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We solve the Anderson localization problem on a two-leg ladder by the Fokker-Planck equation approach. The
solution is exact in the weak disorder limit at a fixed interchain coupling. The study is motivated by progress
in investigating the hybrid particles such as cavity polaritons. This application corresponds to parametrically
different intrachain hopping integrals (a “fast” chain coupled to a “slow” chain). We show that the canonical
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation is insufficient for this problem. Indeed, the angular variables
describing the eigenvectors of the transmission matrix enter into an extended DMPK equation in a nontrivial way,
being entangled with the two transmission eigenvalues. This extended DMPK equation is solved analytically and
the two Lyapunov exponents are obtained as functions of the parameters of the disordered ladder. The main result
of the paper is that near the resonance energy, where the dispersion curves of the two decoupled and disorder-free
chains intersect, the localization properties of the ladder are dominated by those of the slow chain. Away from
the resonance they are dominated by the fast chain: a local excitation on the slow chain may travel a distance of
the order of the localization length of the fast chain.
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I. INTRODUCTION

Despite more than half a century of history, Anderson
localization1 is still a very active field whose influence spreads
throughout all of physics, from condensed matter to wave
propagation and imaging.2 A special field where most of the
rigorous results on Anderson localization have been obtained
consists of one-dimensional and quasi-one-dimensional sys-
tems with uncorrelated disorder. Most of the efforts in this
direction were made to obtain the statistics of localized wave
functions in strictly one-dimensional continuous systems3,4 or
tight-binding chains (see the recent work Ref. 5 and references
therein). Alternatively, the limit of thick multichannel N � 1
wires has been studied by the nonlinear supersymmetric σ

model.6

A transfer matrix approach which allows one to consider
any number of channels N was suggested by Gertsenshtein and
Vasil’ev in the field of random waveguides.7 This approach
has been applied to the problem of Anderson localization
by Dorokhov8 and later on by Mello, Pereyra, and Kumar
(DMPK).9 It is similar in spirit to the derivation of the Fokker-
Planck equation (the diffusion equation) from the Langevin
equation of motion for a Brownian particle. However, in the
present case an elementary step of dynamics in time is replaced
by the scattering off an “elementary slice” of the N -channel
wire. As a result, a kind of Fokker-Planck equation arises
which describes diffusion in the space of parameters of the
scattering matrix M, in which the role of time is played by the
coordinate along the quasi-one-dimensional system. Usually
the scattering matrix M is decomposed in a multiplicative
way by the Bargmann’s parametrization,9 which separates
the “angle variables” of the U (N )-rotation matrices and the
N eigenvalues Tρ=1,...,N of the transmission matrix. If the
probability distribution of the scattering matrix is assumed in-
variant under rotation of the local basis (isotropy assumption),
the canonical DMPK equation8–10 may be obtained, which
has the form of a Fokker-Planck equation in the space of N

transmission eigenvalues. This equation was solved in Ref. 11
for an arbitrary number N of transmission channels.

The isotropy condition is not automatically fulfilled. It is
believed that the isotropy condition is valid for a large number
N � 1 of well coupled chains where the “elementary slice”
is a macroscopic object and the “local maximum entropy
ansatz” applies.9 It is valid at weak disorder in a strictly
one-dimensional chain in the continuum limit a → 0 or for
a one-dimensional chain with finite lattice constant a outside
the center-of-band anomaly. In this case the distribution of the
only angular variable describing a U (1) rotation, the scattering
phase, is indeed flat.5

However, the case of few (N � 1) coupled chains is
much more complicated. As was pointed out originally by
Dorokhov,8 and later on by Tartakovski,12 in this case the
angular and radial variables, are entangled in the Fokker-
Planck equation. These are the variables determining the
eigenvectors and eigenvalues of the transmission matrix,
respectively. We refer to this generic Fokker-Planck equation
as the extended DMPK equation in order to distinguish it from
the canonical DMPK equation which contains only the radial
part of the Laplace-Beltrami operator. The minimal model
where such an entanglement is unavoidable, is the two-leg
model of N = 2 coupled disordered chains.

Yet this case is important not only as a minimal system
where the canonical DMPK equation breaks down. It is
relevant for the Anderson localization of linearly mixed hybrid
particles such as polaritons.13 Polaritons are the result of
coherent mixing of the electromagnetic field in a medium
(photons in a waveguide for example) and excitations of matter
(excitons). In the absence of disorder photons have a much
larger group velocity than excitons, and thus one subsystem
is fast while the other one is slow. As a specific example,
quasi-one-dimensional resonators were recently fabricated by
confining electromagnetic fields inside a semiconductor rod14

or to a sequence of quantum wells.15 In such resonators the
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dispersion of transverse-quantized photons is quadratic in the
small momentum, with an effective mass as small as 10−4 of
the effective mass of the Wannier-Mott exciton, which is of
the order of the mass of a free electron.

Disorder is unavoidable in such systems due to the
imperfections of the resonator boundary and impurities. In
many cases one can consider only one mode of transverse
quantization for both the photon and the exciton. Thus, a
model of two dispersive modes (particles) with parametrically
different transport properties arise. Due to the large dipole
moment of the exciton these particles are mixed, resulting in
avoided mode crossing. On top of that, disorder acts on both
of them, whereby its effect on the two channels can be rather
different.16 It is easy to see16 that this system maps one-to-one
onto a single-particle model of two coupled chains in the
presence of disorder. Reference 16 solved the coupled Dyson
equations for the Green’s functions of exciton and cavity
phonon numerically, focusing on the so-called “motional
narrowing” in the reflectivity spectra of normal incidence.17

However, the issue of localization of cavity polaritons was not
raised. The latter was addressed in Ref. 18, which analyzed the
scattering of electromagnetic waves in a disordered quantum-
well structure supporting excitons. The random susceptibility
of excitons in each quantum well was shown to induce
disorder for the light propagation, and the Dyson equation
for the Green’s function of the electromagnetic wave was then
solved by the self-consistent theory of localization. The author
reached the conclusion that the localization length of light
with frequencies within the polariton spectrum is substantially
decreased due to enhanced backscattering of light near the
excitonic resonance. This is in qualitative agreement with
our exact and more general study of the coupled disordered
two-leg problem. The latter also finds natural applications in
nanostructures and electronic propagation in heterogeneous
biological polymers, such as DNA molecules.19

The main question we are asking in the present paper is the
following: What happens to the localization properties when a
fast chain is coupled to a slow one? Will the fast chain dominate
the localization of the hybrid particle (e.g., a polariton) or the
slow one? In other words, will the smallest Lyapunov exponent
of the two-leg system (the inverse localization length) be
similar to the one of the isolated fast chain, or rather to
the one of the isolated slow chain? Can the presence of
the “more strongly quantum” component (photon) help the
“more classical” component (exciton) to get out of the swamp
of localization? This latter question can be asked in many
different physical situations. It has been referred to as the
“Münchhausen effect” in Ref. 20, to describe the following
effect predicted for a dc SQUID (superconducting quantum
interference device) with two biased Josephson junctions, one
with small plasma frequency (large mass) and the other one
with large plasma frequency (small mass): The junction with
small mass can actually drag the “slower” junction (larger
mass) out of its metastable state.

Here we give an answer in the specific situation of a single
hybrid particle. More interesting situations may arise when
interacting and nonequilibrium polaritons are approaching
Bose condensation.14,15,21–23

A further question of more general interest can be addressed
by the same model problem. Namely, consider two or more

coupled channels with similar propagation speed (i.e., inverse
effective mass), but different disorder level: Which channel
will dominate the localization, the cleaner or the more
disordered one? This type of question arises not only in
these hybrid single-particle problems, but is an important
element in the analysis of many-particle problems, where
few- and many-particle excitations have various channels of
propagation (e.g., all particles moving together, or moving
in subgroups of fewer particles). It is an important, but
scarcely understood question, which determines the character
of the propagation of such excitations when many parallel, but
coupled channels with different transport characteristics exist.
Intuitively, one expects the fastest and least disordered channel
to dominate the delocalization.

However, our analytical solution of the hybrid two-leg
chain shows that in the one-dimensional case, this intuition
is not always correct. Instead we find that, when the channels
are strongly mixing with each other, it is the largest rate of
back scattering, that is, the more disordered chain, which
dominates the physics. This may be seen as one of the many
manifestations of the fact that in one dimension the localization
length is essentially set by the mean free path. Our solution
of the two-chain problem furnishes a useful benchmark
for approximate solutions in more complex and interacting
situations. However, we caution that the phenomenology may
be quite different in higher dimensions. We discuss this further
in the conclusion.

The answer to the above questions will be obtained
analytically from the exact solution of the two-leg (two-chain)
Anderson localization model. This solution represents a major
technical advance, because for the first time a model, which
leads to an extended DMPK equation with nonseparable
angular and radial variables, is exactly solved. Without going
into details our results are the following.

(i) The answer depends qualitatively on whether the system
is close to the resonance energy ER , which is defined as the
energy where the dispersion curves of the two corresponding
decoupled disorder-free chains intersect (see Fig. 1).

(ii) Near the resonance the presence of the fast leg does
not help to substantially delocalize the slow component (see
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FIG. 1. (Color online) Two situations of clean energy dispersions.
The dashed and solid curves correspond to decoupled and coupled
chains. The decoupled dispersion curves intersect at the resonance
energy ER . (a) No gap: E−

1 � E+
2 . There are two propagating

channels at a given energy for E−
1 � E � E+

2 . (b) Gapped: E−
1 >

E+
2 . Apart from a forbidden band, only one propagating channel

exists.
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Fig. 8). The localization length of a hybrid particle is at most
by a factor of ≈3 larger than the one of the slow particle
[see Eqs. (95) and (96a)], being parametrically smaller than
that of the fast particle. Thus, the slow particle dominates the
localization properties of the hybrid particle near the resonance
energy ER .

(iii) A particular case where the resonance happens at all
energies is the case of two coupled identical chains subject to
different disorder (see Fig. 7). In this case the dominance of
the more disordered chain extends to all energies, thus pushing
the localization length of the ladder sharply down compared
to that of the less disordered isolated chain.

(iv) Away from the resonance the wave functions stay either
mostly on the slow leg, being strongly localized. Or they have
their main weight on the fast leg and hybridize here and there
with the slow leg (see Figs. 1 and 10). It is this second type
of wave functions which helps excitations on the slow leg to
delocalize due to the presence of the faster leg, even though
this happens with small probability far from the resonance.

(v) A very peculiar behavior occurs near the band edges
of the slow particle, where the system switches from two
to one propagating channels. Just below the band edge the
localization length of the hybrid particle decreases dramati-
cally, being driven down by the localization length of the slow
chain that vanishes at the band edge (neglecting the Lifshitz
tails). Above the band edge the localization length of a hybrid
particle sharply recovers, approaching the value typical for the
one-chain problem. Thus, near the band edge the localization
length of the two-leg system has a sharp minimum, which is
well reproduced by direct numerical simulations (see Fig. 9).

The paper is organized as follows. In Sec. II the problem
is formulated and the main definitions are given. In Sec. III
the extended DMPK equation is derived. In Sec. IV the exact
solution for the localization lengths is given and the main
limiting cases are discussed. In Sec. V numerical results
concerning the wave functions in each leg are presented.
In Sec. VI a problem of one propagating channel and one
evanescent channel is considered. The application of the theory
to hybrid particles such as polaritons, as well as considerations
about higher dimensions, are discussed in the Conclusion.

II. TWO-LEG ANDERSON MODEL AND TRANSFER
MATRIX FOR “ELEMENTARY” SLICE

A. The model

The Anderson model on a two-leg ladder is determined by
the tight-binding Hamiltonian

H =
∑
ν=1,2

∑
x

(εxνc
†
xνcxν − tν(c†xνcx+1ν + H.c.))

− t
∑

x

(c†x1cx2 + H.c.) + δe
∑

x

c
†
x2cx2, (1)

where x ∈ Z is the coordinate along the ladder and ν ∈ {1,2}
is the index labeling the two legs. In this model the on-site
energies εxν are independently distributed Gaussian random
variables with zero mean, and tν is the hopping strength
between nearest-neighbor sites on the νth leg. In general,
the two legs will be subject to different random potentials,

characterized by the two variances:

σ 2
ν = ε2

xν . (2)

We also consider different hopping strengths, for which we
assume

t1 � t2. (3)

The transverse hopping strength between the legs is t . Finally,
it is natural to consider a homogeneous potential δe (i.e., a
detuning) on leg 2.

The Hamiltonian (1) is a generic model describing two
coupled, uniformly disordered chains. Moreover, the model
can also be adopted as an effective model to describe
noninteracting excitations with two linearly mixing channels
of propagation in the presence of disorder. An important
example is polaritons; the two channels correspond to the
photon mode and the exciton mode, respectively.

The model (1) has been studied analytically previously in
the literature, focusing on the special case t1 = t2 and σ 2

1 = σ 2
2 .

The continuous limit was solved long ago by Dorokhov.8 The
tight-binding model was considered later on by Kasner and
Weller.24 Their results will be reference points for our more
general study in the present work.

The Schrödinger equation of the Hamiltonian (1) at a given
energy E has the form

�(x − 1) + �(x + 1) = (h(E) + εx)�(x), (4)

where �(x) is a single-particle wave function with two
components, representing the amplitudes on the leg 1 and 2,

h(E) =
(

−E
t1

− t
t1

− t
t2

−E−δe
t2

)
, (5)

and

εx = diag

(
εx1

t1
,
εx2

t2

)
. (6)

The terms h(E) and εx can be considered as the disorder-free
and disordered part of the local Hamiltonian at the coordinate
x. Notice that the disordered part (6) is expressed as an effective
disorder on the two legs; that is, it is measured in units of the
hopping strengths. In the analytical part of the present work,
following the Fokker-Planck approach, we solve the problem
exactly in the case of small disorder, ||εx || � 1.

1. Disorder free part

The disorder-free ladder can easily be solved by diago-
nalizing h(E) in Eq. (5). Thereby, the Schrödinger equation
transforms into

�̃(x − 1) + �̃(x + 1) = (h̃ + ε̃x)�̃(x), (7)

where

h̃ = diag(λ1, λ2), (8)

and the “rotated” disorder potential is given by

ε̃x =
(

εx+ + εx− cos γ εx− sin γ

εx− sin γ εx+ − εx− cos γ

)
. (9)

Both depend implicitly on E via λτ (E) and γ (E). In Eqs. (8)
and (9) the following definitions are used.
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(i) In the disorder-free part (8),

λτ (E) = −1

2

(
E

t1
+ E − δe

t2

)

− (−1)τ

√
1

4

(
E

t1
− E − δe

t2

)2

+ t2

t1t2
, (10)

where τ ∈ {1,2} is the channel or band index. As we see in
Eq. (15), τ = 1 labels the conduction band, and τ = 2 the
valence band of the pure ladder.25

(ii) In the disordered part (9),

εx± = 1

2

(
εx1

t1
± εx2

t2

)
(11)

are the symmetric and antisymmetric combination of the
disorder on the two legs. The “mixing angle” γ = γ (E) is
defined through

tan γ (E) =
√

2t

√
t2
1 + t2

2

(t1 − t2)(E − ER)
, (12)

with a resonance pole at

ER = δe
t1

t1 − t2
. (13)

The value of γ is chosen as γ ∈ [0,π/2] if E � ER; γ ∈
[π/2,π ] if E � ER .

The pure system can be solved easily. In the absence of
disorder the eigenfunctions �̃(x) at energy E are composed
of plane waves with momenta kτ satisfying

2 cos kτ = λτ . (14)

±kτ are degenerate solutions of Eq. (14), which is due to the
space-inversion symmetry along the longitudinal direction of
the pure ladder. Equations (10) and (14) determine the energy
dispersions of the conduction band and the valance band,

Eτ (k) = − (t1 + t2) cos k + δe

2

− (−1)τ

√[
(t1 − t2) cos k + δe

2

]2

+ t2. (15)

Generally, if t1 �= t2, the two decoupled bands [i.e., t = 0 in
Eq. (15)] cross at the energy ER (cf. Fig. 1), if |δe| � 2(t1 − t2).
When the energy E is close to the resonance energy ER , the
two legs mix with almost equal weights, even if we turn on
a very small interchain coupling t . In the particular case of
equal chain hoppings t1 = t2 and no detuning δe = 0, there
is a resonance at all energies since the two decoupled bands
coincide.

The top (+) and bottom (−) edges of the τ band are

E±
τ = ±(t1 + t2) + δe

2
− (−1)τ

√(
t2 − t1 ± δe

2

)2

+ t2.

(16)

According to Eq. (15), there are two cases of energy
dispersions, which may arise depending on the choice of the
following parameters.

(i) In the case of E−
1 � E+

2 [see Fig. 1(a)], there is no gap
between the two bands. This is the case if the detuning δe and

the interchain coupling t are both not too large. More precisely,
one needs |δe| < 2(t1 + t2) and t � tc, where

tc =
√

t1t2[4(t1 + t2)2 − δe2]

t1 + t2
. (17)

In the energy interval E−
1 � E � E+

2 , we have two propa-
gating channels; otherwise, at most one propagating channel
exists.

(ii) In the opposite case, E−
1 > E+

2 [see Fig. 1(b)], there is
a gap between the two bands. We therefore have at most one
propagating channel at any energy.

Moreover, if kτ is the wave vector of a propagating channel,
we call kτ ∈ (−π,π ], and kτ � 0 and kτ < 0 the right- and left-
moving branches, respectively. From Eq. (14) we also define a
rapidity for each propagating channel as

vτ ≡
∣∣∣∣∂λτ

∂kτ

∣∣∣∣ =
√

4 − λ2
τ . (18)

2. Disordered part

The impurity matrix (9) contains two ingredients which
determine the localization properties of the model. One is εx±
[see Eq. (11)], which are the equally weighted (either symmet-
ric or antisymmetric) combinations of effective disorder on the
two legs. The other is the mixing angle γ [see Eq. (12)], which
describes the effective coupling between the two legs. We refer
to γ as the bare mixing angle because it will be renormalized
by disorder. The renormalized mixing angle γ̃ [see Eq. (103)]
is discussed in Sec. IV. Being functions of these two quantities,
the diagonal elements of ε̃x are local random potentials applied
on the two channels τ = 1,2, and the off-diagonal elements
describe the random hopping between them.

We analyze the model qualitatively in terms of effective
disorder and bare mixing angle before carrying out the detailed
calculation. As discussed above, either one or two propagating
channels are permitted at a given energy. This leads to two
distinct mechanisms of localization in the bulk of the energy
band:

(i) Two-channel regime. In this case, the physics is dom-
inated by the mixing angle γ . If γ ∼ 0 or π , the mixing of
the two channels is weak: The magnitudes of off-diagonal
elements of matrix (9) are much smaller than the magnitudes
of the diagonal elements. This means that the two legs are
weakly entangled, and the transverse hopping t can be treated
as a perturbation. A perturbative study of wave functions in
this regime is presented in Sec. VII. However, if γ ∼ π/2, the
magnitudes of the off-diagonal elements are of the same order
as the diagonal elements. This implies that the two legs are
strongly entangled. The localization properties are controlled
by the leg with strong disorder, because in Eq. (11) it always
dominates over the weaker disorder on the other leg.

(ii) One-channel regime. The single-channel case has been
solved by Berezinskii3 and Mel’nikov4 in the case of a
single chain. The results they obtained can be applied in
our problem by substituting the variance of disorder and
rapidity of the propagating channel with the corresponding
quantities. However, we have to emphasize here that even if
only one channel exists, coupling effects are still present, since
both the effective disorder and the rapidity in the remaining
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channel depend on the transport properties of both legs. In
the one-channel regime the second channel is still present,
but supports only evanescent modes. We show in Sec. VI that
the effect of the evanescent channel on the propagating one is
subleading when disorder is weak.

B. Transfer matrix approach

The Fokker-Planck approach and its related notations, such
as the transfer matrix, the S matrix, etc., are introduced in
detail in Refs. 10 and 9. We only outline the methodology here.
The Fokker-Planck approach to one- or quasi-one-dimensional
systems with static disorder at zero temperature is based
on studying the statistical distribution of random transfer
matrices for a system of finite length. An ensemble of
such transfer matrices is constructed by imposing appropriate
symmetry constraints. In the present model there are two
underlying symmetries: time-reversal invariance and current
conservation, which dramatically reduce the number of free
parameters of transfer matrices. After a proper parametriza-
tion, the probability distribution function of these parameters
completely describes the ensemble of transfer matrices and
therefore totally determines the statistical distributions of
many macroscopic quantities of the system, such as the
conductance, etc. In order to obtain the probability distribution
function of the free parameters, a stochastic evolutionlike
procedure is introduced by computing the variation of the
probability distribution function of these parameters in a
“bulk” system as an extra impurity “slice” is patched on one
of its terminals, under the assumption that the patched slice is
statistically independent of the bulk. Thereby, we construct a
Markovian process for the probability distribution function.
This is described by a kind of Fokker-Planck equation in
the parameter space of the transfer matrix with the length of
the system as the time variable. Essentially, this procedure is
analogous to deriving the diffusion equation from the Langevin
equation for a Brownian particle. In practice, taking the length
to infinity, we can analytically extract asymptotic properties
of the model, such as localization lengths, etc., from the
fixed-point solution of the Fokker-Planck equation.

As discussed above, the only microscopic quantity needed
in order to write the Fokker-Planck equation of our model
Hamiltonian (1) is the transfer matrix of an “elementary slice”
at any coordinate x. The Schrödinger equation (7) can be
represented in the following “transfer-matrix” form:

̃(x + 1) = m̃x̃(x), (19)

where the four-component wave function ̃(x) and the 4 ×
4 transfer matrix m̃x is explicitly shown in the 2 × 2 “site-
ancestor site” form:

̃(x) ≡
(

�̃(x)

�̃(x − 1)

)
, m̃x ≡

(
h̃ + ε̃x −1

1 0

)
, (20)

with �̃(x) and h̃, ε̃x being the two-component vector and 2 × 2
matrices in the space of channels as defined in Eq. (7).

The transfer matrix m̃x is manifestly real (which reflects
the time-reversal symmetry) and symplectic (which reflects the
current conservation):

m̃T
x J m̃x = J, (21)

where J is the standard skew-symmetric matrix,

J =
(

0 1

−1 0

)
. (22)

Note, however, that the transfer matrix m̃x is not a convenient
representation to construct a Fokker-Planck equation. The
reason is simple: Because it is not diagonal without impurities,
the perturbative treatment of impurities is hard to perform. The
proper transfer matrix mx is a certain rotation, which does not
mix the two channels of the matrix m̃x but transforms to a
more convenient basis within each two-dimensional channel
subspace (see Appendix A). The latter corresponds to the basis
of solutions to the disorder-free Schrödinger equation ψτ (x)
(τ = 1,2 labeling the channels), which conserves the current
along the ladder:

jx = −i [ψ∗
τ (x)ψτ (x + 1) − H.c.] = const = ±1. (23)

For propagating modes with real wave vectors kτ these are the
right- and left- moving states

ψ±
τ (x) = e±ikτ x/

√
2 sin kτ , (24)

which obey the conditions

ψ±
τ (x) = (ψ±

τ (−x))∗. (25)

For the evanescent modes with imaginary k = iκ the corre-
sponding current-conserving states obeying Eq. (25) can be
defined, too:

ψ±
τ (x) = exp[∓iπ/4 − κτx] + exp[±iπ/4 + κτx]√

4 sinh κτ

. (26)

In this new basis of current-conserving states, the transfer
matrix takes the form (see Appendix A):

mx = 1 + δmx, δmx =
(−iα∗

x ε̃xαx −iα∗
x ε̃xα

∗
x

iαx ε̃xαx iαx ε̃xα
∗
x

)
, (27)

where the matrix αx is diagonal in channel space,

αx = diag(ψ+
1 (x),ψ+

2 (x))ch. (28)

Note that it is expressed in terms of the two components of the
current conserving states Eqs. (24) and (26) corresponding to
the first and the second channels.

In Eq. (27), the unit matrix 1 is the pure part of mx ,
which keeps the two incident plane waves invariant, and
δmx describes the impurities, which break the momentum
conservation and induce intra- and interchannel scattering. The
physical meaning of mx can be understood from the scattering
processes described below. If there is only one right-moving
plane wave in the 1 channel on the left-hand side (l.h.s.) of
the slice, which is represented by a four-dimensional column
vector with the first component one and the others zero, we
can detect four components on the right-hand side (r.h.s.)
of the slice, including the evanescent modes. In the case of
two propagating channels these four components are right-
and left-moving plane waves in the 1 and 2 channels, whose
magnitudes and phase shifts form the first row of mx . The
other rows can be understood in the same manner. In short, the
11-, 12-, 21-, and 22- blocks of δmx represent, respectively,
the right-moving forward-scattering, right-moving backward-
scattering, left-moving backward-scattering, and left-moving
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forward-scattering on the slice. In each block, the diagonal el-
ements represent intra-channel scattering and the off-diagonal
elements represent interchannel scattering.

It is important that mx , Eq. (27), fulfills the same constraints
regardless of the propagating or evanescent character of the
modes (see Appendix A ):

m∗
x = �1mx�1, m†

x�3mx = �3, (29)

where �1 and �3 are the four-dimensional generalization of
the first and third Pauli matrix with zero and unit entries
replaced by 2 × 2 zero and unit matrices in the channels space.
The first condition follows from m̃∗

x = m̃x , while the second
condition is a consequence of the symplecticity Eq. (21). Thus,
these conditions are a direct consequence of the fact that m̃x

belongs to the symplectic group Sp(4,R). As is obvious from
the choice of the basis (23)–(26), their physical meaning is the
time-reversal symmetry and the current conservation.

The representation Eq. (27) of the transfer matrix of an
“elementary slice” renders both the physical interpretation and
the symmetry constraints very transparent, and it will be seen
to be a convenient starting point to construct the Fokker-Planck
equation. On the other hand, since m̃x [see Eq. (20)] is real and
has a relatively simple form, it is more suitable for numerical
calculations.

III. FOKKER-PLANCK EQUATION FOR THE
DISTRIBUTION FUNCTION OF PARAMETERS

A. Parametrization of transfer matrices

Once the “building block” (27) is worked out, we can
construct the Fokker-Planck equation by the blueprint of
the Fokker-Planck approach.4,8–10 The transfer matrix of a
disordered sample with length L is

M(L) =
L∏

x=1

mx = mL · mL−1 · · · m1, (30)

which is a 4 × 4 complex random matrix. It is easy to verify
that M(L) also satisfies the time reversal invariance and current
conservation conditions (29). It has been proved in Ref. 10
that all the 4 × 4 matrices satisfying Eq. (29) form a group
which is identified with the symplectic group Sp(4,R). By the
Bargmann’s parametrization of Sp(4,R),9 one can represent
M(L) as

M =
(

u 0

0 u∗

)⎛⎝
√

F+1
2

√
F−1

2√
F−1

2

√
F+1

2

⎞
⎠(ũ 0

0 ũ∗

)
, (31)

where u and ũ are elements of the unitary group U(2), and
statistically independent from each other, and

F = diag(F1,F2), (32)

with F� ∈ [1,∞) and � ∈ {1,2}. Because U(2) (Ref. 26)
has four real parameters, the group Sp(4,R) has ten real
parameters. Furthermore, it is convenient to parametrize a U(2)
matrix by three Euler angles and a total phase angle, that is,

u(φ,ϕ,θ,ψ) = e−i
φ

2 e−i
ϕ

2 σ̂3e−i θ
2 σ̂2e−i

ψ

2 σ̂3 , (33)

in which σ̂2 and σ̂3 are the second and third Pauli matrix, and
the four angles take their values in the range φ,ϕ ∈ [0,2π ),

θ ∈ [0,π ), and ψ ∈ [0,4π ). In matrix form in the channels
space, u can be written as

u = e−i
φ

2

(
cos θ

2 e− i
2 (ϕ+ψ) − sin θ

2 e− i
2 (ϕ−ψ)

sin θ
2 e

i
2 (ϕ−ψ) cos θ

2 e
i
2 (ϕ+ψ)

)
ch

, (34)

which is convenient for the perturbative calculation below. The
U(2) matrix ũ can be parametrized independently in the same
form as Eq. (34).

The probability distribution function of these ten real pa-
rameters determines completely the transfer matrix ensemble
of the ladder described by the Hamiltonian (1). The goal of
the Fokker-Planck approach is to obtain the Fokker-Planck
equation satisfied by this probability distribution function, in
which the role of time is played by the length L.

From Eq. (31) we obtain the transmission matrix

t := (M†
++)−1 = u

(
F + 1

2

)−1/2

ũ, (35)

by a simple relation between the transfer matrix and its
corresponding S matrix.9,10,27 Due to the unitarity of ũ, the
transmission coefficients of the two channels are the two
eigenvalues of the Hermitian matrix

T = tt† = u
(

F + 1
2

)−1

u†, (36)

which are

T� = 2

F� + 1
, (37)

where � ∈ {1,2} is the index of the two-dimensional
eigenspace of the matrix T. Now the physical meaning of the
parametrization (31) becomes clear. The F�’s are related to
the two transmission coefficients by the simple form Eq. (37).
The matrix u diagonalizing the matrix T contains the two
eigenvectors of T, describing the polarization of the plane-
wave eigenmodes incident from the l.h.s. of the sample. For
instance, if θ = 0 (u is a diagonal matrix of redundant phases),
the two channels do not mix, and the incident waves are fully
polarized in the basis of channels. On the other hand, if θ = π ,
the two channels are equally mixed, and the incident waves
are unpolarized. In analogy to spherical coordinates, we refer
to the F�’s as the radial variables, while the angles in u or ũ
are called angular variables.

In principle, using the “building block” (27) and the
parametrization (31), we can solve the full problem by writing
down a Fokker-Planck equation for the joint probability
distribution function of all the ten parameters of M. However,
since we are merely interested in the transmission coefficients
which are determined by the probability distribution function
of T, instead of manipulating M, we study

R = MM†

=
(

u 0

0 u∗

)(
F

√
F2 − 1√

F2 − 1 F

)(
u† 0

0 uT

)
. (38)

R is a Hermitian matrix and contains only six parameters:

�λ(R) = (F1,F2,θ,ψ,φ,ϕ). (39)
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The probability distribution function of �λ, denoted by PL(�λ),
determines the transmission properties of the sample with
length L. PL(�λ) is defined by

PL(�λ) = δ[�λ − �λ(R(L))], (40)

where the overline denotes the average over realizations of the
random potentials in the sample. It is convenient to introduce
the characteristic function of PL(�λ):

P̃L( �p) =
∫

d�λei �p·�λPL(�λ) = ei �p·�λ(R(L)). (41)

Our main goal in this paper is to calculate the two localization
lengths, defined as the inverse Lyapunov exponents of the
transfer matrix (31),

ξ−1
1(2) ≡ − lim

L→∞
1

2

d

dL
〈ln Tmax(min)〉L, (42)

in which the subscripts “max” and “min” denote the larger and
smaller of the two real values T1,2, and the averaging 〈·〉L is
earned out with the probability distribution PL(�λ). Therefore,
by definition,

ξ1 > ξ2. (43)

B. Physical interpretation of ξ1 and ξ2

It is worthwhile to visualize how two parametrically
different localization lengths (ξ1 � ξ2) manifest themselves
in transport properties. For instance, let us discuss the
dimensionless conductance g = T1 + T2, a typical behavior of
which is shown as a function of the sample length L in Fig. 2.
If L � ξ2, T� ≈ 1 and g ≈ 2 corresponds to a nearly perfect
transmission. As L increases, T� and g decay exponentially. T2

decays much faster than T1 since ξ1 � ξ2. As long as L < ξ1

the system still conducts well since g is still appreciable. For
L ∼ ξ1 it crosses over to an insulating regime. On the other
hand, ξ2 marks the crossover length scale below which g(L)

0
0

1

2

L

g
L

e L 2

e L 1

12

2

Tm ax

Tm in

g Tm ax Tm in

0
0

1

2

L

g
L

FIG. 2. (Color online) Schematic diagram for typical values of
dimensionless conductance g as a function of the length L in the
case ξ1 � ξ2. A crossover happens at L ∼ ξ2. In the region L < ξ2, g
decays as fast as Tmin (see the inset). Once L > ξ2, g decays as slowly
as Tmax. The system is well conducting if L < ξ1 and crosses to an
insulating regime for L > ξ1.

(black curve) decreases as fast as T2 (blue dashed curve) until
the conductance saturates to a plateau g ≈ 1. For L > ξ2, g
decays with the slow rate ξ−1

1 , like T1 (red dotted curve).
Therefore, the two parametrically different localization lengths
can be identified by two distinct decay rates of g at small and
large length scales.

The statistics of transmission eigenvalues and localization
lengths of disordered multichannel micro-waveguides have
been visualized in experiments.28 However, only more or less
isotropically disordered cases (identical hopping and disorder
strength in each channel) were realized, while a situation where
ξ1 � ξ2 is hard to achieve in such systems (see Ref. 28 and
references therein). In contrast, such anisotropic situations are
rather natural in exciton polariton systems.

We see in Sec. VII that the two localization lengths ξ1 and
ξ2 also characterize the spatial variations of the eigenfunctions
�(x) on the two legs.

C. Fokker-Planck equation for the distribution function of �λ(R)

Having a disordered sample of length L, whose transfer
matrix is M(L) and adding one more slice, we obtain the
transfer matrix of the sample with length L + 1:

M(L + 1) = mL+1M(L). (44)

Simultaneously, according to Eqs. (38) and (27), R(L) is
updated to

R(L + 1) = mL+1R(L)m†
L+1 = R(L) + δR, (45a)

δR = (Rδm†
L+1 + h.c.) + δmL+1Rδm†

L+1. (45b)

Accordingly, �λ(R(L)) is incremented by

�λ(R(L + 1)) = �λ(R(L)) + δ�λ. (46)

According to Eqs. (41) and (46), we obtain the characteristic
function of PL+1(�λ):

P̃L+1( �p) = ei �p·�λ(R(L+1)) = ei �p·�λ(R(L))ei �p·δ�λ. (47)

We can expand ei �p·δ�λ on the r.h.s. of Eq. (47) into a Taylor series
ei �p·δ�λ =∑∞

n (i �p · δ�λ)n. Using Eqs. (45) and (46) standard
perturbation theory yields an expansion of δ�λ in powers of
the disorder potential as δ�λ =∑n�1 δ�λ(n), where δ�λ(n) is
of nth order in ε̃. With this, the r.h.s. of Eq. (47) can be
expanded in powers of the disorder potential. In principle,
we can proceed with this expansion to arbitrarily high orders.
Thereafter, the average over disorder on the slice L + 1 can
be performed. Equations (45)–(47) fully define our problem.
However, it is impossible to solve it analytically without further
simplification.

Progress can be made by considering the weak disorder
limit. In the two-channel regime, the weak disorder limit
implies that both of the mean free paths are much larger than
the lattice constant. As a first estimation, applying the Born
approximation to an “elementary slice,” the inverse mean free
paths of the two propagating channels can be expressed as
certain linear combinations of the variances of the effective
disorders on the two chains, defined as

χ2
ν = σ 2

ν

t2
ν

. (48)

014205-7
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for chain ν. In the weak disorder limit where the smaller of the
two localization lengths is much larger than the lattice constant,

l � 1, (49)

only the terms proportional to χ2
ν on the r.h.s. of Eq. (47) have

to be taken into account. Hence, we calculate δ�λ perturbatively
up to the second order (see Appendix B). If L � 1, as we
always assume, P̃L+1 − P̃L � ∂LP̃L. Under these conditions,
Eq. (47) leads to

∂LP̃L = i �p · δ�λ(2)ei �p·�λ(R(L)) − 1

2
( �p · δ�λ(1))2ei �p·�λ(R(L)). (50)

Note that because the random potentials in different slices are
uncorrelated, the δ�λ(n) terms can be averaged independently
of ei �p·�λ(R(L)). By the inverse of the Fourier transform defined
in Eq. (41) we obtain the Fokker-Planck equation for PL(�λ):

∂LP = −
6∑

i=1

∂λi

⎡
⎣δλ

(2)
i P − 1

2

6∑
j=1

∂λj

(
δλ

(1)
i δλ

(1)
j P

)⎤⎦. (51)

In Eq. (51) the averages are taken over the realizations of
random potentials in the slice at L + 1.

The Fokker-Planck equation (51) can be rewritten in the
form of a continuity equation:

∂LP = −
6∑

i=1

∂λi
Ji, (52)

where the generalized current density Ji takes the form

Ji = vi(�λ)P −
6∑

j=1

Dij (�λ)∂λj
P , (53)

with

vi(�λ) = δλ
(2)
i + ∂λj

Dij (�λ), (54a)

Dij (�λ) = 1
2δλ

(1)
i δλ

(1)
j . (54b)

vi(�λ) and Dij (�λ) are a generalized stream velocity and a
generalized diffusion tensor, respectively.

In order to solve Eq. (51), we have to add the initial
condition, namely, P0(�λ). Usually P0(�λ) is chosen as the
probability distribution function in the ballistic limit,11

P0(�λ) = δ(F1 − 1)δ(F2 − 1)δ(θ )δ(φ)δ(ψ)δ(ϕ), (55)

where δ(x) is the Dirac delta function. However, as we will
see later, a unique fixed point of PL(�λ) exists in the limit
L → ∞, which does not depend upon the initial condition.
Essentially, the existence of a fixed-point solution of Eq. (51) is
protected by Anderson localization which prevents the system
from chaos.29

D. Coarse graining

Let us analyze the r.h.s. of Eq. (51) qualitatively. From
Eqs. (B10) and (B12) in the Appendix, it is clear that the

coefficients δλ
(1)
i δλ

(1)
j and δλ

(2)
i are sums of terms carrying

phase factors 1,e±i(k1−k2)L, . . . , and so on. These phase factors
come from the disorder average of products of two elements
of the matrices (27). Their phases correspond to the possible
wave vector transfers of two scatterings from a slice, similarly

as found in the Berezinskii technique.3 They are thus linear
combinations of two or four values of ±k1,2:

Kosc = { ±�k, ± 2�k, ± 2k1(2), ± (k1 + k2),

± [3k1(2) − k2(1)], ± 4k1(2), ± 2(k1 + k2),

± [3k1(2) + k2(1)]}, (56)

where

�k = k1 − k2. (57)

Terms with phase “0” do not oscillate. The largest spatial
period of the oscillating terms is

Losc = max
δk∈Kosc

δk−1. (58)

Under the condition that

Losc � l, (59)

a coarse-grained probability distribution function can be
defined as the average of PL(�λ) over Losc. From now on,
we use the same symbol PL(�λ) to denote its coarse-grained
counterpart, which satisfies Eq. (51), but neglecting the
oscillating terms.

Additionally, at special energies it may happen that an
oscillation period becomes commensurate with the lattice
spacing, δk = π/n. An important example of this commen-
surability is the situation where δe = 0, 2(k1 + k2) = 2π at
E = 0. In this case the terms with the phase factor e±2i(k1+k2)L

do not average and give anomalous contributions to the
nonoscillating coefficients. This effect leads to the so-called
center-of-band anomaly in the eigenfunction statistics of the
one-chain Anderson model (see Ref. 5 and references therein).
While they are not included in our analytical study, the
commensurability-induced anomalies can be seen clearly in
the numerical results for localization lengths (cf. Figs. 6, 7,
10, and 11).

The coarse-graining procedure leads to a significant sim-
plification: The coefficients on the r.h.s. of Eq. (51) do not
depend on L, φ, and ϕ any longer, which renders the solution
of Eq. (51) much easier. Its nonoscillating coefficients are
evaluated in Appendix B. We do not reproduce them explicitly
here, since we further transform the Fokker Planck equation
below. However, it is worthwhile pointing out a formal
property of its coefficients. From Eqs. (B8), (B10), and (B12),

it is easy to see that the ingredients for evaluating δλ
(1)
i δλ

(1)
j

and δλ
(2)
i are the disorder-averaged correlators between any

two elements of matrices (27). During the calculation, three
Born cross sections appear naturally, being covariances of the
effective disorder variables,

V1 = 1

4v2
1

(
χ2

1 cos4 γ

2
+ χ2

2 sin4 γ

2

)
, (60a)

V2 = 1

4v2
2

(
χ2

1 sin4 γ

2
+ χ2

2 cos4 γ

2

)
, (60b)

V3 = 1

4v1v2

(
χ2

1 + χ2
2

)
sin2 γ

2
cos2 γ

2
, (60c)

in which V1(2) corresponds to intrachannel scattering processes
k1(2) ↔ −k1(2), and V3 corresponds to interchannel scattering
processes k1(2) ↔ ±k2(1). Note that the effective disorder
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variances (48) enter into the three Born cross sections, instead
of the bare variances (2). We will see that the above three Born
cross sections completely define the localization lengths and
most phenomena can be understood based on them.

We note that the coarse graining, through Eq. (59), imposes
a crucial restriction on the applicability of the simplified
Fokker-Planck equation. According to Eqs. (10) and (14), if t

is small enough, at E = ER ,

|�k| ∝ t. (61)

In this case, Eqs. (59) and (61) require that

t � δE, (62)

where

δE ∝ l−1 (63)

is the characteristic disorder energy scale (essentially the
level spacing in the localization volume). In other words,
Eq. (62) imposes a “strong coupling” between the two legs, as
compared with the disorder scale. However, from the point of
view of the strength of disorder, Eq. (62) is a more restrictive
condition than ξ2 � 1 on the smallness of disorder. However,
it is automatically fulfilled in the limit σν → 0 at fixed values
of coupling constants t and tν .

Equation (62) restricts the region of applicability of the
simplified equation (68) which we derive below. Indeed, we
see that by simply taking the limit t → 0 in the solution of
that equation one does not recover the trivial result for the
uncoupled chains. This is because the equation is derived under
the condition that t is limited from below by Eq. (62). The
“weak coupling” regime is studied numerically in Sec. V A
and the crossover to the limit of uncoupled chains is observed
at a scale of t ∼ l−1, as expected.

Since the definition of localization lengths (42) only
involves the F�’s, and since the coefficients of Eq. (51) do not
contain φ and ϕ, we define the marginal probability distribution
function

WL(F1,F2,θ,ψ) =
∫

dφdϕPL(�λ). (64)

Further, we change variables to the set

�η = (F1,F2,u,ψ), (65)

where

u = cos θ, u ∈ (−1,1]. (66)

We thus have

WL(�η) =
∫

dφdϕPL(F1,F2,θ (u),ψ,φ,ϕ). (67)

Substituting Eq. (67) into (51), and replacing the differential
operators ∂θ → −√

1 − u2∂u and ∂2
θ → −u∂u + (1 − u2)∂2

u ,
we obtain the Fokker-Planck equation for WL(�η):

∂LW =
4∑

i=1

[∂ηi
(cii∂ηi

W ) + ∂ηi
(ciW )] +

4∑
j>i=1

∂ηi
∂ηj

(cijW ).

(68)

The coefficients ci,cij are relatively simple functions of �η.
They can be obtained from the averages of the matrix elements
computed in Appendix B and are given in Appendix C.

However, only a small number of them will turn out to be
relevant for the quantities of interest to us.

One can see that in Eq. (68) the radial variables, F�, are
entangled with the angular variables u and ψ . Thus, Eq. (68)
is more general than the canonical DMPK equation,8–10 where
only radial variables appear. To emphasize the difference
we refer to Eq. (68) as the extended DMPK equation. The
derivation of Eq. (68) for the two-leg problem is our main
technical achievement in the present paper. It allows us to
obtain the evolution (as a function of L) of the expectation
value of any quantity defined in �η space.

IV. CALCULATING THE LOCALIZATION LENGTH

It is well-known that in quasi-one-dimensional settings
single particles are always localized at any energy in arbitrarily
weak (uncorrelated) disorder.30 The localization length quan-
tifies the localization tendency in real space. In this section we
calculate the localization lengths for the present model.

The analytic expression of ln Tmax(min) in Eq. (42) can be
written as

ln Tmax(min) = �(�F ) ln T2(1) + �(−�F ) ln T1(2), (69)

where �(z) is the Heaviside step function and

�F = F1 − F2. (70)

Multiplying both sides of Eq. (68) by the r.h.s. of Eq. (69) and
integrating over all the variables, we obtain from Eq. (42)

ξ−1
ρ = lim

L→∞
〈(D1 + D2) − (−1)ρ(D1 − D2)sgn(�F )〉L,

(71)

with

Di = 1

2

[
cii

(Fi + 1)2
+ ci

Fi + 1
− ∂Fi

cii

Fi + 1

]
, i ∈ {1,2}, (72)

in which ρ ∈ {1,2}, sgn(z) is the sign function, and the
coefficients ci,cii (see Appendix C) are

ci = (−1)i2
F 2

i − 1

�F
�6,

cii = (
F 2

i − 1
)
�i,

with

�i(u) = V1 + V2 + 4V3 + (−1)i2(V2 − V1)u

+ (V1 + V2 − 4V3)u2,

�6(u) = V1 + V2 − (V1 + V2 − 4V3)u2.

The formula (71) for the localization lengths can be further
simplified in the limit L � 1. When L is large, the typical value
of Fmin(max) is of the order of eL/ξ1(2) , which is exponentially
large. Therefore,

Fmax � Fmin � 1, (73)
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as we assume ξ1 > ξ2 [see Eq. (43)]. The hierarchy (73) largely
simplifies the coefficients of Eq. (68), which leads to

lim
L→∞

c1

F1 + 1
= −2�6� (�F ) , (74a)

lim
L→∞

c2

F2 + 1
= −2�6� (−�F ) , (74b)

lim
L→∞

cii

(Fi + 1)2
= �i, (74c)

lim
L→∞

∂Fi
cii

Fi + 1
= 2�i. (74d)

As a result, Eq. (71) reduces to

ξ−1
ρ = V1 + V2 + 2V3

+ (−1)ρ
(

1

2
〈�6〉 + |V1 − V2|〈u〉

)
, (75)

where 〈·〉 ≡ limL→∞ 〈·〉L, V1, V2, and V3 are the Born cross
sections defined in Eq. (60). The main simplification is that
�6 depends only on u, but not on the other parameters of the
scattering matrix. Therefore, the localization lengths are fully
determined by the marginal probability distribution function
of u defined by

wL(u) ≡
∫

dF1dF2dψ WL(�η). (76)

Integrating over F1, F2, and ψ on both sides of Eq. (68),
we obtain the Fokker-Planck equation for wL(u):

∂Lw = ∂u(c33∂uw) + ∂u(c3w), (77)

where c3 and c33 are derived in Appendix C. It has a fixed-point
solution satisfying

∂u(c33∂uw) + ∂u(c3w) = 0. (78)

In the large L limit the coefficients are given by

lim
L→∞

c3 = (|V1 − V2| − ∂u�6) (1 − u2), (79a)

lim
L→∞

c33 = (V3 + �6) (1 − u2). (79b)

From Eq. (79) one can see that in the limit (73), c33 and c3 do
not depend on F1, F2, and ψ any longer. Therefore, Eq. (78)
is reduced to an ordinary differential equation with respect
to u. By considering the general constraints on a probability
distribution function, namely the non-negativity w(u) � 0 and
the normalization condition

∫
duw(u) = 1, the solution to

Eq. (78) is unique,

w(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1(u) = q1 exp
(

q1
q2

arctan u
q2

)
2 sinh

(
q1
q2

arctan 1
q2

)(
q2

2 +u2
) , �V � 0,

w2(u) = q1

(
q2+u

q2−u

) q1
2q2

2 sinh
(

q1
2q2

ln q2+1
q2−1

)(
q2

2 −u2
) , �V � 0,

(80)

where

q1 = 2|V1 − V2|/|�V |, (81)

q2 =
√

(V1 + V2 + 4V3)/|�V |, (82)

and

�V = V1 + V2 − 4V3. (83)

Equations (75) and (80) are our main analytical results. The
localization lengths are expressed entirely in terms of the three
Born cross sections V1, V2, and V3. We recall that we made
the assumptions of weak disorder [Eq. (49)] and sufficiently
strong coupling [Eq. (62)].

In Eq. (80), w2(u) is simply the analytical continuation of
w1(u). To show this, we start form �V > 0 side and drop
the absolute value on �V . If �V crosses zero from above,
namely �V → −�V , q1 changes continuously to −q1, and
q2 changes to one of the two branches ±i|q2| because of the
square root. It can be easily verified that

w1(u; −q1, ± i|q2|) = w2(u; q1,|q2|), (84)

by the formula arctan z = i/2 ln[(1 − iz)/(1 + iz)] for a com-
plex number z.

Given the physical meaning of the parameter u, it is
natural to interpret the analytical continuation as describing
the crossover between two regimes of the polarization, as
controlled by the relative strength of the effective disorders.
If �V > 0 (i.e., V1 + V2 > 4V3) the intrachannel scattering
is stronger than the interchannel scattering, while �V < 0
means the opposite. The two regimes can be distinguished
quantitatively. According to Eq. (60), the coefficients in the
linear combination of the effective disorder parameters, χ2

ν , are
determined by the bare “mixing angle” γ and the rapidities, vτ .
Suppose the resonance energy ER is approached while keeping
t < tc [see Eq. (17)]. If E is in the vicinity of ER , γ ∼ π/2,
and �V < 0. Otherwise, if E is far enough from ER , γ → 0
or π , and �V > 0. Therefore, there must be an energy interval
around ER , in which the physics is similar to that at resonance,
γ = π/2. Further away from ER the physics is similar to the
limiting cases γ = 0 or π . We call �V < 0 and �V > 0 the
resonant and off-resonant regimes, whose distinct behavior we
analyze below.

A. Resonant and off-resonant regimes

As shown in Fig. 3, for fixed tν and δe, �V = 0 (blue curve)
divides the E−t plane into two regions in the two-channel
regime (below the black curve). Three important observations
are in order.

(i) At weak coupling t , more precisely, for t � tc, but still
within the condition (62), the relation �V = 0 for the border
of the resonance region implies the linear relation (see the red
dashed lines in Fig. 3)

t � κ(t1,t2)|E − ER|, (85)

with

κ(t1,t2) = t1 − t2√
t2
1 + t2

2

. (86)

The slope κ(t1,t2) depends on neither σ 2
ν nor δe.

(ii) If the coupling t is strong enough, the resonance energy
interval shrinks to zero as t → tc (the top edge of Fig. 3). This
“re-entrance” behavior is due to the competition between the
strong coupling, which pulls γ close to π/2, and the band-edge
effect, which reduces the rapidity of one of the channels. We
can illustrate this behavior by considering two limiting cases.
If t is weak, its effect is of first order on γ , but of second order
on the vτ . Therefore, the coupling wins and the resonance
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FIG. 3. (Color online) The resonant and off-resonant regimes on
the E−t plane for t1 = 1, t2 = 0.2, with isotropic disorder σ 2

1 = σ 2
2

and bias δe = −0.1. The black curve indicates the band edges E =
E−

1 and E = E+
2 , beyond which only one channel exists. The blue

curve marks the crossover line �V = 0. At small enough t , �V = 0
can be linearized to t � κ|E − ER|[cf. Eq. (85)], which is plotted as
the red dashed line.

energy interval follows the linear relation (85). Alternatively,
if the energy is in the vicinity of the band edges E = E−

1 and
E+

2 , one of the rapidities tends to zero. As a consequence, V1

or V2 is much larger than V3, which gives a large positive �V .
Therefore, there is always some region around the band edges
(black curves in Fig. 3), which is out of resonance. As the
crossover line must match the two limits t → 0 and t → tc, it
is necessarily re-entrant.

(iii) In the case of a nonzero detuning energy δe the resonant
energy interval is slightly asymmetric around E = ER .

B. Fixed point distribution w(u = cos θ )

Let us now discuss the distribution Eq. (80) in different
regimes and some of its consequences. For this purpose, we
plot in Fig. 4 some representative w(u) together with the
expectation value and variance of u. We select various values
of E across the resonant and off-resonant regime. Two types
of behavior can be observed in the two regimes.

(i) Near the resonance, u = cos θ is distributed relatively
uniformly in the interval (−1,1]. Its average value is much
smaller than 1, but its variance is large of order O(1). However,
the distribution is definitely not completely uniform. Indeed,
the limit of the distribution can be obtained form Eq. (80) in
the weak coupling limit as t → 0 as

w(u) = 3
√

3

π (3 + u2)
, (87)

which is manifestly nonuniform. A similar distribution was
obtained by Dorokhov8 in the case of two equivalent chains.
We discuss the difference to Eq. (87) later.

(ii) Off resonance, the distribution function w(u) is strongly
peaked at u = 1, and its fluctuations are strongly suppressed.

At this point the difference between the canonical DMPK
equation,8–10 which applies in the case N � 1, and the
extended DMPK equation obtained here for the case N = 2,

is clear. The isotropy assumption, which allows one to derive
the canonical DMPK equation, states that the angular variable
distribution w(u) should be uniform, that is, independent of u,
in contrast to Eq. (87). In order to justify the canonical DMPK
equation, we have to have a large number of equal chains.
A sufficient condition for obtaining the canonical DMPK
equation is that the probability distribution of the transfer
matrices of an “elementary slice” is invariant under U (N )
rotation. This situation may be achieved in thick wires.9,10

However, in few-channel cases the localization lengths are
larger, but still of the same order as the mean free path.
There is no parametric window between them that permits the
emergence of U (N )-invariant ensembles of transfer matrices
upon coarse graining.

The qualitative difference in the distribution function
w(u) in the two regimes has important implications on the
localization lengths. To calculate the localization lengths from
Eq. (75), we need 〈�6〉 and 〈u〉. Using Eq. (80) we obtain

〈�6〉 =

⎧⎪⎨
⎪⎩

q1q2|�V |S1(q1,q2)

2 sinh
(

q1
q2

arctan 1
q2

) − 4V3 �V � 0,

q1q2|�V |S̃1(q1,q2)

2 sinh
(

q1
2q2

ln q2+1
q2−1

) − 4V3 �V � 0,
(88)

and

〈u〉 =

⎧⎪⎨
⎪⎩

q1S2(q1,q2)

2 sinh
(

q1
q2

arctan 1
q2

) �V � 0,

q1S̃2(q1,q2)

2 sinh
(

q1
2q2

ln q2+1
q2−1

) �V � 0,
(89)

where S1(2) and S̃1(2) are integrals defined by

S1(q1,q2) =
∫ arctan (1/q2)

− arctan (1/q2)
dz sec2 z e

q1
q2

z
,

S2(q1,q2) =
∫ arctan (1/q2)

− arctan (1/q2)
dz tan z e

q1
q2

z
,

(90)

S̃1(q1,q2) =
∫ 1/q2

−1/q2

dz

(
1 + z

1 − z

) q1
2q2

,

S̃2(q1,q2) =
∫ 1/q2

−1/q2

dz
z

1 − z2

(
1 + z

1 − z

) q1
2q2

.

C. Numerical analysis

In order to confirm our analytical results for the local-
ization lengths in Eq. (75) we calculated numerically the
Lyapunov exponents of the products of transfer matrices
in Eq. (30). An efficient numerical method, known as the
reorthogonalization method, has been developed in the study
of dynamical systems31 and widely spread in the field of
Anderson localization.32 The forthcoming numerical results
in Figs. 5–8, 10, and 11 are all obtained by this method.

The usefulness of the reorthogonalization method is not
restricted to numerical simulations. It also provides the basis
for the perturbative analysis about the Lyapunov exponents in
the weak disorder limit in Sec. VI B.
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FIG. 4. (Color online) Marginal probability distribution for the angular variable u = cos(θ ), w(u), in different regimes. Here the interchain
coupling t = 0.1 and the other parameters are the same as in Fig. 3. (a) Distributions w(u) for three energies across the resonance and
off-resonance regimes, namely, E = ER ≈ −0.13 (i.e., resonance energy), E = 0.2 (off-resonance), and E = 0.0 (crossover). On resonance
the distribution is nearly uniform, while it is strongly nonuniform off-resonance (b) The expectation value and variance of u as functions of E.

V. RESULTS FOR THE LOCALIZATION LENGTHS

In order to reveal the effects of the transverse coupling t on
the localization lengths, we define the two ratios

rρ = ξρ/ξ
(0)
ρ , ρ ∈ {1,2}, (91)

where the ξ (0)
ρ ’s are the localization lengths of the decoupled

legs, for which we may assume ξ
(0)
1 � ξ

(0)
2 . For simplicity,

we refer to leg 1 and leg 2 as the fast leg and the slow leg,
respectively. The bare localization lengths ξ (0)

ρ can easily be
obtained from Eq. (75) by taking γ = 0, w(u) = δ(u − 1) and
t = 0, which yields

ξ (0)
ρ = 2v2

ρ

χ2
ρ

. (92)

Equation (92) coincides with the well-known single-chain
result.4

A. E = 0 and δe = 0: Resonant regime

Consider first the case δe = 0, in which the resonance
energy vanishes ER = 0. From Eqs. (12) and (18) it follows
that the mixing angle is γ = π/2 once t �= 0, and the two
rapidities v1 = v2 = v are equal to each other:

v2 = 4 − t2

t1t2
. (93)

Consequently, the three Born cross-sections have the same
value and are equal to

V1 = V2 = V3 = V = 1

16v2

(
χ2

1 + χ2
2

)
. (94)

This gives q1 = 0 and q2 = √
3 according to Eqs. (81)

and (83). Evaluating the integrals (90), we obtain the two
localization lengths

ξρ = 8Cρv
2
/(

χ2
1 + χ2

2

)
, (95)

where

C1 = π

3(π − √
3)

≈ 0.743, (96a)

and

C2 = π

π + 3
√

3
≈ 0.377. (96b)

The corresponding decoupled values (t = 0) can easily be
obtained from Eq. (92),

ξ (0)
ρ = 8

χ2
ρ

. (97)

Therefore, the ratios defined by Eq. (91) read

rρ = Cρv
2χ2

ρ

/(
χ2

1 + χ2
2

)
. (98)

Notice that in the resonant case the Born cross-sections (60)
are dominated by χ2

2 , which gives rise to the dramatic drop of
the localization length of the fast leg: The slow leg is dominat-
ing the backscattering rate and thus the localization length.

From Eq. (98) we draw several important conclusions
below.

1. Statistically identical chains

For two coupled chains, which are statistically identical,
one has χ2

1 = χ2
2 , and we obtain

ξ1

ξ
(0)
1

≡ r1 = 2C1 ≈ 1.486,

(99)
ξ2

ξ
(0)
2

≡ r2 = 2C2 ≈ 0.754.

We note that r1 is slightly larger than the value obtained by
Dorokhov,8 which is π/(π − 1) ≈ 1.467. The reason is that
we have taken into account the forward scattering in the
“elementary slice” (27), which was neglected in the work by
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FIG. 5. (Color online) Ratio of coupled and uncoupled local-
ization lengths, r1 = ξ1/ξ

(0)
1 , for statistically identical chains with

t1 = t2 = 1 and small disorder W . We consider small couplings t ,
for which any energy is at resonance conditions. In the numerical
simulation we take E = 0.1 in order to avoid the anomaly at
E = 0.0. However, according to Eq. (99), r1 is almost independent
of E if t is weak enough. The continuum approximation becomes
exact for W 2 � t � 1, as is illustrated by the convergence of the
numerical data to the analytical prediction (the agreement is already
good for cW 2 � t with c ≈ 0.25). For comparison we also plot
Dorokhov’s prediction (Ref. 8), which neglected forward scattering in
the Fokker-Planck equation. The result of Kasner and Weller (Ref. 24)
(r1 ≈ 1.776) is in clear contradiction with these numerics.

Dorokhov. Moreover, the latter was restricted to t1 = t2. In
Fig. 5 we compare our analytical prediction with Dorokhov’s.
Note that we take E = 0.1 in the numerical simulation in order
to avoid the anomaly at E = 0, as mentioned in Sec. III D.
The enhancement factor r1 is essentially independent of the
selected energy if t is weak enough. This is due to the fact that
any energy is at resonance conditions for t1 = t2.

The effect of forward scattering, which was included in
our work, is clearly visible. It is confirmed by the numerical
simulation at resonance conditions. However, the value r1 ≈
1.776 obtained by Kasner and Weller24 deviates significantly
from our numerical and analytical results.

2. Parametrically different chains

It is interesting to analyze what happens if the bare
localization lengths of the chains are parametrically different
ξ

(0)
2 � ξ

(0)
1 . In the resonant regime, for W 2,|E − ER| � t �

t1,t2, we obtain

ξ1 → 4C1 ξ
(0)
2 ≈ 2.972 ξ

(0)
2 , (100a)

ξ2 → 4C2 ξ
(0)
2 ≈ 1.507 ξ

(0)
2 . (100b)

Equation (100) is one of the central results in this paper:
In the resonant regime, the localization length of the fast leg
is dramatically dragged down by the slow leg. In contrast, the
localization length of the slow leg is increased by the presence
of the fast leg, but remains of the same order. As a result both
localization lengths become of the order of that for the bare
slow leg. This is illustrated for two different cases of coupled
fast and slow legs in Figs. 6 and 7. Figure 6 shows the effect
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FIG. 6. (Color online) Localization lengths for chains with differ-
ent hopping strengths (t1 = 1 and t2 = 0.1), but equal disorder (W =
0.05) as a function of energy at detuning δe = 0 and intermediate
coupling t = 0.1. The solid curves are analytical results. Black curves
correspond to uncoupled chains; red ones correspond to the coupled
chains. The squares and circles are data of the numerical transfer
matrix. ξ

(0)
2 and ξ2 are amplified 20 times to increase visibility, but

ξ1 > ξ2 always holds. The lower left inset is a magnification in the
two-channel region. The upper right inset shows the ratios r1,2 of
coupled to uncoupled localization lengths. The larger localization
length is very significantly suppressed due to the coupling to a slow
chain. Note the sharp recovery of the larger localization length beyond
the band edge E+

2 . The analytical results coincide quantitatively with
the numerical data anywhere except for specific anomalous energies:
In the uncoupled case, E = 0 corresponds to the commensurate wave
vectors 4k1(2) = 2π . In the coupled case, E = 0 and E ≈ 0.03, 0.1
(very weak) and 0.17 correspond to 2(k1 + k2) = 2π , 3k1 + k2 = 2π ,
4k1 = 2π , and 3k2 − k1 = 2π .

in the case of legs with equal disorder but different hopping
strength, the resonance being at E = 0. In Fig. 7 the faster leg
has the same hopping but weaker disorder. Here the legs are
resonant at every energy below the band edge E+

2 .
We note that there is no regime where both r1 > 1 and

r2 > 1, as this would contradict the equality
∑

ρ rρ/Cρ = v2,
which follows from Eq. (98). At the band center and t → 0
one can achieve that both localization lengths do not decrease
upon coupling the chains, r1 = r2 = 1. This happens when
χ2

2 /χ2
1 = 4C1 − 1, which assures that the localization lengths

do not change at coupling constants t � W 2 according to the
discussion in Sec. V A3.

3. Weak coupling limit

Upon simply taking the t = 0 limit,

rρ = 4Cρχ
2
ρ/
(
χ2

1 + χ2
2

)
, (101)

one does not recover the decoupled values rρ = 1. This should
indeed be expected, as we have discussed in Sec. III C. The
reason traces back to condition (62) to obtain Eq. (68), namely
that t be larger than the disorder energy scale δE ∝ W 2. In
order to verify the noncommutativity of t → 0 and W → 0,
we computed numerically the localization lengths by the
transfer matrix approach, and obtained the values of rρ down
to very small values of t (cf. Fig. 8). In this simulation,
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FIG. 7. (Color online) Localization lengths for the decoupled
(t = 0, black) and coupled (t = 0.2, red) chains with identical
hopping but substantially different disorder (W1 = 0.1 and W2 = 1.0)
as a function of energy (detuning δe = 0). The solid curves are
analytical results. The squares and circles are data from the numerical
transfer matrix. The values of ξ1, ξ

(0)
2 and ξ2 are amplified 20 times

to increase their visibility. Without coupling ξ
(0)
1 /ξ

(0)
2 ∼ 102. In the

presence of coupling ξ1 is substantially reduced, while ξ2 remains of
the same order as its decoupled value. The inset shows the ratios r1,2

of coupled to uncoupled localization lengths. Since t1 = t2 there is
resonance at all energies, and thus dominance of the slow chain is
expected. Note the sharp recovery of the larger localization length
beyond the band edge E+

2 . There are visible anomalies at E = 0
in both the uncoupled and the coupled case, which correspond to
the commensurate condition 4k1(2) = 2π and 2(k1 + k2) = 2π . In the
coupled case further anomalies exist at the energies corresponding
to 3k1 + k2 = 2π , 4k1 = 2π , and 3k2 − k1 = 2π . However, they are
every close to E = 0 and too weak to be observed.

the reorthogonalization method32 was used, and length of
the ladder is L = 107 with averaging over 103 realizations
of disorder. The hopping integral in the fast chain t1 = 1 was
taken as the energy unit, and for simplicity, the two legs were
taken to be equally disordered. One can see that as the coupling
t increases the quantities r1,2 evolve and at t � W 2 approach
the limits given by Eq. (101).

The insensitivity of the localization lengths to weak
couplings t � δE reflects the fact that the level spacing in
the chains is bigger than the coupling between the chains, and
thus wave functions typically do not hybridize much between
the two legs.

Moreover, the two families of curves for different disorder
strengths seem to collapse into two universal functions
r1,2(t/W 2) (cf. Fig. 8). This scaling shows that at weak
disorder W � 1 and under resonance conditions E = ER , the
numerical results approach the analytical ones already at a
very small coupling t � W 2.

We can rationalize the scaling by defining a regularized
mixing angle γ̃ instead of the bare γ defined by Eq. (12).
From Eqs. (12) and (85), we find that

tan2 γ ∝ t2

[κ(t1,t2)(E − ER)]2
, (102)

where κ(t1,t2) is defined in Eq. (86). A natural way of
regularizing the above result at resonance conditions is to
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FIG. 8. (Color online) The ratio r1,2 = ξ1,2/ξ
(0)
1,2 of coupled and

decoupled localization lengths, obtained numerically as a function
of the coupling constant t at resonant conditions, E = 0 and δe = 0.
The two legs are equally disordered with a random potential box
distributed in [−W/2,W/2]. (a) A slow t2 = 0.2 and a fast t1 = 1
leg. The smaller localization length increases slightly while the larger
localization length decreases drastically, being driven down by the
slow leg, as the coupling constant t increases. The inset shows the
dependence of r1,2 on the coupling constant t at different disorder
strengths; all the curves collapse to a universal dependence on t/W 2.
The dashed lines in the inset show the analytic result given by Eq. (98),
which is valid under the assumption t � W 2 [Eq. (62)]. (b) Almost
identical legs t2 = 0.8, t1 = 1. In this case the localization length of
the slow leg marginally decreases while that of the fast leg marginally
increases. (c) Results obtained analytically upon replacing the mixing
angle with a renormalized value, γ → γ̃ . The parameters are the same
as in (a) but with fewer realizations of disorder, and δE/W 2 ≈ 0.3 in
Eq. (103) was optimized by fitting to the numerical data in (a). The
scaling collapse works very well in the weak coupling limit.
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introduce the disorder-induced “width” δE ∝ W 2 in the form

tan2 γ̃ ∝ t2

[κ(t1,t2)(E − ER)]2 + δE2
, (103)

where δE scales as in Eq. (63).
Using this regularized mixing angle, the resonant regime

can be described more precisely by the condition

t � max{κ(t1,t2)|E − ER|,δE}, (104)

or, equivalently, γ̃ ∼ π/2. The observed scaling collapse in
Fig. 8(a) suggests that in the weak coupling one might capture
the behavior of localization lengths by replacing γ by γ̃ in
Eq. (60). This indeed works, as confirmed by Fig. 8(c) where
we replot the numerical data of Fig. 8(a) together with the
analytical expressions, where γ̃ replaces γ , and the number
δE/W 2 ≈ 0.3 was optimized to yield the best fit.

Note that the resonance condition can be broken either by
detuning |E − ER| � t or by increasing the disorder δE � t .
Our analytic approach is based on the weak-disorder expansion
and is therefore valid only in the first regime.

4. Anomalies

One can notice that all our numerical curves for ξ1,2 exhibit
anomalies which are not predicted by the analytical curves:
Small “peaks” appear at certain energies on both ξ1 and ξ2.
These anomalies of localization lengths are due to the com-
mensurability discussed in Sec. III D. This is not captured by
the extended DMPK equation (68). However, we can identify
these anomalous energies with commensurate combinations
of wave vectors in Eq. (57) (see the caption in Figs. 6 and
7). The anomalies for two chains with identical hopping but
different disorder have been observed numerically in Ref. 33.
In this case there are three anomalous energies E = 0, t/2, and
t , which correspond to commensurate combinations of wave
vectors 2(k1 + k2) = 2π , 3k1 + k2 = 2π , and 4k1 = 2π .

B. Solutions at E �= 0: Off-resonant regime

Without loss of generality the off-resonant regime can be
considered at δe = 0 (for which the resonance is at ER = 0).
A nonzero detuning δe merely drives ER away from zero and
induces an asymmetry of the rρ as a function of E − ER .
However, the mechanism of the crossover from resonance to
off-resonance is qualitatively the same as in the case δe = 0.

Our analytical results for r1,2 are presented in Fig. 9 as
functions of the dimensionless detuning E/t from resonance.

(i) Small detuning, |E| � t/κ(t1,t2) � 1. The resonance
conditions are still fulfilled and the localization lengths are
close to their corresponding values at E = 0. The leading
order expansion around γ = π/2 predicts that the ratios of
localization lengths, r1,2 only depend on E/t , but not on t/t1,

|rρ − rρ(E = 0)| ∝
(

E

t

)2

, (105)

as confirmed numerically in Fig. 9.
(ii) Very large detuning, |E| � t/κ(t1,t2) � 1, r1(2) ap-

proaches 1 from below (above) like

|rρ − 1| ∝ t2. (106)
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FIG. 9. (Color online) Analytical results for r1,2 = ξ1,2/ξ
(0)
1,2 as

functions of E and E/t obtained from the extended DMPK equation
in the weak disorder case δE � t for detuning δe = 0. The resonance
energy corresponds to ER = 0. (a) t2 = 0.2, t1 = 1; (b) t2 = 0.8,
t1 = 1. Close to resonance the rρ only depend on the ratio E/t .

When t is small this result is obtained from the leading order
expansion of rρ around γ = 0 or π .

(iii) For chains with equal hopping, t1 = t2, resonance
occurs at any energy and rρ = 2Cρ is independent of E/t .

C. Band-edge behavior

Another interesting question to ask is what happens to the
localization lengths around the band edge E−

1 or E+
2 ? [see

Fig. 1(a)] Especially, what is the behavior of the localization
length of the fast leg once we turn on the coupling t? The
results from the numerical transfer matrix simulation and of
the solution (75) of the extended DMPK equation [Eq. (68)]
are compared in Fig. 10.

Two remarkable features can be observed in Fig. 10.
(i) Near the band edge E = E+

2 where the system switches
from one to two propagating channels, the larger localization
length ξ1 (red curves) behaves in a singular way, as obtained
from Eq. (75). As the energy tends to the band edge E+

2
from below, ξ1 decreases to zero and shows a jump to a finite
value for E > E+

2 , where only one propagating channel exists.
The numerical simulation (black circles) reproduces the same
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Extended DMPK equation

Numerical transfer matrix

t1 1.0, t2 0.5, t 0.2, W 0.2
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FIG. 10. (Color online) Localization lengths as a function of
energy near the edge of one of the bands. Here W = 0.2, t1 = 1,
t2 = 0.5, t = 0.2, and δe = 0. The red curve is the result of the
extended DMPK equation, while the black circles are data obtained
by the numerical transfer matrix method. The quantitative agreement
is significant except for four anomalous energies, for example,
E = 0 and E ≈ 0.1, 0.2, and 0.9. The correponding commesurate
combinations of wave vectors are 2(k1 + k2) = 2π , 3k1 + k2 = 2π ,
4k1 = 2π , and 3k2 − k1 = 2π . Near the termination of the lower band
at E < E+

2 the larger localization length is dramatically decreased,
driven down by the slow terminating channel. At E > E+

2 the
localization length sharply recovers. In numerical simulation the
sharpness is smeared by the finite disorder.

behavior, while the sharp recovering at E = E+
2 is smeared by

the finite disorder. This behavior is another drastic example of
the dominant effect of the slow channel. It can be understood
from the behavior of the Born cross sections [Eq. (60)]. As we
approach the band edge from below, the rapidities of the two
channels satisfy v1 � v2. As a consequence, the cross sections
obey the hierarchy V2 � V3 � V1. Therefore, from Eqs. (80)
and (75), one can see that ξ1 is dominated by the largest cross
section V2 and shows qualitatively the same behavior as ξ2. We
emphasize that the mechanism of this suppression is different
from that in the resonant regime. In the latter the suppression
is due to γ ∼ π/2, which mixes the two effective variances χ2

ν

equally, while near the band edge the suppression is due to the
vanishing rapidity, which appears in the denominators of the
cross sections.

(ii) Anomlies are clearly seen in the numerical data for ξ1 at
energies E = 0 and E ≈ 0.1, 0.2, and 0.9. The corresponding
commensurate combinations of wave vectors are 2(k1 + k2) =
2π , 3k1 + k2 = 2π , 4k1 = 2π , and 3k2 − k1 = 2π .

VI. ONE-CHANNEL REGIME

So far we have discussed the localization lengths in the
two-channel regime, where the extended DMPK equation (68)
applies. In the one-channel regime (see Fig. 1) the second
channel does not vanish but supports evanescent modes. In
the presence of disorder a particle in propagating modes can
be scattered elastically into these evanescent modes by local
impurities. Thus, the evanescent channel is coupled to the
propagating channel by random potentials and may influence

the transport properties of the system. However, the effect of
evanescent modes in the transport properties of 1D disordered
systems is scarcely studied.

Bagwell34 studied in detail the transmission and reflection
coefficients in a multichannel wire with a single δ-function
impurity. The evanescent modes renormalize the matrix
elements of the impurity potential in the propagating channels.
The transmission and reflection coefficients of the propagating
channels can be strongly enhanced or suppressed, nevertheless,
depending on the strength of the impurity.

The model in Ref. 34 was nondisordered but quite relevant
to disordered systems. It is reasonable to argue that in 1D
disordered systems the effective disorder in the propagating
channels is renormalized by evanescent modes, while the
renormalization effect depends upon the strength of disorder.

In the present two-leg Anderson model we specifically
analyze the renormalization effect of the evanescent channel
in the weak disorder limit, which stands on an equal footing
with the analysis in the two-channel case. Actually, the special
case t1 = t2 and σ 2

1 = σ 2
2 has been studied analytically early

on in Ref. 35. It was claimed that in the weak disorder limit the
effective disorder in the propagating channel is significantly
suppressed by the evanescent mode. As a consequence, the
localization length defined through the transmission coefficient
of the propagating channel is enhanced by a factor ∼2
compared to the value obtained if the evanescent mode is
absent. However, this conclusion was unreliable because the
average of the logarithm of transmission eigenvalue was
not computed correctly. In contrast, we will prove that the
evanescent channel is decoupled from the propagating channel
to the lowest order in the effective disorder χ2

ν defined in
Eq. (48). The coupling between the two channels becomes
relevant only at order χ4

ν .

A. Transfer matrix of an elementary slice

Without loss of generality, we assume that the channel
τ = 1 is propagating and τ = 2 is evanescent (the upper branch
in Fig. 1). A similar analysis applies to the opposite choice
(the lower branch in Fig. 1). Note first of all that a direct
application of the Fokker-Planck equation approach to the
transfer matrix given in Eqs. (27) and (30) would be incorrect.
The reason is the following: The weak disorder expansion
of the parameters �λ, which leads to Eq. (51), is ill-defined
in the one-channel regime. Note that the amplitude of the
evanescent basis ψ2(x) [see Eq. (26)] grows exponentially
∼ eκ2|x|. Likewise, the elements of δmx [see Eq. (27)] with
evanescent channel indices also grow exponentially with
factors e2κ2|x| or e4κ2|x|. Therefore, ‖δmx/ε‖ is unbounded in
the domain of the coordinate x, and the formal expansion of
the parameters �λ in disorder strength is divergent with respect
to the length L.36

In order to perform a weak disorder analysis, the basis of
the evanescent channel should be chosen as

ψ±
2 (x) = e∓κ2x/

√
2 sinh κ2, κ2 > 0, (107)

which replaces the current-conserving basis Eq. (26), and the
basis of the propagating channel is the same as Eq. (24) even
though with τ = 1. In this newly defined basis, the transfer
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matrix of elementary slice takes the form (see Appendix D)

mx = m + δmx, (108)

with

m = diag (1, 1, e−κ2 , eκ2 ), δmx =
(

δm1
1 δm1

2

δm2
1 δm2

2

)
, (109)

whose blocks are

δm1
1 = i

ε11

2 sin k1

( −1 −e−i2k1x

ei2k1x 1

)
, (110a)

δm1
2 = i

ε12

2
√

sin k1 sinh κ2

(−e−κ2e−ik1x −eκ2e−ik1x

e−κ2eik1x eκ2eik1x

)
,

(110b)

δm2
1 = ε21

2
√

sin k1 sinh κ2

(−eik1x −e−ik1x

eik1x e−ik1x

)
, (110c)

δm2
2 = ε22

2 sinh κ2

(−e−κ2 −eκ2

e−κ2 eκ2

)
, (110d)

where m and δmx are the disorder-free and disordered part of
the elementary slice mx , respectively. The transfer matrix of a
bulk with length L is still defined by the products in Eq. (30).
Two important points should be emphasized.

(i) Compared with Eq. (27) in the two-channel case, the
second and third rows and columns of Eq. (108) have been
simultaneously permuted. The diagonal blocks δm1

1 and δm2
2

represent the scattering in the propagating and evanescent
channels, respectively, and the off-diagonal blocks δm

1(2)
2(1)

represent the scattering between the two channels. In each
block, the first and second diagonal elements describe the
scattering inside right (+) and left (−) branches, respectively,
and the off-diagonal elements describe the scattering between
the two branches. For instance, δm2−

1+ labels the 21 element of
δm2

1 and stands for a scattering event from the left evanescent
channel to the right propagating channel.

(ii) The disordered part δmx does not contain exponentially
growing and/or decaying terms, and hence ‖δmx/ε‖ is
uniformly bounded for any x. Instead, the disorder-free part
m, which is still diagonal but not unity any more, contains
the growing and decaying factor of the evanescent mode
per lattice spacing. The exponentially growing and decaying
characteristics of evanescent modes are represented in the
products of the disorder-free part

∏L
x=1 m.

B. Weak disorder analysis of Lyapunov exponents

In order to calculate the transmission coefficient of the
propagating channel, through which the localization length
is defined (see Sec. VI C), we have to know the Lyapunov
exponents of M(L) in Eq. (30). We are going to determine the
Lyapunov exponents by the method introduced in Ref. 31.

The Lyapunov exponents of the present model can be
computed via the following recursive relations for the four

vectors Vi=1,...,4:

V1,x+1 = mxV1,x , (111a)

Vi,x+1 = mxVi,x −
i−1∑
j=1

Vj,x+1 · (mxVi,x)

Vj,x+1 · Vj,x+1
Vj,x+1,

2 � i � 4. (111b)

Note that the vectors are orthogonalized by Gram-Schmidt
procedure after every multiplication by the transfer matrices
(108). The Lyapunov exponents are extracted form the growing
rate of the amplitudes of the respective vectors:

γi = lim
L→∞

1

2L

〈
ln

|Vi,L|2
|Vi,1|2

〉
, 1 � i � 4, (112)

in which 〈·〉 is the average over realizations of disorder along
the strip. Moreover, {γi} are in descending order:

γ1 � γ2 � γ3 � γ4. (113)

The initial vectors Vi,1 of the recursive relations (111) can
be randomly chosen but must be linearly independent. In
the absence of specific symmetry constraints the Lyapunov
exponents are nondegenerate in the presence of the disordered
part of mx . Additionally, because of the symplecticity of m̃x

represented in Eq. (21) the Lyapunov exponents are related by

γ3 = −γ2, γ4 = −γ1, (114)

which is proved in Appendix D. Therefore, only the first two
recursions in Eq. (111) are needed.

In the absence of disorder the four Lyapunov exponents
take the values

γ1|ε=0 = κ2, γ2|ε=0 = γ3|ε=0 = 0, γ4|ε=0 = −κ2, (115)

in which the two Lyapunov exponents corresponding to the
propagating channel are degenerate. Therefore, we make an
ansatz on the first two vectors, which separates their “moduli”
and “directions,”

V1,x = v1,x

⎛
⎜⎜⎜⎝

s1(x)

s2(x)

s3(x)

1

⎞
⎟⎟⎟⎠, V2,x = v2,x

⎛
⎜⎜⎜⎝

p(x)

q(x)

t3(x)

t4(x)

⎞
⎟⎟⎟⎠, (116)

in which

s1,2,3(x),t3,4(x) ∼ O(ε), (117)

|s1,2,3(x)/ε|, and |t3,4(x)/ε| are bounded for all x, and

|p(x)|2 + |q(x)|2 = 1. (118)

Eventually, the Lyapunov exponents are determined by the
growth rate of {vi,x}, which is easy to be realized from
Eqs. (112) and (116). The initial vectors of Eq. (116) are
chosen as the eigenvectors of the disorder-free part of the
transfer matrix m [see Eq. (109)],

V1,1 =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠, V2,1 =

⎛
⎜⎜⎜⎝

p(1)

q(1)

0

0

⎞
⎟⎟⎟⎠, (119)

with some p(1) and q(1) satisfying |p(1)|2 + |q(1)|2 = 1.
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Note that the ansatz (116) is reasonable in the sense of
a perturbative analysis. Consider the final vectors after L

iterations of Eq. (111) with the initial condition Eq. (119).
In the absence of disorder, it is easy to obtain V1,L =
eκ2LV1,1 and V2,L = V2,1. On top of it weak enough disorder
will induce perturbative effects: The direction of V1,L will
deviate from V1,1 perturbatively in the strength of disorder.
This is characterized by the smallness of s1,2,3(L). In other
words, the exponential growth of |V1,L| is dominated by
m. Simultaneously, the degeneracy of the second and third
exponents are lifted perturbatively. As a consequence, γ2 > 0
and v2,L become exponentially large because of the constraint
in Eq. (114). p(L) and q(L) are, in general, very different from
their initial values p(1) and q(1), while t3,4(L) will be shown
to remain small quantities of order ε.

The orthogonality between Vi,x in Eq. (116) gives

t4(x) + s∗
1 (x)p(x) + s∗

2 (x)q(x) + s∗
3 (x)t3(x) = 0, (120)

in which the first three terms ∼O(ε) and the last term ∼O(ε2).
Up to the first order in disorder strength, the recursion (111a)
gives

v1,x+1 = v1,x

[
eκ2 + δm2−

2− + O(ε2)
]
, (121a)

v1,x+1s1(x + 1) = v1,x

[
s1(x) + δm1+

2− + O(ε2)
]
, (121b)

v1,x+1s2(x + 1) = v1,x

[
s2(x) + δm1−

2− + O(ε2)
]
, (121c)

v1,x+1s3(x + 1) = v1,x

[
e−κ2s3(x) + δm2−

2+ + O(ε2)
]
. (121d)

The recursion (111b) gives

v2,x+1

(
p(x + 1)

q(x + 1)

)
= v2,x

[(
1 + δm1

1

)(p(x)

q(x)

)
+ O(ε2)

]
,

(122a)

v2,x+1t3(x + 1) = v2,x

[
e−κ2 t3(x) + δm2+

1+p(x)

+ δm2+
1−q(x) + O(ε2)

]
, (122b)

v2,x+1t4(x + 1) = −v2,x

[
s∗

1 (x + 1)p(x) + s∗
2 (x + 1)q(x)

+O(ε2)
]
. (122c)

It can be verified that the higher-order terms ∼O(ε2) do not
involve exponentially growing factors, which is guaranteed
by the Gram-Schmidt reorthogonalization procedure in the
recursive relations (111).

We draw two important observations from Eqs. (121) and
(122).

(i) The ansatz (116) is consistent with the perturbative
expansion of the recursions (111). Here the consistency means
that |s1,2,3(x)/ε| and |t3,4(x)/ε| are uniformly bounded after
any number of iterations, and the first two Lyapunov exponents
can be extracted from vj,x .

(ii) Up to linear order in disorder strength, the recursion
(121a), which determines the first Lyapunov exponent γ1, is de-
coupled from the recursion relation (122a), which determines
the second Lyapunov exponent γ2. However, the coupling
terms are present in higher-order terms. This implies that to the
leading order effect in disorder the evanescent and propagating
channels evolve independently, the entanglement between the
two channels being a higher-order effect.

From Eq. (121a) one can easily calculate the first Lyapunov
exponent to linear order in the effective variances χ2

ν ,

γ1 = lim
L→∞

1

L

〈
ln

L∏
x=1

∣∣eκ2 + δm2−
2−(x)

∣∣〉

= κ2 +
〈
ln

∣∣∣∣1 + ε22

2 sinh κ2

∣∣∣∣
〉

� κ2 − 1

8 sinh2 κ2

(
χ2

1 sin4 γ

2
+ χ2

2 cos4 γ

2

)
+ O

(
χ4

ν

)
,

(123)

in which γ is the mixing angle defined in Eq. (12). The
minus sign of the leading order corrections implies that the
first Lyapunov exponent is reduced in the presence of weak
disorder.

Equation (122a) is exactly the same as in a single-chain
Anderson model, for which the Lyapunov exponents are
already known.4 The second Lyapunov exponent takes the
value

γ2 � 2V1 + O
(
χ4

ν

)
, (124)

where V1 is the Born cross section given in Eq. (60).
Equations (123) and (124) are our main results for the

one-channel case, yielding the localization length and the
renormalized decay rate of evanescent waves.

C. Localization length and evanescent decay rate

The two Lyapunov exponents calculated above can be
identified in transport experiments. In general a two-probe
experiment has the geometry of the form “lead-sample-
lead,” in which the two leads are semi-infinite. The current
amplitudes (not the wave amplitudes) are measured in leads.
In the propagating channels both right (+) or left (−) modes
exist in both of the leads. However, the situation is rather
different in the evanescent channels: There are only growing
modes (−) in the left lead, and only decaying modes (+) in
the right lead. These modes do not carry current at all.34,37

Hence, the current transmission and reflection coefficients are
only defined in propagating channels regardless of the wave
amplitudes in evanescent channels. In terms of the transfer
matrix M(L), this restriction on the evanescent channel implies
that ⎛

⎜⎜⎜⎝
a+

1 (L)

a−
1 (L)

a+
2 (L)

0

⎞
⎟⎟⎟⎠ =

(
M1

1 M1
2

M2
1 M2

2

)⎛⎜⎜⎜⎝
a+

1 (1)

a−
1 (1)

0

a−
2 (1)

⎞
⎟⎟⎟⎠. (125)

From the scattering configuration (125) one can derive
an effective transfer matrix for the propagating channel. The
evanescent amplitude a−

2 (1) can be expressed in terms of the
propagating amplitudes as

a−
2 (1) = − 1

M2−
2−

[
M2−

1+a+
1 (1) + M2−

1−a−
1 (1)

]
. (126)

Substituting Eq. (126) into Eq. (125) we obtain(
a+

1 (L)

a−
1 (L)

)
= X(L)

(
a+

1 (1)

a−
1 (1)

)
, (127)
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in which the elements of X(L) take the form

X+
+ = M1+

1+ + �M1+
1+ , �M1+

1+ = −M1+
2−M2−

1+
M2−

2−
, (128a)

X+
− = M1+

1− + �M1+
1− , �M1+

1− = −M1+
2−M2−

1−
M2−

2−
, (128b)

X−
+ = X+∗

− , X−
− = X+∗

+ . (128c)

X(L) is the effective transfer matrix for the propagating
channel. Note that its elements are modified from the values
in the absence of the evanescent channel. One can easily
verify that X(L) satisfies time-reversal invariance and current
conservation conditions as (29) in the single-chain case:9,10

X∗ = σ1Xσ1, X†σ3X = σ3. (129)

However, X(L) does not evolve multiplicatively with the
length L any more. The transmission coefficient is determined
through X(L) in the usual way9,10:

T (L) = |X+
+|−2, (130)

where X+
+ is defined in Eq. (128a).

Equations (128) and (130) determine exactly the transmis-
sion coefficient of the propagating channel. A full solution
requires extensive calculations. However, if the disorder
strength is weak, as analyzed in Sec. VI B, the coupling
between the two channels is small, so that the contribution
of the evanescent channel, �M1+

1+ is negligible. Indeed, from

Eqs. (111) and (116), using initial vectors V1,1 = ( 0 0 0 1 )T

and V2,1 = ( 1 0 0 0 )T , respectively, we can extract the various
matrix elements of M(L), in particular

�M1+
1+ (L)

M1+
1+ (L)

= s1(L)t4(L)

p(L)
∼ O(ε2). (131)

This proves that the contribution of the evanescent channel is
subleading at weak disorder. To leading order the transmission
coefficient is simply given by the propagating channel as

T (L) � ∣∣M1+
1+
∣∣−2 � |v2,L p(L)|−2. (132)

From this the localization length is obtained,

1/ξ = − lim
L→∞

1

2L
〈ln T (L)〉 � 2V1 + O

(
χ4

ν

)
= 1

8 sin2 k1

(
χ2

1 cos4 γ

2
+ χ2

2 sin4 γ

2

)
+ O

(
χ4

ν

)
. (133)

Equation (133) implies that to leading order in χ2
ν the local-

ization length in the propagating channel equals the inverse of
the second Lyapunov exponent obtained in Eq. (124).

Similarly to Eq. (91), we can introduce the localization
length enhancement factor

r = ξ/ξ
(0)
1 , (134)

in which ξ
(0)
1 is the localization length of the leg 1 (with the

larger hopping) in the absence of interchain coupling.
On the other hand, the inverse of the first Lyapunov

exponent in Eq. (123) should be associated with the evanescent
decay rate which is slightly modified by disorder.
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FIG. 11. (Color online) Localization length as a function of
energy in the one-channel case. Here t1 = 1, t2 = 0.1, δe = 0, and
the amplitude of disorder is W = 0.1. The solid curves are analytical
results. Black curves correspond to uncoupled chains. The red one
corresponds to the upper polariton (conduction) band (propagating
channel) for strong coupling t = 1, which is obtained by omitting
the lower polariton (valence) band (evanescent channel). The squares
and circles are data of the numerical transfer matrix. The quantitative
agreement is significant except for the anomalous energy E � 1.0,
which corresponds to the commensurate combination of wave vectors
4k1 = 2π . The coincidence between analytics and numerics confirms
that the evanescent channel is decoupled to the propagating channel
in weak disorder limit.

The analytical results (133) and/or (134) are compared with
numerics in Figs. 6, 10, and 11. Figures 6 and 10 correspond
to the weak-coupling case t < tc [see Fig. 1(a)] and Fig. 11
corresponds to the strong-coupling case t > tc [see Fig. 1(b)].
The remarkable agreement confirms the weak disorder analysis
developed in this section.

We specifically analyze the typical behavior of the enhance-
ment factor r1(E) close to the band edge E+

2 in the case of
t < tc, where the system switch from one to two propagating
channels. From Eqs. (12) and (18) it is not hard to obtain: at
the band edge E+

2 , when coupling is weak r1(E+
2 ) deviates

from 1 like

1 − r1(E+
2 ) ∝

(
t

E+
2

)2

. (135)

If E is away from E+
2 , r1(E) increases linearly, i.e.,

r1(E) − r1(E+
2 ) ∝ t2(E − E+

2 ), (136)

with a fixed but weak coupling t . A typical curve for r1(E) is
shown in the upper right inset in Fig. 6.

VII. SHAPE AND POLARIZATION OF THE
WAVE FUNCTIONS

In certain applications, such as exciton-polaritons, the two
linearly coupled types of excitations (represented by the two
chains) are very different in nature. This makes it, in principle,
possible to probe the original excitations separately from each
other. For a two-leg atomic chain one can imagine probing the
amplitude of wave function on each of the spatially separated
legs. For polaritons the analog would be a separate probing of
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FIG. 12. (Color online) Typical wave functions in different regimes. Pay attention to the varying scales for the amplitudes in the various
cases. Parameters are t1 = 1, t2 = 0.2, W = 0.4, t = 0.04, while E selects the regime. The length of the ladder is L = 103 with periodic
boundary condition. The black (red) curves are the amplitudes on the 1(2) leg. (a) E = 1.5955, at which only one channel exists. (b),(c)
Off-resonant regime: E = 0.3250 and E = 0.3242 are a pair of adjacent levels of “opposite type.” (d) E � 0, which is within the resonant
regime.

cavity photons or excitons, for example, by studying the 3D
light emitted due to diffraction of cavity photons at surface
roughnesses or by studying the exciton annihilation radiation
or the electric current of exciton decomposition provoked
locally. Therefore, it is of practical interest to be able to
manipulate the strength of localization of one of the original
excitations by coupling them to the other.

A. Numerical analysis

With this goal in mind we have carried out a numerical
study of the amplitude of wave functions on either of the
chains in each of the distinct parameter regimes discussed
above. We numerically diagonalized the Hamiltonian (1) (cf.
Fig. 12), choosing t1 = 1, t2 = 0.2, W = 0.4, t = 0.04. The
length of the ladder was taken to be L = 103 and periodic
boundary conditions were used. With the above parameters the
localization lengths of the decoupled legs were of the order
of ξ

(0)
1 ∼ 103 and ξ

(0)
2 ∼ 10, for energies close to the band

center. In Fig. 12 the black curves depict the amplitudes of
eigenfunctions on the fast leg 1, while the red curves show the
corresponding amplitudes on the slow leg 2.

Our main findings are as follows.
(i) E+

2 < E < E+
1 . The energy is far from resonance, and

only one channel exists. As shown in Fig. 12(a), most of the

weight is on the fast leg. The amplitude on the slow leg is small
but the spatial extension of the component ψ2 is the same as that
of ψ1 on the fast leg, which is almost unaffected by the chain
coupling. Thus, the coupling can create a nonzero amplitude
on the chain 2, in the energy region where the decoupled
chain 2 cannot support any excitations. The spacial extension
is controlled by the localization properties of the leg 1.

(ii) t/κ(t1,t2) < E < E+
2 . The energy is in the two-channel,

off-resonant regime. The wave-function components ψ1 and
ψ2 are characterized by both localization lengths ξ1 and ξ2.
However, the relative weights of the parts of the wave function
with the smaller and the larger localization lengths fluctuate
very strongly from eigenstate to eigenstate. This is shown
in Figs. 12(b) and 12(c), with two adjacent energy levels,
which were properly selected. In Fig. 12(b), ψ2 consists
almost entirely of a component with the smaller localization
length, while the fast leg clearly shows contributions of both
components. In Fig. 12(c), both ψ1 and ψ2 consist almost
entirely of a component with the larger localization length. In
brief, the former can be thought of as a state on leg 2, which
weakly admixes some more delocalized states on leg 1, while
the latter wave function is essentially a state of leg 1 which
admixes several more strongly localized states on leg 2.

We have checked in specific cases that this interpretation
is indeed consistent (see Sec. VII B): In the off-resonant
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regime the wave functions can be obtained perturbatively in the
coupling t , confirming the picture of one-leg wave functions
with small admixtures of wave functions on the other leg.
Off resonance, the perturbation theory is controlled even for
appreciable t , since the matrix elements that couple wave
functions of similar energy are very small due to significant
cancellations arising from the mismatched oscillations of the
wave functions (k1 − k2 > ξ

(0)
2 ) on the two legs. Resonance

occurs precisely when at a fixed energy k1 − k2 becomes too
small, so that the modes on both legs start to mix strongly.
A closer analysis of the perturbation theory in special cases
shows that the perturbative expansion is expected to break
down at the resonant crossover determined further above.

(iii) |E| < t/κ(t1,t2). If the energy is in the resonant
regime, the two localization lengths are of the same order
ξ1 ∼ ξ2 ∼ ξ

(0)
2 and the spatial extension of both wave-function

components is governed by the localization length ξ
(0)
2 of the

decoupled slow chain. This is illustrated in Fig. 12(d).

B. Perturbative analysis

The properties of eigenstates at different energy regimes
can be explained by applying a perturbative analysis on the
coupling t . First, we define the relevant quantities of decoupled
legs as follows: The eigenstate of the ν leg with eigenenergy
Eνn is ψνn(x). The corresponding localization length is ξ (0)

ν ,
where we assume ξ

(0)
1 � ξ

(0)
2 in order to reveal the resonance–

off-resonance crossover. The mean level spacing inside the
localization volume is �ν . Because in one dimension a particle
is nearly ballistic in its localization volume, which means its
wave vector is nearly conserved and its amplitude is almost
uniform, we introduce a simple “box” approximation on the
eigenstates as the following. Inside the localization volume,

ψνn(x) ∼ 1√
ξ

(0)
ν

eikνx, (137)

up to a random phase, in which ξ (0)
ν and kτ are the localization

length and the wave vector at the energy Eνn. Outside the
localization volume ψνn(x) = 0.

Now we turn on a weak enough coupling t and calculate
the deviation of an energy level E1n on the 1 leg. Up to second
order in t , the deviation is

δE
(2)
1n = t2

∑
m

| ∫ dxψ∗
1n(x)ψ2m(x)|2

E1n − E2m

. (138)

In order to estimate the value of δE
(2)
1n by the r.h.s. of Eq. (138)

we have to make clear three points.
(i) The summation is dominated by the terms with the

smallest denominators, whose typical value is the mean level
spacing �2.

(ii) The typical value of the integral on the numerator can
be estimated by the “box” approximation introduced above,
which gives∫

dxψ∗
1nψ2m ∼

∫ ξ
(0)
2

0
dxψ∗

1nψ2m

∼ [
(k1 − k2)

√
ξ

(0)
1 ξ

(0)
2

]−1
. (139)

(iii) We should consider more carefully how many dominant
terms there are in the summation. We can easily realize that a
state ψ1n(x) on the 1 leg can couple to about ξ

(0)
1 /ξ

(0)
2 states

ψ2m(x) on the 2 leg. However, the value of the summation
is different from a naive deterministic evaluation because the
random signs of the denominators. If we neglect the correlation
of these random signs, according to the central limit theorem,
the fluctuation of δE

(2)
1n is

∣∣δE(2)
1n

∣∣ ∼
√√√√ξ

(0)
1

ξ
(0)
2

× t2

ξ
(0)
1 ξ

(0)
2 (k1 − k2)2�2

. (140)

The validity of the perturbation analysis is guaranteed if∣∣δE(2)
1n

∣∣ < �1, (141)

which means there is no level crossing in the localization
volume of the 1 leg. To estimate the relevant quantities in
Eq. (141), for simplicity we assume t1 � t2 and σ 2

1 = σ 2
2 .

If the energy E = E1n is close to the resonant energy ER ,
according to Eq. (10) and (14), we obtain

|k1 − k2| ∼ |E − ER| (t1 − t2)/t1t2. (142)

The mean level spacings are

�ν ∼ tν/ξ
(0)
ν , (143)

and the localization lengths satisfy

ξ
(0)
1 /ξ

(0)
2 ∼ t2

1 /t2
2 . (144)

Substituting Eqs. (142), (143), and (144) to Eq. (141) we obtain
the condition

t < |E − ER| (t1 − t2)/t1, (145)

which is consistent with the result of Eq. (85) with t1 � t2.
Therefore, Eq. (141) is essentially equivalent to the criterion
for being off resonant (�V > 0) at weak coupling t .

VIII. LIMIT OF VANISHING HOPPING ON THE
“SLOW” LEG

In the present work we are particularly interested in the
case where the localization lengths of the uncoupled legs are
parametrically different ξ

(0)
1 � ξ

(0)
2 . Accordingly, we refer to

the two legs as the “fast” and the “slow” one, respectively. So
far we have analyzed the model extensively in the limit where
the disorder is weak on both legs and thus ξ (0)

ν � 1.
Another interesting situation is the case where the hopping

strength on the slow leg vanishes t2 = 0 or is weak enough.
This is experimentally relevant for polariton systems in which
the exciton hopping is weak as compared to the disorder
potential. In this case the dimensionless disorder parameter
which we introduced previously diverges χ2

2 → ∞, and
formally ξ

(0)
2 = 0 even if the disorder strength on this second

leg is arbitrarily small. For this reason the perturbative analysis
in both of χ2

ν breaks down. Nevertheless, this limiting case can
be solved exactly, too, but requires a different treatment which
goes beyond the previous weak disorder analysis.

If t2 = 0, the second leg is composed of mutually noncon-
nected sites, which form a comb structure together with the
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first leg. The Schrödinger equation (4) takes the form(−t1 0

0 0

)
[�(x + 1) + �(x − 1)]

=
(

E − εx1 t

t E − δe − εx2

)
�(x), (146)

where

�(x) =
(

ψ1(x)

ψ2(x)

)
(147)

describes the amplitudes on the two legs, respectively. We
obtain the effective Schrödinger equation for ψ1(x) by elimi-
nating ψ2(x) in Eq. (146):

−t1 [ψ1(x + 1) + ψ1(x − 1)] = (E − ε̃x1)ψ1(x − 1), (148)

where

ε̃x1 = εx1 + t2

E − δe − εx2
. (149)

Note that ε̃x1 has the meaning of an effective disorder potential
on leg 1. Furthermore, if |εx2| � |E − δe| Eq. (149) can be
expanded as

ε̃x1 � t2

E − δe
+
[
εx1 + t2

(E − δe)2
εx2

]
+ O(ε2). (150)

The first term on the r.h.s. of Eq. (150) is a homogeneous
potential shift. The second term is an effective disorder
potential of zero mean.

Equations (148) and (150) represent a single-chain prob-
lem, which can be solved exactly. The dispersion relation of
the disorder-free part is determined by

−2t1 cos k + t2

E − δe
= E, (151)

which gives the two nonoverlapping bands

Eτ (k) = −t1 cos k + δe

2
− (−1)τ

√(
t1 cos k + δe

2

)2

+ t2.

(152)

Of course, this coincides with Eq. (15) for t2 = 0. Using
the result for a single-chain Anderson model4 we obtain the
localization length as

1/ξ = χ2
1 + χ̃2

2 tan2 γ

8 sin2 k
+ O

(
χ4

1 ,χ̃4
2

)
. (153)

Here, the disorder on the leg 2 is measured by the dimension-
less ratio

χ̃2 = σ 2
2

t2
1

. (154)

γ is the mixing angle defined in Eq. (12) with t2 = 0.
Comparing the result (153) with Eq. (133), which describes
the one-channel case in the weak disorder limit (W2 � t2),
one sees that the two limits do not commute. This is similar
to the noncommutativity of the limits of weak disorder and
weak interchain coupling in the resonant case. As in Eq. (63)
the characteristic disorder energy scale is the mean level

t2 0.2

t2 0.05

t2 0.001

t1 t 1.0,

W1 W 2 0.1

0.0 0.5 1.0 1.5 2.0 2.5
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FIG. 13. (Color online) Localization length as a function of
energy for three values of t2. t1 = t = 1 and W1 = W2 = 0.1 are
kept fixed. t2 = 0.2, 0.05, and 0.001 capture the weak disorder
limit, the intermediate regime and the limit of a nearly disconnected
slow leg, respectively. The symbols are data of a numerical transfer
matrix calculation. The solid and the dashed curves are the analytical
results from Eqs. (133) and (153). The agreement with numerics in
the limiting cases is very good. The localization length increases
monotonically with t2 for a fixed energy. An anomaly due to the
commensurate wave vector 4k = 2π appears at E ≈ 1.0.

spacing in the localization volume when t2 = 0, which can be
estimated as

δẼ ∼ t1/ξ ∼ max
{
σ 2

1 ,σ 2
2

}
/t1. (155)

A perturbative analysis in t2 is valid only if t2 � δẼ. We expect
a crossover to the regime of strong hopping on the slow leg
when t2 ∼ δẼ.

The noncommutativity of the two limits is illustrated in
Fig. 13 where we compare the two analytical limits with
numerical simulations at fixed disorder W1 = W2 = 0.1 and
hoppings t1 = t = 1. Three values of t2 are selected to cover
the crossover from the weak disorder limit (t2 � W2) to the
limit of a slow leg with disconnected sites (t2 → 0). Equations
(133) and (153) are indeed seen to capture the two limits very
well. Note that the localization length increases monotonically
with t2 for a fixed energy, as one may expect.

IX. CONCLUSION AND POSSIBLE APPLICATIONS

The most important potential application of our theory is in
the realm of polaritons in quasi-one-dimensional semiconduc-
tor structures.14,15 Here the fast chain corresponds to the elec-
tromagnetic modes (“light”) confined in a one-dimensional
structure and therefore having a parabolic dispersion with a
very small mass (large t1) at small wave vectors. The slow chain
corresponds to the Wannier-Mott excitons, an electron-hole
pair coupled by Coulomb attraction. The mass of the exciton
is typically 104 times larger than that of “light.” Surface
roughness of the one-dimensional structure and impurities
therein produce a disorder potential acting on both excitons
and light.16 Experimentally, one can easily probe the intensity
of the light component by measuring the intensity of three-
dimensional photons that emerge due to diffraction from the
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surface roughness. The amplitude of the wave function of
the exciton’s center of mass is more difficult to access, but,
in principle, still possible, for example, via stimulated or
spontaneous exciton recombination and the related radiation.
Another application is related with one-dimensional structures
in cold-atom traps. By this technique one can construct and
study coupled one-dimensional chains in the same way as it
was recently done for a single chain.38,39

While all possible regimes can be achieved in a system
of cold atoms, the most relevant regime for one-dimensional
cavity polaritons is that described in Fig. 1(b), where for each
band (the lower and the upper polariton bands) only one
channel exists. This is because the exciton-light coupling is
typically stronger than the narrow bandwidth t2 ∼ 1/mexc of
the excitons. The localization length in the case relevant for
the upper exciton-polaritons is shown in Fig. 11.

As expected, the localization length tends to zero near the
bottom and the top of the band, due to the vanishing rapidity.
Note that in the context of polaritons the upper band edge
does not exist, since the light has an unbounded continuous
spectrum. In our model the top of the band appears merely
due to the discreteness of the lattice. In the center of the
band the localization length is of the order of the localization
length for the uncoupled “light” component. More important
is the distribution of amplitudes of “light” and “exciton” wave
functions which are similar to Fig. 12(a), with “light” being
represented by the wave function ψ1 on the fast leg and the
“exciton” part being represented by the wave function ψ2 on
the slow leg. One can see that the coupling to light makes
the exciton wave function spread over a distance ξ ∼ ξ

(0)
1 of

the order of the localization length of light. This is much
larger than the maximum exciton localization length ξ

(0)
2 in

the absence of coupling. The price for the “fast transit” is
that the amplitude of the exciton wave function is small. This
means that the transfer of a locally created exciton to distances
of order ξ

(0)
1 is possible, but occurs with reduced probability.

In the long search for light localization (see the paper by
Lagendijk, van Tiggelen, and Wiersma in Ref. 2) the crucial
point was to achieve a smaller localization length of light. Our
results show that this can also be achieved by coupling light to
excitons near the bottom of the upper polariton band.

We would like to emphasize that the model considered
above does not take into account an important property of
polaritons, namely their finite lifetime due to recombination of
excitons, and the out-coupling of the light from the waveguide.
This limits the coherence of polaritons and inhibits Anderson
localization. More precisely, the effects of Anderson localiza-
tion are relevant only if the time to diffuse up to the scale of
the localization length (which by Thouless’ argument is of the
order of the inverse level spacing in the localization volume)
is smaller than the lifetime of the excitons. Further crucial
aspects are interactions among polaritons at finite density and
the related possibility of interaction-induced delocalization
and Bose condensation of polaritons.22,23 A complete theory
of localization of hybrid particles like polaritons should take
into account all these issues.24

Let us finally discuss the role of dimension for our results.
We have found that under resonant conditions the localization
lengths of two coupled chains are of the order of the

localization length of the more localized, uncoupled leg. We
may interpret this phenomenon as a manifestation of the fact
that in one dimension the mean free path is the relevant length
scale that sets the localization length. It is not surprising that
the backscattering rate, and thus the “worst” leg of the chains,
determines the localization properties of a coupled system.
However, the close relation (proportionality) between mean
free path and localization length is special for one-dimensional
systems. In contrast, in two dimensions the localization length
becomes parametrically larger than the mean free path at weak
disorder. In d > 2 most eigenstates are even delocalized in
weak disorder. Accordingly, we expect that the localization
length is not so simply determined by the properties of the more
disordered part among two coupled systems. Nevertheless,
since the proliferation of weak-localization and backscattering
leads to complete localization also in two-dimensional (in
the absence of special symmetries), we expect that a well
propagating channel becomes more strongly localized upon
resonant coupling to a more disordered channel. This may
apply, for example, to two-dimensional polariton systems.
However, in higher dimensions d > 2 such a coupling might
have a rather weak effect. We expect that a “fast” channel is
not affected much by a more disordered parallel channel. That
such a trend exists indeed at high enough dimensions can be
shown in the case of two coupled Bethe lattices,40 which can
be viewed as the limit of arbitrarily high dimensions.

We leave the investigation of problems in higher dimensions
and possible implications for interacting few-particle problems
for future work.
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APPENDIX A: TRANSFER MATRIX OF AN
“ELEMENTARY SLICE” IN THE CURRENT-CONSERVING

BASIS EQS. (24) AND (26)

In this appendix we derive Eqs. (27) and (29). In Eqs. (19)
and (20), m̃x is a symplectic matrix which by definition satisfies

m̃T
x J m̃x = J, (A1)

m̃x = m̃∗
x, (A2)

where

J =
(

0 1

−1 0

)
, (A3)

and m̃T
x is the matrix obtained from m̃x by transposition.

Define the new matrix mx

mx = U−1
x+1 m̃x Ux, (A4)

where the rotation matrix is

Ux ≡
(

αx α∗
x

αx−1 α∗
x−1

)
, (A5)
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with αx defined by Eq. (28). The corresponding inverse matrix
is given by

U−1
x = 1

�

(
α∗

x−1 −α∗
x

−αx−1 αx

)
, (A6)

where � is the diagonal matrix

� = αxα
∗
x−1 − α∗

xαx−1. (A7)

The crucial point is that by current conservation Eq. (23), �

is independent of coordinates and is proportional to the unit
matrix in channel space:

� = i 1. (A8)

Note also that, by construction, the rotation matrix Ux obeys
the disorder-free Schrödinger equation Eq. (19):

Ux+1 = m̃x |ε̃=0 Ux. (A9)

It follows immediately from Eqs. (A9) and (A4) that in
the absence of disorder mx = 1. In the presence of weak
disorder the matrix mx acquires a small coordinate-dependent
correction proportional to ε̃x , which is given by Eq. (27).

Next, by inverting Eq. (A4) and plugging into Eq. (A2) one
obtains

�
(1)
x+1 mx �(1)∗

x = m∗
x. (A10)

Using the definition of αx [Eq. (28)] one can readily show that

�(1)
x ≡ (U∗

x)−1Ux = �1 (A11)

is real and independent of x. This immediately reduces the
time-reversal symmetry condition Eq. (A10) to the form in
Eq. (29).

The same procedure applied to the symplecticity relation
Eq. (A1) results in the following constraint (using m̃T

x = m̃†
x):

m†
x �

(3)
x+1 mx = �(3)

x , (A12)

where

�(3)
x ≡ U†

x J Ux = −��3 = −i �3 (A13)

is independent of coordinate due to current conservation. Thus,
we obtain the current conservation condition in Eq. (29).

APPENDIX B: PERTURBATIVE CALCULATION OF δ�λ
UP TO SECOND ORDER

Equations (38), (45), and (46) fully determine the variation
of the eigensystem of the Hermitian matrix R. It is given by
δ�λ, which characterize the “perturbation” δR. We can therefore
use standard perturbation theory to expand δ�λ into powers of
disorder on the additional slice. In this appendix we calculate
δ�λ up to the second order, which is necessary to derive the
Fokker-Planck equation (51).

We introduce some quantities which are convenient to
present the results. Analogously to αx , defined by Eq. (28),
we define

βx = αxu, (B1)

where u is the unitary matrix in Eq. (34). Since αx describes the
propagation in the plane-wave basis on the individual chains,
and u is the “polarization” matrix, we can consider βx as

describing clean propagation in the “polarized” plane-wave
basis. Furthermore, analogously to the blocks in Eq. (27), we
can define two quantities on the “polarized” basis, related with
the forward- and back-scattering of the right-moving particle
off the slice:


x = iβ†
x ε̃xβx,

(B2)
�x = iβ†

x ε̃xβ
∗
x,

which are 2 × 2 matrices. It is easy to realize that 
x

is anti-Hermitian and �x is symmetric. The corresponding
left-moving quantities are complex conjugates of them. The
perturbative series of δ�λ are functions of elements of 
x and
�x . For simplicity of further notations, we define

F̃ =
√

F2 − 1, (B3)

and

�F = F1 − F2. (B4)

In order to facilitate the perturbative calculation, we adopt
a parametrization of R + δR as in Eq. (38), but with F →
F + δF, F̃ → F̃ + δF̃, and u → u + δu, in which

δF̃ =
√

(F + δF)2 − 1 −
√

F2 − 1. (B5)

Substituting this into Eqs. (46) and (45) we obtain two coupled
equations for δF and the 2 × 2 matrix S which captures the
incremental change of the polarization basis,

S = 1 + u†δu, (B6)

as

S(F + δF)S† = F + F(1) + F(2), (B7a)

S(F̃ + δF̃)ST = F̃ + F̃(1) + F̃(2), (B7b)

We have introduced perturbation terms on the r.h.s. of the
two equations as

F(1) = −F�L + �LF + �LF̃ + F̃�∗
L, (B8a)

F(2) = −�LF�L + �LF�∗
L + �LF̃�∗

L − �LF̃�L, (B8b)

F̃(1) = −F̃�∗
L + �LF̃ + �LF + F�L, (B8c)

F̃(2) = −�LF̃�∗
L + �LF̃�L + �LF�L − �LF�∗

L, (B8d)

where F(1) and F̃(1) are linear in disorder, while F(2) and F̃(2)

are quadratic. Additionally, F(1) and F(2) are Hermitian, but
F̃(1) and F̃(2) are symmetric.

We expand δF and δu in disorder strength. From the latter
we calculate the corresponding variations of angular variables.
Without going into the details of the calculation, we present
the results up to the second order in disorder.

To first order the corrections

δ�λ(1) = (δF (1)
1 ,δF

(1)
2 ,δθ (1),δψ (1),δφ(1),δϕ(1)

)
(B9)
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are given by

δF (1)
� = F(1)

�,�, � ∈ {1,2}, (B10a)

δθ (1) = 2

�F
Re
(
F(1)

2,1e
iψ
)
, (B10b)

δψ (1) = 1

2

(
ImF̃(1)

2,2

F̃2
− ImF̃(1)

1,1

F̃1

)
− δϕ(1) cos θ, (B10c)

δφ(1) = −1

2

(
ImF̃(1)

2,2

F̃2
+ ImF̃(1)

1,1

F̃1

)
, (B10d)

δϕ(1) = 2

�F
Im
(
F(1)

2,1e
iψ
)

csc θ, (B10e)

where the subscripts denote the matrix elements of the “pertur-
bations” F(1) in Eq. (B10). We recall that the “perturbations”
in Eq. (B10) are L dependent.

The second-order corrections,

δ�λ(2) = (δF (2)
1 ,δF

(2)
2 ,δθ (2),δψ (2),δφ(2),δϕ(2)

)
, (B11)

are more complicated. However, we recall that our aim is to

calculate the correlators δλ
(1)
i δλ

(1)
j and δλ

(2)
i in Eq. (51). To

avoid repeating calculation, we should express the δ�λ(2)’s in
terms of the first-order corrections Eq. (B10) as far as possible.
We obtain

δF (2)
� = F(2)

�,� − (−1)�
∣∣F(1)

2,1

∣∣2
�F

, � ∈ {1,2}, (B12a)

δθ (2) = 2

�F
Re
(
F(2)

2,1e
iψ
)+ a(1)δθ (1) + 1

4
sin 2θ (δϕ(1))2,

(B12b)

δψ (2) = a
(2)
− + b

(1)
− δφ(1) + b

(1)
+ d (1) + c+e(2) − a

(1)
− c

(1)
+

− 1

2
sin θδθ (1)δϕ(1) − cos θδϕ(2), (B12c)

δφ(2) = −a
(2)
+ − b

(1)
+ δφ(1) − b

(1)
− d (1) + c−e(2), (B12d)

δϕ(2) = 2

�F
Im
(
F(2)

2,1e
iψ
)

csc θ + a(1)δϕ(1) − cot θδθ (1)δϕ(1),

(B12e)

in which

a(1) = 1

�F

(
δF

(1)
2 − δF

(1)
1

)
, (B13a)

a
(2)
± = 1

2

(
ImF̃(2)

2,2

F̃2
± ImF̃(2)

1,1

F̃1

)
, (B13b)

b
(1)
± = 1

2

(
F1

F̃ 2
1

δF
(1)
1 ± F2

F̃ 2
2

δF
(1)
2

)
, (B13c)

c± = 1

2

(
F̃1

F̃2
± F̃2

F̃1

)
, (B13d)

d (1) = δϕ(1) cos θ + δψ (1), (B13e)

e(2) = 1

4
[(δϕ(1))2 sin2 θ − (δθ (1))2] sin 2ψ

+ 1

2
δϕ(1)δθ (1) sin θ cos 2ψ. (B13f)

In practice, we first calculate all the correlators δλ
(1)
i δλ

(1)
j

by Eq. (B10). At the same time we obtain the correlators

relevant for the products of first-order terms on the r.h.s. of
Eq. (B10). Finally, after evaluating the disorder average of a

(2)
±

in Eq. (B13b), δλ
(2)
i ’s can be obtained.

APPENDIX C: COEFFICIENTS OF EQ. (68)

The coefficients of Eq. (68) are

c1 = −2
F̃ 2

1

�F
�6, (C1a)

c2 = 2
F̃ 2

2

�F
�6, (C1b)

c3 = 1

�F 2

[(
F 2

1 − F 2
2 − 2

)
(�5 + �4) + 2F1F2 (�5 − �4)

− (F̃ 2
1 + F̃ 2

2

)
(1 − u2)∂u�6

]− 4
1

�F 2
F̃1F̃2u�6 cos 2ψ,

(C1c)

c4 = 1

�F

[(
F̃1F̃2 + F2

F̃2
F̃1 − F1

F̃1
F̃2

)
�3

+ 2
F̃1F̃2

�F

u√
1 − u2

(�5 − �4) + F1

F̃1
F̃2∂u�4

+ F2

F̃2
F̃1∂u�5 − 2

F̃1F̃2

�F
(�6 + 2u∂u�6)

]
sin 2ψ, (C1d)

c11 = F̃ 2
1 �1, (C1e)

c12 = 2F̃1F̃2�3 cos 2ψ, (C1f)

c13 = 2F̃1

�F
(F̃1 + F̃2 cos 2ψ)�4, (C1g)

c14 = −F̃1

(
F2

F̃2
�3 + 2

F̃2

�F

u√
1 − u2

�4

)
sin 2ψ, (C1h)

c22 = F̃ 2
2 �2, (C1i)

c23 = 2
F̃2

�F

(
F̃2 + F̃1 cos 2ψ

)
�5, (C1j)

c24 = −F̃2

(
F1

F̃1
�3 + 2

F̃1

�F

u√
1 − u2

�5

)
sin 2ψ, (C1k)

c33 =
[
V3 + 1

�F 2

(
F̃ 2

1 + F̃ 2
2 + 2F̃1F̃2 cos 2ψ

)
�6

]
(1 − u2),

(C1l)

c34 = − 1

�F

(
F1F̃2

F̃1
�4 + F̃1F2

F̃2
�5 − 4

F̃1F̃2

�F
u�6

)
sin 2ψ,

(C1m)

c44 = 1

2

[
1 + 1

2

(
F1

F̃1

)2
]

�1 + 1

2

[
1 + 1

2

(
F2

F̃2

)2
]

�2 − �6

+ u√
1 − u2

[(
2 + F1

�F

)
�4 +

(
2 + F2

�F

)
�5

]

+ u2

1 − u2

[
�3 +

(
1 + F̃ 2

1 + F̃ 2
2

�F 2

)
�6

]

−
[

1

2

F1F2

F̃1F̃2
�3 + u√

1 − u2

1

�F

(
F1F̃2

F̃1
�1 + F̃1F2

F̃2
�2

)

+ 2
u2

1 − u2

F̃1F̃2

�F 2

]
cos 2ψ, (C1n)
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where the F̃�’s are the two diagonal elements of the matrix
(B3) and �F is defined in Eq. (B4). The new quantities
introduced in Eq. (C) are defined below. Notice first that the
�n are functions of u defined by

�1(2)(u) = V1 + V2 + 4V3 − (+)2(V2 − V1)u

+ (V1 + V2 − 4V3)u2, (C2a)

�3(u) = (V1 + V2 − 4V3)(1 − u2), (C2b)

�4(5)(u) = [V1 − V2 + (−)(V1 + V2 − 4V3)u](1 − u2),

(C2c)

�6(u) = V1 + V2 − (V1 + V2 − 4V3)u2, (C2d)

where V1, V2, and V3 are the three Born cross sections defined
in Eq. (60). In order to solve Eq. (78) in the limit L � 1, we
need the values of c3 and c33 in the limit Fmax � Fmin � 1,

lim
L→∞

c3 = (|V1 − V2| − ∂u�6)(1 − u2),

lim
L→∞

c33 = (V3 + �6)(1 − u2),

which is Eq. (79).

APPENDIX D: TRANSFER MATRIX OF AN
“ELEMENTARY SLICE” IN THE BASIS EQS. (24) AND (108)

The derivation of Eq. (108) goes in parallel with the
derivation of Eq. (27) in Appendix A. However, the rotation
Ux is constructed in such a way that

Ux =

⎛
⎜⎜⎜⎝

ψ+
1 (x) ψ−

1 (x) 0 0

0 0 ψ+
2 (1) ψ−

2 (1)

ψ+
1 (x − 1) ψ−

1 (x − 1) 0 0

0 0 ψ+
2 (0) ψ−

2 (0)

⎞
⎟⎟⎟⎠, (D1)

where ψ±
1,2(x) are defined by Eqs. (24) and (107). Compared

with Eq. (A5) for the two-channel case, the second and third
columns of Eq. (D1) have been permuted, and the columns
corresponding to the evanescent channel are coordinate-
independent. The inverse of Ux is

U−1
x =

⎛
⎜⎜⎜⎝

−iψ−
1 (x − 1) 0 iψ−

1 (x) 0

iψ+
1 (x − 1) 0 −iψ+

1 (x) 0

0 −ψ−
2 (0) 0 ψ−

2 (1)

0 ψ+
2 (0) 0 −ψ+

2 (1)

⎞
⎟⎟⎟⎠.

(D2)

The transfer matrix of an elementary slice (108) is

mx = U−1
x+1m̃xUx = m + δmx, (D3)

where m and δmx take the form given in Eq. (109). Following
the same procedure as in Appendix A, one can also obtain
the symmetry constraints on the matrix mx , which is imposed
by the reality and symplecticity of the matrix m̃x . Without
going into details we present the following results: The reality
relation (A2) gives

m∗
x = 
1mx
1, 
1 =

(
σ1 0

0 1

)
; (D4)

The symplecticity relation (A1) gives

m†
x
3mx = 
3, 
1 =

(
σ3 0

0 σ2

)
. (D5)

Finally, it is not hard to show that the Lyapunov exponents
of the products (30) satisfy the symmetry property stated in
Eq. (114).
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