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Abstract
We argue that frequent sampling of the fraction of a priori non-symptomatic but infectious
humans (either by random or cohort testing) significantly improves the management of the
COVID-19 pandemic, when compared to intervention strategies relying on data from symptomatic
cases only. This is because such sampling measures the incidence of the disease, the key variable
controlled by restrictive measures, and thus anticipates the load on the healthcare system
due to progression of the disease. The frequent testing of non-symptomatic infectiousness will
(i) significantly improve the predictability of the pandemic, (ii) allow informed and optimized
decisions on how to modify restrictive measures, with shorter delay times than the present ones,
and (iii) enable the real-time assessment of the efficiency of new means to reduce transmission
rates. These advantages are quantified by considering a feedback and control model of mitigation
where the feedback is derived from the evolution of the daily measured prevalence. While the basic
model we propose aggregates data for the entire population of a country such as Switzerland, we
point out generalizations which account for hot spots which are analogous to Anderson-localized
regions in the theory of diffusion in random media.

1. Introduction

The COVID-19 pandemic has led to a worldwide
shutdown of a major part of our economic and social
activities. This political measure was strongly sug-
gested by epidemiologic studies assessing the cost in
human lives depending on different possible policies
(doing nothing, mitigation, suppression) [1–4]. Mit-
igation can be achieved by combinations of different
measures, including physical distancing, contact trac-
ing, restricting public gatherings, and the closing of
schools, but also the testing for infections.

The quantitative impact of very frequent test-
ing of the entire population for infectiousness has
been studied in references [5, 6]. We will estimate in
section 3 that to fully suppress the COVID-19 pan-
demic by widespread testing for infectiousness, one
needs a capacity to test millions of people per day in
Switzerland. This should be compared to the mod-
est number of 7000 tests per day performed across

Switzerland during April 2020. Here, we suggest that,
when the daily incidence of symptomatic COVID-
19 infections is of the order of one per 10 000, the
daily testing for (a priori non-symptomatic) infec-
tiousness of 15 000 persons chosen randomly every
day, or the weekly screening of a cohort of the order of
100 000 persons (preferentially essential workers with
high exposure), delivers important quantitative infor-
mation on the rates of transmission. This information
allows the adjustment of restrictive measures with sig-
nificantly shorter delay than is possible presently. The
higher the daily testing rate the shorter the reaction
time in the case of an undesired increase of incidence,
and accordingly the lower the damage to public health
and the economy. We point out that such testing is
entirely realistic for small central European countries:
in order to secure the country’s success as a post-
corona holiday destination, the government of Aus-
tria has announced the weekly testing of nearly this
number in its hospitality sector [7].
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Figure 1. Feedback and control loop that allows stabilization of the pandemic. The key quantity measured by sufficiently
frequent non-symptomatic testing is the growth rate k of infection numbers with a time delay (T) shorter than the one (TD)
obtained by symptomatic testing. If k exceeds a tolerable upper threshold κ+, restrictions are imposed. For k below a lower
threshold κ−, and if infection numbers are below critical, restrictions are released. In the absence of a substantial influx of infected
people from outside the country, and provided infection numbers are below a critical value, the optimal target of the growth rate
is k = 0, corresponding to a marginally stable state, where the prevalence neither grows nor decreases exponentially with time. If
higher testing rates are available, the measured observables and control strategies can be geographically refined, particularly to
avoid hotspots.

Figure 1 summarizes the key concept of the paper,
namely a feedback and control model for the pan-
demic [8]. The idea is to collect a time series of daily
detected infectious people (our primary indicator),
either obtained directly from testing a priori non-
symptomatic people, or from waste water analysis
[9, 10].6 Its essential output is the growth rate of the
number of persons who became infectious T days in
the past. Hereby, the delay T can in principle be very
short, being strictly bounded from below only by the
latency time for COVID-19 provided the daily test-
ing rate is sufficiently large. This (delayed) growth
rate and the incidence are then regulated by measures
such as those enforcing physical distance between per-
sons, their tolerable values being fixed by the capac-
ity of the health-care system. A feedback and control
approach [12, 13], familiar from everyday implemen-
tations such as thermostats regulating heaters and air
conditioners, should allow policy makers to damp out
oscillations in disease incidence which could lead to
peaks in stress on the health-care system as well as the
wider economy.

An important benefit of our feedback and con-
trol scheme is that it allows a faster and safer reboot
of the economy than would be possible only with
the feedback from the time sequence of daily num-
bers of positively tested symptomatic persons [14, 15],
hospitalizations, or deaths [4, 14]. Indeed, these sec-
ondary indicators measure the growth rate of the pan-
demic with a delay TD that is necessarily bounded
from below by a minimal time of order 8–12 days,

6 Any other measurement of the fraction of infectious people can
replace direct testing of individuals. For example there are propos-
als to estimate this fraction from analysis of sewage water with PCR
tests [9–11].

whatever the testing rate for COVID-19, as we shall
explain. Hence, testing for the primary indicator
and increasing the non-symptomatic testing rate can
reduce the time delay T below the delay TD inher-
ent to the secondary indicators. Figure 2 illustrates
the resulting difference in the ability to control the
disease.

Without the feedback and control informed by
the primary indicator, there is a larger lapse in time
between policy changes and the observable changes
in the daily numbers of infectiousness measured by
secondary indicators. To relax restrictions safely when
using secondary indicators, the prevalence (defined
as the fraction of presently infectious persons), must
decrease to a level i∗∗ (that is smaller than i∗ when
using the primary indicator) such that a subsequent
undetected growth during TD = 8–12 days will not
move it above the critical fraction ic manageable by
the health-care system. Monitoring the time evolu-
tion of the COVID-19 pandemic by only relying on
secondary indicators is comparable to driving a car
from the back seat with knowledge only of the dam-
age caused by previous collisions. To minimize harm
to the occupants of the vehicle, driving very slowly is
essential, and oscillations from a straight course are
likely to be large. Making use of the shortened time
delay T < TD based on the primary indicator allows
a reboot to be attempted at higher levels of prevalence,
i∗ > i∗∗, which implies a shorter time in lockdown.
In turn, if a long lockdown has already resulted in
a low level of prevalence, as is currently the case in
many European countries, a fast reaction time allows
to keep the case numbers low by reacting quickly to a
potential new onset of exponential growth. In figure 3
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Figure 2. Dynamics of the pandemic with and without a feedback and control scheme in place, as measured by the prevalence i,
i.e. the fraction of currently infected people (logarithmic scale). After the limit of the health system, ic, has been reached, a
lockdown brings i down again. The exponential rate of decrease is expected to be very slow, unless extreme measures are imposed.
The release of measures upon a reboot is likely to re-induce exponential growth, but with a rate difficult to predict. Three possible
outcomes are shown in blue curves in the scenario without testing feedback, where the effect of the new measures becomes visible
only after a delay of 10–14 days. In the worst case, i grows by a multiplicative factor of order 20 before the growth is detected. A
reboot can thus be risked only once i � i∗∗ ≡ ic/20, implying a very long time in lockdown after the initial peak. Due to the long
delay until policy changes show observable effects, the fluctuations of i will be large. Random testing (the red curve) has a major
advantage. It measures i directly and detects its growth rate within a few days, whereby the higher the testing rate the faster the
detection. Policy adjustments can thus be made faster, with smaller oscillations of i. A safe reboot is then possible earlier, at the
level of i � i∗ ≈ ic/4.

we estimate quantitatively the benefits of frequent
non-symptomatic testing.

We point out before proceeding further that
this is a contribution from physicists that makes
simplifying assumptions inconsistent with details
of medical and epidemiological reality to obtain
some key estimates and illustrate the basic princi-
ples of feedback and control as applied to the current
pandemic. When reduced to practice, special atten-
tion will need to be paid to all aspects of the test-
ing methodology, from the underlying molecular
engineering paradigm (e.g., PCR) and associated
cost/performance trade offs, to population sample
selection consistent with societal norms and statistical
needs, and safe operation of testing sites that does not
risk further infections. Furthermore, in preparation
for the day when more is known about the immune
response to COVID-19 and possible vaccines, we plan
to revise our models for feedback derived from a reli-
able immunoassay with well-specified performance
parameters, such as lag times with respect to infection.

The paper is organized as follows. We summa-
rize our key findings in section 2. In section 3,
we discuss the use of massive testing as a direct
means to contain the pandemic, showing that it
requires a 100-fold increase of the current testing
frequency. In section 4, we define the main chal-
lenge to be addressed: to measure the quantitative
effect of restrictive measures on the transmission rate.
Section 5 explains the difference between using pri-
mary or secondary indicators to monitor the time

evolution of the COVID-19 pandemic. Section 6
constitutes the central part of the paper, showing
how data from sparse sampling tests can be used
to infer essentially instantaneous growth rates, and
their regional dependence. We define a model of pol-
icy interventions informed by feedback from ran-
dom testing and analyze it theoretically. The model
is also analyzed numerically in section 7. In section 8,
we generalize the model for regionally refined anal-
ysis of the epidemic growth pattern which becomes
the preferred choice if higher testing rates become
available. We conclude with section 9 by summa-
rizing our results and their implication for a safe
reboot after the current lockdown. In the appendix
A, we present the algorithm used for our numerical
results.

2. Summary of key results

2.1. Reducing delay by non-symptomatic testing
To shorten the reaction time, we propose to use
the time series obtained from daily tests for infec-
tiousness in groups of persons who are a priori
non-symptomatic. This time series is our primary
indicator, in contrast to the secondary indicator that
makes use of the time series obtained from test-
ing for the daily numbers of persons who are either
symptomatic, hospitalized, or even dead because of
COVID-19. The sample to be tested can be random
or consist of a pre-selected group that is tested reg-
ularly and systematically, e.g., on a weekly basis. The

3
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Figure 3. A shorter reaction time allows to take countermeasures earlier if Reff jumps above 1 after a release of restrictions. The
results are plotted for interventions being taken when an 85% confidence level is reached for Reff > 1. For a 95% confidence level
one would need to test 2.6 times more frequently. In (a) we plot the relative increase of prevalence and incidence without
non-symptomatic testing (assuming a time delay TD = 12 associated with symptomatic case data), and show how it is reduced as
one tests non-symptomatically for infectiousness, with increasing frequency. The expected number nd = r i0 of positively tested
people per day is proportional to the number r of tests per day and the prevalence i0 in the tested subgroup. The estimate of
economic costs is described in the main text. Panels (b)–(d) translate the avoided increase of incidence into the number of saved
lives per week in Switzerland, assuming an initial incidence of 300 daily new infections (both symptomatic and asymptomatic)
and a mortality of 0.5%.

lower time line of figure 4, illustrates the method. It
builds on the fact that the latency time, after which
PCR tests return positive results following exposure,
is only about 2 days [16–20]. Effects of an increased
infection rate can thus be seen even before the onset
of symptoms. This non-symptomatic testing allows
to obtain direct and model-independent informa-
tion on Reff(t), (the number of infections transmit-
ted by a person who was infectious at any time t no
less than T days in the past). Let us assume a daily
incidence of COVID-19 is of the order of one per
10 000. Then, by testing a few thousand people per
day, we find that over a testing time T shorter than
the minimal delay time TD for the symptomatic sec-
ondary indicators, it becomes possible to detect a
sudden dangerous increase in Reff with reasonable
confidence. This shorter response time may poten-
tially save tens of lives per week at the national level,
see figures 3(b)–(d), and reduce costs for the health
care system as well as for the economy, see figure 3(a).
Moreover such monitoring provides greater stability
and diminishes the danger of a second wave of the
epidemic. Also, by monitoring the fraction of infected

people with weak or no symptoms, non-symptomatic
testing allows to better determine some of the param-
eters entering epidemiologic modeling.

2.2. Estimating the intervention time
We are going to estimate the time T after a release,
until which one will know with reasonable certainty
that a new state with exponential growth has been
reached. We then estimate how much damage can be
prevented by the more rapid intervention made pos-
sible with systematic, but non-symptomatic testing.

Assume that we test r people daily over a period
T after the release. We also assume that tests can dis-
tinguish persons that are both infected and still infec-
tious. This can be ensured, e.g., by following a large
cohort of people (e.g., medical or nursing staff) who
are tested on a weekly basis. We denote with i0 the
initial prevalence of acute infections in the popula-
tion being sampled. The expected number of positive
tests per day is nd = i0 r. In the first half (T/2) of the
measuring period T, one detects

N1 ≈ nd T/2 (1)
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Figure 4. Timing of case counting after a release, up to the first time where a reliable estimate of the new reproduction number
Reff can be made. For symptomatic testing (upper time line), the incubation time and the natural delays between symptoms and
testing incur a delay TD. This delay cannot be less than 9 days, the value of TD for COVID-19 when the observation window ΔT is
chosen to be a single day. In the case of non-symptomatic testing (lower time line), the window of time T must be sufficiently
large so as to accumulate enough statistics, but with sufficiently frequent testing one still gains precious time as compared to TD.

cases. In the second half we expect

N2 = N1 exp(k T/2) ≡ N1 (Reff)
T/8 (2)

cases, with k ≡ ln(Reff)/4 being the growth rate of
infections. The relation between the rate k and the
effective reproduction number follows if one assumes
a ‘generation time’ of 4 days7 until an infected per-
son has transmitted the disease to a next generation.
Above, we anticipated that T/2 will be larger than
the short latency time. If so, the simple exponential
law (2) should hold to a good approximation, until a
further intervention is taken.

We can tell with reasonable certainty that the
growth rate is positive once the difference

N2 − N1 = N1

(
(Reff)

T/8 − 1
)

(3a)

is larger by a factor α than its statistical uncertainty√
N1 + N2 ≈

√
2N1. The latter expression follows

from the law of large numbers. An intervention is thus
taken when

N1

(
(Reff)

T/8 − 1
)
= α

√
2 N1. (3b)

For our plots we choose α = 1, corresponding to
a confidence level of 85% that Reff > 1, while for
α = 1.6 it reaches 95%. If we replace N1 by the
right-hand side of equation (1) on both sides of
equation (3b), we find the relation

nd ≈ 4

T

(
α

(Reff)T/8 − 1

)2

. (4)

If Reff is not too far from 1, we find the relations

nd(T,α, Reff) ≡
[

16α

ln(Reff)

]2

T−3, (5a)

or, equivalently,

T(nd,α, Reff) ≡
[

16α

ln(Reff)

]2/3

n−1/3
d . (5b)

7 The number of 12 days is the delay time used by the Robert Koch
Institute when performing nowcasting [21], [22].

Non-symptomatic testing becomes beneficial as com-
pared to symptomatic testing as soon as nd exceeds
the right-hand side of equation (5a) evaluated with T
replaced by the delay time TD of symptomatic testing,
or, equivalently, if TD exceeds the right-hand side of
equation (5b).

By the reaction time T, the prevalence and the
infection numbers will have increased by the fraction

i(T) − i0

i0

= (Reff)
T/4 − 1 ≈

(
4α2 ln(Reff)

nd

)1/3

, (6)

which is to be compared to (Reff)
TD/4 − 1 for meth-

ods based on fitting symptomatic case numbers, with
an inherent delay TD. These two relative increases
are shown in figure 3(a) for TD = 12 days as a
function of the effective reproduction number Reff

that prevails after the release of restrictions. Suffi-
ciently frequent non-symptomatic tests result in a
smaller relative increase of the prevalence. There-
fore, less of the achievements of the preceding lock-
down will be undone at the shorter intervention time
T < TD. Since the reproduction number had low-
ered to RLD ≈ 0.7 during the final phase of the Swiss
lockdown [23, 24] and a loss of P ≈ 500 million CHF
in generated economic added value accrued during
every day of lockdown, we can associate an effec-
tive price tag to the additional increase of the preva-
lence if no intervention were taken until the later
time TD > T. Per day of exponential growth with
Reff > 1, one undoes the effect of a preceding lock-
down effort that had cost P ln(Reff)/ ln(1/RLD). This
cost is indicated in figure 3(a). Even more impor-
tantly, the increase in prevalence implies an increase
of daily incidence and thus, ultimately, of the death
rate. With an estimated low rate of daily n ∼ 300
new infections (reported and unreported) in Switzer-
land and assuming a COVID-19 mortality rate of
m = 0.5%, the diminished increase of incidence (i.e.,
equation (6) saves n m [i(TD) − i(T)]/i0 lives per
day in the country. The actual numbers are plot-
ted in figures 3(b)–(d) for different delays TD. They
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demonstrate that frequent non-symptomatic testing
can save a significant number of lives by enabling a
more rapid response to an increasing prevalence due
to a release of restrictions.

From the results shown in figure 3 one readily
reads off that the expected number of detected new
infections per day, nd, should be of order 10, and
preferably even bigger, to enable an effective mon-
itoring. This implies a relatively large number r of
daily tests, r = nd/i0, especially if the prevalence i0 is
as low as it is currently in many countries in Europe.
However, if a sufficiently large group of people, such
as medical staff or key workers with high exposure,
can be recruited for regular non-symptomatic test-
ing, their test data could be used for the fast feedback
system. Moreover, if the prevalence slowly rises again
non-symptomatic testing will require accordingly less
effort. By autumn 2020, when a second wave of the
pandemic becomes more likely, it could act as an early
warning system and as a tool for efficient mitigation
which is worthy of implementation.

3. Massive testing

If the massive rate of 1.5 million tests per day becomes
available in Switzerland, it will be possible to test any
Swiss resident every 5 to 6 days. If the infected people
that have been detected are kept in strict quarantine
(such that they will not infect anybody anymore with
high probability), such massive testing could be suffi-
cient to prevent an exponential growth in the number
of infections without the need of draconian physi-
cal distancing measures. We now explain qualitatively
our approach to reach this conclusion (reference [5]
gives a more detailed quantitative analysis).

The required testing rate can be estimated as
follows. Let ΔT denote the average time until an
infected person infects somebody else. The reproduc-
tion number R falls below 1 (and thus below the
threshold for exponential growth) if non-diagnosed
people are tested at time intervals of no more than
2ΔT. Thus, the required number of tests over the time
2ΔT, the full testing rate τ−1

full , is

τ−1
full =

NCH

2ΔT
, (7a)

where

NCH = 8′500′000 (7b)

is the number of inhabitants of Switzerland8. Without
social restrictions, it is estimated that [25]

ΔT ≈ 3 days, (8a)

such that

τ−1
full = 1.4 × 106/days, (8b)

8 Note that if tests take the nonvanishing time ttest to yield a diag-
nosis, this time needs to be subtracted from the denominator in
equation (7a), thereby resulting in an increase of the full testing
rate τ−1

full .

i.e., about 1.4 million tests per day would be required
to control the pandemic by testing only. If addi-
tional restrictions such as physical distancing etc, are
imposed, ΔT increases by a modest factor and one
can get by with indirectly proportionally fewer tests
per day. Nevertheless, on the order of 1 million tests
per day is a minimal requirement for massive testing
to contain the pandemic without further measures.

However, even while the Swiss capabilities are still
far from reaching 1 million tests per day, testing for
infections offers two important benefits in addition
to identifying people that need to be quarantined.
First, properly randomized testing allows to moni-
tor and study the efficiency of measures that keep the
reproduction number R below 1. This ensures that
the growth rate k of case numbers and new infections
is negative, k < 0. Second, frequent testing, even if
applied to randomly selected people, helps suppress
the reproduction number Reff and thus allows policy
to be less restrictive in terms of other measures, such
as physical distancing.

To quantify the latter benefit, observe that the
effect of massive testing on the growth rate k is pro-
portional to the testing rate [5]. Let us assume that
without testing or social measures one has a growth
rate k0. Then, if the testing rate τ−1

full is sufficient
to completely suppress the exponential growth in
the absence of other measures, a smaller testing rate
τ−1 decreases the growth rate k0 by (τ−1/τ−1

full ) × k0.
The remaining reduction of k to zero must then be
achieved by a combination of restrictive social mea-
sures and contact tracing.

It is possible to refine the argument above to
take account of the possibility of a spectrum of tests
with particular cost/performance trade offs, i.e., a
cheaper test with more false negatives could be used
for random testing, whereas those displaying symp-
toms would be subjected to a ‘gold standard’ (PCR)
assay of viral genetic material.

4. Quantifying the effectiveness of
restrictions

A central challenge for establishing reliable predic-
tions for the time evolution of a pandemic is the quan-
tification of the effect of social restrictions on the
transmission rate [3]. Policymakers and epidemiol-
ogists urgently need to know by how much specific
restrictive measures reduce the growth rate k. With-
out that knowledge, it is essentially impossible to take
an informed decision on how to optimally combine
such measures to achieve a (marginally) stable situa-
tion, defined by the condition of a vanishing growth
rate

k = 0. (9)

Indeed, marginal stability is optimal for two reasons.
First, it is sustainable in the sense that the burden on
the health system does not grow with time. Second, it

6
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is the least economically and socially restrictive state
compatible with the stability requirement.

In sections 5 and 6, we suggest how marginal sta-
bility can be achieved, while simultaneously measur-
ing the effects of a particular set of restrictions.

5. Time delays: primary versus
secondary indicators

The time evolution of the COVID-19 pandemic has
been monitored in Europe between March and June
2020 by estimating the time-dependent reproduction
number Reff(t) from the growth rate of confirmed
cases over a time window of the generation time of
4 days for COVID-19. An inherent delay time that
we denote with TD when estimating Reff(t) arises as
a consequence of (i) the incubation time of about
Tinc ≈ 5 days from the infection until the first symp-
toms show up, (ii) the time window ΔT ranging
from 1 to 4 days over which case numbers are aver-
aged to even out fluctuations throughout the week
or uncertainties about the onset of symptoms, and
(iii) the time delay Ts→t until symptomatic people get
tested, see figure 4. Even by using forecasting meth-
ods to extrapolate from the number of tests with short
delays Ts→t to the total expected reports of symptom
onsets for a given day, the data accrued for the last
T′

s→t ≈ 3 days is usually too incomplete to be incorpo-
rated in the analysis. Accordingly, a TD ranging from
9 days to 12 days7 of delay is unavoidable when using
symptomatic testing (secondary indicator) to deter-
mine Reff(t). This is a significant disadvantage when
restrictions are released, since one needs to know the
resulting new value of Reff(t) as rapidly as possible,
so as to take countermeasures in case the release has
caused Reff(t) to surpass 1, the condition for a stable
pandemic.

We claim that an alternative testing can be used so
as to keep the dynamics of the pandemic under con-
trol as per the feedback loop of figure 1. The idea is
either to test on a daily basis a new set of random, a
priori non-symptomatic people or to choose a cohort
of people and test them regularly for infectiousness9

thereby obtaining a value for Reff(t) with a shorter
time delay than when relying on symptomatic
testing.

5.1. Random versus cohort testing
Note that the non-symptomatic testing aims at the
early identification of new cases of people who have
recently been infected and are still infectious. Stan-
dard PCR tests, however, can only tell whether a per-
son has viral material in their body, which is often

9 Note that here we focus on a person being infectious, but not on
whether the person has developed antibodies. The latter test indi-
cates that the person has been infected any time in the past. Sero-
logical tests for antibodies and (potential) immunity have their own
virtue, but aim at goals different from those of random testing for
infections that we advocate here.

the case long after symptoms have been resolved [26].
This constitutes a challenge for random testing, where
one would have to use additional information (such
as viral load, presence of antibodies or specific genetic
sequences indicative of active virus) to diagnose infec-
tiousness. Cohort testing with a testing interval of
the order of an infectious period (ca. one week),
resolves this problem, since the first time a person
tests positive, it is highly likely that he or she is still
infectious. It has the additional advantage that one
may concentrate the non-symptomatic testing pref-
erentially on essential workers with high exposure,
where precautionary testing is useful anyway. More-
over the prevalence and incidence in such a cohort is
likely to be higher than the average in the population,
which reduces the effort needed to detect a dangerous
growth dynamics. Note that even if the prevalence and
incidence is higher in such a biased cohort, their (rela-
tive) growth rate can be expected to be representative
of that of the average population. A caveat of cohort
testing is, however, that survey participation itself as
well as the regular feedback to cohort members about
their infectiousness may bias their social behavior.

6. National modeling and intervention

We analyze primary, non-symptomatic testing first
for the case where we treat the country as a sin-
gle entity with a population N. This will allow us to
understand how testing frequency affects key charac-
teristics of policy strategies.

6.1. Model assumptions
We consider a model with the following idealizing
assumptions:

(a) In the case that random testing is used, we assume
that a test can actually diagnose infectiousness.
Further we assume that an unbiased representa-
tive sample of the population is tested.

(b) The rate of false positive tests is much less than
the expected frequency of detection of infections.

(c) Tests show whether a person is acutely infected in
a short time (on the order of one day).

(d) Policy measures can be applied rapidly, and their
effect is immediate. Time delays due to the
adaptation of human behavior to new rules is
neglected.

(e) The population is homogeneous as far as inter-
actions between its members are concerned, e.g.,
there are no (semi)-isolated subpopulations. We
do not account for large deviations in infectious-
ness that may lead to superspreading events [27].

As is well known to epidemiologists and the med-
ical profession, the assumptions (a–d) clearly are vio-
lated to varying degrees in reality, but they can be
taken into account by refinements of our model,
whose operating principles and basic behavior will
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remain qualitatively the same. On the other hand, vio-
lations of assumption (e) can lead to new and dan-
gerous effects, namely hotspots related to Anderson
localization [28], which we discuss in section 8.

Let U be the actual number of currently infectious
but not yet positively tested persons. (As in reference
[5], we assume that positively tested people do not
spread the disease since they will be quarantined.) The
spreading of infections is assumed to be governed by
the inhomogeneous, linear growth equation(

dU

dt

)
(t) = k(t) U(t) +Φ(t), (10)

where k(t) is the instantaneous growth rate and
Φ(t) accounts for infections arising from people
crossing the national border. For simplicity, we
set this influx to zero in this paper, in which case
k(t) = U̇(t)/U(t) with the short-hand notation
U̇(t) for the time derivative on the left-hand side
of (10).

An equation of the form (10) is usually part of
a more refined epidemiological model of the SIR
(susceptible-infected-recovered) type [29–31] that
accounts explicitly for the recovery or death of
infected persons. For our purpose, the effect of these
is subsummarized in an overall time-dependence of
the rate k(t). For example, it evolves as the num-
ber of immune people grows, restrictive measures
change, mobility is affected, new tracking systems are
implemented, hospitals reach their capacity, testing
is increased, etc. Nevertheless, over a short period of
time where such conditions remain constant, and the
fraction of immune people does not change signifi-
cantly, we can assume the effective growth rate k(t)
to be piecewise constant in time10. We will exploit
this below. The above evolution equation is the sim-
plest model for infection dynamics, as it has no tem-
poral memory and contains the fewest parameters.
Generalizations such as SEIR models with a finite
latency time (neglected here since it is rather short
for COVID-19) [18–20], or discrete evolution mod-
els, that are non-local in time, could be considered in
further work.

6.2. Modeling intervention strategies
For t < 0, we assume a situation that is under control,
with a negative growth rate

k(t < 0) ≡ k0 < 0, (11a)

as is the case in Switzerland after the lockdown in
March, with k0 ≈ −0.07 day−1, according to the esti-
mates of reference [4]. Such a stable state needs to be
reached before a reboot of the economy can be con-
sidered. At t = 0 restrictive measures are first relaxed,

10 Replacing the function k(t) by a piecewise constant function is
a good approximation provided k(t)/k̇(t) � Δt(k) where k̇(t) is
the time derivative of k(t) (which we assume differentiable between
interventions) and Δt(k) is given by equation (18a) with the
replacement k1 → k(t).

resulting in an increase of the growth rate k from k0 to
k1, which we assume positive,

k(t = 0) = k1 > 0. (11b)

Hence, compensating countermeasures are required
at later times to avoid another exponential growth of
the pandemic.

We now want to monitor the performance of
policy strategies that relax or re-impose restrictions,
step by step. The goal for an optimal policy is to
reach a marginally stable state (9) (i.e., with k = 0)
as smoothly, safely, and rapidly as possible. In other
words, marginal stability is to be reached with the least
possible damage to health, economy, and society. This
expected outcome is to be optimized while controlling
the risk of rare fluctuations.

To model the performance of policy strategies, we
neglect the contributions to the time evolution of k(t)
due to the increasing immunity or the evolution in the
age distribution of infected people. We also neglect
periodic temporal fluctuations of k(t) (e.g., due to
alternation between workdays and weekends), which
can be addressed in further elaborations. Instead, we
assume that k(t) changes only in response to pol-
icy measures which are taken at specific times when
certain criteria are met, as defined by a policy strategy.
An intervention is made when the sampled testing
data indicates that with high likelihood, k(t) exceeds
some upper threshold

κ+ � 0. (11c)

Likewise, a different intervention is made should k(t)
be detected to fall below some negative threshold

κ− � 0. (11d)

Note that if there is substantial infection influx Φ(t)
across the national borders, one may want to choose
the threshold κ+ to be negative, to avoid a too large
response to the influx. From now on we neglect the
influx of infections, and consider a homogeneous
growth equation.

To reach decisions on policy measures, data are
acquired by daily testing of random sets of people for
infections, or by periodic cohort testing. We assume
that the tests are carried out at a limited rate r (num-
ber of tests per day). Let i(t,Δt) be the fraction of
positive infections detected among the rΔt � 1 tests
carried out in the time interval [t, t +Δt]. By the law
of large numbers, it is a Gaussian random variable
with mean

〈i(t,Δt)〉 = U(t)

N
, U(t) ≡

∫ t+Δt

t

dt′

Δt
U(t′)

(11e)

and standard deviation

〈[i(t,Δt)]2〉1/2
c =

√
〈i(t)〉
r Δt

=

√
U(t)

N r Δt
. (11f)
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The current value of k(t) is estimated as kfit(t) by fit-
ting these test data to an exponential, where only data
since the last policy change should be used. The fit-
ting also yields the statistical uncertainty (standard
deviation), which we call δk(t).

If the instability threshold is surpassed by a certain
level, i.e., if

kfit(t) − κ+ > α δk(t) (11g)

a new restrictive intervention is taken. If instead

κ− − kfit(t) > αδk(t) (11h)

a new relaxing intervention is taken. Here, α is a key
parameter defining the policy strategy. It determines
the confidence level

p ≡ [1 + erf(α)]/2 (11i)

that policymakers require, before deciding to declare
that a stability threshold has indeed been crossed.
This strategy will result in a series of intervention
times

0 ≡ t1 < t2 < t3 . . . (11j)

starting with the initial step to reboot at t1 = 0. In the
time window [tι, tι+1], the growth rate k(t) is constant
and takes the value

k(ι) = k(ι−1) −Δk(ι), ι = 1, 2, . . . (11k)

where a policy choice with Δk(ι) > 0 (corresponding
to a restrictive measure) is made to bring back k(t)
below the upper threshold κ+, while a policy choice

with Δk(ι) < 0 is made to bring back k(t) above the
lower threshold κ−.

The difficulty for policymakers is that so far the
quantitative effect of an intervention is not known.
We model this uncertainty by assuming Δk(ι) to be
random to a certain degree.

If at time t, kfit(t) crosses the upper threshold κ+

with confidence level p, we set tι = t and a restric-
tive measure is taken, i.e., Δk(ι) is chosen positive. We
take the associated decrement Δk(ι) to be uniformly
distributed on the interval[

bΔk(ι)
opt,+,

1

b
Δk(ι)

opt,+

]
, (11l)

where the optimum choice Δk(ι)
opt,+ is defined by

Δk(ι)
opt,+ ≡ kfit

(
tι
)
− κ+ > 0. (11m)

The parameter b < 1 describes the uncertainty about
the effects of the measures taken by policymakers.
While the policymakers aim to reset the growth fac-
tor k to κ+, the result of the measure taken may range
from having an effect that is too small by a factor of
b to overshooting by a factor of 1/b. A measure with
effect Δk(ι) = Δk(ι)

opt,+ would be optimal according to
the best current estimate. The larger 1 − b, the larger

the uncertainty. Unless stated otherwise, we assume
b = 0.5.

If instead kfit(t) crosses the lower threshold κ−
with confidence level p at time t, we set tι = t and a
relaxing measure is taken, i.e., Δk(ι) is chosen neg-
ative. Again, Δk(ι) is uniformly distributed on the
interval [

−1

b
Δk(ι)

opt,−,−bΔk(ι)
opt,−

]
(11n)

with the optimum choice Δk(ι)
opt,− defined by

Δk(ι)
opt,− ≡ κ− − kfit

(
tι
)
> 0. (11o)

The process described above is stochastic for two
reasons. First, the sampling comes with the usual
uncertainties in the law of large numbers. Second, the
effect of policy measures is not known beforehand
(even though it may be learnt in the course of time,
which we do not include here). It should be clear that
the faster the testing the more rapidly one can respond
to a super-critical situation.

A significant simplification of the model occurs
when the two thresholds are chosen to vanish,

κ± = 0, (12a)

in which case

k(ι) = k(ι−1) −Δk(ι), ι = 1, 2, . . . , (12b)

with |Δk(ι)| uniformly distributed on the interval[
b |kfit(tι)|,

1

b
|kfit(tι)|

]
. (12c)

In this case the system will usually tend to a criti-
cal steady state with k(t →∞) → 0, as we will show
explicitly below. In this case the policy strategy can
simply be rephrased as follows. As soon as one has
sufficient confidence that k has a definite sign, one
intervenes, trying to bring k back to zero. The only
parameter defining the strategy is α.

6.3. Testing and fitting procedure
Let us now detail the fitting procedure and analyze the
typical time scales involved between subsequent pol-
icy interventions when choosing the thresholds (12).
After a policy change at time tι, data is acquired over a
time window Δt. We then proceed with the following
steps to estimate the time tι+1 at which the next policy
change must be implemented.

Step 1: Measurement. We split the time window

ΔTι ≡ [tι, tι +Δt] (13a)

of length Δt after the policy change into the time
interval

ΔTι,1 ≡
[

tι, tι +
Δt

2

]
(13b)
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and the time interval

ΔTι,2 ≡
[

tι +
Δt

2
, tι +Δt

]
. (13c)

Testing delivers the number of currently infected peo-
ple

Nι,1(Δt) = r Δt i

(
tι,

Δt

2

)
(13d)

for the time interval (13b) and

Nι,2(Δt) = r Δt i

(
tι +

Δt

2
,
Δt

2

)
(13e)

for the time interval (13c), where we recall that r
denotes the number of people tested per unit time.
Given those two measurements over the time window
Δt/2, we obtain the estimate

kfit
ι (Δt) =

2

Δt
ln

(
Nι,2(Δt)

Nι,1(Δt)

)
(13f)

with the standard deviation

δk(Δt) =
2

Δt

√
1

Nι,1(Δt)
+

1

Nι,2(Δt)
, (13g)

as follows from the statistical uncertainty
√

Nι,γ(Δt)

of the sampled numbers Nι,γ(Δt) and standard error
propagation. The above recipe can be replaced by
a more sophisticated Levenberg–Marquardt fitting
procedure, which yields more accurate estimates for
k(t) with a smaller uncertainty δk(t). We have con-
firmed that this uniformly improves the performance
of the mitigation strategy.

Step 2: Condition for new policy intervention. A
new policy intervention is taken once the magni-
tude |kfit

ι (Δt)| with kfit
ι (Δt) given by equation (13f )

exceedsαδk(Δt) with δk(Δt) given by equation (13g).
Here,α controls the accuracy to which the actual k has
been estimated at the time of the next intervention.
The condition

|kfit
ι (Δt)| = α δk(Δt), (14a)

for a new policy intervention thus becomes

∣∣∣∣ln
(

Nι,2(Δt)

Nι,1(Δt)

)∣∣∣∣ = α

√
1

Nι,1(Δt)
+

1

Nι,2(Δt)
.

(14b)

Step 3: Comparison with modeling. We call i(t)
= U(t)/N the prevalence of infectious people (in the
entire population) that have not yet been detected.
According to (10) with Φ = 0, it follows a simple
exponential time evolution between two successive
policy interventions,

i(tι + t′) = i(tι) exp(kι t′), (15)

valid on the interval tι < t′ < tι+1. The expected
number of newly detected infected people in the time
interval (13b) is

〈Nι,1(Δt)〉 = r

∫ Δt/2

0
dt′ i(tι + t′)

= r i(tι)
ekι Δt/2 − 1

kι
. (16a)

Similarly, the predicted number of infected people in
the time interval (13c) is

〈Nι,2(Δt)〉 = r

∫ Δt

Δt/2
dt′ i(tι + t′)

= r i(tι)
ekι Δt/2

(
ekι Δt/2 − 1

)
kι

. (16b)

Step 4: Estimated time for a new policy interven-
tion. We now approximate Nι,1 and Nι,2 by replacing
them with their expectation value equations (16a) and
(16b), respectively, and anticipating the limit

kι Δt/2 � 1. (17a)

We further anticipate that for safe strategies the frac-
tion of currently infected people i(t) does not vary
strongly over time. More precisely, it hovers around
the value i∗ defined in equations (19b) and (20d) (see
figure 2). We thus insert

Nι,1 ≈ Nι,2 ≈ r i(tι)Δt/2 ≈ r i∗ Δt/2 (17b)

into equation (14b) and solve for Δt. The solution is
the time until the next intervention

Δtι ≡ tι+1 − tι =
(4α)2/3

(k2
ι r i∗)1/3

, (17c)

from which we deduce the relative increase

i(tι+1)

i(tι)
≡ exp

(
kι Δtι

)

= exp

(
sgn(kι) (4α)2/3

(
|kι|
r i∗

)1/3
)

(17d)

of the fraction of currently infected people over the
time window. This relative increase is close to 1 if the
argument of the exponential on the right-hand side is
small.

We will show below that the characteristics

Δt1 =
(4α)2/3

(k2
1 r i∗)1/3

, (18a)

and

i(t2)

i(t1)
= exp

(
(4α)2/3

(
k1

r i∗

)1/3
)

(18b)

of the first time interval [t1, t2] set the relevant scales
for the entire process. From equations (17c) and
(17d), we infer the following important result. The
higher the testing frequency r, the smaller the typ-
ical variations in the fraction of currently infected
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people, and thus in the case numbers. The band width
of fluctuations decreases as r−1/3 with the testing rate.

6.3.1. Critical prevalence
As one should expect, it is always the average rate to
detect a currently infected person, r i∗, which enters
into the expressions (17c) and (17d). The higher the
prevalence i∗, the more reliable is the sampling, the
shorter is the time to converge toward the marginal
state (9), and the smaller are the fluctuations of the
fraction of infected people.

If i∗ is too low the statistical fluctuations become
too large and little statistically meaningful informa-
tion can be obtained. On the other hand, if the frac-
tion of infections drops to much lower values, then
policy can be considered to have been successful and
can be maintained until further tests show otherwise.

We seek an upper bound for a manageable i∗. Here
we consider the parameters of Switzerland. How-
ever, they can easily be adapted to any other country.
We assume that a fraction pCH

ICU of infected people in
Switzerland needs to be in intensive care11. Here, we
will use the value pCH

ICU = 0.05. Let ρICU be the num-
ber of ICU beds per inhabitant that shall be allocated
to COVID-19 patients. The Swiss national average is
about [32]

ρCH
ICU ≈ 1200

8′500′000
≈ 1.4 × 10−4. (19a)

For the pandemic not to overwhelm the health sys-
tem, one thus needs to maintain the prevalence safely
below

i(t) � ic =
ρCH

ICU

pCH
ICU

= 0.0028, (19b)

together with similar constraints related to the capac-
ity for hospitalizations, medical care personnel and
equipment for specialized treatments. We take the
constraint from intensive care units to obtain an order
of magnitude for the upper limit admissible for i.
A study dated April 10 2020 based on random test-
ing reports that the fraction of people infected with
the virus in early April was within the confidence
interval [0.0012, 0.0076] in Austria (whereby half of
the infected people in the sample were previously
undetected) [33]. The estimates in reference [4] sug-
gest that the fraction of acutely infected people was
even close to 0.01 before the lock-down of 16 March
2020 in Switzerland. This indicates that our threshold
estimate (19b) is conservative. If the actual thresh-
old (which depends on the country, the structure
of its population, and its health-care infrastructure)
is higher, the testing frequency required to reach a
defined accuracy decreases in proportion.

The objective is to mitigate the pandemic so that
values of the order of ic or below are achieved. Before

11 More precisely, pCH
ICU is the expected time (in Switzerland) for an

infected person to spend in an intensive care unit (ICU) divided by
the expected time to be sick.

that level is reached restrictions cannot be relaxed. It
may prove difficult to push the fraction of infected
people significantly below ic, since the recent experi-
ence in most European countries suggests that it takes
a lot of effort to keep growth rates k well below 0. The
main aim would then be to reach at least stabilization
of the number of currently infected people (k = 0).

For the following we thus assume that the preva-
lence i will stagnate around a value i∗ of the order
of ic. We will discuss below what ratio i∗/ic can be
considered safe.

6.4. Required testing rate
We seek the testing rate needed for a strategy with sat-
isfactory outcome. We assume that after the reboot at
t1 = 0, the initial growth rate may turn out to be fairly
high, say of the order of the unmitigated growth rate.
In many European countries a doubling of cases was
observed every 3 days before restrictive measures were
introduced. This corresponds to a growth rate of

k0 =
ln(2)

3 days
≈ 0.23 day−1. (20a)

We assume an initial growth rate of

k1 = 0.1 day−1 (20b)

just after the reboot, which corresponds to an effective
reproduction number of Reff = exp(4 k1) ≈ 1.49. For
the simulation of a long-term strategy we choose the
rather high confidence parameter

α = 3. (20c)

In section 7, we will find that this choice strikes a
good balance between several performance criteria in
the longer term (see figure 6). In contrast, when the
focus is on preventing damage on short time scales
after a release, as discussed in section 2, a smaller value
α ≈ 1 is more appropriate. We further assume that
the rate of infections initially stagnates at a level of (for
Switzerland)

i∗ =
ic

4
≈ 0.0007. (20d)

We estimate that this prevalence level is presumably
smaller by a factor of 2–4 than the level that one
expects under the incidence conditions for which Ger-
many recommends to take restrictive interventions
again12.

12 Germany recommends to consider global interventions once 50
confirmed cases per 100 000 residents are recorded weekly. With an
infectious time of the order of a week, this corresponds to a preva-
lence of symptomatic infectious people of iD

sym ≈ 0.0005, which is
of the same order as the level we assumed in equation (20d) for our
simulation. However, since the total number of people that had the
disease is known from antibody tests to be a factor of 5–10 higher
than the confirmed cases, the threshold value iD

sym of symptomatic
incidence will more likely correspond to an actual total prevalence
of iD

sym = 0.002 − 0.005 > i∗.
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A minimal requirement is that the first relative
increase of

i(t2)

i(t1)
=

i(t2)

i(0)
(20e)

does not exceed a factor of ic/i∗ = 4. From
equation (18b), we thus obtain the minimal number
of daily tests

r � rmin ≡ (4α)2

(ln 4)3

k1

i∗
≈ 7′700 day−1 (21)

for the assumed parameters, including the rather
large value of α = 3 and k1. Note in particular the
inverse proportionality to the parameter i∗, for which
equation (20d) is a conservative estimate. Using this
value yields an estimate of the order of magni-
tude required for Switzerland. In section 7 we sim-
ulate a full mitigation strategy and confirm that
with additional capacity for just about 15′000 non-
symptomatic infection tests per day a nation-wide,
safe reboot can be envisioned under such conditions.

We close with two observations. First, this min-
imal testing frequency is just twice the testing fre-
quency presently available for suspected infections
and medical staff in Switzerland. Second, while the
latter tests require a high sensitivity with as few
false negatives as possible, non-symptomatic testing,
whose purpose is statistical analysis, can very well be
carried out with tests of lower quality in that respect.
Indeed, an increase in false negatives acts as a system-
atic error in the estimate of the infected fraction of
people, which, however, drops out in the determina-
tion of its growth rate13, as long as the prevalence i is
not close to 1. However, the success of random test-
ing does rely on a very low probability (� i∗) of false
positives (as is the case of current PCR tests). Other-
wise the signal from true positives would rapidly be
overwhelmed by the noise from false positives.

6.5. Further intervention steps after the reboot
After the reboot at time t1 = 0 further interventions
will be necessary, as we assume that the reboot will
have resulted in a positive growth rate k1. In sub-
sequent interventions, the policymakers try to take
measures that aim at reducing the growth rate to zero.
Even if they had perfect knowledge of the current
growth rate k(t), they would not succeed immediately
since they do not know the precise quantitative effect
of the measures they will take. Nevertheless, had they
complete knowledge of k(t), our model assumes that
they would be able to gauge their intervention such
that the actual effect on k(t) differs at most by a fac-
tor between b and 1/b from the targeted value, which
would reduce k(t) to 0. This and the assumption b �
0.5 implies that, if α is large, so that k(t) is known

13 If the infected fraction of people is i(t), its growth rate is
i̇(t)/i(t) ≡ k(t) with the time derivative of i(t) denoted by i̇(t).

with relatively high precision at the time of interven-
tion, the growth rate k2 is smaller than k1 in magni-
tude with high probability (tending rapidly to 1 as
α→∞)14. The smaller α however, the more likely it
becomes, that k(t) is overestimated, and an exagger-
ated corrective measure is taken, which may destabi-
lize the system in the longer term. In this context, we
observe that the ratio

0 < ρι ≡
|kι|
|kι−1|

< ∞ (22)

is a random variable with a distribution that is inde-
pendent of ι in our model. To proceed, we assume that
α is sufficiently large, such that the probability that
ρι < 1 is indeed high.

The second policy intervention occurs after a time
that can be predicted along the same lines that lead to
equation (17c). One finds

Δt2 ≈ Δt1

(
|k2|
|k1|

)−2/3

, (23)

where Δt1 is given by equation (18a). Since, the
growth rate k3 is likely to be smaller than k2 in mag-
nitude, the third intervention takes place after yet a
longer time span, etc. If we neglect that the fitted value
kfit
ι (t) differs slightly from kι (a difference that is negli-

gible when α � 1), our model ensures that kι/kι−1 is
uniformly distributed in [−1/b + 1, 1 − b]. After the
ιth intervention the growth rate is down in magnitude
to

|kι| = |k0|
ι∏

ι′=1

ρι′ . (24)

To reach a low final growth rate kfinal, a typical num-
ber nint(kfinal) of interventions are required after the
reboot, where

nint(kfinal) ≈
ln

|kfinal|
|k1|

〈ln ρι〉
= C(b) ln

|k1|
|kfinal|

, (25)

where the constant C(b) = −1/〈ln ρι〉 depends on
the policy uncertainty parameter b.

The time to reach this low rate is domi-
nated by the last time interval which yields the
estimate

T(kfinal) ∼ Δt
nint(kfinal)

≈
(

|k1|
|kfinal|

)2/3

Δt1. (26)

Thus, the system converges to the critical state where
k = 0, but never quite reaches it. At late times T, the
residual growth rate behaves as kfinal ∼ T−3/2.

Note, however, that as soon as the expected time
interval Δtι exceeds the time delay TD associated with
symptomatic testing, one can use the latter to esti-
mate the remaining small growth rate kι, since it is
based on larger case numbers and might therefore be

14 One uses equation (12) to reach this conclusion.
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Figure 5. Our algorithm implements policy releases and restrictions aiming at maintaining a vanishing growth rate. It intervenes
whenever the estimated slope of the prevalence is found to be non-zero, here with confidence level α = 3. We plot the model
prevalence U(t)/N and the prevalence i(t) as measured by testing as a function of days in panel (a). The model growth rate k(t)
(solid line) and the estimated growth rate kest at times of intervention are shown in panel (b) for the parameters i(0) = 0.0012,
k1 = 0.1, and a test rate of r = 15′000 day−1. The dashed blue line corresponds to a history of interventions where we assumed
that the effect of policy interventions is better known (described by an uncertainty parameter b = 0.9, instead of b = 0.5), so that
convergence is much faster.

more accurate.15 Beyond that point, our model, which
only assumes non-symptomatic test results as input,
merely provides a lower bound on the performance of
the mitigation strategy.

6.6. Choosing an optimal intervention strategy
The parameter α encodes the confidence which pol-
icymakers need about the present state before they
take a decision. Here we discuss various measures that
allow choosing an optimal value for α.

As α decreases starting from large values, the
time for interventions decreases, being proportional
toα2/3 according to equation (18a). Likewise the fluc-
tuations of infection numbers will initially decrease.
However, the logarithmic average −〈ln ρι〉 in the
denominator of equation (25) will also decrease, and
thus the necessary number of interventions increases.

15 However, symptomatic case numbers are correlated due to test-
ing carried out due to contact tracing. They also reflect the readi-
ness of people to get tested, as well as the provided testing frequency,
which both evolve with time.

Moreover, whenα falls below 1, interventions become
more and more ill-informed and erratic. It is not
even obvious anymore that the marginally stable state
is still approached asymptotically. From these two
limiting considerations, we expect

α = O(1) (27)

to be an optimal choice for α.
Let us now discuss a few quantitative measures

of the performance of various strategies, which will
allow policymakers to make an optimal choice of con-
fidence parameter for the definition of a mitigation
strategy. An optimal strategy might allow α to vary
with time, e.g., to take a smaller value of α at the
beginning, to prevent potentially large damage, and
then increase α later on.

6.6.1. Time scale to approach the marginal state
The time to reach a certain level of quiescence (low
growth rates, infrequent interventions) is given by the
time (26), and thus by the expectation value of Δt1.

13



Phys. Biol. 17 (2020) 065007 M Müller et al

Figure 6. Performance of the mitigation strategy as a function of the confidence parameter α, for a number r = 15′000 tests per
day and an initial growth rate k1 = 0.1. We plot the time scale Δt1 (a), and the health (b), economic (c) and political (as
measured by numbers of interventions to achieve a steady state) (d) costs (equations (28)–(30)) as measures of performance. The
circles are the mean values, the vertical lines indicate the standard deviations of the respective quantities.

6.6.2. Political cost
As a measure for the political cost, CP, we may con-
sider the number of interventions that have to be
taken to reach quiescence. As we saw in equation (25),
it scales inversely with the logarithmic average of the
ratios of growth rates, ρ, i.e.,

CP ∝
(
〈− ln ρι〉

)−1
. (28)

6.6.3. Health cost
If restrictions are over-relaxed, the infection numbers
will grow with time. The maximal fraction of cur-
rently infected people must never be allowed to rise
above the manageable threshold of ic. If one contin-
uously monitors the prevalence by non-symptomatic
testing, and given that from the time before the reboot
one knows conditions under which the system can
be stabilized, the latter could always be re-imposed
at a time sufficient to prevent reaching the level of ic.
Beyond this consideration one may want to keep the
expected maximal increase of infection numbers low,
which we take as a measure of health costs CH,

CH ≡ max
t

{
i(t)

i(0)

}
. (29)

Note that as defined, CH is a stochastic number.
Its mean and tail distribution (for large R) will be of
particular importance.

6.6.4. Economic and social cost
Imposing restrictions such that k < 0 imply restric-
tions beyond what is absolutely necessary to maintain

stability. If we assume that the economic cost CE is
proportional to the excess negative growth rate, −k
(and a potential gain proportional to k), one possible
measure for the economic cost is the summation over
time of −k(t),

CE ∝ −
∫ ∞

0
dt k(t), (30)

which converges, since k(t) decays as a sufficiently
fast power law. Hereto, CE is a stochastic variable
that depends on the testing history and the pol-
icy measures taken. However, its mean and standard
deviation could be used as indicators of economic
performance.

7. Simulation of mitigation strategy by
random testing

We introduced in section 6 a feedback and control
strategy to tune to a marginal state with vanishing
growth rate k = 0 after an initial reboot. Interven-
tions were only taken based on the measurement
of the growth rate. However, in practice, a more
refined strategy will be needed. In case the infection
rate drops significantly below i∗, one might (depend-
ing on netting out political and economic pressures,
something which the authors of this paper are not
doing here) benefit from a positive growth rate k. We
thus assume that if i(t)/i∗ falls below some threshold
ilow = 0.2, we intervene by relaxing some measures,
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Figure 7. Performance of the mitigation strategy as a function of the number of tests r per day, for a fixed value of α = 3 and an
initial growth rate k1 = 0.1. We plot the time scale Δt1 (a), and the health (b), economic (c) and political (as measured by
numbers of interventions to achieve a steady state (d) costs (equations (28)–(30)) as measures of performance. The circles are the
mean values, the vertical lines indicate the standard deviations of the respective quantities. The large uncertainties in the
economic costs, e.g., are a consequence of the relatively large uncertainty in the effect of interventions (b = 0.5). If the latter is
better known, the standard deviation of the cost functions will decrease accordingly.

that we assume to increase k by an amount uniformly
distributed in [0, k1], but without letting k exceed the
maximal value of khigh = 0.23. Likewise, one should
intervene when the fraction i(t) grows too large. We
do so when i(t)/i∗ exceeds ihigh = 3. In such a situa-
tion we impose restrictions resulting in a decrease of
k by a quantity uniformly drawn from [khigh/2, khigh].
The precise algorithm is given in the supplemen-
tary information (https://stacks.iop.org/J/00/000000/
mmedia).

Figure 5 shows how our algorithm implements
policy releases and restrictions in response to test
data. The initial infected fraction and growth rate
are i(0) = ic/4 = 0.0007 and k1 = 0.1, respectively,
with a sampling interval of one day. We choose α = 3
and a number of r = 15′000 tests per day. Figure 5(a)
displays the fraction of undetected infectious peo-
ple, U(t)/N, as a function of time, derived using our
simple exponential growth model, which is character-
ized by a single growth rate that changes stochastically
at interventions [equation (10) without the source
term]. In the absence of intervention, the infected
population would grow rapidly representing uncon-
trolled runaway of a second wave. At each time step
(day) the currently infected fraction of the population
is sampled. The result is assumed to be normally dis-
tributed with mean and standard deviation given by
equations (11e) and (11f ) to obtain i(t). The former

are represented by small circles, the latter by vertical
error bars in figure 5. If i/i∗ lies outside the range
[ilow, ihigh], we intervene as described above. Other-

wise, on each day kfit(t) and its standard deviation
are estimated using the data since the last interven-
tion. With this, at each time step, equations (11m) to
(11o) decide whether or not to intervene. In figure 5,
each red circle represents an intervention and there-
fore either a decrease or increase of the growth rate
constant of our model.

Figure 5 shows the evolution of the fraction of
currently infectious people (the prevalence). After
an initial growth with rate k1 subsequent interven-
tions reduce the growth rate down to low levels
within a few weeks. At the same time the frac-
tion of infectious people stabilizes at a scale sim-
ilar to i∗. For the given parameter-set this is a
general trend independent of realization. Figure 5(b)
displays the instantaneous value of the model rate
constant and also the estimated value together with
its fitting uncertainty. The estimate follows the model
value reasonably well. One sees that the interven-
tions occur when the uncertainty in k is sufficiently
small.

7.1. Simulation results
We now assume that we have the capacity for
r = 15′000 per day, and assess the performance of our
strategy as a function of the confidence parameterα in
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Figure 8. Time after which a significant positive growth
rate is confirmed in the worst case scenario for which the
growth rate jumps to k1 = 0.23 after reboot. An
intervention will be triggered in 3–4 days, since in the case
that such a strong growth must be suspected, one should
apply a small confidence parameter α ≈ 1. Results are
shown for r = 15′000 and r = 20000 tests a day. The circles
are the mean values, the vertical lines indicate the standard
deviations for the first intervention time.

figure 6. Values ofα � 2 lead to rapid, but at the same
time not very accurate interventions, as is reflected
by their rapidly growing number. For larger values
of α, the time scale to reach a steady state increases
while the economic and health costs remain more or
less stable. A reasonable compromise between mini-
mizing the number of interventions, and shortening
the time to reach a steady state suggests a choice of
α ≈ 2.5–3.5.

It is intuitive that the higher the number r of
tests per day is, the better the mitigation strategy
will perform. The characteristic time to reach a final
steady state decreases as r−1/3, see equation (18a).
Other measures for performance improve monoton-
ically upon increasing r. This is confirmed and quan-
tified in figure 7, where we show how the political,
health, and economic cost decreases with increasing
test rate.

7.1.1. Time delay to detect catastrophic growth
rates
After a reboot it is likely that the growth rate k1 jumps
back to positive values, as we have always assumed
so far. The time it takes until one can distinguish
a genuine growth from intrinsic fluctuations due to
the finite number of people sampled depends on the
growth rate k1, see equation (18a).

In the worst case where the reboot brings back
the unmitigated value k0, one will know within
3–4 days with reasonable confidence that the growth
rate is well above zero. This is shown in figure 8. In
such a catastrophic situation, an early intervention
can be taken, while the number of infections has at
most tripled at worst. Note that this reaction time
is 3–4 times faster than without non-symptomatic
testing.

8. Regionally refined reboot and
mitigation strategies

We have argued that a daily testing rate r of the order
of 10 000 tests per day is sufficient to obtain sta-
tistical information on the growth rate k as applied
to Switzerland as a whole. This assumes tacitly
that the simple growth equation (10) describes the
dynamics of infections in the whole country well.
That this is not necessarily a good description can
be conjectured from data on the rates with which
numbers of confirmed infections in the various
cantons (states of Switzerland) evolved close to the
peak of the first wave, and during the lockdown.
These data showed a non-negligible spread suggest-
ing that a spatially resolved approach is preferable,
if possible.

If the testing capacity is limited by rates of order
rmin, the approach can still be used. But caution
should be taken to account for spatial fluctuations
corresponding to hot spots. One should preferentially
test in areas that are likely to show the largest local
growth rates so as not to miss locally super-critical
growth rates by averaging over the entire country. If
however, higher testing frequencies become available,
new and better options come into play.

8.1. Partitioning the country for statistical
analysis
Valuable information can be gained by analyzing the
test data not only for Switzerland as a whole, but by
distinguishing different regions.

It might even prove useful not to lift restrictions
homogeneously throughout the country, but instead
to vary the set of restrictions to be released, or to
adapt their rigor. By way of example, consider that
after the spring or summer break schools start in
different calendar weeks in different cantons. This
regional difference could be exploited to probe the rel-
ative effect of re-opening schools on the local growth
rates k. However, obviously, it might prove politi-
cally difficult to go beyond such ‘naturally’ occur-
ring differences, as it is a complex matter to decide
what region releases which measures first. A further
issue is that the effects might be unclear at the bor-
ders between regions with different restrictions. There
may also be complications with commuters that cross
regional borders. Finally, there may be undesired
behavioral effects, if regionally varying measures are
declared as an ‘experiment’. Such issues demand care-
ful consideration if regionally varying policies are
applied.

Even if policy measures should eventually not be
taken in a region-specific manner, it is very useful to
study a regionally refined model of epidemic dynam-
ics. Indeed a host of literature exists that studies epi-
demiological models on lattices and analyzes the spa-
tial heterogeneities [34, 35]. In certain circumstances,
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those have been argued to become even extremely
strong [36]. In the present paper, we will content our-
selves with a few general remarks concerning such
refinements. We reserve a more thorough study of
regionally refined testing and mitigation strategies to
subsequent work.

Let us thus group the population of Switzerland
into G sets. The most natural clustering is according
to the place where people live, cities or counties16.
The more we partition the country, the more spatially
refined the acquired data will be, and the better tai-
lored mitigation strategies could potentially become.
However, this comes at a price. Namely, for a lim-
ited national testing rate rtot, an increased partition-
ing means that the statistical uncertainty to measure
local growth rates in each region will increase. This
limitation would not apply, however, to statistical test-
ing based on sewage water analysis [9–11]. The lat-
ter would become a promising tool once it can be
shown to be a sufficiently reliable and stable indica-
tor of the prevalence of infectious people within the
area covered by the waste water plant.

The minimal test rate rmin such as the estimate
of equation (21) still holds, but now for each region,
which can only test at a rate r = rtot/G. To refine
Switzerland into G regions we thus have the constraint
that the total testing capacity exceed G rmin. If testing
at a high daily rate rtot indeed becomes available, the
statistical analysis should be refined to G ≈ rtot/rmin

to make the best use of available data.

8.2. Spatially resolved growth model
Each of the population groups m ∈ {1, . . . , G} is
assumed to have roughly the same size, containing

Nm ≈ NCH

G
(31)

people, Um of whom are currently infectious, but
yet undetected. The spreading of infections is again
assumed to follow a linear growth equation (where
we neglect influx from across the borders from the
outset)(

dUm

dt

)
(t) =

G∑
n=1

Kmn(t) Un(t), m = 1, . . . , G.

(32)
Here, the growth kernel K(t) is an a priori non-
symmetric G × G matrix with matrix elements
Kmn(t). The matrix K(t) has G (generically distinct,
complex valued) eigenvalues λn, n = 1, . . . , G. The
largest growth rate is given by

κ(t) ≡ max
1�n�G

{
Reλn(t)

}
. (33)

16 One might also consider other distinguishing characteristics of
groups (age or commuting habits, etc), but we will not do so
here, since it is not clear whether the increased complexity of the
model can be exploited to reach an improved data analysis. In fact
we expect that the number of fitting parameters will very quickly
become too large by making such further distinctions.

For the sake of stability criteria, κ(t) now essentially
takes the role of k(t) in the model with a single
region, G = 1. We note that the number of infec-
tions grows exponentially if κ(t) > 0, and decreases if
κ(t) < 0.

As in the case of a single region, we assume K(t)
to be piecewise constant in time, and to change only
upon taking policy interventions.

In the simplest approximation, one assumes no
contact between geographically distinct groups, that
is, the off-diagonal matrix elements are set to zero
[Km �=n(t) = 0] and the eigenvalues become equal to

elements of the diagonal: km(t) ≡ Kmm(t). As current
cantonal data suggests, the local growth rate km(t)
depends on the region, and thus km(t) �= kn(t). It is
natural to expect that km(t) correlates with the pop-
ulation density, the fraction of the population that
commutes, the age distribution, etc.

If on top of the heterogeneity of growth rates
one adds finite but weak inter-regional couplings
Km �=n(t) > 0 (mostly between nearest neighbor
regions), one may still expect the eigenvectors of K(t)
to be rather localized (a phenomenon well known as
Anderson localization [28] in the context of waves
propagating in strongly disordered media). By this,
one means that the eigenvectors have a lot of weight
on few regions only, and little weight everywhere else.
That such a phenomenon might occur in the growth
pattern of real epidemics is suggested by the signifi-
cant regional differences in growth rates that we have
mentioned above. In such a situation it would seem
preferable to adapt restrictive measures to localized
regions with strong overlap on unstable eigenvectors
of K(t), while minimizing their socio-economic
impact in other regions with lower km(t).

8.3. Mitigation strategies with regionally refined
analysis
As mentioned above, in the case with several dis-
tinct regions, G > 1, an intervention becomes neces-
sary when the largest eigenvalue κ(t) of K(t) crosses
an upper or a lower threshold (with a level of
confidence α again to be specified). If the asso-
ciated eigenvector is delocalized over all regions,
one will most likely respond with a global policy
measure. However, it may as well happen that the
eigenvector corresponding to κ(t) is well-localized.
In this case one can distinguish two strategies for
intervention:

(a) Global strategy. One always applies a single pol-
icy change to the whole country. This is politically
simple to implement, but might incur unneces-
sary economic cost in regions that are not cur-
rently unstable.

(b) Local strategy. One applies a policy change only
in regions which have significant weight on
the unstable eigenvectors. This means that one
only adjusts the corresponding diagonal matrix
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elements of K(t) and those off-diagonals that
share an index with the unstable region.

Likewise, regions that have im < i∗ and have neg-
ligible overlap with eigenvectors whose eigenvalues
have real parts aboveκ−, could relax some restrictions
before others do.

Fitting test data to a regionally refined model will
allow us to estimate the off-diagonal terms Kmn(t),
which are so far poorly characterized parameters.
However, the Kmn(t) contain valuable information.
For instance, if a hot spot emerges [that is, a region
overlapping strongly with a localized eigenvector
with positive Reλn(t)], this part of the matrix will
inform which connections are the most likely to infect
neighboring regions. They can then be addressed by
appropriate policy measures and will be monitored
subsequently, with the aim to contain the hot spot and
keep it well localized.

This model allows us to calculate again economic,
political, and health impact of various strategies. It
is important to assess how the global and the local
strategy perform in comparison. Obviously this will
depend on the variability between the local growth
rates km(t), which is currently not well known, but
will become a measurable quantity in the future. At
that point one will be able to decide whether to select
the politically simpler route (a) or the heterogeneous
route (b) which is likely to be economically favorable.

9. Summary and conclusion

We have analyzed a feedback and control model
for managing a pandemic such as that caused by
COVID-19. The crucial output parameters are the
infection growth rates in the general population (or
in a pre-selected cohort) and spatially localized sub-
populations. When planning for an upcoming reboot
of the economy, it is essential to assess and mitigate
the risks of relaxing some of the restrictions that have
brought the COVID-19 epidemic under control. In
particular, the policy strategy chosen must suppress
a potential second exponential wave when the econ-
omy is rebooted, and so avoid a perpetual stop-and-go
oscillation between relaxation and lockdown. Feed-
back and control models are designed with precisely
this goal in mind.

Having testing for non-symptomatic but infec-
tious cases in place, the risk of a second wave can be
kept to a minimum upon relaxation of restrictions or
as the winter season approaches. Additional testing
capacity of r = 15′000 day−1 tests (on top of the cur-
rent tests for medical purposes) carried out—either
with randomly selected people or a large cohort, pref-
erentially of exposed key workers, for whom pre-
ventive testing is beneficial anyway—would allow us
to follow the course of the pandemic almost in real
time, with shorter time delays, and without the danger

of increasing the prevalence by more than a modest
factor of 3–4, if our intervention strategy is followed.

We recall that our estimate of r assumed a certain
level of prevalence, i∗, see equation (19b), which is
higher than current levels in many European coun-
tries, but smaller than the alarm threshold at which
Germany recommends to resume wide-spread inter-
ventions. It is even significantly smaller than the man-
ageable prevalence in Switzerland. At those higher
prevalences, the required testing rates would even be
several times smaller than the estimates we gave.

If testing rates r significantly higher than rmin

become available, a regionally refined analysis of the
growth dynamics can be carried out, with G ≈ r/rmin

regions that can be distinguished.
In the worst case scenario, where releasing certain

measures immediately makes the country jump back
to the unmitigated growth rate of k0 = 0.23 day−1,
non-symptomatic testing would detect this within
3–4 days from the change coming into effect. This is
to be contrasted with the delay of 8–12 days required
for symptomatic individuals to emerge in statisti-
cally significant numbers. After such a time delay, a
prevalence increase by a factor of order 10 may have
already occurred. Daily testing for non-symptomatic
but infectious cases can significantly diminish such
an increase. Thereby the significant reduction of the
time delay is absolutely crucial. Note that without
daily polling of infections and without knowledge
about the quantitative effect of restriction measures,
a reboot of the economy is more risky. It thus requires
a longer time under lockdown conditions to bring
down the prevalence to a level where a reboot will be
safe even with a longer reaction time.
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Appendix A. Algorithm to simulate
mitigation of reboot

A.1. Definitions

• t = 1, 2, . . . : time in days (integer).

• nint: number of interventions (including the
reboot at t = 1).

• tint(j): first day on which the jth rate kj applies.

On day tint(1) ≡ 1 the initial reboot step is
taken.

• Δt(j) = tint(j + 1) − tint(j): time span between
interventions j and j + 1.
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• tfirst: first day on which the current rate k = k(t)
is applied.

• i(t): fraction of infected people on day t.

• k(t): growth rate on day t.

• r: number of tests per day.

• CH: health cost.

• CE: economic cost.

• kmin = 0.005: minimal growth rate targeted.

• ilow = 0.2: lower threshold for i/i∗. If i/i∗ < ilow,
a relaxing intervention is made, irrespective of
the estimate of k.

• ihigh = 3: upper threshold for i/i∗. If i/i∗ > ihigh,
an intervention is made even if k is still smaller
than αδk.

• klow = −0.1: minimal possible decreasing rate
considered.

• khigh = 0.23: maximal possible increasing rate
considered.

• Tmin = 3: minimal time to wait since the last
intervention, for interventions based on the
level of i(t).

• b: parameter defining the possible range of
changes Δk due to measures taken after esti-
mating k. |Δk/kest| ∈ [b, 1/b]. Usually we set
b = 0.5.

• α: confidence parameter.

• N(t): cardinality of random sample of infected
people on day t. The number N(t) is obtained
by sampling from a Gaussian distribution of
mean i(t)r and standard deviation

√
i(t) r and

rounding the obtained real number to the next
non-negative integer.

A.2. Initialization

• tfirst = tint(1) = 1.

• nint = 1.

• CH = 1.

• CE = 0.

• k(1) = k1 = 0.1. (Initial growth rate)

• i(1) = i∗. Common choice i∗ = ic/4 = 0.0007.

• Draw N(1).

• k(2) = k(1). (No intervention at the end of day
1).

• Set t = 2.

A.3. Daily routine for day t
Define i(t) = i(t − 1)ek(t−1),

Define CH = max{CH, i(t)/i∗},
Define CE = CE − k(t).
Draw N(t).
Determine what will be k(t + 1), by assessing

whether or not to intervene:
If t = tfirst, then k(t + 1) = k(t). (No

intervention)
Else Distinguish three intervention cases:

(a) If i(t)/i∗ < ilow and t − tfirst � Tmin, then k(t +
1) = min{k(t) + x k1, khigh} with x = Unif[0, 1].

(b) ElseIf i(t)/i∗ > ihigh and t − tfirst � Tmin, then

k(t + 1) = max{k(t) − (1 + x)/2 khigh, klow}
with x = Unif[0, 1].

(c) ElseIf ilow < i(t)/i∗ < ihigh, then

• Set Δt ≡ t − tfirst + 1

• Compute kest(tfirst,Δt), and δkest(tfirst,Δt)
using appendix A.4.

If |kest| > kmin

AND[
kest > αδkestORkest < −α δkest

]
,

set
k(t + 1) = k(t) − x kest

with x = Unif[b, 1/b].
If k(t + 1) > khigh, put k(t + 1) = khigh.

If k(t + 1) < klow, put k(t + 1) = klow.

(d) Else k(t + 1) = k(t)

t = t + 1.
If an intervention was taken above:

• Put nint = nint + 1.

• Define tint(nint) = t + 1.

• Define Δt(nint − 1) = tint(nint) − tint(nint − 1).

• Set tfirst = t + 1.

If |kest| < kmin AND k(t) < kmin AND t − tfirst >

10, then EXIT.
Else return to daily routine for next day.

A.4. Estimate of k(t, Δt)
Computing kest(tfirst,Δt) and δkest(tfirst,Δt):

If Δt is even:
Define
N1 =

∑Δt/2−1
m=0 N(tfirst + m),

N2 =
∑Δt/2−1

m=0 N(tfirst +Δt/2 + m).

• If N1 N2 > 0, then

kest =
2
Δt ln

(
N2

N1

)
,

δkest =
2
Δt

√
1

N2

+ 1

N1

.

• Else return

kest = 0,
δkest = 1000.
If Δt is odd:
Define
N ′

1 =
∑(Δt−1)/2−1

m=0 N(tfirst + m),
Nm = N(tfirst + (Δt − 1)/2),

N ′
2 =

∑(Δt−1)/2−1
m=0 N(tfirst + (Δt + 1)/2 + m),

N1 = N ′
1 + Nm,

N2 = N ′
2 + Nm.

• If N1 N2 > 0, then

kest =
2

(Δt−1) ln

(
N ′

2+Nm

N ′
1+Nm

)
,

δkest =
2

(Δt−1)

√
N ′

2

N2
2

+
N ′

1

N2
1

+ Nm

(
1

N2

− 1

N1

)2

.

• Else return
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kest = 0,
δkest = 1000.

A.5. Observables
Time to first intervention: Δt(1)

Health cost: CH

Political cost: nint

Economic cost CE
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