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We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains,
initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition,
which is readily accessible by standard experimental probes in magnets. We analytically calculate its value
in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the
localized phase. We discuss analogies in cold atomic systems.
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Introduction.—The nonequilibrium dynamics in disor-
dered, isolated quantum systems have been subject to
theoretical investigations ever since the notion of locali-
zation was introduced in Ref. [1]. Spin systems in random
fields are prototypical models to analyze the disorder-
induced breakdown of thermalization: a large number of
numerical studies on disordered spin chains [2–13] has
provided evidence for a dynamical phase transition
between a weak-disorder phase which thermalizes, and a
many-body localized phase in which excitations do not
diffuse, ergodicity is broken, and local memory of the
initial conditions persists for infinite time [14–16].
Signature of many-body localization (MBL) are found in

the properties of individual many-body eigenstates: even
highly excited eigenstates exhibit area-law scaling of the
bipartite entanglement entropy [4,7,8,17] and Poissonian
level statistics [2,18,19], both being incompatible with
thermalization [20–22]. Novel dynamical properties such
as the logarithmic spreading of entanglement have been
observed in direct simulations of the time evolution [3,23].
This phenomenology arises due to an extensive set of
conserved operators whose local structure prevents both
transport and thermalization [24–28]. While mathemati-
cally rigorous results are available for certain localized spin
chains [28], the existence of such conserved quantities, and
thus of MBL, in dimensions d ≥ 2 is debated [29].
The nonequilibrium physics of many-body localized

systems has been probed experimentally in artificial quan-
tum systems made of cold atomic gases [30,31] and trapped
ion systems [32], while an indirect signature via a strong
suppression of microwave absorption was found in electron
glasses [33]. However, direct observations of MBL in the
solid state are still lacking.
In this work, we propose a readily observable conse-

quence ofMBL in quantummagnets: the out-of-equilibrium
remanentmagnetization that persists after ferromagnetically

polarizing an antiferromagnet whose total magnetization is
not conserved. As an example, we consider an antiferro-
magnetic, anisotropic Heisenberg spin-1=2 chain,

H ¼
X
k

�
hkσ

z
k −

X
α¼x;y;z

Jασαkσ
α
kþ1

�
; ð1Þ

subject to random fields hk along the easy axis. We assume
Jz < 0, as well as Jx ≠ Jy to ensure the nonconservation of
the total magnetization. Such Hamiltonians can be realized,
e.g., in Ising compounds with both exchange and dipolar
interactions. However, essentially any sufficiently strongly
disordered quantum antiferromagnet with nonconserved
magnetization should exhibit the same phenomenology as
we describe below.
Consider the following protocol: First, the chain is fully

polarized by a strong magnetic field [equilibrated by a (very
weak) coupling to a bath]. Then the field is switched off at
time t ¼ 0 (cf. Fig. 1). For magnets with spin-phonon
coupling much weaker than the spin-spin interactions (see,
e.g., Ref. [34]), the dynamics is governed by Eq. (1) alone
over a long intermediate time window, and thus behaves
like a closed system. Interchain couplings in quasi-1D
magnets are weak and will not modify the short-time
phenomenology. On the other hand, the conjectured break-
down of MBL at long times due to very rare regions in
higher dimensions [29] is expected to be a much less
efficient channel of delocalization than that provided by
realistic couplings to phonons.
Ergodic spin dynamics would relax the initial magneti-

zation completely. A finite remanent magnetization thus
implies nonergodicity (see also Refs. [37,38] for disorder-
free examples), and can serve as an order parameter in the
many-body localized phase of the isolated system. This is a
magnetic analogue of the remanent density modulation
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considered in Ref. [39] and measured in recent cold-atom
experiments [30,31]. However, it is experimentally much
simpler to access, since it focuses on the total magnetiza-
tion which can be readily picked up, e.g., by a squid,
without requiring scattering measurements or microscopy
to resolve spatial patterns.
Conserved dressed spins.—We consider random fields

hk uniformly distributed in ½−h; h�, and assume strong
anisotropy of the couplings, jJyj ≪ jJxj ≪ jJzj; h. For
simplicity we set Jy ¼ 0. For Jx ¼ 0, the spin chain is
classical and trivially localizes dynamically, as the σzk form
a complete set of commuting, strictly local conserved
operators, and the eigenstates are product states in this
basis. Perturbative arguments as in Refs. [15,16] predict
that localization remains intact for small quantum fluctua-
tions jJxj ≪ h. This comes along with a complete set of
mutually commuting conserved operators Ik. Those are
predicted to be quasilocal [25–27], their action decaying
exponentially with the distance from a localization center,
with a finite correlation length ξ. The Ik are dressed
(rotated) versions of the spin degrees of freedom. They
can be constructed explicitly by applying perturbation
theory to the σzk and resumming the divergences associated
with sparse local “resonant” regions in the chain where the
effect of quantum fluctuations is nonperturbative [27].
Their existence follows as a corollary of Ref. [28], where
MBL was shown to occur due to the quasilocality of the
unitary operator U that diagonalizes the disordered
Hamiltonian: U is proved to be a sequence of small unitary
transformations almost everywhere in the chain, up to rare

resonant regions. The inverse U−1 deforms σzk into the
conserved quasilocal operator Ik ¼UσzkU

−1 which admixes
only degrees of freedom in the vicinity of k.
Below, we explicitly construct the dressed spin operators

following the recipe of Ref. [27]. We then use them to
calculate analytically the remanent magnetization to low
orders in the quantum fluctuations jJxj=h. This method is
very efficient [40] to describe the asymptotic magnetization
in nonresonant regions where the transverse couplings act
perturbatively. However, we will see that the dominant
effect of weak quantum fluctuations arises from rare
resonant regions, where the perturbative expansion in Jx
has to be resummed to infinite order.
Computation of remanent magnetization.—We consider

the dynamical evolution of the fully magnetized initial state
jψ0i with density matrix jψ0ihψ0j ¼

Q
ið1þ σzi Þ=2, gov-

erned by Eq. (1). [41] We are interested in the long time
remanence of the magnetization, and thus consider the time
averaged magnetization at site j:

m̂j ¼ lim
T→∞

1

T

Z
T

0

dtmjðtÞ; mjðtÞ ¼ hψ0jσzjðtÞjψ0i: ð2Þ

For Jx ¼ 0, the local magnetization is trivially con-
served, mjðtÞ ¼ 1. For finite Jx, the nontrivial dynamics of
σzðtÞ reduces m̂j. In the many-body localized regime, the
time evolution is strongly constrained by the conservation
of the dressed spins Ik with jk − jj≲ ξ. As a consequence,
partial memory of the initial order hσzji ¼ 1 is retained for
an arbitrarily long time, resulting in a finite remanence of
the site-averaged magnetization m̂ ¼ L−1P

jm̂j.
In the absence of spectral degeneracies, Eq. (2) can be

expressed via a Lehmann representation as

m̂j ¼
X
α

hψ0jPασ
z
jPαjψ0i; ð3Þ

where Pα ¼ jψαihψαj ¼
Q

L
k¼1ð1þ iðαÞk IkÞ=2 projects onto

the eigenstate labeled by the quantum numbers iðαÞk ∈ f�1g
of the dressed spins Ik. Using the operator identity

X
α

Pασ
z
jPα ¼ σzj þ

XL
n¼1

X
kn>kn−1���>k1

Yn
l¼1

�
Ikl
2

�

× ½½½σzj; Ik1 �; Ik2 �;…; Ikn �; ð4Þ

we obtain (cf. Supplemental Material [42] for details)

m̂j ¼ 1þ
XL
n¼1

X
kn>kn−1���>k1

×Tr

�Yn
i¼1

�
Iki
2

�
½½½σzj; Ik1 �; Ik2 �;…; Ikn �

YL
l¼1

�
1þ σzl

2

��
;

ð5Þ

FIG. 1. Relaxation of the total magnetization from a fully
polarized initial state. The black curve is the stationary value
L−1P

jm̂j: it vanishes (possibly discontinuously [35,36]) at the
critical point separating the many-body localized and delocalized
phases (red point). It is nonanalytic for Jx=h ≪ 1, cf. Eq. (13).
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where Trf� � �g denotes the trace, and some fixed ordering
among the labels of the operators Ik is assumed [44].
For the dressed spins Ik we write the formal expansion

Ik ¼ σzk þ δIð1Þk þ δIð2Þk þ � � � ð6Þ

with δIðnÞk ¼ OðJnxÞ. At any order n, δIðnÞk is uniquely
determined by the constraints ½Ik; H� ¼ 0 and I2k ¼ 1

[27], see also the Supplemental Material [42]. For the
Hamiltonian Eq. (1) with Jy ¼ 0, the first order terms read

δIð1Þk ¼
X

ρ;τ¼�1

ðAðkÞ
ρτ O

ðkÞ
ρτ − Aðk−1Þ

ρτ Oðk−1Þ
ρτ Þ

þ
X

ρ;τ¼�1

ðBðkÞ
ρτ ΔðkÞ

ρτ þ Bðk−1Þ
ρτ Δðk−1Þ

ρτ Þ; ð7Þ

where we define the local operators

OðkÞ
ρτ ¼ 1þ ρσzk−1

2
½σþk σ−kþ1 þ H:c:� 1þ τσzkþ2

2
;

ΔðkÞ
ρτ ¼ 1þ ρσzk−1

2
½σþk σþkþ1 þ H:c:� 1þ τσzkþ2

2
; ð8Þ

and the coefficients

AðkÞ
ρτ ¼ −

Jx
hk − hkþ1 þ Jzðτ − ρÞ ;

BðkÞ
ρτ ¼ −

Jx
hk þ hkþ1 − Jzðτ þ ρÞ : ð9Þ

At low orders, the sum over multi-indices in Eq. (5)
reduces to the few terms involving indices sufficiently close
to k, since other commutators vanish. The lowest order
corrections to m̂j are given by the terms with n ¼ 1, 2 in
Eq. (5). Inserting Eq. (7) into Eqs. (4) and (3) we find [45]

m̂j ¼ 1 − ðBðjÞ
1;1Þ2 − ðBðj−1Þ

1;1 Þ2 þOðJ3xÞ: ð10Þ

The above method is easily extended to higher orders on
the majority of sites around which the quantum fluctuations
act perturbatively. However, we see that the site average of
hm̂jidis is ill defined for jJzj < h. The apparent divergence
is due to rare resonances, i.e., realizations of neighboring
local fields that give rise to small denominators in Eq. (9).
Resonances may also arise at higher order n in perturbation
theory, if two nearly degenerate classical configurations
hybridize strongly due to a coupling ∼Jnx . The correspond-
ing small denominators render the naive perturbative
expansion Eq. (6) nonconvergent, as a small denominator
generated at order n reappears repeatedly in higher order
terms, giving rise to norm-divergent operator subsequen-
ces. However, a defining feature of MBL is that resonances
are sparse in space, each of them involving spins only
within the typical range of the correlation length ξ. [27,28].

Thus, local resummations (or equivalently, exact diago-
nalizations of resonant subsystems of typical size ξ) suffice
to cure the divergences of the perturbation theory (in
analogy with the single particle case [1]) and yield a
“regularized,” norm-convergent operator expansion for
the Ik.
Let us illustrate this resummation for resonances involv-

ing spins on neighboring sites, as those dominate in the
strong-disorder limit. Resumming all terms in Eq. (6)
containing higher powers of the resonant Jx coupling is
equivalent to determining the operators ~Ii (satisfying
~I2i ¼ 1) that are conserved by the reduced Hamiltonian

HðkÞ ≡XL
i¼1

ðhiσzi − Jzσ
z
iσ

z
iþ1Þ − Jxσxkσ

x
kþ1; ð11Þ

where only the resonant Jx coupling is retained. These
operators serve as a new basis for the perturbation theory in
the remaining, nonresonant Jx couplings. They can be
constructed explicitly by determining a local rotation that
acts nontrivially in the vicinity of the sites k, kþ 1,
deforming the pair σzk, σ

z
kþ1 into two modified, exactly

conserved operators ~Ik, ~Ikþ1 (with ~Ii ¼ σzi for i ≠ k, kþ 1),
similarly to Ref. [28]. For the particular model Eq. (1) the
resulting ~Ik, ~Ikþ1 are again linear combinations of Eq. (8),
albeit with modified coefficients Eq. (9) given in the
Supplemental Material [42]. Inserting the conserved inte-
grals into Eq. (3), we find an expression like Eq. (10), but
with the substitution [46]

BðjÞ
ρτ → −

Jx
ð½hj þ hjþ1 − Jzðτ þ ρÞ�2 þ J2xÞ1=2

; ð12Þ

a result one can also derive from exact diagonalization of
two neighboring spins in the field of their polarized
neighbors, and computing their diminished magnetization.
From this we obtain the remanent magnetization

hm̂jidis ¼ 1 −
πjJxj
h

�
1þ Jz

h

�
þOðJ2xÞ; ð13Þ

which for jJzj < h is nonanalytic in Jx. This feature arises
due to resonances. The nonanalytic cusp at Jx ¼ 0 has the
largest magnitude in the limit of vanishing Ising inter-
actions, Jz → 0 (recall that Jz < 0), as it creates the lowest
effective disorder.
Atomic analogues.—The gauge transformation U ¼Q
L
j¼1 exp½iðπ=2Þjσxj � maps the antiferromagnetic chain

Eq. (1) into its ferromagnetic counterpart with Jx → Jx,
Jy;z → −Jy;z, and the initial state jψ0i into a Néel state. The
order parameter is mapped into the staggered magnetiza-
tion. Such a quantity has been studied numerically in
Ref. [47] for disordered, long-range transverse field Ising
chains, modeling the ion-trap quantum simulators explored

PRL 118, 237202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

237202-3



experimentally in Ref. [32]. The staggered magnetization is
a close analogue of the particle imbalance studied as an
experimental probe of MBL in cold atoms [30]:

IðtÞ ¼ 2

L

XL
j¼1

ð−1ÞjhnjðtÞi: ð14Þ

Here nj is the occupation number of site j, after preparation
in an initial density wave njðt ¼ 0Þ ¼ ½1þ ð−1Þj�=2.
A ferromagnetic spin chainwith Jx ¼ Jy is equivalent, via

the Jordan-Wigner transformation, to a one-dimensional
model of interacting spin-less fermions in a disordered
potential. For Jz ¼ 0 it reduces to the noninteracting
Anderson model

H ¼ −J
XL−1
i¼1

ðc†i ciþ1 þ H:c:Þ þ 2
XL
i¼1

hini ð15Þ

for which the imbalance is a sum over single particle
contributions, weighted with the occupation probability of
eigenstates in the initial state. A standard calculation leads
to the remanent imbalance Eq. (14) in the form

Î ¼ 1

L

XL
α¼1

�XL
k¼1

ð−1Þkϕ2
αðkÞ

�2

; ð16Þ

where ϕαðiÞ, with 1 ≤ α, i ≤ L are the localized single
particle eigenstates of the quadratic Hamiltonian Eq. (15).
This solvable case is interesting as it can be analyzed
deeper into the weak disorder limit.
Figure 2 shows the imbalance as a function of J=h, as

obtained by exact diagonalization. At small J=h a linear
cusp with the slope derived in Eq. (13) (using Jz ¼ 0,
Jx ¼ J) is seen. For large J=h, Î decays algebraically as
ðJ=hÞ−2, as derived in the Supplemental Material [42] and
verified numerically in Fig. 2. [48].

Let us now discuss the qualitative effects of fermionic
interactions. The addition of a term U

P
L
i¼1 niniþ1 (the

equivalent of Ising interactions) to the Hamiltonian Eq. (15)
may have opposite effects, depending on the value of J=h.
For J=h ≪ 1, the interaction broadens the distribution of
the energy denominators, and thus acts as an additional
source of disorder, which reduces the deviation of hÎidis
from the classical limit. The same holds in the magnetic
analogue as confirmed by Eq. (13). For larger J=h > 1, the
single particle localization length becomes substantial. The
dominant effect of interactions is then to mediate (virtual)
scattering between single particle states, as discussed in
Refs. [15,16]. One expects that this suppresses the rema-
nent imbalance, as was indeed observed in the experiments
of Ref. [30]. At large enough interactions (and finite
temperature), delocalization is induced by a proliferation
of resonant regions, which leads to the vanishing of the
order parameter hÎidis at a U-dependent critical hopping
J�ðUÞ=h. The perturbative arguments in Refs. [15,16,27]
predict that the localized phase is stable for U < U� ∝
δξ= logðW=δξÞ. Here W is the total bandwidth of the
noninteracting Hamiltonian Eq. (15) and δξ ∼W=ξ the
average energy gap between single-particle states localized
within the same region of size ξ, which is assumed to be
much larger than the lattice constant, ξ ≫ a. This corre-
sponds to J=h ≫ 1, implying ξ ∼ ðJ=hÞ2 and W ≈ J.
However, as was pointed out recently [49], previous
studies neglected the phenomenon of spectral diffusion
[50,51], which is expected to reduce the critical interaction
strength in the weak disorder limit toU� ∝ δξðδξ=WÞ (up to
logarithmic corrections).
Discussion and conclusion.—We have proposed and

analyzed the presumably simplest possible protocol for
quantum disordered magnets to exhibit the absence of
ergodic dynamics, and thus of MBL in the form of
remanent magnetization in initially ferromagnetically
polarized antiferromagnets. The present calculation illus-
trates how our explicit recipe for constructing the con-
served quantities allows for analytic predictions for
quantities of experimental relevance. It is an analytical
alternative to several numerical schemes based on DMRG
[52–55] or quantum Monte Carlo calculations [56] that
allow one to study properties of specific many-body
localized eigenstates. The simple formula, Eq. (5), can
be applied to the conserved pseudospins constructed
numerically in Refs. [57–59] for nonperturbative inter-
actions by means of renormalization procedures or diag-
onalizing flows. It would be interesting to extend this
calculation beyond the lowest orders, possibly exploiting
the expansion for the conserved quantities in the forward
approximation [27,60], to discuss the behavior of the
typical value of the remanent magnetization when
approaching the delocalization threshold.
An interesting question concerns the vanishing of the

order parameter, Eq. (16), at criticality. If it is continuous, it

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

J h

FIG. 2. Dependence of the remanent density imbalance on the
hopping strength J for a chain of noninteracting fermions
(L ¼ 100, 5 × 103 realizations). The continuous red line is the
analytical estimate, Eq. (13), with Jx ¼ J, Jz ¼ 0. The blue
dashed line is a power law fit aþ cðJ=hÞ−2, with a ¼ 0.003,
c ¼ 0.101.
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might exhibit nontrivial scaling with the system size,
potentially reflecting multifractality of critical wave func-
tions. However, numerical studies of the scaling of the
entanglement entropy of small subsystems [36,61] have
suggested that at the delocalization transition long-time
averages of typical observables jump discontinuously,
implying a discontinuity of the order parameter (remanent
magnetization or imbalance). Given the difficulty in
accessing numerically the relevant regimes, the prospect
of probing these scenarios experimentally is appealing.
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