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We study the Anderson localization in systems, in which transport channels with rather different properties
are coupled together. This problem arises naturally in systems of hybrid particles, such as exciton-polaritons,
where it is not obvious which transport channel dominates the coupled system. Here we address the question of
whether the coupling between a strongly and a weakly disordered channel will result in localized (insulating)
or delocalized (metallic) behavior. Complementing an earlier study in 1D [H. Y. Xie, V. E. Kravtsov, and
M. Miiller, Phys. Rev. B 86, 014205 (2012)], the problem is solved here on a bilayer Bethe lattice with
parametrically different parameters. The comparison with the analytical solution in 1D shows that dimensionality
plays a crucial role. In D =1 localization is in general dominated by the dirtier channel, which sets the
backscattering rate. In contrast, on the Bethe lattice a delocalized channel remains almost always delocalized,
even when coupled to strongly localized channels. We conjecture that this phenomenology holds true for finite

dimensions D > 2 as well. Possible implications for interacting many-body systems are discussed.
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I. INTRODUCTION

In a variety of physical contexts, the situation arises that
two or more propagating channels with different transport
properties are coupled together, competing with each other or
modifying each other’s properties. Under these circumstances
it is interesting to study the resulting localization properties
on the coupled system. Such a question arises in particular in
the context of exciton-polaritons, which are hybrid particles:
half photons, half excitons, the two channels being coupled
linearly via dipolar interaction.! Another realization of this
physical situation can be found in bilayer graphene, with
different degrees of disorder affecting the two layers. A recent
work proposed such bi- or trilayers as field effect transistors,
whereby a gate potential controls the degree of disorder sensed
by the electrons in the bilayer.”

Similar questions arise in the problem of energy or matter
localization in few- or even many-body problems, where
a multitude of propagation channels may exist to transport
particles or energy from one place in the system to another.
For example, energy may be transported in small, nearly
independent units in the form of quasiparticles, or it may have
a propagation channel in which a larger amount of energy is
propagating in the form of blobs of several quasiparticle-like
excitations that form sorts of bound states. Such “bound states”
were argued to be favorable transport channels in the context
of few-particle problems. The problem was especially studied
in low dimensions,*® where under certain circumstances such
compounds are found to have an enhanced localization length
as compared to single-particle excitations. The question arises,
then, as to which channel of propagation is the most favorable
in transport problems containing a larger number of particles,
or in the situation of particles at finite density.

In this type of problem, the various propagation channels
are not independent, but couple to each other by scattering
events. Understanding transport in such interacting systems
is a challenging and largely unresolved problem. Here we do
not aim at resolving all aspects of the many-body problem,
but address one subquestion which arises in its context.
Indeed, the interacting systems have a common feature with
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noninteracting hybrid particles: Two or more propagating
channels with parametrically different localization properties
are coupled together and influence each other’s transport
characteristics. Under these circumstances it is interesting to
study what are the resulting localization properties in the
coupled system. In particular in the specific case where a
less localized system is coupled to a more localized one, the
question arises as to which of the two components eventually
dominates the transport: Does one obtain an insulating or
conducting system? A central result of our work is to show
that the answer to this question depends crucially on the
dimensionality of the system.

In our recent work? the question of the competition between
alternative propagation channels was raised in disordered one-
dimensional systems. This case can be studied in great detail in
the form of a single-particle problem with two parallel, coupled
channels. Among others, this naturally describes the Anderson
localization of exciton-polaritons in quasi-one-dimensional
semiconductor heterostructures. By exactly solving the Ander-
son model on a two-leg ladder (D = 1), we found two regimes
whose localization properties are qualitatively different: (i) a
resonant regime, where the “slow” chain (the more disordered
one) dominates the localization length of the ladder; this can be
understood as a manifestation of the fact that in one dimension
the backscattering rate determines the localization properties
of a coupled system, since in general the localization length is
of the order of the mean free path; (ii) an off-resonant regime,
where the “faster” chain helps to delocalize the slow chain,
although with low efficiency.

In that 1D study the disorder was taken to set the smallest
energy scale, which allows for a fully analytic solution of
the problem. In higher dimensions (D > 2), however, weak
disorder has no significant effect on localization. Hence, we
are restricted to considering intermediate or strong disorder
in order to address meaningfully the question of the role
of interchannel coupling. Meanwhile, since the disorder
is comparable to or stronger than the hopping strengths,
resonance conditions, as in regime (i) of the weakly disordered
1D chains, are impossible. Furthermore, in contrast to the
physics in one dimension, proliferation of backscattering
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plays a subdominant role for the Anderson transition of the
coupled system, and therefore, the resulting phenomenology
of coupled-channel problems turns out to be rather different.

In this paper we study two coupled Bethe lattices with
different transport characteristics. This can be viewed as the
limit of infinite dimensions (D — oo) of the problem of
coupled channels, which we will contrast with the case of
two coupled chains (D = 1). The behavior on the Bethe
lattice is suggestive of the physics to be expected in high-
dimensional systems. Indeed, we believe that the qualitative
behavior of coupled lattices in D > 2 is very similar to the
phenomenology found on the Bethe lattice. However, the latter
has the significant advantage of being exactly solvable, which
we exploit below.

Statistical models on the Bethe lattice’® have attracted a
lot of studies, because they admit exact solutions and reflect
features of the corresponding systems in sufficiently high
spatial dimensions. The Anderson model on the Bethe lattice
was first introduced and solved by Abou-Chacra, Anderson,
and Thouless in Refs. 10 and 11, where the existence of the
localization transition was proven and the location of the
mobility edge was found. That work showed in particular
that localization is possible in the absence of loops in the
lattice. The model was solved by studying the self-consistency
equation for the on-site self-energy, which leads to a nonlinear
integral equation for the probability distribution function
of that quantity. The transition from the localized phase
to the delocalized phase is characterized by the instability
of the fixed point distribution of real self-energies with respect
to a perturbation with infinitesimal imaginary parts of the
self-energies. Physically, the latter describes an infinitesimally
weak coupling to a dissipative bath which allows for decay
processes. The above instability signals that local excitations
start coupling to a bath on sites infinitely far away, which
signals their spatial delocalization.

The stationary distribution function of the self-energy
can be found numerically with the help of a population
dynamics, or “pool,” method.'®!* The original work by Abou-
Chacra et al.'®'! has inspired a number of studies in both
the physics'>'® and the mathematics'’?! communities. The
recent work Ref. 16 points out that the Anderson model
on the Bethe lattice may have a further transition within
the delocalized phase and corresponds to a transition in
the level statistics. Here, we focus however on the standard
delocalization transition, as discussed by Abou-Chacra et al.

In the present work we generalize the approach by Abou-
Chacra et al. to the case of two coupled Bethe Ilattices.
Following Refs. 10 and 11 we derive a recursion relation
for the local Green’s functions (encoded in a 2 x 2 matrix
in layer space) and study the effect of interlayer coupling
on the location of the transition. We restrict ourselves to the
band center (E = 0). Furthermore, we focus on the case of
lattices with identical hopping, but different disorder strengths.
This choice is motivated by the one-dimensional case, where
equal hoppings lead to resonance effects, which enhance the
localization tendency in the coupled system. In contrast, we
find that despite the choice of equal hoppings such a localizing
effect almost never occurs on coupled Bethe lattices. This is
illustrated by the schematic phase diagrams of Fig. 1, which
anticipate and summarize the main results of our analysis:
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FIG. 1. (Color online) Schematic phase diagram for coupled
Bethe lattices with identical hopping strength, but different disorder
W, # W,, as inferred from the results in Figs. 3 and 4. The critical
disorder for uncoupled lattices, W, & 17.3, is indicated by the red
lines. (a) Nearest-neighbor intralattice coupling only, y = 0. The
mobility edge for the middle of the band (E = 0) of the coupled
system is indicated by the black curve. In region A (yellow), in the
absence of the coupling ¢, the two lattices would both be localized.
However, the finite ¢, pushes the system into the delocalized phase.
If in the absence of coupling one lattice is delocalized and the other
one localized, there are two possibilities. In region B (gray), the
coupled system becomes delocalized; that is, the less disordered
channel dominates. Only when the delocalized lattice is very close to
criticality and is coupled to a very strongly disordered lattice [region C
(green)] localization prevails. However, this regime occurs in a very
narrow window of parameters. (b) Next-nearest-neighbor hopping
included, y = 1. The mobility edge is indicated by the blue curve. In
region A (yellow) the coupling between two localized lattices induces
a delocalized phase. In contrast to (a), the region C is eliminated by
the next-nearest-neighbor hopping: The coupled system is always
more delocalized than either of the uncoupled lattices.

Under most circumstances the coupling between two layers
enhances delocalization. Only when one couples a barely
metallic layer to a strongly disordered second layer and
excludes next-nearest-neighbor interlayer couplings [y = 0
in the Hamiltonian (1) below], the coupling can induce
localization. However, in the largest part of the phase diagram
the coupling has a delocalizing effect. In the case of next-
nearest-neighbor interlayer couplings (i.e., nearest-neighbor
coupling across layers, y = 1), the coupled layers are always
delocalized if one of the uncoupled layers is delocalized.
Moreover, in some range of parameters a coupling between
two localized lattices can induce delocalization.

Our central result may be summarized by the statement that
on Bethe lattices the delocalized lattice essentially dominates
the physics. In other words, if a delocalized channel exists,
delocalization, diffusion, and the ability of entropy production
will persist even upon coupling to more localized channels. As
mentioned before this is quite opposite to the phenomenology
in 1D where most often the more disordered chain dominates
the localization properties.

The remainder of the paper is organized as follows. In
Sec. II we define the Anderson model on two coupled Bethe
lattices and derive the recursion relation for the local Green’s
functions. In Sec. III we present the population dynamics
algorithm, which is used to study the statistics of the local
self-energy. In Sec. IV we obtain the location of mobility
edges, which gives rise to the phase diagrams shown in Fig. 1.
Their qualitative features will be explained by a perturbative
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analysis. Finally, we discuss the role of dimensionality and the
possible implications of our results on the interacting particles
in the Conclusion.

II. BILAYER ANDERSON MODEL

A. Model

We consider two Bethe lattices labeled by v = {1,2}. A
Bethe lattice is defined as the interior of an infinite regular
Cayley tree, each vertex having the same coordination number
K + 1. The essential feature of such a lattice is the absence of
loops. The Bethe lattice can be realized as the thermodynamic
limit of a random regular graph of constant connectivity (K +
1), that is, a graph where each site connects to other K + 1
sites, which are randomly and uniformly selected. It is known
that any finite portion of such a graph is a tree, with probability
tending to one as the size tends to infinity. The advantage of the
random-graph construction is the explicit absence of boundary
effects. A random graph can thus be viewed as a regular tree
wrapped onto itself.

Analogously to the two-chain model studied in Ref. 3, we
define the Anderson model on coupled Bethe lattices as (cf.
Fig. 2)

H = Z (Z eivcjvciv - t|| Z(Cj‘)cj” —+ Hc)>

v=1,2 \ i )

- &(chlciz +vy Z(c;rlcjz + cjzcjl) + Hc)
i (i.j)
)

Here i labels the coordinates of two corresponding sites in
the two layers, and (i, j) denotes two nearest neighbors i and
j on the Bethe lattice. We take the on-site energies ¢;, to be
independently distributed random variables with zero mean. ¢
is the nearest-neighbor hopping strength within each layer. As
motivated above, we take the intralayer hoppings to be equal,
so as to come closest to the resonant case in one dimension,
which shows the strongest localizing effects. ¢, is the interlayer
hopping strength. In addition to direct (nearest-neighbor)
interlayer coupling, we also allow for next-nearest-neighbor
hoppings of strength yz;. We will consider the two cases

3 RaS
SN
e o

FIG. 2. (Color online) Anderson model on a bilayer Bethe
lattice, described by the Hamiltonian (1), shown for connectivity
K + 1 = 3. We consider two types of interlayer coupling: (i) Only
nearest-neighbor coupling (horizontal blue lines), setting y = 0.
(ii) Additional next-nearest-neighbor coupling (diagonal green lines),
withy = 1.
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y =0 and y = 1. For K = 1, the former reduces to the 1D
model studied in Ref. 3.

The reason to include finite next-nearest-neighbor hoppings
is as follows. Consider the effect of coupling a first lattice to
another one with very strong disorder or vanishing hopping. If
we exclude next-nearest-neighbor hopping by setting y = 0,
the only significant effect of the coupling is to increase the
effective disorder on the first lattice, while the renormalization
of its hopping is strongly subdominant or even absent alto-
gether. However, the latter is not the case if we allow for next-
nearest-neighbor interlayer hopping. Indeed, this introduces a
weak but nonnegligible additional propagation channel, which
proceeds via the disordered lattice. As the study below will
show (and as anticipated in Fig. 1), in the case y =1, the
renormalization of the hopping #; always dominates over the
enhancement of effective disorder, and hence, the coupling
always has a delocalizing tendency. In the context of the more
general problems of coupled parallel propagation channels in
many-body systems, the case of y ## 0 appears to be a rather
generic and natural choice. Even a rather small y is sufficient
to avoid the phenomenology found for y = 0, which leads to
atypical behavior in some small regions of the phase diagram.

In the Hamiltonian (1) the two layers are subject to
different random potentials, characterized by two probability
distribution functions p,(¢). For convenience we assume them
to be box distributed:

1/w,, —-W,/2,W,/2],
pu<e>={/ € € =Wz W/2 @)

0, otherwise.

Our goal is to study the effect of weak interlayer coupling
t; on the Anderson transition of the system. As mentioned
above, this parallels the case of two resonant chains described
in Fig. 7 of Ref. 3. However, as we will discuss in detail in
Sec. IV, the parameter range of interest on the Bethe lattice is
Wi, 2ty .1, in contrast to the weak disorder limit considered
in Ref. 3. However, the notion of resonant interlayer coupling
is meaningful only if the disorder is so weak that a well-
defined dispersion relation exists, which is not the case for the
regime of interest on the Bethe lattice. Therefore, the equality
of the two intralayer hoppings f; does not have important
consequences in the present study.

B. Recursion relation for the local Green’s functions

The retarded Green’s function at energy E is defined by

Gip jp(E) = (i,pl ———=1j,v), (€)]
wej W Etin—A J
where v,u € {1,2} are layer labels, the kets stand for

li,v) = ¢/ |Vacuum), )

and 7 is an infinitesimal positive real number, representing an
infinitesimally weak coupling to a dissipative bath into which
particles can decay. We introduce 2 x 2 matrices in the layer
space, I:Ii, Gi, and f, whose elements are

v = (i, Hi,v), (5a)
wy — Gip.,iv, (Sb)
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and

’f/w = _8/l.l)t|| - (1 - (Su.u)ytL- (SC)

T describes the hopping from one pair of sites to a neighbor
pair of sites.

One can easily show that Gi = G,-(E ) satisfies the follow-
ing equation:

[

G

= o ©)
E+in— H; —szeaiGj T
where di denotes the set of neighbors of i. The Gy) are the
Green’s functions at the coordinate j in the absence of all
bonds between the pairs of sites at i and j. (A}(j’) = (A}(]f)(E)
satisfies the recursion relation,
o 1
J . ; A ADA’
E+in—Hj =T} G/(cj)T

(N

where 8] \ i denotes the set of neighbors of j excluding i. G;
and Gg.') are complex symmetric matrices. In order to obtain
G,- , we first solve the recursion relation (7), and then substitute

the solution into Eq. (6).
The self-energies are defined via the layer-diagonal matrix

elements (G(ji) )y as

Sj(E)=E +in—e;, —1/(GV), . )
Their imaginary parts,
I'ju(E) = ImS;, (E), ©))

characterize the decay processes of local excitations overlap-
ping with | j,v) and having energy E.’

Under the recursion (7) the I'j, assume a stationary distri-
bution, whose characteristics determine whether the system is
in the localized phase or in the delocalized phase.”!!¢ In the
thermodynamic limit, one has

0, localized,
> (0, delocalized,

(10)

n—0

lim lim P(I'y >0orI'; > 0)= {
—> 00

N being the number of lattice sites. The thermodynamic limit,
N — 00, and the limit of vanishing dissipation,  — 0, do not
commute, since in a finite system, whose spectrum is discrete,
n — 0 always leads to vanishing I';,’s. Note that the values
I',—1 2 on the two sublattices are statistically dependent in the
presence of coupling; in particular, they are of the same order
of magnitude.

We emphasize that the average value of I',,, namely (I",),
cannot be used to identify the Anderson transition, because in
the localized phase an infinitesimal dissipation 7 leads to long
tails in the distribution function of I',, which leads to a finite
value (I, ). Instead, one needs to consider the typical value of
"y, as defined by the geometric average

Ciypo = €0, (11)

which depends on the lattice label v if the two lattices are
statistically not identical. However, as they are of the same
order of magnitude, the localization transition can be identified
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by either of the two typical values, by locating the boundary
between the two regimes:

lim lim [yp, =
n—>0N—o0 Py

12)

0, localized,
> 0, delocalized.

The equivalence of I'yyp, ,—; > for the purpose of identifying the
phase transition will be shown explicitly in Sec. III, based on
the population dynamics.

III. ANDERSON TRANSITION AND
POPULATION DYNAMICS

A convenient way to determine the mobility edge was
proposed in Refs. 10 and 11. It is based on analyzing the
stability of the real solution of Eq. (7) at the energy E with
respect to the insertion of the infinitesimal imaginary energy
shift in. In the localized phase the real solution is stable. In
contrast, in the delocalized phase, the solution develops a finite
imaginary part, which implies that I'yp ,(E +in) # Oas n —
0. The physical interpretation of this criterion is as follows. For
a finite but large tree, if the boundary sites are coupled to a bath
with a dissipation rate 1, we test whether the dissipation at the
root of the tree, measured by I'y, ,(E), is vanishing or not as
the tree size tends to infinity. If £ belongs to the localized part
of the spectrum (point spectrum), particle transport is absent at
large scale and there is no dissipation at the root. In contrast, in
the delocalized regime, we observe finite dissipation even deep
inside the tree. This procedure in fact implements the criterion
(10) for the Anderson transition, as the instability of real
self-energies reflects the Anderson transition as a phenomenon
of spontaneous breakdown of unitarity of the scattering matrix
associated with the system Hamiltonian.??

The stability analysis can be realized by a population
dynamics, which is a numerical recipe to solve the stochastic
iteration Eq. (7). A detailed description of such an algorithm
for the single-lattice case can be found in Refs. 10 and 13-16.
The basic idea is to simulate the distribution of a random
variable X by the empirical distribution of a large population
of representatives { X, }O/[\i ,- Here the random variable X is the
symmetric 2 X 2 matrix G(j."). For simplicity, we denote Gy)
by G, and the population by {Ga}of}i ;- The M > 1 repre-
sentatives can be understood as values of Green’s functions
on sites at a given distance from the root on a large tree.
The population dynamics consists of a number of sweeps of
the population, which simulate the propagation of dissipation
step by step towards the root of the tree, whereby the number
of representatives is kept constant.'* At the n th stage, we
denote the population as {CA}OI_,,r }{X\i |» which are obtained with
the following procedure:

(1) As an initial condition for the population we chose the
Green'’s functions of M uncoupled sites subject to a random
potential and a small dissipation, that is, {Ga,()}é\i , with matrix
elements

(Ga,o)vv =(E — €4 + in)ila
(Gaoi2 = (Goo)a1 =0,

where €,, are independently drawn from the probability dis-
tribution (2). n is taken as small positive number, representing
the dissipation on the boundary sites of the tree.

ve (1,2},
(13)
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(ii) Generate the ngth population from the (ny — 1)th
population. For each member 8 = 1,2, ..., M of the new pop-
ulation, we choose K matrices randomly and uniformly from
the population {Ga ,,Y,l}a \» called {GD,, Re—ls - - Ga,(,nsq}
and generate 2K random numbers according to the probability
distribution function in Eq. (2), called {e;,,...,ex,} with
v = 1,2. Substitute these quantities on the right-hand side of
Eq. (7) with n = 0 since the dissipative bath only couples to
the boundary sites, and obtain G .n, on the left-hand side.

We calculate the typical value of I', in the population

{Ga,nv }Qil,

Inre = — Zln ro (14)

typ,v a,v

using Eqs. (8) and (9). The localization transition can be
determined by studying the evolution of Fg,lp)v under sweeps.
As shown in Ref. 10, if the I';,’s are small enough, the
recursion relation (7) leads to a linear homogeneous equation
for I'j,, and the growth of the typical value of I';, under
sweeps is dominated by the largest eigenvalue of the linearized

recursion relation. Therefore, as long as Ff;g?v is sufficiently
(n5)

small, statistically Iy, grows linearly with the growth rate

A, =g, —InThs Y. (15)
Notice that in this linear regime as long as the two lattices are
coupled, the statistics of A,, is independent of the lattice index
v. In other words, nyp)v 1.2 deviate from zero simultaneously
as the system crosses into the delocalized phase, and therefore
the criterion for delocalization transition (12) does not depend
on v. The statistical analysis of A,, below is restricted to the
linear regime where the I, remain small.

The average growth rate of ngg?,, over ny > 1 successive
sweeps is given by

L SPW (16)

and the standard deviation is

1 ng

=2

A= | — A — ). 17

y 2 O = 3) a7

Physically, |A|~! may be interpreted as a localization length

in the insulating phase, or as a correlation length in the
delocalized phase. The Anderson transition occurs when'*

% =0. (18)

We obtained numerical results using a population size
M =107, dissipation n = 10", and n, = 200 sweeps. The
statistics of A,, was collected only after about 10 sweeps to
avoid the initial transient. We checked that the 1 dependence
of A and 5A was very weak, as long as n was taken to be small
enough.

IV. PHASE DIAGRAM

Letus now analyze the effect of the interlayer coupling #, on
the Anderson transition. For convenience we focus on the band
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center, £ = 0. We concentrate on relatively weak interlayer
coupling ¢; < 1), which guarantees that in the absence of
disorder the energy bands are not substantially changed by the
coupling. In this case a mobility edge first appears at the band
center E = 0 upon increasing the hopping strength.>* Below
we present the numerical results of the population dynamics,
which lead to the phase diagrams shown in Fig. 1. InSec.IVB a
perturbative analysis is given to explain the qualitative features
of the phase diagram.

A. Numerical results

In the numerical calculations we took a connectivity K +
1 = 3 and hopping strengths | = #; = 1. We analyze the two
cases in turn.

1. Statistically identical lattices (W, = W,)

We first analyze two statistically identical lattices with
disorder strength W = W, = W, (following the diagonal line
in Fig. 1). In Fig. 3 we show A + 6A at E = 0 as functions of
the disorder strength for uncoupled and coupled lattices. The
transition point is determined by Eq. (18). For the uncoupled

lattices we find the critical disorder W,.(t, = 0) ~ 17.3, which
(a)
A =0
0.05 f1
: O tJ_ = 1, Y= O
0.00 \'- I
| = ! i
-0.05 ! |
-0.10 : |
' W.~17.3 \W,~20.7
=05 18 19 20 21 22
Wi=W,
Gip (b) O tJ_=1,')/=1
0.00002,
0.08
0.00001
0.06
1= A=0 —
i —
0.04 ! T
~0.00001 !
0.02f W~37. 5
L‘O'OOOO%S 5637 3830 40 41 42
0.00 F————0—0—0——0 — ~
25 30 35 40
Wi=W,

FIG. 3. (Color online) Numerical results for the growth rates A
[Eq. (16)] at the band center for statistically identical Bethe lattices
as functions of disorder strength W, = W,. Energies are in units of
t) = 1. The error bars correspond to §A [Eq. (17)]. For the uncoupled
lattices (red triangles) the critical disorder strength is W.(t, = 0) &~
17.3. Upon coupling the lattices we find the critical disorder strengths:
(a) W.(t. =1,y =0) =~ 20.7 (black squares); (b) W.(r, =1,y =
1) =~ 37.5 (blue circles).
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agrees with the results in Refs. 15 and 16. For coupled
lattices, the critical disorder strength increases to W (¢, =
1,y = 0) =~ 20.7 with nearest-neighbor coupling only, and to
W.(t, =1,y = 1)~ 37.5 when next-nearest-neighbor cou-
pling is included. Thus the critical disorder is enhanced by the
coupling, W.(¢t, # 0) > W (¢, = 0). This implies that if two
decoupled lattices are in the localized phase but close enough
to criticality, the coupling will delocalize the system.

2. Parametrically different lattices (W, # W,)

Let us now study two Bethe lattices with identical hopping
but different disorder strengths. We take W; = W.(t, = 0) =
17.3 to be critical (following the red line W; = W, in Fig. 1)
and analyze whether the coupling to a more disordered lattice
pushes the system to a localized or delocalized phase. If the
interlayer coupling is weak ¢; < ¢, for both y =0 and y =
1, we expect that the system is delocalized when W, is not
much larger than W,. This is expected from the results of the
preceding section. However, for W, > W, the situation may
depend on the type of interlayer coupling.

In Fig. 4, we show A =+ 82 as functions of W,. We observe
the following features: For y = 0 a mobility edge occurs at
the fairly large disorder Wy = W, (t, = 1,y =0)~47. In
other words, as long as W, < W, . the band center becomes
delocalized, while it is localized beyond W,.. However,
when next-nearest-neighbor hopping is included, with relative
strength ¥ = 1, the band center becomes always delocalized
upon coupling, for any value of W,. As W, — oo, the two
lattices decouple effectively, and the band center tends back
to criticality, from the localized and the delocalized side,
for y =0 and y = 1, respectively. Empirically we find that
X~ c(y)/ W, for large W,, where ¢(y =0) < 0 and c(y =
1) > 0. As will become clear from the perturbative analysis
in Sec. IV B, this is due to the suppression or enhancement of
the probability of resonances between two neighboring sites
on the first lattice. That effect is of the order of 1/ W5.

The results obtained in Figs. 3 and 4 give rise to the
schematic phase diagram shown in Fig. 1. One can distinguish
three regions according to the effect of the interlayer coupling:

(i) Region A (yellow area). In the absence of coupling the
two lattices are both localized but close enough to criticality.
The coupling pushes the two nearly critical lattices into the
delocalized phase.

(ii)) Region B (gray area). The better conducting lattice
is (sufficiently far) in the delocalized phase, while the more
disordered lattice is strongly localized. The coupled system is
nevertheless delocalized due to the dominance of the better
channel.

(iii) Region C (green area). In the absence of coupling
the less disordered lattice is delocalized but very close to
criticality. The more disordered lattice is strongly localized. If
there is nearest-neighbor coupling only (y = 0), it pushes the
system to the localized phase. However, this atypical region
is entirely absent if a strong enough next-nearest-neighbor
coupling is included (y = 1).

B. Perturbative analysis

The salient features of the phase diagrams shown in Fig. 1
can be understood qualitatively by applying a perturbative
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FIG. 4. (Color online) Statistically nonidentical Bethe lattices:
Numerical results for the growth rate A [Eq. (16)] at the band center
as functions of the disorder strength W,. The disorder strength on
the 1 lattice is fixed at W) = W (r, = 0) &~ 17.3 and the interlayer
coupling is #; = 1. The other parameters are the same as in Fig. 3.
(a) For the nearest-neighbor coupling there is a mobility edge,
Woo(tL =1,y =0)~47. As W, - oo the system approaches
criticality from the localized phase, and A~ =1 / Wy, as expected
analytically. (b) With next-nearest-neighbor coupling the system is
always in the delocalized phase and approaches the transition point
like A ~ 1 /Wy as W, — oo (best fit shown as dashed line in the
log-log plot).

analysis in the limit W, > #,z, . The coupling to the strongly
disordered second lattice has two competing effects on the first
lattice: On the one hand, the hopping strength 7 is effectively
enhanced. On the other hand, the variance of the on-site
energies on the first lattice is effectively enhanced, too. If the
relative enhancement of the hopping dominates, the coupling
tends to delocalize the system.

To leading order in 1/ W,, the correction for the hopping
strength between nearest-neighbor sites |i,1) and | j,1) is

12 t
Sty ii ~ = Yiii iyl s 19
l,j(y) W2<)/ 1']+W2 2,ij ( )
where
Y w. ! !
Lij = "2 E—sz E—Ejz ’

(20)
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Likewise, the correction of the local potential on site |i,1) due
to self-energy effects is

2

t
Sei(y) ~ == [Ys,j + v Yaul, @21
W,
where
W2 W2
Y3, = , Yiii= . 22
MTE —ep - ZE—ejz 22)
jeai

Y1 2,3.4 are dimensionless random variables whose probability
distributions have long tails.>>* Hence both 8t1,ij and &€
are dominated by rare, large values. This implies that the
dominant events are those where either the hopping strength
or the disorder strength is strongly enhanced, that is, a
link is either strongly favored or blocked. The ratio of the
probabilities of such enhancements determines which effect
is dominant. Notice that a typical value of &t ;; is of order
0(1/W22) for y =0, but O(1/W;) for y > 0, while d¢;;
scales as O(1/W,) regardless of the value of y. Therefore,
the enhancement of disorder is dominant when y = 0, that is,
when the nearest-neighbor interchain hopping is suppressed.
Let us now discuss the Anderson transition at £ = (. We
base this discussion on two observations: First, the delocal-
ization of wave functions on the Bethe lattice has recently
been shown to occur along single paths.'® We should therefore
study the decay rate of excitations along the best possible path
for propagation. To obtain a qualitative understanding of the
effects of coupling, we approximate the propagation amplitude
between two remote sites of the first lattice as the product

L L
1—[ 1+ 811, (y) 1—[ Ul
Ap = _— =R —_,
g i €1+ 8€1(y) Hlle

i1 il

L>1, (23)

where L is the distance between the two sites. ]_[iL=1 1)/€i1 s
the amplitude in the absence of coupling, and

(24)

ﬁ1+8t1 ii(V)/1
iz1 1 +5611(J’)/611

represents the enhancement due to the coupling to the second
lattice. The amplitude A is the lowest order term in an expan-
sion in the hopping. It corresponds to Anderson’s “upper limit”
approximation, which neglects self-energy effects from sites
lateral to the considered paths, as well as the regularization
of resonances due to higher order corrections from hoppings
along the path. Based on this approximation one obtains a
simple approximate criterion for localization: Consider the
probability P4, |>; that the propagation amplitude [A | along
the most favorable path exceeds some fixed finite value O(1).
Localization obtains so long as this probability vanishes in the
thermodynamic limit, P4, >; — 0 as L — oo0.”*

In order to understand the phase diagram in Fig. 1, let us
consider critical disorder on the first lattice, W; = W,, and
study how the probability P4, >1(W2) depends on W, via the
correction factor R . For W, — oo, R — 1 (in probability),
and P4, >1(W2 — 00) behaves critically; that is, it does not
decay exponentially with L. For finite but large W,, we need
to estimate the correction factor R;. As mentioned above, it
is dominated by the rare events in which either the hopping
strength or the local disorder are strongly enhanced, such that
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one of the factors in Eq. (24) is significantly different from
unity.

The probability of a strong enhancement of hopping,
Pisy, ;12 Scales with W like™

2 InW,

cot] Wi V= 0,
Pisty 120 ™~ v 0 (25)
ywe V=0
where cp,; = O(1) do not depend crucially on the parameters

of the system. The probability of the strong enhancement of
local disorder behaves like

1?1
o) i (26)
where c¢>(y) = O(1) depends on y, and has a finite limit
c(y — 0)>0.

Among the L factors of R, a fraction of order Py, >,
is significantly larger than unity, and a fraction of order
Pise,\| >, terms significantly smaller than unity. Therefore,
it is reasonable to assume that a typical value of R, takes the
form

Pise,1>1en) ™

Rpyp ~ WL, @7
where the Lyapunov exponent s(y, W) is
= BPse12len> (28)

with «,8 of order O(1). Substituting Eqs. (25) and (26) in
Eq. (28), we predict the scaling

s(y,Wr) = O‘P\Bll.iﬂzf\l

s~ s e, (29)
W,
with a coefficient
i~ L (f( )— ) (30)
cy)~ = - —),
4 4 v 14}

where f(y) « y for y < 1. Obviously, the condition c(y) =
0 marks the transition between enhanced and suppressed
propagation. Close to that criticality, the inverse localization
or correlation length follows from the growth rate |A| [cf.
Eq. (16)] which is proportional to s(y, W>),

1
L ocs(y, W) W, (€2Y)
The scaling with 1/ W, is clearly observed in the numerical
data of Fig. 4, confirming the dominance of rare events.

Let us now discuss the y dependence of c(y). Without
next-nearest-neighbor interlayer hopping, we have c(y = 0) =
—7.5 < 0, as we numerically obtain in Fig. 4(a). This is due to
the fact that Pjs;, >, is parametrically smaller than Ps,, > e,,|
for W, — oo [cf. Egs. (25) and (26)]. Therefore, for large
enough W, (>W,, ) the more disordered lattice drives a less
disordered, critical lattice to the localized phase, as seen in
regime C of Fig. 1(a).

However, when y > 0, the probabilities for significant
corrections 8¢y ;; and d¢;; both scale as 1/ W,. For large enough
¥, c(y) becomes positive, as one may anticipate from Eq. (30),
considering that #;/W; is numerically small at criticality.
Indeed, the case y = 1 shown in Fig. 1(b) is already deep
in this regime, with c(y = 1) & 12.8 > 0 [cf. Fig. 4(b)].
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The equation c(y = y,) =0 has a solution for some
0 < y, < 1. ¥, determines the minimal next-nearest-neighbor
interlayer hopping which assures delocalization upon coupling
to a disordered lattice even in the limit W, > W,. A naive
linear interpolation between c(y = 0) and c(y = 1) allows us
to obtain a rough estimate

Ye & 0.37 (32)

for the Bethe lattices of connectivity K 4+ 1 = 3 considered
here.

V. DISCUSSION AND CONCLUSION

We have studied the Anderson localization problem on
two coupled Bethe lattices, which represents a two-channel
problem in the limit of infinite dimensions. Our main result
is the finding that a conducting transport channel is hardly
ever localized by the coupling to more disordered channels.
Rather, transport is usually enhanced by such a coupling.
This holds true except in the case where three conditions
are met simultaneously: (i) the conducting channel is very
close to criticality; (ii) it is coupled to a strongly localized
channel; (iii) next-nearest-neighbor interlayer couplings are
strongly suppressed or absent. Only in these exceptional cases
the coupling to localized channels may induce a localized
phase in an otherwise conducting channel. The coupling
between moderately localized channels may instead induce
delocalization. We believe that these trends persist also in
high but finite dimensions (D > 2) where the metal-insulator
transition takes places at strong disorder. This conjecture
is based on the observation that in higher dimensions, as
well as on the Bethe lattice, delocalization is mostly driven
by a sufficiently strong forward scattering, whereas weak
localization effects and enhanced backscattering play a much
less important role than in D < 2. We believe that this
difference is at the root of the very different phenomenology
between coupled Bethe lattices and 1D chains.

In two dimensions, the localization length becomes para-
metrically larger than the mean-free path at weak disorder.
However, since the proliferation of weak localization and
backscattering leads to complete localization (in the absence of
special symmetries), we expect that a well propagating channel
becomes more strongly localized upon resonant coupling to
a more disordered channel, similarly as in one dimension.
It might be interesting to investigate this numerically. Apart
from its theoretical interest, the physics of coupled, unequally
disordered 2D lattices might also have practical applications.
For example, it was recently proposed’ that a sheet of
bilayer graphene with different disorder strength on the two
layers could be operated as a field effect transistor, whereby
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a perpendicular gate bias tunes the effective disorder of
carriers.

The study of localization properties of few- or many-
particle systems is more subtle than the toy problem which it
motivated here in part. The reason is that multiple (much more
than two) coupled channels with complicated substructures
may exist to transport particles or energy. In particular,
for few-particle problems, it has been shown that some of
the channels, in which a large number of quasiparticle-like
excitations are propagating in the form of “bound states,”
can be more efficient for transport than others, in which
the excitations propagate essentially as independent units.*°
This suggests that one might have to think of the many-body
problem as having a hierarchy of channels with parametrically
different transport properties. It is reasonable to assume that the
effective dimensionality of such channels should be the same
as that of the system. Our analysis of a two-channel model
in 1D has demonstrated that a “bad” channel dominates only
when it is resonantly coupled to a better (“faster””) channel.
If the two channels are far from resonance, or if they live
in higher effective dimensionality, the fast channel almost
always dominates the localization properties, as the present
study suggests. Moreover, even in 1D resonance conditions
are not met very easily. It either requires two channels with
equal hopping strength, or an energy close to the band center or
the band edges. Summarizing these considerations, we come
to the qualitative conclusion that, apart from some exceptional
cases, better conducting channels generically dominate the
delocalization: A diffusing channel is difficult to shut down by
coupling to dirtier channels.

In the context of interacting many-particle systems the
above leads to the following conjecture: In order to establish
that a many-particle system conducts and is not fully localized,
a sufficient condition will be found by identifying the best
transport channel and showing that it is delocalized. Indeed,
our study suggests that the inclusion of coupling to other
channels usually only enhances transport. This observation
should be a central ingredient when generalizing the ideas of
Refs. 4 and 5 to the analysis of quantum dynamics and transport
of systems with several particles. However, at this stage, the
application to many-particle systems remains a conjecture
which needs to be tested further. For example, one should
establish whether coupling to a much larger number of slow
channels does not alter our qualitative findings of “the survival
of the fastest.”
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