U,
equations only in the regime where this condition holds. We o (0)~— ————=——¢ll"lo; (15)
also neglect the disorder contribution to the temperature ¢ T T
renormalization in Eq(8) since it does not influence the
main result to the accuracy desired here. the finite temperature fluctuations thus regularize the

At finite but smallT>0 the correlator flow bEIOWC does “Cuspy” divergence occurring af=0. The above estimates
not differ much from the zero-temperature case. However, aire correct up to numerical prefactors only; a more rigorous
I, no cusp occurs at the origin—rather, the correlator regerivation can be found in Ref. 15.
mains rounded on a characteristic scafe Assuming that For the following it is crucial to establish that the behav-
outside the thermally dominated region close to the originor described by Eq15) is valid already soon aftég, as the
the correlator has approached its zero-temperature fixeflow equation(6) for \, is quite sensitive to the curvature of
point shapeA* (u), we may estimatal’ from Eq. (9) by  the correlator ai=0. Indeed, as we have checked numeri-
equating the third and fourth terms on the right-hand sidecally (see Fig. 2, after a rapid growth within the Larkin

(RHS), regime, the curvatur&[’(O) saturates at a value U /T
5 with a slow further growth due to temperature rescaling,
T AN T -1y A/(0)<T, tce”. As long as we are interested in the thresh-

U= A*'(0+)]  ecce e U.°© ’ old behavior of the barrier close tiq it is sufficient to es-

(14) tablish a rapid crossover of the curvature from a steep growth
belowl . to a gentle increase abolg(which we will neglect
with U, the typical elastic energy on the Larkin scalg, for smalll —1.>0). Also note that the crossover occurs es-
Uc.~(€elAy) cgng‘z. Obviously, for low temperatures sentially at the same value bf independent of the tempera-
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ture T, while the uniform vertical spacing of the asymptotic fo T\ U,
curves reflects the temperature independence of the energy v~—( | exg—=Ua—1o)| (20
scaleU 71U T

..

Let us now analyze the system of equatidBs—(8) for  Below I4 the flow of T, is determined by the scaling term
T>0, v>0 close to criticalityf<f.. We assume a fixed alone, 9,T,=(2—¢)¥,, and a simple integration giveg

deviationf.—f from the threshold and a small temperature _ ¢ exg(2— )11, where we have dropped the small correc-
T<U,.. The velocity then isexponentially small as well tion in the definition off. F=f— At |« the disorder
and represents the smallest parameter in the problem. In the n ' - d

opposite caseT small and fixed whilef,— f—0+) the ve- Corfec“f?” trns on rap|dly and_ we enter the qleplnnlng
) s egimée® at scales>|4. In this regime we can substitute the
locity v«<T*° has been argued to scale as a power of

temperaturd’ 18 the numerical value of the exponeditstill  [1x€d point correlaton* for A, since ”0W7\|>UIT; Further-
being a matter of controverdy2’28 more, since stilk;<¢&* we can seh, equal to O+ in Eq.(7)
Again, we consider separately the two regimes below anénd we obtain a disorder correctia ?A* ' (0+). As ar-
abovel.. Throughout the Larkin regime the parametgr gued before when determining the threshold fofge we
remains small and can be set to zero in E@8.and (7). have to prevent the forch from running away tot«~ and
Furthermore, the temperature dependent term in®gmay  thus the disorder term has to match the scaling term; we then
be neglected initially—it will become relevant whéj(0)  arrive at a second relation expressign terms of the ap-
becomes of the order af./T. The flow of\, through the  Plied driving forcef,
Larkin regime then follows from expanding the flow equa-
tions forA/(0) and\,, Egs.(5) and(6), to second order in fe2=Ola~
the small parametex, and settingl, =0,

cAZA*"(0+)]
2—¢ N
With |4 close tol, we can expand|q—l.=(2—¢)?!

a[In|A7(0)|—3In\]=€e—3(2—¢)+O(\}). (16) (1-f/f)<1, and combining with E(20) we arrive at the
final result for the average velocity,

f e Ol (21)

Integrating from O td . and usingZ{’c(O)~UC/T we obtain

(up to numerical factops pocexn — & fe—f ’ (22)
T fg
L2 VRES . . . .
A = ce—élc(_c) _ (17)  where we have dropped an inessential numerical factor in a
¢ c T redefinition ofU;. Also, our analysis is not sufficiently pre-

Note that\;, grows as gpowerof U./T as the temperature cise to spec_:ify the prgfactor.
.. 9 P ¢ P Summarizing, we find that close to threshold withU

approaches zero, whereas in the following depinning regime. _ /¢ —5/(1+ 4) the velocity obeys an Arrhenius-type
A will be exponentiallysensitive toT. 5 law with an energy barrier decreasing linearly on approach-
Going beyond the Larkin regimie>1. the functionA(u)  ing f.. On the other hand, the usual glassy behaul¢f)

quickly approaches its fixed point form except for a Sma||~UC(fc/f)/f- is valid at small forces/f.<2~ Y~ In typical
thermally smoothed region of sizg around the origin with  experiments the measured barriers are related to the waiting
the second derivative given by E@.5). As long as)\|<u,T timet in the experimenty (f) ~T In(t/ty), and only a limited

one can keep=0 in the integral on the RHS of E¢6) and  regime of forces with barriers SU(f)/T<30 is available.

a simple integration fronh. to | provides the result This regime is, by making use of an extended temperature

interval, still sufficient to probe both the linear and glassy

u _ regimes close to threshold and at low drives, respectively
)"zklcexﬁ{(z_g)(l_%H ¢9Tc(ee(I 91 (see Fig. 3
U
N)\lcex%?c“ _|C)}, (18) Ill. CREEP AT HIGH TEMPERATURES

In this section we consider thermal creepsf 1,2 elastic
where in the last step we have assumed fHal.<I|—I interfaces(strings and interfaces moving in one transverse
<1. direction at high temperatures and for small driving forces.

Turning next to the force equatiofY) we note that at \We show that the velocity-force characteristic exhibits a non-
finite temperature the disorder contribution adds in only at arrhenius-type behaviow «<exp{—[f(T)/f]*}. This depen-
larger scalel 4>1, where \; becomes of the order of the dence derives from a creep-type motion with a renormalized
thermal roundingJ,T, in contrast to the zero-temperature caseactivation barrier of the order of temperatulte,(T)~T, and

where disorder jumps in &t . The condition involves only the renormalized critical force(T). Ford
L =3 the parameterk,(T) andU.(T)>T depend on tempera-
)\ld:uL:Tld/|A*'(0+)| (190  ture as well, leading to a non-Arrhenius-type creep that is

nonuniversal, however, with a result depending explicitly on
then determines a relation connecting the crossover $gale the chosen cutoff. In Sec. lll A we show how to calculate the
with the initial velocityv, renormalized energy barridy ,(T) and the threshold force
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>L(T), i.e., at the same scale. The temperature-induced
smoothing of the disorder potential then follows different
rules in low and high dimensions, as we are going to discuss
now.

In order to discuss pinning and creep we have to deter-
mine the renormalized disorder landscape. Assuming pinning
to involve longer time scales than thermal fluctuations we
average the pinning potential over thermal excursibns,

(e[ e e

Uy, glassy

i linear

0 1 Jyj:?
X(V(u(z,1),2V(u(z'.t"),2"))
FIG. 3. Effective creep barridd at low temperatures as a func- todt (todt’
tion of external forcd. The thin line follows the interpolation for- - Ldf O_f 0—K[|u(t) —u(t"]]
mula U(f)=U_[(f./f)*—1], properly interpolating between the o toJo to

glassy and linear regimes at small drives and close to threshold, 12
respectively. The slow relaxation governed by the logarithmic de- fz

L - - ~LIK(0)| ———— (24)
cay law U(f)~—T In(1+t/ty) limits the experimental window to <u2(A_1 L)) J
the interval 5<U/T<30 depending on temperature. Typically, a =/t
low (high) temperature measurement then probes the lifgdassy

where the mean squared thermal fluctuati AL L
or nonlineay regime. q (Jm%( ))th

are cut off byA ~! or L=L(T) in high and low dimensions,
respectively. HereK(u) denotes the potential correlator,
Qvhich is related to the force correlatdr(u) used above via
—K"”(u)=A(u). The resuli{24) tells us that at high tempera-
tures thermal fluctuations replace the basic length s¢aie
_ _ the disorder landscape by the scalé(A ~*,L))#>> ¢ (note
A. Scaling analysis that the energy scale of the disorder potential remains un-

While the mean squared displacemént),,~TA/mc is  changed Comparing this smoothed pinning energy with the
bounded ind=3 (with A~ the intrinsic cutoff of the mani- elastic energyc(u?(A~%,L));L? *~T we obtain the new
fold), the thermal displacemefur wandering of strings and ~ pinning scale replacing theT=0 Larkin length L.
interfaces @=1,2) grows unboundedly, with either distance = (C?£*/K(0))*~ 9,

density f,(T) using scaling arguments and then present
more rigorous analysis usiridynamical FRG in Secs. Il B
and Il C.

z or timet,
C2<u2(A71,L)>t5rfz 1/(4—d)
(W(z,0)w=([u(z,) ~u(0,0) ]y Lc”)NLc( K(0)¢ ) 3
_2T dq q 2 Rg1- eI @t For high dimensions we find.(T) ~L(T/T4,) Y% with the
cJ (2m)? Flory exponent-=(4—d)/5 and the depinning temperature

Tap=CE&/A (this result follows from simple scalings L
l[22+(c/ 2 d=1 anduxT¥?) . In dimensionsd=1, (2) the corresponding re-
C n ' sult takes the fornihere we concentrate on the case1;
IR 24 (¢l p)t+ A2 see Ref. 29 for a discussion of the marginal situatior in

5—ln A77_2 d=2: +n=1+2)

T A
(23 LC(T)~LC(—> , (26)
Ty

the pinning lengthL.(T) set by the disorder landscape then

has to provide the necessary cutoff, whichdi 3 is given  with the temperature exponent=5(5/4) and the depinning
by the intrinsic cutoffA ~* [note that theq integral in Eq.  temperatureTq,=[cK(0)£]*3(c&?). Comparing with the
(23) is dominated by smalllarge g for low (high) dimen-  above Flory exponent we see that thermal fluctuations indeed
sions; hence, depending on the dimensionality of the systemre much more important id=1, while for d=2 the cor-

the amplitude of thermal fluctuations is determined by shortections are only logarithmifot shown in Eq(26)].

(d=3) or long d=1,2) scale§ This implies the existence The energy barrier and the threshold force are renormal-
or absence of a separation of scales for thermal and disordezed correspondingly; for d=3 we have U(T)
effects: While ford=3 these scales are separated,®  ~U(T/Tqy) "% T, with U.=cé’L, and Tq,=c&4/A, while
<L(T), no such separation is effective in dimensiahs for d=1,2 the barrier “saturates” abovéy,, U(T)~T.
=1,2; thermal effects smearing the disorder landscape ar€he critical force density is renormalized according to
active on scales <L (T) while disorder takes over fdc fc(T)~fC(po/T)9’2 in d=3 and takes the form
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(U Ly(T)])a2 Tap © For high temperatures such thate #(1—e 2~ 9)/(2
fe(T)~c L (T)2 Tl =) @7 —d)>¢2e 2! the factorKo(u’) acts as & function and can

be extracted from the integral
with the temperature exponemt=7(2) in dimensionsd

=1(2), restricting ourselves again to the case 1. Using ( exp[—u2/4'~roe* 4

the usual creep formuld (f)/T=(U./T)(f./f)* and insert- (330 = 471
ing the temperature dependent values ty—T and f. (4mToe™ ™)

—fc(T), we obtain the creep exponent,(f)*(Tqp/T)" " Ky(u) exd —u?/4Tle= "]

e(2-50) ~ d=2
(4mTole” M2

exd —u?/4T,e 4]
(477’1’-08_ 2§|)1/2

producing a non-Arrhenius type creep d 1,2 involving —~{¢
only the renormalized critical force density(T). For higher j Ro(u) du
dimensionsd>2 the renormalized barriel (T)>T re-

mains large, a consequence of the separation of scales men-

tioned above. In the following we rederive these scaling re- \
sults via the more rigorous analysis provided by the

(dynamical FRG scheme.

e(1-50) d=3.

(32

The above constraint on the temperature simplifiesT §o
>e &2 To>&21, and Ty> &2 for d=1,2,3, respectively,
where¢ is the initial width of the correlatoKy; expressing

In a first step we rederive the crossover sdal¢T) via T and| through the physical quantiti€sandL we recover
the functional renormalization group. The nonlinear terms iy condition(u2(A 1, L)) €.
the flow equations are still small during the initial stage of 11 solutiong32) still involve the wandering exponett

the RG flow—neglecting them, we first solve the linear zjthough the final physical results do not depend on the
equation. The length(T) then appears as the characteristicp,ticylar choice, it is a matter of convenience to adopt the
length where the nonlinear corrections become of the ordef,ormal values;,=1/2, 6;,=0 ford=1, £;;=0, ;=0 for

of the linear terms. The analysis is conveniently carried ouf_ 5 onq {n=0, =1 for d=3 and have the correlator

for the potential correlatoK;(u) which follows the flow  flow toward a thermal fixed point. The renormalized cor-
equation relator(32) then behaves very differently for large and small
5 ~ . . dimensions. Ind=3 the transverse scaledoes not change
K (u)=(e—4)K,(u) + ZuK| (u) + T|K{(u) (as we chos&=0) and the initial correlator of widtlh is
1 replaced with a new correlator of widtu?),,~T,=TA/c.
+ —R{’(U)Z—R,”(U)R{’(O), (29 This contrasts with the situation ith=1 whereu does res-
2 cale (as we chose/=1/2) and the physical width of the
while the temperature flow is given by correlator increases withto follow the mean thermal dis-
placement amplitudéu?(L))~TL/c. For d=2 the physi-
aF = — 6T (29) cal width grows only logarithmically.
i - The flow (32) indicates that the thermal fixed point is
Using the ansatz unstable as the amplitude of the disorder grows exponen-
tially under the FRG transformation. As the nonlinear terms
Ki(uy=exp[e—4¢—(2—d)/2]1}P,(ue”?), (300 In EQ. (28) become large beyond the scalec(T)
=A"1e'<M we cannot neglect them any longer and the flow
the linear part of the flow transforms into a Fokker-Planckcrosses over to approach the disorder dominated fixed point
equation describing the probability distributiéh(u) for an  (the wandering exponergt then has to be modified accord-
overdamped particle moving in a parabolic potential at coningly, {=0.208% for random bond_disord@). The pinning
stant temperaturd,,2° lengthL(T) replace; thé’zQ Larkin lengthL a_md can be
found from a comparison of linear and quadratic terms in the
flow equation(28),

B. Functional renormalization group

~ 2—d ~ = o~
aPi(u) = ——d[uP W]+ TediPi (W), (3D) B B
KIC(T)(O):KIHC(T)(O)Zv (33
for which the fundamental solution is well known. Solving . _ . B
the initial value problem foP, and inserting in Eq(30), we making use of the resul32). It is easily verified that the

obtain crossover conditior{33) together with the explicit solution
(32 of the linearized flow equations then yields the results

o4 12 (25) for the crossover length.(T) obtained above with the

Ki(u)y=exd (4—d-50)1]| —= — o ai l help 9f~scaling arguments. Note that fde=1,2 the linear
4nToe "(1-e ) term T\K{ in Eg. (28) gains in importance as we integrate

2 d)(u—u'e- 2 through the Larkin regime; hence thermal rounding persists
Xf du'Ko(u)expg — (~ Ju-u'e ) _ on all scales<I.(T). On the contrary, fod=3 the thermal
ATpe M(1—e (279 rounding term is most important at small scalesl where it
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quickly replaces the widtlg of the correlator by the mean twice, using the conditiom,d(T)zuL(T) to relate the velocity

H H 1/2. H
thermal displacement amplitude?)y*; upon further scaling  , and the scalé,(T) and a second time from the onset of the

the effective temperature decreases and (GTV)[ the Larkin scadfsorder term in the force equati¢@l), providing a relation
the thermal term is down by a factor ef '<"’. This again  petweenf andl4(T); combining these results we obtain the
reflects the different role the temperature plays for differenyesired velocity-force characteristics. In doing so, we have to

internal dimensions of the elastic manifold. be careful to use the above high temperature estimates for
A*'(0+) in Egs.(19) and (22).
C. Dynamic functional renormalization group Integrating the flow equatio¢®) for A, through the Larkin

Finally, let us see how the high temperature créap regime and then up thy(T) we find the first relation

characterized by the temperature dependent critical force
densityf(T) for d=1,2] appears directly from the dynamic vocexy —e?ldM=1eM, (34)
FRG treatment. The analysis parallels the treatment at low
temperatures; however, we have to be more careful in distin-

guishing between the casds-1,2 andd=3. Integrating next the force equatig8) we obtain
Let us analyze the flow of the force correlatfy(u)=
—K{'(u). Following the full flow up tol (T) the force cor- f,d(T)~fe(z’évth)'c(TH(Z*§)[Id(T)*|c(T)1 (35

relator assumes a shape with a height and width as given by
Eq. (32). At I(T) the nonlinear terms in the flow equation _ . . .
(28) have become important; beyord(T) the correlator and e’quatmg. this to the. d|sorder-|nQUced term
quickly flows toward the disorder dominated fixed point CA’JA* (0+)| in the flow equation(8) we arrive at the

function A*(u), the linear temperature terni,A/(u) second relation,

smoothing the flow in a region of sizusfT around the origin.

Assuming again that the fixed point functidr (u) derives f~f(T)e @Ol -1 (36)
its rough shape from the correlatErc(T)(u) at crossover, we

can use the resu(82) in combination With~the flow equation  with the critical force densityf(T)=cTa?A%e~ (=@M
(9) to find the characteristic featured*(0), &*, and  ~c(uL(T)])F¥L3(T), in agreement with E¢(27). Com-

A*'(0+) of the fixed point function and the rounding pa- bining the results34) and (36) we find the velocity-force
rametersA/(0) andu, of the cusp. characteristic describing the non-Arrhenius-type creep at

Using Eq.(32) and the crossover conditio33) we find  high temperature,
the heightA* (0)= —R;’C 1 (0)=T,. The slope of the fixed

point function atu=0+ again follows from comparing (D) 01(2=0) de12
terms in the flow equatiohA*'(0+)|~A* (0)Y2 ~(T,)Y2 ex f ’ ’

and we find the width* ~ (To) Y2 ~ (U L (T)])x%e (M ve Uo(T) [ Fo(T)| 20 _ (37)
[see also the resu(82)]. The widthu/ of thermal rounding e , d=3;

derives fromu/~T,/|A*'(0+)| and we find the result

uj/& ~e %0-1eM in d=1,2, with #=d—2+2¢ and¢ the . . . . o
In conclusion, using dynamical functional renormalization

random m-anlfold exponen-t, thus B(T) the W'(thh (if ther- group theory we have derived the linear scaling of the creep
mal round|r~1g equal~s the Vl'dth of the correlatoy~£*. The barriers close td. and have put the non-Arrhenius-type high
curvature Af(0)~A*(0)/T, is correspondingly small, temperature creep of low-dimensional manifolds on a firm
Al(0)~—e!~'c(M) (see Fig. 2 comparing this result with basis. The simple behavior of the creep barrier close to
Eg. (15 we conclude that the barriers “saturate” to follow threshold appears surprising—considering the nontrivial
the temperaturelJ (T)~T. This is quite different from threshold exponents due to a diverging nucleus obtained for
the case ofd=3: Here, the thermal rounding affects elastic manifolds trapped in a washboard poter{sake Ref.
only the narrow regime ufw e ldMe=00-1(M)  3) one is tempted to expect a nontrivial exponent for the
~ & (TIU(T))e? 1™ around the origin and the curva- random case as well. However, from our analysis we con-
clude that there is no new diverging scale associated with
creep near threshold. The linear decay of the creep barrier
6t{tgen follows from a regular expansion and no effects of criti-
cal fluctuations are picked up.

tureis already large af (T), A(0)~—g'c(Mefl~!M)
=—(U(T)/T)e’ "M where U (T)=c(u?)uLo(T)>T.
Thus, as anticipated above, the curvature of the correlator
[.(T) is thermally reduced to the order of 1 dh=1,2 while
it is large in d=3. Hence ford=3 the situation at high
temperature§ > Ty, is not different from that at low tem-
peratures.

Next we integrate the flow for the velocity and force pa- We thank Pascal Chauve for discussions and the Swiss
rameters\; and f;. We determine the creep scalg(T) National Foundation for financial support.
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