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Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions
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We study models of itinerant spinless fermions with random long-range interactions. We motivate such models
from descriptions of fermionic atoms in multimode optical cavities. The solution of an infinite-range model yields
a metallic phase, which has glassy charge dynamics, and a localized glass phase with suppressed density of states
at low energies. We compare these phases to the conventional disordered Fermi liquid, and the insulating electron
glass of semiconductors. Prospects for the realization of such glassy phases in cold-atom systems are discussed.
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I. INTRODUCTION

There is much current interest in experiments with ul-
tracold atoms and photons that provide clean realizations
of models from condensed matter physics. A variant of
the antiferromagnetic Ising model in one dimension, for
example, has recently been “quantum simulated” with bosons
in optical lattices [1], an encouraging step toward quan-
tum simulation of more general, strongly correlated quan-
tum magnets in low dimensions. The hope is that these
quantum optics experiments eventually reach the parameter
regimes and accuracy necessary to allow for predictions
that can overcome the limitations of conventional theoreti-
cal approaches for strongly interacting quantum many-body
systems.

On top of that, the tunability of ultracold atoms allows
one to explore quantum many-body Hilbert spaces that
have no direct condensed matter analog. In a series of
remarkable experiments at ETH Zurich [2-4], Baumann et al.
have begun the quantum simulation of strongly interacting
quantum gases with genuine long-range interactions [5]. In
these many-body cavity QED systems, an atomic ensem-
ble (a thermal cloud [6,7] or Bose-Einstein condensate) is
loaded into an optical cavity containing quantized photon
modes. Because the photons are massless, they mediate an
interatomic interaction that does not decay as a function of
distance between atoms and therefore couples all the particles
in the ensemble to one another. Exploiting this property,
Baumann et al. [4,8] found a mapping of their entangled
atom-light system to the classic Dicke model describing N
two-level atoms uniformly coupled to a single quantized
photon mode [9-11]. The superradiance transition of the Z,
Dicke model spontaneously breaks an Ising symmetry and
may be viewed as a realization of an Ising ferromagnet, which
is exactly solvable due to the infinite range of the photon-
mediated “spin-spin” interaction. By extending the experi-
mental setup to multiple cavity modes, increasingly complex
spatial structures of long-range atom-atom interactions can be
achieved [12,13].
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Strack and Sachdev [14] recently computed the phase
diagram and spectral properties for atomic spins in multimode
cavities assuming that the cavity mode functions and (fixed)
positions of the atoms can be chosen so that the effective
spin-spin interactions become random and frustrated. It was
shown that a quantum phase transition in the universality
class of the (solvable) infinite-range Ising quantum spin
glass [15,16] occurs, potentially enabling comparison be-
tween experiment and the theory of spin glasses. In a
related paper [17], Gopalakrishnan et al. provided exper-
imental details and detection methods for the spin glass
phase.

In the present paper we explore quantum glassiness in
the charge or density sector of itinerant fermionic atoms in
multimode cavities. An important difference to the previous
study [14] consists in the inclusion of hopping of atoms on
the lattice; the resulting phase diagram now depends on the
quantum statistics of the itinerant particles. Related bosonic
versions (Bose-Hubbard models coupled to cavity photons)
were considered in Ref. [18], wherein a superradiant Mott-
insulating phase, displaying entanglement of the charge of the
atoms with a cavity mode, was found. Degenerate fermions
interacting with a single cavity mode were also considered
previously [19,20].

Our calculations provide evidence that multimode cavities
with degenerate fermionic atoms can quantum simulate vari-
ous phases and properties of infinite-range glasses that share
several properties with Efros-Shklovskii Coulomb glasses in
the quantum regime.

For a single-mode cavity coupled to itinerant bosonic
atoms [4], the onset of superradiance is concomitant with
translational symmetry breaking and the formation of a
charge density wave with a period of the cavity photon
wavelength. The glassy ordering of fermionic atoms in
multimode cavities can instead be understood as the forma-
tion of one out of many energetically low-lying amorphous
charge density patterns in a random linear combination of
cavity modes. Most of these amorphous density orderings
are metastable and the ensuing slow relaxation dynamics
should in principle be measurable as a response to probe laser
fields.

Glassy phases of fermions have long been predicted to exist
in Coulomb-frustrated semiconductors, so-called electron or
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Coulomb glasses [21]; in our case, the fermionic atoms
play the role of the electrons in these earlier studies. In
these electronic systems frustration results naturally from
a competition between long-range Coulomb repulsions and
the random positions and energies of impurity sites. While
the former favor a regular density pattern, such as in a
Wigner crystal, the latter disrupt this order and provoke a
noncrystalline density order. The competition of these two
ingredients leads to many long-lived metastable configurations
with very slow relaxation dynamics between them. This
structure of phase space entails remarkable out-of-equilibrium
properties such as memory effects and logarithmic relaxation
persisting over many hours [22,23], which are also present
in quantum electron glasses approaching a metal insulator
transition [24], and were reported to persist even in the metallic
phase [25,26].

An important hallmark of such insulating electron glasses is
the Efros-Shklovskii gap in the single-particle density of states
in the glassy phase, whose elementary charge excitations are
strongly Anderson localized. Such a pseudogap is required by
the stability of metastable states in the presence of unscreened
long-range interactions [27]. Remarkably, the amorphous or-
dering of the glass softens the hard gap—which would existina
regularly ordered system—just to the maximal extent, which is
still compatible with stability, leaving the glass in an interesting
state of criticality [28,29]. This criticality results in a widely
distributed response to a local excitation and avalanches [30],
features that occur also in mean-field spin glasses [31,32]. This
criticality survives in the presence of weak quantum fluctua-
tions (nonzero tunneling amplitude between sites in electron
glasses or spontaneous spin flips induced by a transverse field
in spin glasses). It entails gapless collective excitations despite
the absence of a broken continuous symmetry. Eventually the
glass order melts at a critical value of the hopping or transverse
field [16,33-35].

A common assumption is that the delocalization of the
fermionic quasiparticles (i.e., the insulator-to-metal transi-
tion) coincides with the disappearance of glassy dynamics,
giving way to a disordered Fermi liquid. However, it is
also possible that these two transitions are separated. The
Anderson delocalization of the fermionic quasiparticles may
precede the melting of the glass, in which case we obtain a
metallic glass with nonzero conductivity at zero temperature.
Such a glassy state with metallic conduction was obtained
in dynamical mean-field theory by Dobrosavljevic and col-
laborators [36,37]. Moreover, the fact that glassy phases
may also exist in phases with good transport properties was
recently shown in models of frustrated bosons [38—40] where
a superglass phase with microscopically coexisting superfluid
and glassy density order exists. In the context of Coulomb-
frustrated systems in condensed matter (without disorder),
an intermediate metallic phase with periodic, striped density
order (“conducting crystal”) was discussed by Spivak and
Kivelson [41].

A. Overview of key results and outline of paper

In the present paper, we argue that two types of
glassy phases, a metallic glass and an insulating Anderson-
Efros-Shklovskii glass also exist for fermions with ran-
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FIG. 1. (Color online) Schematic phase diagram of model (1)
for moderate densities in the vicinity of half-filling n ~ 1/2. J? is
the variance of the long-range disorder V;;, and W? the variance of
the effective onsite disorder [Eq. (26)]. The black, dashed line is
the metal-insulator transition. The blue line is the glass transition.
Quantitative computations in this paper are restricted to the W = 0
axis, while the nature of the transition lines around the Anderson
transition (J = 0) are inferred from scaling considerations in Sec. VI.
The localization transition from the metallic glass to the Anderson-
Efros-Shklovskii glass and the signatures of this insulating glass
phase are discussed in Sec. III. We describe the Fermi liquid to
metallic glass transition and the properties of the metallic glass phase
in Sec. V.

dom infinite-range interactions (see Fig. 1). For low den-
sities, we find that the metallic glass is avoided; instead,
the liquid abruptly transitions to the localized glass state
(see Fig. 2).

Our metallic glass state should not be confused with the
metallic glass of metallurgy. In the latter materials, the glassy
physics is entirely due to classical atoms freezing into out-of-
equilibrium configurations, and the metalllic conduction is due
to conduction electrons, which move in the background of the
frozen atoms. In contrast, in our system the glassy dynamics
and metallic conduction are due to the same fermionic
degrees of freedom, which are electrons in the condensed
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FIG. 2. (Color online) Schematic phase diagram of Eq. (1) for
small effective onsite disorder (VT/ = 0) as a function of fermion
density n. Below the crossing point (yellow dot) of the metal-insulator
transition (black-dashed line) and the glass transition (blue), the
transition becomes first order. The Fermi liquid and the metallic
glass may still exist (as long-lived metastable states) to the right of
the dashed line.
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matter realizations, and fermionic atoms in quantum optics
realizations.

In Sec. II, starting from a Jaynes-Cummings-type Hamil-
tonian for itinerant fermions coupled to cavity photons,
we derive the fermionic model that we study in this

paper

H=—t) (cle; +He)
(i,J)

N |
- ;(Si —pun; — 3 Z Vijninj, (1)

ij=1

which contains a short-range hopping term ¢, disordered,
random onsite energies &;, and long-range, random density-
density interactions V;; mediated by photons.

In Fig. 1, we show the phase diagram of this model
at moderate density, n = O(1), as a function of effective
onsite disorder [W defined in Eq. (26)] and photon-mediated
interaction strength (J) in units of hopping ¢. For small
effective onsite disorder W 2 0, as the interaction is increased,
the disordered Fermi liquid (FL) becomes unstable to the
formation of an irregular, glassy density pattern, which
depends on the interactions mediated by the random cavity
modes. However, the irregular density waves do not gap the
Fermi surface, but leave the fermions metallic, with a finite
conductivity in the low-temperature limit. The glassy charge
density order is marginally stable, which leads to soft collective
density excitations. The scattering of fermions from collective
density modes leads to some non-Fermi-liquid properties (such
as finite-temperature transport) but the fermionic quasiparti-
cles remain well defined. The quantum glass transition and
properties of the metallic glass are analyzed with effective
field theory methods in Sec. V.

Upon further reduction of the hopping, or increase of
interactions, the random Hartree potential generated by the
frozen density pattern starts to localize the quasiparticles
and induces an Anderson insulator. The latter has strongly
suppressed diffusion, which is expected to vanish at 7 = 0. At
this point, the metallic background vanishes, leaving behind
an insulating charge glass with a spatially strongly fluctuating
frozen-in density distribution. This phase and an estimate for
the transition point (J/f). ), for a three-dimensional (3D)
cubic lattice is presented in Sec. III. We will show there that
for low fermion densities, at equilibrium, the metallic glass is
avoided and the Fermi liquid transitions discontinuously to a
localized glass phase. Nevertheless, even at lower densities,
the metallic glass may be experimentally observable, as it
is expected to exist as a long-lived metastable phase, which
eventually will nucleate the energetically more favorable
localized glass.

In Fig. 1, the metallic glass “strip” is predicted to separate
the AES glass from the Fermi liquid even close to the Anderson
transition at (J = 0, W),.). In that regime, as we explain in
Sec. VI, the quantum glass transition is sensitive to the fractal
nature of the fermionic wave functions close to the Anderson
transition.
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In Sec. VII, we conclude with a unifying discussion
about the potential of many-body cavity QED as a quantum
simulator of long-range quantum glasses exhibiting freez-
ing in different sectors (spin, fermionic charge, bosonic
charge). We also outline interesting open questions for future
research.

II. MODEL

We consider spinless lattice fermions coupled to multiple
cavity photon modes. The absorption of cavity photons
(represented by canonical bosonic creation and annihilation
operators at, a) raises the internal state of the fermions from
a ground state (represented by canonical fermion creation and
annihilation operators cz,, ¢,) to an excited state (CZ, c.). In
addition, a classically treated pump laser coherently drives
transitions between the ground state and the excited state. The
Hamiltonian operator,

Hic!

gvcgsa7027ce] = Hyom + thoton + Hpumps 2

consists of three terms. The first one describes itinerant
fermions on a-dimensional (optical) lattice withi =1,...,N
sites with short-range, nearest-neighbor ({7,;j)) hopping ¢
(taken to be the same for ground and excited state)

Hyjom = —t Z(C;gcj,g + cj,ecj,e + H.c.)
(i)

N N

+ Z (= +M)n;.+ Z(Ei,g — ;. 3)
i=1 i=1

Here p is the chemical potential, and n;, = ci ¢Cig are

density operators for the atoms in the ground state, and

analogously for the excited state. The single-particle energy

of the ground state, ¢; ¢, can be chosen as the energy reference

point.

Following Maschler et al. [42], we write our equations in
a frame rotating with the frequency of the pump laser and A
describes the atom-pump detuning, which can generally be
chosen larger than the kinetic energy A > t.

We further have M cavity photon modes with frequencies
w, and spatially nonuniform atom-photon couplings g;, that
generally depend on the atom’s site i and the characteristics of
the cavity photon mode . Finally, we have a pump term with
amplitude /; that does not involve photon operators

M N M
i i i i
Hyhoton = E wea,ap — E E 8ie(C; Cigte + C; (Ciely),
=1

i=1 (=1
, )
Hpump = — 3 _hi(c] ci + ¢l o).

i=1

The excited state can be adiabatically eliminated. In the
aforementioned regime of large atom-pump detuning, one can
ignore the dependence of the effective ground state interactions
on the dynamics and spatial propagation of the excited state
[42]. Therefore, the €; ., do not appear in the parameters of the
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resulting effective Hamiltonian, which reads

H[C;Cg,a] =—t Z(cigcj,g +H.c)

()]

N h2
3 (a5

i=1

M

M
o ichi
=+ wméa@ + Z Z g@A ni,g(Clz + aZ)
=1 1

= i=1 (=1

M

N
8ie8i
+ E E lAlmn,;gaZam. (®)]
i=1¢

,m=1

We drop the subscript g from now on. We include the
expectation value of the term in the last line as a contribution
to the single-particle energies,

2

M
8it8im h,‘
& = Z A (agam) +¢€ + X (6)

L,m=1
In a final step, we integrate out the photons from Eq. (5) and
get the expression:

Hlcf el = =) (cle; +He)
(i,))

N N
1
+ E (&i — wni — 3 E Vijninj. (1)
i=1 ij=1

The long-range density-density interaction written in a path
integral representation

M giegiehih 1)
_ it8jelin; 0
Vi@ =2) =5 F o ®)
(=1

makes the dependence on the bosonic Matsubara frequency €2
explicit.! The magnitude of V;; is proportional to the amplitude
of the driving laser %; and can therefore be tuned flexibly. The
sign and spatial dependence of V;; is determined by the choice
of mode profiles of the cavity modes and pump lasers as well
as the orientation of the lattice within the cavity.

In this paper, we are primarily interested in the case where
the photon mode functions g;¢g;¢ in Eq. (8) can be realized
as randomly varying in sign and magnitude in each disorder
realization and, with M sufficiently large, we assume the
Vi;(£2) to be Gaussian distributed with variance

8Vij(Q)8Viji () = (818 + 8;i:8i;)V(R2,2)/N. )

The overline represents a disorder average, and §V;; is the
variation from the mean value. Such a mean value only
shifts the chemical potential and can be dropped. Further, we
assume in this paper that couplings between different sites are
uncorrelated.

'Equation (8) implies retarded interactions in Eq. (7), which should
thus be written as an action, to be precise. However, in the low-
frequency limit discussed further below, we can approximate the
interactions V;; as instantaneous.
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We note that it should also be possible to generate random
and frustrated interactions of longer range by using other
means than random cavity modes. For example one might
employ a second fermion species to generate RKKY-type
interactions among the primary fermion species. As in metallic
spin glasses, such interactions decay as a power law with
distance and oscillate with periods of the Fermi wavelength
of the second species, which induces frustration.

In the calculations below, the results only depend on the
variance, which respects time-translation invariance

V(Q, — Q) = JAQ). (10)

To capture the main effects, as in Ref. [14], we may assume
the simplified form,

J(Q) = 20w/ (* + o) , (11)

where wy is a prototypical photon frequency representative
of the spectral range of photons that mediate the interatomic
interaction and v the disorder strength. For most of the paper
we will concentrate on frequencies Q2 < wg and work with the
static limit of the couplings

8V;j8Vij = (8iir8jjr + 8;i8:7)J* /N,
2

2v
J=J0)=—.
wp

(12)

The photon contribution to the single-particle energies in
Eq. (6) and the pump term generate random local potentials
for the fermions, which may additionally be superposed by a
random lattice potential. We summarize all these effects by
assuming random (Gaussian-distributed) onsite energies with
independently tunable variance

Sede; = 8, W (13)

III. INSULATING ANDERSON-EFROS-SHKLOVSKII
GLASS

In the absence of hopping, + = 0, the Hamiltonian (7)
reduces to the classical Sherrington-Kirkpatrick (SK) model
[43] of localized spins (describing presence or absence of a
particle). These spins are subject to a random longitudinal
field ¢;, and kept at fixed magnetization M = 2n — 1, where n
is the fermion density. The low-temperature glass phase of this
model is understood in great detail. As illustrated by the red
graph in Fig. 3, a typical configuration of this glass exhibits a
linear soft gap in the distribution

N
1 ol
P(p) = <ﬁ ;21 3(p — ‘Pi)> Moo el ST (14
of local Hartree fields

dH
¢557m=8i—ﬂ—§anjs
J#i

with coefficient @« ~ 4 x 0.31 = 1.24 [44,45] and Gaussian
decay for |¢| > J. The brackets (...) stand for the ther-
modynamic average. As compared to the canonical SK
model an extra factor of 4 arises because we consider Ising
degrees of freedom with magnitude sf =n; —1/2 = £1/2.
Remarkably, the soft gap (14) at low fields is universal, that

15)
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is, independent of the strength of the random fields and the
average magnetization (density) [46]. A similar soft gap, the
Efros-Shklovskii Coulomb gap [27] is also known to exist in
electron glasses with Coulomb interactions [36,46].

A. Anderson-Efros-Shklovskii glass with quantum
fluctuations/finite hopping (¢ # 0)

Upon turning on quantum fluctuations via a finite hopping
t # 0, the fermions hop within the disorder potential of the
above discussed Hartree fields. We refer to the eigenenergies
of the resulting single-particle problem as single-particle
excitations. In the limit + — O the latter are completely
localized and their energies coincide with the local Hartree
fields. As long as the hopping stays below a critical value
(t < hoe), the fermionic atoms remain Anderson localized. In
that regime the single-particle density of states in a given
local minimum of the glass has to vanish at the Fermi level
(down to energies of order 1/+/N, at T = 0), otherwise the
state would be unstable with respect to charge rearrangements.
This follows from arguments analogous to those for quantum
Coulomb glasses [27,47-49]. As a consequence, in a typical
AES glass state, the linear compressibility (the analog of
zero-field-cooled susceptibility in spin glasses) vanishes, even
though the full thermodynamic (field-cooled) compressibility
is finite. Despite the vanishing linear compressibility, there
is no hard charge gap, as there are charge excitations at any
finite energy. The qualitative evolution of the distribution of
single-particle energies with increasing hopping is sketched in
Fig. 3.

We now explain the key differences of the AES glass
to other previously discussed glass phases and describe its
transport properties.

(Quantum) electron glass. The glassy electrons in strongly
doped semiconductors are localized mostly due to quenched

P(E)

FIG. 3. (Color online) Sketch of the evolution of the distribution
of single particle energies p(E) in arbitrary units as the hopping ¢
increases. In the classical Efros-Shklovskii limit, + = 0 (red solid
curve), p(E) coincides with the distribution of Hartree fields, which
exhibits a linear pseudogap. In the localized AES glass at finite
hopping (blue, dot-dashed curve) a pseudogap with vanishing density
of states at the Fermi level p(0) = O persists. A finite density of states
at £ = 0 emerges when the quasiparticles delocalize and the system
turns metallic. The dip in the density of states at low energy gradually
weakens as ¢ increases.
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potential disorder, whereas in the case of the AES glass the
potential is mostly interaction induced and thus self-generated.
If W could be made to vanish, the localization would be
entirely induced by the random interactions in a glassy frozen
state. Both the quantum electron glasses and the AES glass
have linearly suppressed density of states at low energies.

Anderson or Fermi glass. In these localized insulators,
where quenched external disorder dominates, the quasiparti-
cles are localized despite the presence of weak short-range
interactions. The bosonic analogues of such insulators are
often referred to as Bose glasses [50,51]. Both fermionic
and bosonic versions of these glasses are onsite-disorder
dominated and do not exhibit glassiness in the sense of
having many metastable configurations separated by high-
multiparticle barriers, except if strong interactions are present
in addition to the disorder potential. Another difference is
that the strong interactions in the AES glass cause gapless
collective modes, which are absent in less strongly correlated
Fermi and Bose glass insulators.

Mott glass. In fermionic lattice systems at commensurate
filling with strong nearest-neighbor interactions and disorder,
this Mott glass arises as an intermediate phase, which is
incompressible due to a hard charge gap, but has a finite
AC conductivity o(w) at any positive frequency [52]. The
main contribution to o(w) comes from local particle-hole
excitations, which become gapless due to disorder. The AES
glass is very different from this Mott glass in that it has no hard
charge gap, exists at any filling, and does not rely on external
potential disorder.

Ising spin glass in transverse field. If the occupation of
sites n; = 0,1 is thought of as an Ising variable, the model (7)
looks similar to a mean-field Ising spin glass in a transverse
field I'. The difference with the model considered in this paper
consists mostly in the way in which quantum fluctuations act
on top of the classical SK glass. This entails however a crucial
difference of the respective phases to expect for weak long-
range interactions, as we will explain below.

The transverse field SK model is well known to undergo a
quantum glass transition from a glass to a quantum disordered
state at a critical value I" ~ J. The spins undergo glassy
freezing when their interaction strength is bigger than the
inverse polarizability of the softest two level systems. One can
show that the thermodynamic glass transition persists in the
presence of random longitudinal fields [the equivalent of the
disorder potential ¢; in Eq. (7)], even though the latter spoils
the Ising symmetry of the system. The glass transition then
has the character of an Almeida-Thouless transition, like for
mean-field spin glasses in an external homogeneous or random
field. The only symmetry that is broken at this transition is the
replica symmetry, which is rigorously established to occur
in models with infinite-range interactions, while it remains
controversial in finite-dimensional, short-range interacting
systems.

If the Ising states of a spin are thought of as two states of
a localized fermion (two-level systems), the transverse field
SK model describes interacting, but fully localized fermions.
It follows from the above discussion that such systems have
a nonglassy insulating phase. However, for our model a
regime of localized but nonglassy fermions cannot exist. The
reason is that there is no mechanism that gaps single fermion
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excitations away from zero energy, in contrast to the finite
tunneling amplitude I" of two-level systems, which does gap
the local excitations. Therefore, in the model considered here,
the gapless low-energy fermionic states are always unstable to
glass formation for any small infinite-range interactions V;; (a
similar argument was put forward in Ref. [37]). This is why
the AES glass in Fig. 1 above W), extends all the way to the
axis J = 0.

Transport properties. The main contribution to the finite-
temperature transport in the AES glass comes from inelastic
scattering of the quasiparticles, with an inelastic rate, which
is expected to decrease as a power law of T. At low T,
where this rate becomes smaller than the level spacing in the
localization volume of the fermions, the charge transport is
expected to proceed first by power-law hopping, and at lowest
T by variable-range hopping, assisted by inelastic processes
among the fermions. This type of transport is drastically less
efficient than in the metallic glass of Sec. V. In the AES glass,
the resistivity should diverge with vanishing 7. At the same
time thermal transport may still be rather good due to collective
density modes, which remain delocalized.

It is tempting to speculate that, upon advancing the
techniques of Ref. [53] to many-body cavity QED, the next
generation of experiments could measure also the transport
properties of neutral, glassy fermions.

IV. DELOCALIZATION TRANSITION OUT OF THE
ANDERSON-EFROS-SHKLOVSKII GLASS AT W ~ 0

As mentioned above, in the localized, insulating phase
the Efros-Shklovskii stability argument assures a vanishing
density of single-particle states at the Fermi level. However,
the latter becomes finite when the quasiparticles delocalize
at the insulator-to-metal transition, where diffusive transport
behavior sets in. This takes place when the hopping becomes
comparable to the typical potential difference between a site
and its neighbors. A precise calculation of this transition would
require the solution of the glass problem including quantum
fluctuations, to obtain the distribution of effective onsite disor-
der, and the subsequent analysis of a delocalization transition
of quasiparticles. However, an estimate for the critical value
(%)MOC, below which the system behaves metallic, can be
obtained as follows.

A. Moderate density: n ~ O(1)

Even if W of Eq. (26) is negligible, the soft gap in the
Hartree potentials acts like a rather strong onsite disorder for
the fermions. To discuss delocalization at the Fermi level we
need to consider sites with Hartree potentials of the order of
the hopping € < ¢. Atsuch energies, the density of states in the
soft gap can be roughly approximated by the constant density
of states of a box-distributed onsite potential of width W,
given by

1 J?

Wy —m ~ —.
Plp=1t) ot

(16)

For a box distribution of onsite disorder, Anderson delocal-
ization of quasiparticles on a cubic lattice in d = 3 dimensions
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is known to occur at a critical disorder strength [54]

W,
(-) = Zy ~ 16.54.
3d

; a7

From this we may infer an estimate for the delocalization
transition out of the insulating glass phase at

J
(—) Z VaZy ~4.6.
c,loc

; (18)
In this rough estimate we have neglected quantum fluctuations
of the density order in the localized phase, which are expected
to increase the value of (J /1), 1oc further. This is because they
weaken the density inhomogeneity and thus the onsite disorder
generated by the interactions.

B. Low density: n < 1

Atlow fermion densities, n < 1, the pseudogap is irrelevant
for the delocalization transition because the gap is restricted to
very small energies, far below the hopping strength needed for
delocalization. The frozen fields (15) have a typical magnitude
Wy ~ /nJ. If this is the dominant contribution to disorder
(i.e., for weak external disorder, W < W), the delocalization
instability arises in the glass phase when ¢ ~ Wi, i.e., when
the interactions are reduced below the value

(J /D)o ~n~ "2, (19)

At larger external disorder, delocalization happens when ¢ ~
W, independently of the interaction strength J. However, the
interaction strength (19) is parametrically smaller than the
instability (J/f)me ~ n~>/® of the Fermi liquid toward the
metallic glass, which we will derive below in Eq. (44). This
implies that at low densities, beyond the yellow, tricritical
points of Fig. 2, the localized glass state jumps discontinuously
into a nonglassy Fermi liquid via a first-order transition. The
location of that transition can be estimated by considering the
competition of kinetic energy cost ~ ¢ and potential energy
gain ~ /nJ of transforming the Fermi liquid into a fully
localized glass state. This yields

(J/ 1 ~n "2, (20)

which scales in the same way with density as the delocalization
instability of the localized phase, but is physically distinct
from it. However, since the interactions are essentially infi-
nite ranged, the system cannot simply nucleate a localized
glass droplet locally, but has to undergo the localization
transition more or less at once in the whole system. This
suggests that the Fermi liquid phase is a very long lived
metastable state, even far beyond the equilibrium transition
point (J/ )1y

V. METALLIC GLASS AT W ~ 0

In this section, we develop an effective field theory approach
for the Fermi liquid to metallic glass transition (the blue
line for W =~ 0 in Fig. 1) and compute key properties of
the metallic glass. We can write the path integral pendant to
Eq. (7) in terms of collective Hubbard-Stratonovich fields for
charge fluctuations p; (t) and N Lagrange multipliers «;, which
enforce p;(t) = ¢;(t)c;(t), where ¢, ¢ are Grassmann variables
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representing the fermion fields and 7 will denote temperature.
With this field content, the partition function corresponding
to the model of Eq. (7), Z = [ DaDpDéDc e~ S0+5m) g
determined by the action

1/T N
So = /0 dr > 60 6, — WD)

i=1

T
- [ dr Y e +e@aton
0

(i,J)

T T
Sw=—1 Z/ ar [ dr v = )

ljl
By

1T
dria;[ci(t)ci(t) — p; ()] + p;(T)e;.

2y

In order to streamline notation, we will use ) signs for all
lattice site summations and integrations over imaginary time.

We now integrate out the fermions, performing a cumulant
expansion in the terms & o to obtain an effective action for
the density fields Z = [ DaDp e~51**! with

1
Slepl = =5 Y Vit =@y () + ) i (0
i,j, 7,7 Jj.T
= > a;(@)({nj (D)o — pi(1))
Jj.T
1 / A
t3 Z a;i (e (T)(ni(Tn; () + ..., (22)
i,j,7,7
where (...)o denotes the quantum and thermal average with

respect to the nondisordered free fermion action Sp. We
introduce the auxiliary Hubbard-Stratonovich density fields p;
as an intermediate step to make the physics more transparent
and to make contact with our previous work [14]. As in
Ref. [14], we will later integrate them out again to obtain an
action for the order parameter fields Q?” . In Appendix A, we
present an alternative route to derive the final self-consistency
equations (38)—(40), which offers insight into the nature of the
approximations made below.

We proceed by integrating over «, without keeping explicit
track of the higher-order terms in « denoted by the dots in
Eq. (22). Below we drop those corrections. However, the
alternative approach in Appendix A can in principle resum
them, at the expense of replacing the bare density-density
correlator Eq. (24) with the full proper “polarizability” [15].
By dropping the interaction corrections to the latter, we operate
at a level equivalent to the approximation used by Miller and
Huse for the closely related infinite-range quantum spin glass
problem [15]. Those authors obtained a good estimate for
the quantum glass transition point when compared with more
elaborate studies [55,56].

It is convenient to express the resulting action in terms
of local fluctuations in the onsite density §p;(t) = p;(7) —

PHYSICAL REVIEW A 86, 023604 (2012)
(ni(r))o = pi(r) —n:

Slpl = Z 8pi (D)=

i,j,7,7
1
-3 Z 8pi(T)V;j(t — )80 (x")
i,j,t, 7

+ ) Spi(0E A+, (23)

T,i

H(O)];t 118’01(‘[ )

with the bare density-density correlator denoted by

nY . = (m@nE). (24)

i,j, 1.1

The effective onsite disorder consists of two terms

=Y i (@)NoVi(r — 7). (25)

JT

Focusing on low frequencies we neglect the retardation and
find the disorder variance from Egs. (9) and (13) as

88, 88; = 8ij(W? + JX0)(ny)?) = ;W2 (26)
The dots in (23) stand for interactions between more than
two 8p;.

We proceed by employing standard replica methods [57]
to average over the disorder configurations of the V;;(€2)
and g;. The resulting inter-replica interaction term ~ §p*
proportional to the variance of V;; is nonlocal in both imaginary
time and position space. We decouple this terms with an
inter-replica matrix-valued Hubbard-Stratonovich field, that
depends on two frequencies, Q;’b(Q,Q’) < 8,0?(52)8/05’(9/),
which is bilocal in imaginary time, but local in position space.
Finally, we write the n-times replicated, disorder-averaged
partition function Z" = f D QDp e~ with the action

Z Spf (=M1, 8p8(x)

z]rra

~

w a byt
= D (@)

i,1,7/,a,b
D> —V(?VQ)[ 0"(2.2)0%(-9. - 2)
i,j,2,2,a,b
1
- 02, - sz’)ap;'(mapf(m}. @)

In the end we will take the replica limit n — 0 to extract
quenched averages. The dots stand for further replica-diagonal
interactions between several p;, which are generated by the
higher-order cumulants in Eq. (22).

Incorporating local disorder into the polarizability, which
replaces H( ) ina complete solution will actually generate
rephca off- d1agonal terms in IT that self-consistently depend
on W and J2(0)(n)2. This significantly complicates the
analysis. As announced above, we restrict here formally to
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the W = 0 slice of Fig. 1, and defer the quantitative analysis
of onsite-disorder effects to future work.?

A. Saddle-point free energy (W =0)

Without any truncation in the camulant expansion (22), the
functional integration would yield results for the correlators
of ép that automatically obey the Pauli principle. However,
after a truncation the latter might be violated. In order to
proceed with a saddle-point analysis, we introduce into the
action a global Lagrange multiplier A* conjugate to density
fluctuations, enforcing that correlation functions still obey
the Pauli principle on average. Namely, A% is determined
self-consistently so that the equality

N

> (808 (0)8pf () = Nn(1 — n)

i=1

(28)

is satisfied. The left-hand side can be viewed as the variance
of the binomial probability distribution of N lattice sites being
either occupied (p; = 1) with probability n or empty (p; = 0)
with probability 1 — n. We recall that n is the average density.
n = 0 corresponds to an empty band, n = 1/2 to half-filling,
and at n = 1 the band is filled.

This global constraint is analogous to the “spherical”
approximation in spin glasses. It can be shown that relaxing
the (exact) local constraints to a global constraint does not
affect the quantum critical behavior [16,58-60].

Noticing that the action in Eq. (27) is quadratic in the p
variable, we can integrate it out exactly. Note that the bare
density correlator Hg,’ ;,; only depends on the differences in
time (|7 — t’|) and space (|i — j|). The resulting action has
a prefactor N, the number of atoms, and thus, a saddle-point
evaluation becomes exact. The free energy

— T N
F =—1lim lim — InZ", (29)
n—0N—oo Nn
becomes a functional of the order parameter field
1 1
b N o b _ b
0" (.t = 5 30 0@t = 5 3 (30 ()30 (7))
(30)

and the Lagrange multipliers 1“. Assuming that on the saddle
point the latter take a replica-symmetric value A, the functional
takes the form F = lim, o 1 7, with

Fu(Q0) = % D @I, Al —n)n
a,b,Q

T
3 gtrab In ({[—TOQ.q)]" +21)6%

—JHQ)0"(-2,Q)), 31)

2At the glass transition, for W = 0, the effective disorder W is not
very strong as compared to the hopping. Therefore, we hope that our
estimates for the instability of the Fermi liquid phase to the metallic
glass, (J/t)met, are reasonable even for small finite W. The neglect
of the effective disorder probably overestimates the resilience of the
Fermi liquid to form a density pattern, and hence is expected to yield
an overestimate for (J /1) mer-
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where tr,, denotes the trace over replica indices and the
dots stand for the neglected terms mentioned above. We have
imposed time-translational invariance of 0,

0(Q,Q) — 0YQ,2)ar0.0/T.

As long as we are primarily interested in the critical
behavior and the properties of a single typical state close
to the glass transition, we may proceed with a replica-
symmetric calculation, even though the replica-symmetric
saddle point is strictly speaking unstable towards the breaking
of replica symmetry. The latter signals the emergence of
many pure states in the glass phase, the breakdown of full
thermalization (i.e., ergodicity breaking and the associated
out-of-equilibrium phenomena at long time scales). As we
show in Appendix A, the glass instability conditions obtained
below [Egs. (38)and (43)] indeed signal the instability of
a replica-symmetric saddle-point toward replica symmetry
breaking.

For the Q% fields, the following ansatz is natural:

0?(Q., — Q) = D™ + ‘SQT"’qEA. (32)

Here, the Edwards-Anderson order parameter gga shows up
both in diagonal and off-diagonal entries of Q“?. This ansatz

in terms of gga and the (site- and disorder-averaged) dynamic
density response D(£2) is the most general one, respecting
replica symmetry and time-translational invariance.

A nonzero value of gga signals a frozen-in density distri-
bution of the atoms

1 -
ger = Jim ; (60:(1)50¢(0))-

In the glass phase, the spatially nonuniform on-site densities
differ randomly from their average value (depending on the
state into which the glass freezes) and retain that value for
infinitely long times. As in any glass, these frozen density
patterns are expected to depend sensitively on the details of
the quench protocol or the preparation history in general.
Note however, that only in the case of vanishing effective
disorder, W = 0, gea serves as an order parameter for the
glass transition. In the more realistic case of finite onsite
disorder, W # 0, the system still exhibits a thermodynamic
glass transition, as do mean-field spin glasses in random fields,
but the only symmetry to be broken in that case is the replica
symmetry, since density inhomogeneities already exist in the
Fermi liquid phase (cf. Appendix A).
The average dynamic density response,

1 —
D) =+ Z (80¢($2)pe(—52)), (33)

14

characterizes the response of the fermions to local, time-
periodic modulations of the density. In terms of the
parametrization (32), the free energy (31) obtains as
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PHYSICAL REVIEW A 86, 023604 (2012)

- T 1 T d‘q
F == JHQIDEQ + =J*0)D(0)gea — (1 — = f In [-NQ,@)1™" + 21 — J*(Q)D(Q
4292 @ID@F + 570 D(O)gen — A n)n+2; Gy (V@1 (QD(Q))
1 [ dq J*(0)gEA (34)
2] oy \[-NO@Q. 1" +21 = JXO)D©) ) |
This free energy depends on the microscopic parameters of the original fermionic theory via the bare density response
(ni(r)nj(r/))o -7 Z/ dd_qe—iQ(r—r’)+iq<(x;—Xj)H(O)(Q’q)’ (35)
— ] @ny
where I is the real part of the particle-hole bubble, i.e., the convolution of two bare fermion propagators,
dk dk  f(&) = f(keq)
n%qQ,q =Re| — T /—G (w+ Q.k+ q)Go(w,k) | =Re : sty (36)
d Xw: @y s @1 iQ — (Eicrq — 1)

with f(x) = 1/(exp[x/T]+ 1) the Fermi function and &g
the fermion lattice dispersion. For a 3D cubic lattice,
for instance

&k = —2t(cosk, + cosky, +cosk;) — , 37

with ¢ the nearest-neighbor hopping matrix element and p the
chemical potential, which fixes the lattice filling (u = 0 for
half-filling, that is, n = 1/2).

From the free energy functional (34) we will extract the
phase boundary between the Fermi liquid and the metallic
quantum charge glass and the associated quantum-critical
dynamics of the density correlations. Minimization of Eq. (34)
with respect to gga, A and D(2) for each €2, yields a set of
coupled saddle-point equations. The derivative with respect to
D(R2) for 2 > 0 together with the derivative with respect to
g requires the density response to obey the self-consistency
relation

diq 1

@m)? [-0O(Q, @)1~ 4 24 — JHQ)D(Q)
(38)

The left-hand side, when written as a geometric series, can be

seen to express the self-consistent resummation of all cactus

diagrams in the interactions V;;. Minimization of Eq. (34)

with respect to A gives back the global constraint on density
fluctuations

D(Q) =

T Y D(Q)+ qea =n(l —n). (39)
Q

Finally, the minimization with respect to D(0) determines the
Edwards-Anderson parameter self-consistently,

_ [ 4% J2(0)gea
) @rod {[-TTOW0,q)1! + 21 — J2(0)D(0)}2
(40)

qEA
For vanishing interactions, J(£2) = J(0) = 0, we have gga =
0 and Egs. (38) and (39) have the free fermion solution

d?
DO(Q) = / —(ch)'d[—nw’(@,q)]

A=0.

(41)

Indeed, for free fermions, the constraint 7' DOQ) =
n (1 — n) is automatically fulfilled, and thus A(J = 0) = 0.

Note that Eq. (40) is a variant of the general glass instability
condition

JP
N k@=0=1 (42)
ij

where j is the full density-density correlator. In Appendix A,
we present an alternative route to derive Eqs. (38)—(40), and
(42).

B. Numerical results for metallic glass: phase diagram
and density response

We now compute the glass transition line (Fig. 4) and the
associated density response (Fig. 5), assuming no effective
onsite disorder W = 0 on a 3d-cubic lattice. We simultane-
ously solve Egs. (38)and (39) together with the criticality
condition derived from Eq. (40) (where it permits a solution

1.0
- oy
0.84 S
0.6+
= Fermi liquid Metallic glass

0.4+
0.2} —

—x —
0'00 2 4 6 8 10

J(0)/t

FIG. 4. (Color online) Numerically computed phase boundary
of the metallic glass for various densities and W = 0. The crosses
correspond to data points computed from a simultaneous solution of
the saddle-point equations (38), (39) and (43); they are connected as
a guide to the eye. Note that the phase boundary to the insulating
glass is not plotted (see Fig. 2 for an illustration of both phase
boundaries).
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FIG. 5. (Color online) Comparison of the collective density
response as a function of imaginary frequencies in units of the hopping
t at the glass transition (blue crosses on the frequency grid computed
from saddle-point equations (38), (39), and (43), and its bare pendant
from Eq. (41). The slope of the low energy response in the glass phase
is singular, with a /|| behavior for small frequencies.

with infinitesimal gga ),
_ [ d'a J*(0)
) Qo {[—TTO0,@)] " 4 2he glass — J2(0)D(0)}?
(43)

This criticality has an important consequence for the dynamic
response. By writing D(Q2) = D(0) — §Dg, and expanding
Eq. (38) around @2 =0, we find that the condition (43)
entails a more singular low-frequency behavior § Dg ~ +/|€2],
as compared to the behavior of the bare density response
SDg)) ~ |2]. This is illustrated by the explicit solution of
D(£2) on a frequency grid in Fig. 5. Equation (39) with finite
gea, and more general arguments presented below ensure
that this criticality extends into the glass phase. We will
present an approximate analytical calculation of D(2) at
the glass transition and in the metallic glass phase in the
Sec. VC.

For the numerical solution of these equations we dis-
cretized D(€2) on a frequency grid with varying step size
up to a hundred grid points exploiting D(2) = D(—2). We
employed a modified version of Powell’s hybrid method
algorithm for multidimensional root solving [61]. For the
3D-numerical momentum integrations of the right-hand sides,
we employed the VEGAS Monte Carlo algorithm [61]. To
avoid six-dimensional integrations at each step of the multidi-
mensional root solver, the momentum-integrated particle-hole
bubble was catalogued as four-dimensional array and then
“quadru-linearly” interpolated in the integrands for the three-
dimensional q integration [see Appendix B C for some excerpts
of T(2,4x.4y.42)].

The resulting phase boundary between Fermi liquid and
metallic glass is plotted in Fig. 4 for various fermion densities.
Along the phase boundary the glass transition is of continuous
nature (i.e., with a continuous onset of the Edwards-Anderson
parameter gga in the case W = 0). Like in quantum spin
glasses, but in contrast to structural glasses (supercooled
liquids), the dynamic freezing and the thermodynamic glass
transition are thus expected to coincide. Accordingly one
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expects the replica-symmetry breaking pattern within the
glass phase to be continuous (full replica-symmetry breaking),
which ensures criticality and the existence of gapless collective
modes [34].

One can see from Eq. (43) that as a function of density,
the glass instability of the Fermi liquid occurs when J ~
[M1°(n)n'/2]71. Using that T1°(n) ~ n/Er(n) ~ n'=2/4/t, we
infer that in dimensions d = 3 the glass instability of the Fermi
liquid scales as

(J /et ~ n 22T = p=3/6 (44)

at low densities. This scaling with the fermion density is
confirmed by the numerical results of Fig. 4. However, as
we argued in Sec. IV B, at lower densities (beyond the yellow
tricritical points in Fig. 1), this instability is preempted in
equilibrium by a first-order transition, which takes place at
(J/ )15t ~ n~1? « (J/t)met- Nevertheless, the Fermi liquid
phase should remain experimentally relevant even at these low
densities, since it is very difficult to nucleate the localized
insulator out of the metastable Fermi liquid phase, owing
to the high nucleation barrier imposed by the long-range
interactions.

The glass transition, Fig. 4, and the associated emergence
of a singular density response (Fig. 5) are that of the
universality class of infinite-range, metallic quantum Ising
spin glasses. Those are characterized by the interaction- and
disorder-induced freezing of Ising degrees of freedom in the
presence of a metallic charge sector with gapless fermionic
excitations, which damp the order parameter fluctuations.
This was originally put forward in the context of metal-
lic spin glasses by Sachdev, Read, and Oppermann [35],
as well as by Sengupta and Georges [58]. Later on this
universality class was further analyzed in the form of a
Landau theory for a mean-field version of the electron-glass
transition out of the Fermi liquid to by Dalidovich and
Dobrosavljevié [33].

C. Dynamic density response in the metallic glass

It is instructive to derive an approximate analytical solution
for D(L2) neglecting the q dependence of the particle-hole
bubble in Eq. (38). To this end we take TIO(Q,q) —
M(2,Q) with a fixed, prototypical Q # 0 different from any
potential nesting vectors, |Q| < 2|Kkg|. Then, Eq. (38) becomes
a quadratic equation for the (approximate) density response,
which we call Dq(£2). It can be solved in closed form

[-09Q,Q)1" +22
2J%(Q)

[-TOQ.QI" +22\ 1
2J2(Q) JXH(Q)’
where we chose the physical solution with minus sign in front
of the square root, ensuring that Dq(£2) decays to zero for
large frequencies. Recall that the particle-hole bubble becomes
zero for large external frequencies: limjg) oo [1?(2,Q) — 0.
The criticality condition, Eq. (43) for fixed momentum Q,
applied to Eq. (45), yields: A glass = J(0) — 1[-11?(0,Q)] ",
1

and Dq(0), glass = 70 At the glass transition Dq(€2) develops

a singular response to small frequency perturbations of the

Dqo(R2) =

(45)
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local fermion density. The approximate energy scale

. () -1\ 2
so (e ORI,

(46)

controls the distance to the transition and separates two
qualitatively distinct regimes in the dynamic density response
of the Fermi liquid.

Continuing Eq. (45) to real frequencies, iQ2 — Q +i0,,
we obtain

Vo, Q> A,

47
Q, QKA.

—Im Do() ~ {

The self-consistency condition (39) pins A = 0 in the entire
glass phase, and the density response remains singular at zero
frequency. This property holds true independently of the above
approximations, as can be formally derived assuming full
replica-symmetry breaking in the glass phase [34].

The key ingredient for the unusual square-root behavior for
both Dq(£2) and the full D(€2) of Fig. 5 is the coupling of
the collective charge fluctuations to the metallic particle-hole
continuum, which coexists with glassy, amorphous density
order. The low-frequency behavior of the particle-hole bubble
(see Fig. 6 in Appendix A) at finite momentum transfer Q

n2e,Q) — n?o,Q) ~ ||, (48)

underlies Eq. (47) and also enters into the numerical compu-
tation of Fig. 5.

D. Fermionic quasiparticles in the metallic glass

The single-particle properties of the underlying fermions in
systems belonging to the universality class of infinite-range,
metallic quantum Ising glasses have been worked out by
Sengupta and Georges [58]. At T = 0, at the critical point
and in the glass phase, the fermions remain well-defined
quasiparticles. Indeed, the leading self-energy correction due
to low-frequency charge fluctuations scale as

Yr(w) ~ ¥, (49)

with a frequency exponent > 1. Nevertheless, at finite tem-
peratures this translates into nonanalytic corrections in the
transport properties. The finite-temperature resistivity, for
example, scales as 8p(T) ~ T3? in the quantum-critical
regime above the QCP [58] and in the entire metallic
quantum glass phase. Deeper in the glass phase, the metal-
lic diffusion eventually breaks down when the localization
transition to the Anderson-Efros-Shklovskii glass of Sec. III is
reached.

VI. PHASE BOUNDARIES OF THE METALLIC
GLASSAT W > J

In the preceding section we have argued for a metallic
glass phase at moderate densities and weak external disorder.
However, also when the effective onsite disorder W is larger
than the infinite-range interaction J, we expect an intermediate
metallic glass phase strip between the Fermi liquid and the
AES glass, as shown in Fig. 1. Below we will present scaling
arguments to justify this scenario, with both transitions at
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the borders of the metallic glass strip (the metal-insulator
transition on “top” and the glass transition on the “bottom”)
being continuous.

For vanishing interactions J = 0, the two instability lines
must join at the Anderson transition of the disordered free
fermions, where Wi/t = Wio./t = 21.29 (for Gaussian dis-
order at half filling [54]). In the presence of weak interactions,
the frozen fields from the glassy density order tend to increase
the disorder variance by §(W?) < J2, which has a similar
effect as a weak increase of disorder W ~ J2/W. Accord-
ingly one expects the critical value W/t for delocalization to
decrease by a relative amount

w w19 w1l J\?
8 [T]IOC - [T:| - [T:|loc T <W> ' (50)

since stronger hopping is necessary to compensate for the extra
disorder.

A. The role of fractality for the glass transition
On the other hand, we have to analyze the glass instability
(42) within the metallic phase. In the limit J — 0, it holds that
X — x(J = 0), which reduces to the (exact) susceptibility of
noninteracting fermions. As noted in Ref. [37], the sum over
susceptibility squares,

1 - @
X = ﬁ;x?j(ﬂ:m (51)

diverges at the Anderson transition. This implies a glass
instability already within the metallic phase, even for very
weak interactions J < ¢t,W. To the best of our knowledge,

the precise divergence of yx,, or equivalently, of ij, as
[%] — [%](O) is not known. However, the disorder-averaged

1 ]
density—dens(i)§y correlator has been well studied, since it
reveals interesting properties of the fractal nature of the
electronic wave functions and the anomalous diffusion at the
Anderson transition [62]. In particular, the spatial Fourier
transform of x;;(©2 = 0) behaves as

Xg(Q = 0) = D(q,2 — 0) ~ (52)

8¢ f(lq18)’
where £ is the correlation length, which diverges at the
Anderson transition as & ~ (1 —1/t.)7"; 8 = 1/vE? is the
single-particle level spacing in the correlation volume and v
is the density of states. The scaling function f(x) behaves
as [63,64]

f) ~x®, x>1, (53)

fx)~x% x<« 1. (54)
Here, d, is the fractal dimension associated with the distri-
bution of |1/*(x)| over all space, 1/ (x) being a critical single
particle wave function at the delocalization transition. From

this one obtains that
1 — dlg —
= — ii Q = 0 = _ Q = O
X= % Xij( ) / 2n)l Xq( )

~EE ~ (=1 /1) (55)
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The exponent results as @ = 2v(d — d,) & 4, using the known
values dr[d = 3] &~ 1.3 [62,65] and v = 1.57. [54]

It is reasonable to expect that x, ~ (1 —t/f.)™® needed
in Eq. (51) diverges at least as fast as j», and thus @ > &.
Hence we expect that the glass instability is displaced from
the noninteracting Anderson transition by an amount

©) ) 2/a
LLAET-BL ()"
t met t t met W

Comparing with Eq. (50) and noting that@ > 1, one sees that as
J — 0 the glass instability line approaches the noninteracting
Anderson transition from smaller values of (W/¢) than
the delocalization instability, as indicated in Fig. 1. These
arguments confirm the existence of an intermediate phase,
with metallic diffusion and glassy density order, between the
disordered Fermi liquid and Anderson localized glass.

VII. CONCLUSION

Based on the calculations and arguments of this paper
and a previous work [14], we believe that many-body cavity
QED could evolve into a platform to explore the physics of
long-range quantum glasses. The long range of the photon-
mediated interactions simplifies the theoretical analysis for
these systems; this may allow for quantitative comparison
between experiment and theory. Our work complements
previous proposals on glassy many-body systems in quantum
optics [66,67], which have focused onto the creation of onsite
disorder or random short-range exchanges by using random
optical lattices and species admixture.

In Ref. [14], we predicted a quantum spin glass transition
of fixed, stationary atoms where the source of quantum fluc-
tuations was spontaneous tunneling between suitable chosen
internal states of the atoms. In the present paper, we have
considered itinerant fermions where the source of quantum
fluctuations is tunneling between adjacent lattice sites. We
have found a metallic glass phase with a gapless Fermi sea
in the presence of random density order and, for stronger
interactions, a localized state with strongly random charge
distributions and vanishing conductivity at 7 = 0.

Various aspects of the phase transitions into and out of these
glass phases are worth further studies: one is to quantify further
the impact of the fractality of wave functions close to the
Anderson transition and compute the critical exponent o with
which the glass instability line approaches the noninteracting
Anderson transition point.

It would be interesting to study rapid quenches of the
interaction strength from the ergodic Fermi liquid into the
insulating glass phase similar to experiments on silicon 2D
electron gases, where gate-controlled quenches of the electron
density across the metal-insulator transition entailed very slow,
glassy relaxation of the measured transport properties [26].
Repeated ramps from the Fermi liquid phase into the glass
phase should produce metastable states with a different density
pattern at each run. The resulting variations in absorption
images could be particularly strong, and therefore perhaps
easier to detect, in the low-density regime where the glass and
localization transition is of first order.

What happens when one considers models of type Eq. (1)
with bosonic atoms? Numerical simulations [39,40] and
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replica calculations [38] for similar models agree on the
existence of a stable “superglass” phase with superfluid phase
coherence in the presence of glassy random density order. It
is tempting to identify the superglass as the bosonic pendant
to the metallic fermion glass. However, at finite temperatures,
the domain of the superglass (cf. Fig. 1 of Ref. [38]) is reduced
because the main effect of thermal fluctuations is to weaken
the superfluid phase coherence of the bosons. For fermions,
on the other hand, the domain of the metallic glass increases
at finite 7 because the main effect of thermal fluctuations
is to enhance the inelastic scattering rate and to weaken the
localizing disorder potential.

We described the disordered atom-light quantum phases
using an effective equilibrium ground-state description. In
optical cavities, one deals with pumped, steady-state phases,
certain features of which may not be captured in an effective
equilibrium description [11,68,69]. We hope to address the
nonequilibrium properties of open, disordered Dicke models
in the near future in a forthcoming paper. We also want to
analyze how the intriguing properties of classical and quantum
glasses such as aging (see Ref. [70] and references therein), or
out of equilibrium dynamics and avalanches [31] are modified
in the open, driven, steady states in many-body cavity QED.

Finally, it will be interesting to investigate how the results
of this paper and Ref. [14] behave upon varying the number of
cavity modes and their profiles.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
GLASS INSTABILITY EQUATIONS (38),(43),(42)

A. Replica approach

Here we formally derive the glass instability for arbitrary
onsite disorder using the replica approach. We start from
model (7). Replicating n times and taking the disorder average
and introducing Hubbard-Stratonovich fields to decouple the
quartic density interactions, one obtains the replicated partition
function

Zr = / ]_[ D& (1)Del (1)

a,i,t

x [ PQu(r.t)expl—So - il

a<b,t, v’

(AL)

with the action
N

nalT
5= f dr Y & (@)@, — pei ()
a=1"9 i=l1
n T
+ Z/
a=1 0

dr Y " 1[e(r)ci(r) + &)l (7))
(i.J)
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n

1 1/T
S Z / dtdt'[W? + J*(x — 1)) Qu(t,7)]
0

a,b=1

X n‘-’(t)n’-’(t’)

Z / drdt' J*(r — )%, (1,7)).

a,b=1

(A2)

In the thermodynamic limit (N — 00), the infinite range of
the interactions allows us to take the saddle point with respect
to Q,p, which satisfy the saddle-point equations

Qup(t,7') = % > (noml(xh).

i

(A3)

[Note the slightly different definition of Q as compared to Q,
defined in Eq. (30).] From here on we neglect the retardation
in the mediated coupling J(t — t’) and replace it simply with
J. As usual, the saddle-point values of Q,; are independent
of 7,7’ for a # b, and depend only on t — t’ for the replica
diagonal Q,,. In the disordered, replica-symmetric phase the
term W2 = W2+ J ZQ#;, can be recognized as the variance
of the self-consistent effective disorder (25). Note that since
Quth = (n)z, the effective disorder never really vanishes,
unless €; and V;; have special correlations.

To detect a glass instability one has to solve first the saddle-
point equations of the disordered phase. This yields a replica-
symmetric solution QR3(,7’), which encodes the Edwards-
Anderson overlap

qEA = a;éb = Z

and the average local susceptibility,

(A4)

OS(z — ') — g = % lZ(m(r)ni(r’»c = Yoe(t — 7).

(AS5)

The glass instability is found by writing Q = QRS +5Q
and expanding the free energy in §Q. A standard cumulant
expansion yields

Z"[ Q™ + 3801 = exp{—N[BF™ + §(BF)1},

which by virtue of the extremality of QRS starts with a
quadratic term. The glass instability is signalled by the
vanishing of the coefficient of the term §Q2, (the mass of
the replicon mode),

4
0=(BJ)y - ]ﬁ Z( / dvdt'n;q(t)n ,,a(r’>>

iJ

(A6)

2

c

=B |1-+ Z 25 (A7)
Hereby the correlator
Rij = /df(ni,a(f)ﬂj,a(o))c, (A8)

has to be evaluated with the replica symmetric action. Eq. (A7)
is to be compared with Eqgs. (42) and (43).
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B. Cavity approach: local selfconsistent action

In this section we derive the glass instability conditions
from a selfconsistent local action derived within a cavity
approach. We start from the action (21), and split it into
single-particle and interaction part S = S| + Sy,

1/T N
S = / dt Z@'(T)(ar +& —wci(r)
0 i=I
T
- / dt Z t[¢i(t)cj(T) + ¢j(T)ci (D)),
0
T T
Sy =— / dr/ dt'Vij(r — ')
lj 1
x [ni(2) = (ni)lln () = ()], (A9)
where n;(t) = ¢;(t)c; (1), and
=Y Vil Q=0)(n)). (A10)

J#

We now take advantage of the infinite-range nature of the
interactions, to transform the above problem exactly into a self-
consistent single-site problem with retarded density-density
interactions. The extra contribution to the disorder (A10) can
be treated as an additional Gaussian disorder with variance
T2 ()2 = J2 (2 + (n;)2"). This type of disorder is essentially
unavoidable in the system. Note that if it does not vanish, & #
0, there are density inhomogeneities already in the disordered
phase (i.e., (n;) # (n;) for i # j). Unfortunately this renders
the exact evaluation of the self-consistency problem very
difficult, and one has to resort to approximations in order to
obtain quantitative results.

Upon average over V;; a subsequent Hubbard-Stratonovich
transformation and a saddle-point approximation, one finds
that the interaction term can be resummed as

Sy = Z[n (T) — ()IR(x — TInj(x) — (n)],

with the kernel

(A11)

1
RO = JXQ) D (1@ (—D)s,v5, = T () 10e(),
J
(A12)

where the average local susceptibility i, must be found self-
consistently.
When computing the density-density correlator

Rij(©2) = (ni(Qn;(—Q))s,+s,, »

with the self-consistent action, one should be aware, however,
that the above resummation does not include terms that contain
a given coupling V;; only once within the expansion in
interactions. Those are indeed irrelevant upon site or disorder
averaging. However, they cannot be neglected when the glass
susceptibility is computed,

1
5 2 X5(@=0).
ij

(A13)

Xglass = (A14)
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A glass transition manifests itself by a divergence of this
susceptibility, which in mean-field systems signals the emer-
gence of ergodicity breaking in the form of many pure states,
and replica-symmetry breaking. In this formula x;; is the full
density-density correlator. To the relevant order in V;; it can be
obtained from g;; by the summation of the geometric series,

Xij = Rij + ) RieVieRej + - - (A15)
k¢

Upon taking the square and summing over all pairs of sites
one finds

1
L 22(Q=0)
ij Nij

Xglass = 7 (Al6)

-5
which diverges when the denominator vanishes, reproducing
Eq. (A7).

In mean-field glasses, the continuous breaking of replica
symmetry ensures usually that the condition (A16) remains
fulfilled, even within the glass phase, where ¥;; is to be inter-
preted as the density-density correlator within one metastable
state (and contributions from single couplings dropped). This
was explicitly shown in the case of the infinite-range transverse
field Ising spin glass [34]. This phenomenon of maintained
marginal stability is at the basis of the permanent gaplessness
of the quantum glass phase.

C. Generalized Miller-Huse-type analysis

Following a reasoning similar to the one by Miller and Huse
[15] for the transverse field spin glass, we formally compute
the local density-density correlator x in a perturbation series
in the interaction action Sy. The perturbation series for the
correlator ¥ can be formally summed up as a geometric series
of local interactions R(t — t’) linking proper polarizability
blobs IT;;(tr — t’) that cannot be reduced into two separate
pieces by cutting a single R line,

ij(Q) = T;(Q) + Y M RT;(R2) + ...
k
1

= |:—H1(Q) — (A17)

R(sz)],-j'

The proper polarizability has itself a power series expansion
in R. To lowest order one has simply

M;(2) = () + O(R), (A1B)

where x () denotes the noninteracting density-density correla-
tor,

(i (n (=) s—0 = X} (da.ar-

As derived above in Egs. (A7) and (A16), the glass transi-
tion occurs when

J(0)?

(A19)

1= T[T~ '(Q = 0) —

R(Q =012 (A20)
In the approximation where we neglect the effective disorder,
& = 0, in the quantum disordered phase one has translational
invariance, which allows one to work in Fourier space.

PHYSICAL REVIEW A 86, 023604 (2012)

The average local density-density correlator,

D(€) ! Z Xii (€2) L (M) — R, (A21)
== ii = = Ir - ,
N &N N
must satisfy the self-consistency condition
R(Q) = JAQ)D(RQ). (A22)

It must also obey the constraint

/@D(Q) = l
2 N

-5 X

Z(m(r) — (n;))?

Y1 = (n:)) = n(1 = n) — [{n;)? = n’].

(A23)

In the absence of onsite disorder, the last term in brackets
vanishes. The constraint (A23) is fulfilled automatically by an
exact solution. However, if D is evaluated within an approxi-
mate scheme [e.g., with the help of Egs. (A17) and (A18)] one
should impose this constraint to obtain a better approximation.
In particular, we can satisfy the short time constraint (A23) by
adding an adjustable short-time component A to the relation
JHQ)[D(R) — A] = R(RQ), to correct for the errors at high
frequencies introduced by the approximations involved in
computing D. The better the approximation, the smaller will be
the A required to enforce the short time constraint. This recipe
turns out to be essentially equivalent to the global constraint
we introduced in Sec. V A.
We thus have to solve simultaneously

dQ )
/2—D(Q) =n(1 —n) — [(n;)> — n’l, (A24)
and
D(Q) = lT ( ! ) (A25)
— N\ IT@ - @@ - A1)
The glass transition arises when
J(0)? ( 1 )2
1= Tr
N I1-1(0) — J2(0)[D(0) — A]
d 1 1
= —Tr . (A26)
D) N (1-[1(0) — J2(0)[D(0) — ?»])

The latter relation leads to a singular behavior of D(€2) around
Q — 0, as one may see by expanding Eq. (A25) around 2 =
0, very similarly as in quantum spin glasses [15,34]. This
singularity ensures the presence of spectral weight InD(Q2 —
w + i§) at all finite real frequencies w.
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Q= (m/4, /4, /4)

11(,Q) - I1(0,Q)

o

=3

K
T

0.00

FIG. 6. (Color online) |2| behavior of the particle-hole bubble
[Eq. (36)], as a function of external frequency in units of the hopping
t for fixed momentum transfer Q.

The three last equations are to be compared with Eqs. (38)—
(40) to which they reduce in the translationally invariant case.

APPENDIX B: PARTICLE-HOLE BUBBLE
AS FUNCTION OF EXTERNAL FREQUENCY
AND MOMENTA

In Fig. 6, we display the particle-hole bubble as a function
of external frequency for fixed momentum transfer. The low-
frequency part behaves as |2| as alluded to in Eq. (48).

In Fig. 7, we plot an exemplary 2 = 0 bubble as function
of momenta as occurring in the saddle-point equations (38),

PHYSICAL REVIEW A 86, 023604 (2012)

_H(Os qx,qy’ ”)

FIG. 7. (Color online) Exemplary momentum behavior of the
static (€2 = 0) particle-hole bubble [Eq. (36)], at half-filling in three
dimensions.

(39), (43). As expected, the dominant contributions come from
momenta in the vicinity of the nesting condition q X Qyest =
(r,m, 7). Although logarithmically divergent at q = Qe the
right-hand side of the saddle-point equations remains regular
as it involves an additional three-dimensional integration
over q.
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