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Statistical physics of RNA folding

M. Müller
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~Received 14 June 2002; revised manuscript received 12 December 2002; published 27 February 2003!

We discuss the physics of RNA as described by its secondary structure. We examine the static properties of
a homogeneous RNA model that includes pairing and base stacking energies as well as entropic costs for
internal loops. For large enough loop costs the model exhibits a thermal denaturation transition which we
analyze in terms of the radius of gyration. We point out an inconsistency in the standard approach to RNA
secondary structure prediction for large molecules. Under an external force a second-order phase transition
between a globular and an extended phase takes place. A Harris-type criterion shows that sequence disorder
does not affect the correlation length exponent while the other critical exponents are modified in the glass
phase. However, at high temperatures, on a coarse-grained level, disordered RNA is well described by a
homogeneous model. The characteristics of force-extension curves are discussed as a function of the energy
parameters. We show that the force transition is always second order. A reentrance phenomenon relevant for
real disordered RNA is predicted.

DOI: 10.1103/PhysRevE.67.021914 PACS number~s!: 87.14.Gg, 87.15.2v, 64.60.2i
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I. INTRODUCTION

In this paper we discuss the equilibrium statistical m
chanics of RNA or single-stranded DNA as described
their secondary structure~base pairing pattern!. We mainly
concentrate on homogeneous polymers with uniform inte
tions between monomers which will be shown to capt
well the physics of random disordered sequences at s
ciently high temperatures on a coarse-grained level.

We generalize the results of de Gennes’ pioneering pa
@1# on ~homogeneous! periodic dAT polymers~sequences
ATAT . . . ) by including entropic penalties for internal loop
in order to account, to some extent, for self-avoidance
fects. In the case where the latter are large, we predi
thermal denaturation transition that manifests itself in
scaling behavior of the radius of gyration. The scaling fou
in the low-temperature phase is smaller thanN1/3, whereN is
the number of monomers of the polymer. This signals
inconsistency for largeN, since the monomer density i
three-dimensional space becomes increasingly large witN.
Excluded volume effects can, therefore, not be neglecte
the secondary structure prediction of large molecules.

Recently diverse micromanipulation techniques have b
developed that allow to monitor the response of single b
molecules, RNA or ssDNA, in particular@2–4#, to an exter-
nal force. These experiments have raised considerable i
est in the theoretical study of force-extension characteris
of biomolecules. Within our model, force-extension curv
can easily be obtained upon coupling an external force to
extremities of the polymer. The molecule undergoes a th
modynamic phase transition of second order that separ
the globular collapsed state from an extensive phase con
ing a large number of small globules@5#. We characterize the
associated critical behavior and study in how far it is mo
fied by the introduction of sequence randomness. Usin
Harris-type criterion we argue that the correlation length
mains unaffected by the disorder irrespective of tempera
while other critical exponents maybe modified. Numeric
results indicate that at higher temperatures disordered mo
belong to the same universality class as the homogen
1063-651X/2003/67~2!/021914~17!/$20.00 67 0219
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model, while at low temperatures the collapsed phase
comes glassy and the critical behavior changes.

In a recent article@6# the authors claim that the introduc
tion of base stacking energies instead of base pairing e
gies may change the order of the force-induced phase t
sition. However, they were misled by the appearance o
sharp first-order-like crossover that occurs at a higher fo
than the continuous phase transition described above. W
the latter is almost entirely of entropic nature, reflecting t
large space of energetically equivalent secondary structu
the crossover is governed by the competition between
pairing energy and the energy gained from opening a
stretching it. The sharpness of the crossover results from
cooperativity due to the base stacking energy that favors l
helices of stacked pairs.

The secondary structure of RNA

RNA is a linear polymer made up of four types of nucl
otides, A, C, G and U. In single-stranded DNA, U is replac
by T. In solution with a sufficiently high ionic concentratio
to screen the charge of the phosphate backbone, the s
RNA strand has a tendency to fold back onto itself to fo
local double helices of Watson-Crick base pairs~A-U and
G-C! between complementary substrands of the base
quence. The entropy loss due to a bound helix is comp
sated for by the pairing energy due to the 2~in A-U! or 3 ~in
C-G! hydrogen bonds of the base pairs and, more imp
tantly, the stacking energy which is gained by the expuls
of water molecules between the hydrophobic parts of nei
boring stacked base pairs.

The set of all base pairings in the RNA molecule det
mines its secondary structure. The typical scale of pair
and stacking energies is considerably larger than the en
scale associated with the tertiary structure, i.e., the spa
arrangement of the RNA molecule~see Ref.@7#, and refer-
ences therein!. This separation of energy scales is at the ba
of the usual paradigm to split the RNA-folding problem in
the analysis of the base pairing pattern and a subseq
determination of the tertiary structure. The set of all pairi
©2003 The American Physical Society14-1
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patterns considered as secondary structures is furthe
stricted by discarding all pairings between different loo
so-called pseudoknots. Such structures lead to knotted
figurations if the helices between the loops are sufficien
long to intertwine. While knots are prevented in nature
the linear transcription process from DNA to RNA, sho
helices between loops can occur, in principle, but they
found to constitute only a minor fraction of all base pairing
They are thus considered as elements of the tertiary inte
tions that can be neglected when determining the secon
structure. If we number the bases in the sequencei
51, . . . ,N according to their position in the strand, th
above constraint can be formalized by forbidding the co
istence of two~ordered! base pairs (i 1 , j 1), (i 2 , j 2) in the
secondary structure with eitheri 1, i 2, j 1, j 2 or i 2, i 1, j 2

, j 1 .
As we mentioned above, the separation of energy sc

breaks down for large molecules, and the folding problem
complicated by the highly nonlocal condition that the se
ondary structure must have a realization in 3D. However,
intermediate degrees of polymerizationN the classical ap-
proach is expected to work well as is witnessed by the s
cess of secondary structure prediction tools@8,9# that are
based on the above assumptions.

In the following we will start from the usual paradigm an
concentrate on the secondary structures exclud
pseudoknots and other tertiary interactions. In Sec. II
discuss the statistical properties of homogeneous RNA w
ing directly in the abstract phase space of secondary st
tures. This allows us to take into account systematica
some excluded volume effects that reduce significantly
available configuration space of interior loops, and to g
some insight into the thermal denaturation of RNA. The s
ond part of the paper is devoted to the response of RNA to
external force. In Sec. III the critical behavior at the forc
induced opening transition is characterized and the effec
sequence disorder on the phase transition is discussed.
tion IV deals with force-extension curves in the thermod
namic limit and its properties as a function of the ener
parameters and temperature. We show that the phase tr
tion is always of second order, but can be masked by a s
sequent first-order-like crossover when the cooperativity
the pairing behavior due to the stacking energy is high.

II. FOLDING OF HOMOGENEOUS RNA

In this section we neglect all effects due to seque
specificity. Instead we consider an RNA model where a
two bases can form a bond, their pairing affinity being ind
pendent of the bases. This exactly solvable model descr
the physics of ‘‘homogeneous’’ RNA/ssDNA strand
GCGCGC . . . or ATATAT . . . @1#, renormalized on the
level of dimers. We will provide some evidence that rando
base sequences are also well described by a homogen
model, at least at sufficiently high temperatures, if o
switches to a more coarse-grained description where
monomers of the model correspond to short subunits of
single strands rather than to real bases.
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A. The model

Following the empiric rules established by Tinoco’s gro
@10,11# we consider three different terms in the free ener
of a given secondary structure~cf. Fig. 1 for illustration of
the notions!: Each base pair contributes the pairing free e
ergy f pair that we normalize with respect to the complete
denatured chain where all bases are unpaired. This takes
account the mean pairing free energy~bond enthalpy and
entropy cost for localization! as well as the stacking energ
with the neighboring pair. In this way we count an exce
stacking energy at one end of the helices which we hav
compensate for by a free energy cost2 f stack.

In the following these free energies will appear in t
form of the temperature dependent parameters

h5exp~b f stack! ~1!

and

s5exp~2b f pair!, ~2!

whereb is the inverse of the temperatureT. Under biological
conditions~ionic strength andpH as in a living cell! h!1,
reflecting the importance of the stacking energy as compa
to the binding energy of the hydrogen bonds. As we will s
later, this is responsible for the high degree of cooperativ
in the denaturation transition.

The last contribution is an entropic cost for each clos
internal loop which accounts for the reduced phase sp
available to the loop with respect to an unconstrained str
containing the same number of bases. We assume this pa
the cost function to depend only on the lengthL of the loop
and the numberm8 of stems connected to it. The reduction
phase space gives rise to a free energy contribution of
form b21 ln@f(L;m8)#. Specific expressions forf will be dis-
cussed later.

When describing homogeneous RNA, we should add t
further constraints on the secondary structures to be con
ered: First, terminal loops~the loops at the end of a hairpin!

FIG. 1. Elements of the secondary structure. The unpaired b
between the two closed structures constitute the free part~thick
line! of the chain. The structure on the right contains a branc
loop with l 53 unpaired bases andm85m1154 outgoing stems.
The contour lengthL of the loop is taken to be the number o
backbone elements in the loop, i.e.,L5 l 1m8. Complementary
substrands that directly fold back onto themselves form hairp
which end in terminal loops containing at leastt bases.
4-2
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have to contain a minimal numbert of unpaired bases (t
53 from experiments!, since the bending rigidity of single
stranded RNA is finite and the typical distance of a hydrog
bond l b is about 3–4 times larger than the base distancel in
the backbone. Secondly, stacks of less than three base
are unstable, and we thus require a helix to have a mini
length ofn53 bases.

These two conditions do not make sense for the desc
tion of real disordered base sequences on a coarse-gra
level. The natural values to be taken in this case aret50 and
n51.

B. The partition function

We denote byZN
c the partition function of aclosedRNA

molecule withN bases whose ends are required to form
helix. We can easily obtain a recursion relation forZN

c ~cf.
Fig. 2!: The closed secondary structure terminates in a h
containing k>n base pairs. It is followed by a first loo
which containsl>0 unpaired bases andm>0 closed sub-
structures, containingLi>2n1t bases, respectively. The a
rangement of the free bases and substructures within the
underlies no constraints and gives rise to a combinatoric
tor. The loop contributes an entropic costf(L;m85m11),
where we take the lengthL to be given by the number o
backbone elements it contains, i.e.,L5 l 1m11. Finally, the
sum over all configurations can be decomposed as

ZN
c 5h(

k>n
sk (

$ l ,m%
(

L1>2n1t
••• (

Lm>2n1t

3dS 2k1 l 1(
i 51

m

Li2ND
3S m1 l

m D 1

f~ l 1m11;m11! )
i 51

m

ZLi

c . ~3!

In the sum overl ~number of unpaired bases! andm ~number
of outgoing stems! the following pairs have to be excluded
(m50,l ,t) to prevent terminal loops smaller thant, and
(m51,l 50) to avoid double counting of structures.

FIG. 2. Schematic representation of the recursion relation
the partition functionZN

c of closed structures used to obtain Eq.~3!.
The sum on the rhs is over the lengthk of the terminal helix, the
number of unpaired basesl in the first loop and the numberm and
sizesLi ( i 51, . . . ,m) of closed structures attached to the loop. T
shown configuration corresponds tok54, l 57, m53. The loop
contributes an entropic costf(L;m8), where m85m11 is the
number of outgoing stems andL is the contour length of the loop
L5 l 1m8.
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The structure of Eq.~3! suggests to study the generatin
function Jc(z)[(N52n1t

` ZN
c zN of the partition function.

Taking the discrete Laplace transform we obtain

Jc~z!5h
~sz2!n

12sz2 (
$m,l %

Jc~z!mz l

f~ l 1m11;m11! S m1 l

m D . ~4!

To proceed we have to make an assumption about the
cost functionf(L;m). Neglecting loop costs altogether co
responds to puttingf(L;m)51, which yields

Jc~z!5h
~sz2!n

12sz2 S 1

12Jc~z!2z
2Jc~z!2

12z t

12z D .

~5!

We will use this simple model in Sec. IV to discuss th
general shape of the force-extension characteristics. We
pect it to describe well the low-temperature regime wh
large internal loops are negligible. In order to describe de
turation we should, however, use a more realistic loop c
function.

C. Denaturation

If RNA were an ideal chain without self-interaction, th
entropic cost of a closed loop would just derive from t
probability of a three-dimensional random walk to return
the origin, and thusf(L;m)}L3/2 for large values ofL. This
corresponds to the case discussed in Refs.@1,5# where the
authors start from real space recursion relations treating
single strands as ideal chains. If one considers the loop
self-avoiding walks, forgetting about the stems that are c
nected to them, one is lead to usef(L;m)}L3nSAW, with the
wandering exponentnSAW50.588~in 3D! characteristic of a
self-avoiding walk.~This is the form used for large interio
loops in the Zuker algorithm@12#.! Clearly, this is too simple
since the branches attached to the loop have a non-neglig
effect on the conformational degrees of freedom of the lo
and one should consider a more sophisticated form of
loop cost.

A generalization of these entropy cost functions can
obtained from the results of Duplantier and co-worke
@13,14# for the configurational entropy of a network wit
given topology. In order to find the scaling of the effectiv
entropy cost of an internal loop as a function of its size
consider the secondary structure as a treelike network of
lices, linked by internal loops. Let us single out one intern
loop with m branches that we idealize as outgoing rods~see

r

FIG. 3. The effective entropy cost for internal loops of lengthL
can be obtained by idealizing the environment of the loop asm
outgoing rods~herem55) and comparing the scaling expressio
for its configurational entropy with that of a starlike polymer withm
rays.
4-3
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Fig. 3!. In the limit of loop sizes much smaller than th
extension of the rods the scaling of the entropy cost for
internal loop follows from comparison of the expressions
the configurational entropy of a starlike network withm rays
Gstar(m) with that of a small loop withm attached branche
G loop(L;m). The latter scale asGstar(m);Ngstar(m)21 and
G loop(L;m);Ng loop(m)21g(L/N), where N is the typical
length scale of the attached rods~the remainder of the net
work!, L is the length of the loop, andg(x) is a scaling
function. In the limitL/N→0 the scaling of two expression
should coincide which requiresg(x);xg loop(m)2gstar(m). The
effective loop cost function then follows asf(L;m)
;G loop(L;m)/Gstar(m);a(m)(L)n(m), where n(m)
5gstar(m)2g loop(m). The renormalization group result
from Refs.@13,14# yield n(m)53nSAW2ms31sm , where
sk is the exponent related to the renormalization of a ver
with k legs.~See also Refs.@15–17# for a completely analo-
gous reasoning in the closely related problems of DNA
naturation and studies of ‘‘slip-linked’’ polymers.! While
good estimates are available viae expansion for small value
of m @13,14# the thermodynamics of denaturation is ess
tially determined by the behavior of the cost for loops w
many attached stems, i.e., byn(m) for largem, about which
very little is known. We can proceed, however, witho
knowing an exact expression forn(m). Instead we will il-
lustrate the general condition~8! below with a discussion o
the ad hoc forms f(L;m)5a(m)(L)n(m) with n(m)5n*
5const, andn(m)5n01mn1 , the first one being a reason
able approximation for the case thatn(m) saturates atn* for
large values ofn, the second one assuming that each bra
contributes a further entropic constraint on the loop conf
mations, as suggested by the termms3 above. The prefacto
a(m) is assumed to be a moderate function ofm that does
not grow exponentially.

The asymptotic behavior of the partition functionZN
c can

be derived from the generating functionJc(z) without per-
forming the full inverse Laplace transform. It is given b
ZN

c ;z
*
2N/Na, wherez* is the smallest value ofz at which

Jc(z) becomes nonanalytic. The leading finite size corr
tions in the form of the preexponential factor 1/Na are deter-
mined by the nature of that nonanalyticity.

There are only two possible singularities forJc(z): Tak-
ing successive derivatives of Eq.~4! one can check that al
derivativesdkJc(z)/dzk exist, unless the partial derivative
of both sides of Eq.~4! with respect toJc are equal, i.e.,

15h
~sz

*
2 !n

12sz
*
2 (

m,l

mJc~z* !(m21)z
*
l

f~ l 1m11;m11! S m1 l

m D . ~6!

In turn this condition is sufficient to ensure a nonanalytic
of Jc(z). Writing Jc(z)5Jc(z* )2d and expanding Eq
~4! for small (z* 2z) one findsd2;(z* 2z). Hence the
singularity ofJc(z) is approached as

Jc~z!5Jc~z* !2const~z* 2z!1/21O~z* 2z!, ~7!

which leads to finite size corrections of the formZN
c

;z2N/N3/2. This result is central to the discussion of th

*
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critical behavior at the force-induced denaturation transiti
Note that the preexponential factor is essentially independ
of the specific choice of the model, in particular, it does n
depend on the shape of the loop cost functionf.

The second possible singularity corresponds to the dou
sum on the right-hand side of Eq.~4! being evaluated at its
radius of convergence. To analyze this situation in more
tail we suppose that the loop penalty assumes the f
f(L;m)5a(m)Ln(m). According to Hadamard’s formula
the radius of convergence is determined by

limL→`F z
*
L (

m50

L
~Jc~z* !/z* !m

a~m11!~L11!n(m11) S L

mD G 1/L

51.

~8!

In the case wheren(m) grows at most sublinearly inm, i.e.,
n(m)/m→0, as m→0, the sum can be estimated by i
saddle point, and one finds the conditionJc(z* )1z* 51. In
the same way,n(m)5n01n1m ~with n1<1) leads to the
condition z* 51, but, since the sum diverges whenz* →1,
the singularity is ruled out in this case.

The singularity given by Eq.~6! is always the smalles
one at low temperatures. The system undergoes a therm
namic phase transition when the singularity determined
Eq. ~8! crosses the first one as a function of temperatu
This can only occur if the first derivative with respect toJc
of the double sum in Eq.~4! stays finite on approaching th
radius of convergence from below, that is, forJc(z* )1z*→1. This requireslimm→`n(m)>2. As we will show below
the corresponding phase transition is associated to the
denaturation. In all other cases our model does not exhib
phase transition but only a crossover whose sharpness
pends both on the loop cost function and the stacking
described by the parameterh.

D. Radius of gyration

Let us now characterize the thermodynamic properties
RNA. Most observables can be obtained as appropriate
rivatives of the free energy per base which is simply rela
to z* via f 5b21 ln(z* ). For example, the fraction of paire
bases is given bynp5] ln(z* )/] ln(s) and the average num

FIG. 4. The denaturation transition is best described by the t
cal distanced between bases within the secondary structure wh
scaling changes fromN1/2 in the globular state at low temperature
to N in the necklacelike state aboveTd . ~The dashed curve indi-
catesd/N for a molecule with finiteN. The transition becomes
sharp only in the thermodynamic limit.! In contrast, the fraction of
paired basesnp or the relative number of helicesnh /N only exhibit
a crossover at the denaturation temperature, but never drop to
4-4
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ber of helices isnh5N] ln(z* )/] ln(h). Evaluating these de
rivatives in the two possible phases one finds thatnp and
nh /N are both finite at all temperatures and thus do not p
vide a good order parameter for the phase transition~see Fig.
4!. The ~small! extensive number of pairings even in th
high-temperature phase is due to accidental pairings of b
that are close to each other within the linear RNA stra
This result is independent of the details of the model such
the minimal number of bases in a hairpin loop, entropy co
and energy parameters.

A better choice of observable is the average distance
tween two bases that belong to two different terminal loo
of the secondary structure. This quantity is a measure for
diameter of the molecule and distinguishes the comp
globular phase from the denatured loose phase. We defin
distance between two bases as the length of the shortest
linking them through the secondary structure, see Fig. 5. T
path is a succession of loops and helices, its length be
given as the sum of the lengths of the helices and half
contour lengths of the loops.

Alternatively, we can consider again closed second
structures constrained to terminate in a helix. It is easy to
that the same structural information as encoded by the
tance between terminal bases is captured by the average
tance of terminal bases from the closing base pair (1,N). The
latter quantity is more convenient to compute, however.

Let us denote byn(d;S) the number of bases in termina
loops at distanced from the pair (1,N). We define the Boltz-
mann weighted sum over secondary structures on a clo
strand withN bases

CN~d!5(S ZN
c ~S!n~d;S!, ~9!

for which we can write down a recursion relation in the sa
spirit as in Eq.~3!: The sum over all secondary structures c
be decomposed into a sum over the lengthk>n of the ter-
minal helix starting at (1,N), and the first loop. The latte
can either be a terminal loop containingN22k unpaired
bases, or there can be further closed structures connect
it. In the second case, we single out the closed structurX
whose terminal loops we want to consider, and denote
m1 ,l 1 and m2 ,l 2 the number of closed structures and u

FIG. 5. Definition of the distanced between bases in termina
loops: The unique shortest path through helices and loops from
terminal loop to another allows us to defined as the sum of the
lengths of the helices and half of the contour lengths of the enco
tered loops, including the two terminal loops. For the bases in
figure one hasd53/213115/213115/21313/2.
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paired bases to either side ofX in the loop. Them11m2
closed structures just contribute the product of their partit
functions, together with appropriate combinatorial factors
their arrangement within the loop, whereas the structurX
contributes the Boltzmann sumCLX

(d8) for a distanced8

that is reduced with respect tod by the lengthk of the ter-
minal helix and half of the loop contourm11 l 11m21 l 2
12. This results in the recursion

CN~d!5 (
k>n

hskF ~N22k!d~d2N/221/2!

f~N22k11!

1 (
m1 ,l 1>0

(
m2 ,l 2>0

(
LX>2n1t

(
Li>2n1t;

i 51, . . . ,m11m2

S m11 l 1

m1
D

3S m21 l 2

m2
D dS 2k1 l 11 l 21 (

i 51

m11m2

Li1LX2ND
3

CLX
@d2k2~m11 l 11m21 l 212!/2#

f~ l 11m11 l 21m212! )
i 51

m11m2

ZLi

c G .

~10!

Here we used the formf(L;m)[f(L) for simplicity.
Passing to the Laplace transform with respect to both v
ablesN andd,

C~z,p!5 (
N>2n1t

(
d>n1t/2

CN~d!zNe2pd, ~11!

the equation is easily solved,

C~z,p!5
h~sz2e2p!ne2p/2gf

(t)~ze2p/2!

12sz2e2p2h~sz2e2p!ngf8 ~@z1Jc~z!#e2p/2!
.

~12!

We have introduced the functions gf
(t)(x)

5(N>tNxN/f(N11) andgf(x)5(N>1xN/f(N11).
Note thatC(z,p50) has two possible singularities, th

vanishing of the denominator and the singularity ingf8 that
occurs whenz1Jc(z)51. The first singularity is associate
with the globular phase, the vanishing of the denomina
being equivalent to condition~6! in the casef(L;m)
5f(L). The singularity related togf8 (x→1) governs the
denatured phase. The denaturation transition occurs whe
two singularities cross which can only happen ifgf8 (1) is
finite.

Let us now calculate the mean distance from bases
terminal loops to the free part. This is given by the logari
mic derivative ofCN(p) with respect top,

^d&5]pCN~p!up50 /CN~p50!, ~13!

which can be evaluated by inverse Laplace transform
]pC(z,p)up50 and C(z,p50) with respect toz. Note that
]pCN(p)up50 and CN(p50) have the same leading expo
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nential asymptotics since their smallest singularities are
same, but their finite size correctionsz

*
2N/Na differ and will

determine the scaling of̂d& as a function ofN.
Let us now analyze the case of a loop cost function w

asymptoticsf(L)}Ln andn.2 which implies a phase tran
sition. In the low-temperature phase, the denominator in
~12! vanishes like (z* 2z)1/2 asz approachesz* from below
@cf. Eq. ~7!# which gives rise toa51/2 for the back trans-
form of C(z,p50). On the other hand, the derivativ
]C(z,p)/]pup50 diverges like (z* 2z)21 which yields a
50, whencê d&;N1/2.

The situation changes in the high-temperature ph
where the denominator remains finite, but the genera
function develops a~leading! singular partCsing(z,p50)
;(z* 2z)n22 giving rise toa5n21. Correspondingly, the
singular part of the derivative behaves as (z* 2z)n23, which
implies a5n22, and therefore ^d&;N. The high-
temperature phase is characterized by typical distance
order N from terminal bases down to the free part. This
what one expects for an essentially free, noncollapsed c
@but constrained to be paired at the ends (1,N)]. The second-
ary structure is rather trivial in this case, consisting ess
tially of one big loop with small structures attached to it. T
low-temperature scalinĝd&;N1/2, however, indicates the
collapse to a globular state with a rich branched second
structure.

We mention that the latter scaling can easily be derived
the absence of loop costs from the ‘‘mountain height’’ rep
sentation of secondary structures@18# where the distance o
terminal bases to the free part scales like the height of
mountain representation. This in turn is the typical excurs
of a random walk ofN steps in one dimensionh, constrained
by h.0 and h(1)5h(N)50 which is known to scale a
N1/2. There is, however, no simple equivalent of the abo
phase transition in the mountain height or random walk p
ture, since the loop cost translates into an awkward nonlo
energy term.

The distanced is a structural property of the treelike ske
eton of the secondary structure. In order to relate it to the
diameter of the molecule we assume that the helices
parts of internal loops connecting a terminal loop to the f
part essentially realize a~constrained! random walk in space
If we assumed the random walk to be ideal, the radius
gyration of RNA molecules would follow from the abov
findings asRg;dnRW;N1/4 with the wandering exponent fo
ideal random walksnRW51/2. This has already been ob
tained in Ref.@1#. However, the random walks should at lea
be considered as self-avoiding, having a larger wande
exponentnSAW, and correspondinglyRg;NnSAW/2;. In ad-
dition, there are also constraints from the presence of
remainder of the molecule which have the tendency to
crease the value of the wandering exponent. This effec
difficult to estimate, but we may obtain some idea about
importance by considering the two-dimensional case: T
wandering exponent for self-avoiding walks is known e
actly asnSAW53/4 @19#. On the other hand, we need to kno
how the Euclidean distancedeu between two points on a
branched polymer~a coarse grained version of the second
structure! scales with the length of the shortest path betwe
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them, the so-called chemical distancedch. The exponentnch

defined bydeu;dch
nch is exactly known for the special case o

a space-filling branched polymer, where it takes the va
nch54/5 @20#. It is to be expected that the exponent
slightly smaller in the case of a branched polymer of ar
trary density and thus almost equalsnSAW. This suggests tha
the wandering behavior is only weakly affected by the pr
ence of branches connected to a self-avoiding walk, and
approximation ofnch by nSAW is quite good.

E. Discussion

If we assume that also in the three-dimensional case
presence of side branches does not increase substantiall
wandering exponent from its value for the self-avoiding wa
and supposeRg;NnSAW/2 we encounter a consistency pro
lem in the thermodynamic limit: the monomer density
space diverges asN/Rg

3;N123nSAW/2 in the collapsed phase
This problem is common to all models considered abo
irrespective of the existence of a denaturation transition.~It
does not occur if the side branches have a much stron
effect than in two dimensions and increase the wande
exponent beyond 2/3.) It reflects the fact that~local! entropy
cost functions for interior loops are not sufficient to take in
account global spatial constraints. The model customa
used in RNA prediction will thus be inconsistent for suf
ciently large molecules in that it neglects excluded volu
effects, deferring them to the subsequent analysis of the
tiary structure. This separation is, however, only justified
long as typically obtained secondary structures can easily
accommodated in space.

In order to demonstrate that the standard RNA struct
predicting programs~Zuker’s mfold @12#, Vienna package
@9#! are indeed limited by their neglection of excluded vo
ume effects, we have used them to determine the folding
RNA sequences that were deliberately designed to form f
tal secondary structures~see Fig. 6!. These were constructe
starting from a short terminal helix that ends in a loop w
two closed structures attached to it. Each of them again s

FIG. 6. Schematic ‘‘fractal’’ secondary structure. The lar
circles represent internal loops, the rods symbolize helices and
small circles hairpin loops. By choosing various complement
G-C sequences on the helices and A’s in the terminal loops, e.g
is easy to design sequences that the structure prediction algori
predict to fold as depicted. The resulting structure is extrem
dense in real space and must be discarded as an admissible fo
4-6
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with a short helix that ends in a branched loop with tw
outgoing stems, and so fourth in a self-similar way. The d
sity of such treelike or starlike structures grows expon
tially with their radius. Even with a modest number of bas
one can design sequences for which the structure predic
indeed yields the desired pairing pattern that can hardly
accommodated in space, and should therefore be ruled

While this is not a problem for small RNA molecules su
as transfer RNA or ribosomal RNA, the natural sizes of m
senger RNA are on the order of several thousand bases w
is likely in the regime where excluded volume effects play
important role for the folding, and the usual structure pred
tion algorithms based solely on the base pairing pattern
likely fail. The inclusion of a effective loop costs to take in
account the reduced available phase space might help to
into account those effects to some extent, but as we h
seen they fail to cure the problem completely in the lo
temperature phase.

At this point, it is worth mentioning that although neith
loop costs nor the topological condition on the absence
pseudoknots are able to avoid~too! dense secondary struc
tures, the situation would be much worse if no topologi
constraints were introduced in the model at all, that is, if
base pairings were allowed, irrespective of the resulting
tanglement of the structure. It is rather obvious that a gen
base pairing pattern obtained in such a model could no
accommodated in space: Let us consider a base pair an
two strands to which it belongs. If there is no constraint
the pairing behavior of the nearby bases within these stra
they can be paired to completely different parts of the ch
which are then all forced into the same spatial region. T
topological constraint forbidding pseudoknots weakens
tendency, since the substrand embraced by the given
pair is only allowed to interact with itself, which reduce
largely the possibilities of spatial entanglement.

The above observations lead to the conclusion that typ
structures for large molecules are determined by a comp
tion between favorable base pairings and the requirem
that the resulting secondary structure can be accommod
in space. This will result in rather densely packed and
tangled spatial arrangements of RNA that we expect to
hibit very slow dynamics and glassiness due to the inevita
spatial hindrance to pass from one favorable folded stat
another. This is indeed observed in folding experiments
large ribozymes, where several misfolded states com
with the correctly folded native state@21,22#. Thirumalai and
Woodson@23# propose a ‘‘kinetic partitioning mechanism
to describe this type of slow dynamics, according to whic
fraction of all molecules fold directly to the ground stat
while the remaining molecules remain in metastable m
folded state until they find a pathway via the transition st
ensemble to the native state. Glassiness may also arise p
on the level of secondary structure@18,24–29#, where topo-
logical constraints~in the form of backbone connectivity o
constraints on pseudoknots! introduce a weak frustration in
the system and establish a multiplicity of metastable vall
in phase space. For small molecules this has been show
lead to slow dynamics@30#. In large molecules the jammin
of the spatial arrangement of energetically favorable seco
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ary structures probably plays an equally important role
will be a major challenge to understand the interplay of s
ondary and tertiary structure and its relation with the clos
related problem of protein folding.

III. RESPONSE OF RNA TO AN EXTERNAL FORCE

A. The partition function with force

In this section we will extend our formalism to treat pro
lems with an external force. In experiments, the RNA m
ecule is usually fixed on one end, while the other end
manipulated by optical tweezers, magnetic beads in an in
mogeneous field, or the cantilever of an atomic force mic
scope. The extension of the molecule is monitored as a fu
tion of the applied force, or the position is imposed and
average force needed to maintain the position is measu
Here we will concentrate on the situation where the force
fixed while the extension is subject to thermal fluctuation

To include the effect of an external force we have to a
the term2FW •(rWN2rW1) to the energy of the system, whererW i
denotes the spatial position of thei th base. The force only
acts on the free part of the chain, see Fig. 7 and we
rewrite the additional term as

2FW •~rWN2rW1!52 (
i 51

l b21

FW •~rWb( i 11)2rWb( i )!, ~14!

where$b( i )% is the ordered list of all bases in the free pa
and b( l b)5N. There are two types of contributions to th
sum: Terms withb( i 11)5b( i )11 correspond to successiv
bases in the backbone of the RNA, while terms withb( i
11).b( i )11 correspond to the paired bases terminat
the closed structure between basesb( i ) and b( i 11). For
simplicity we consider both the distancel of bases within the
backbone and the distancel b of covalently bonded bases a
fixed. We treat the terminating hydrogen bonds of clos
structures as free joints that are inserted between si
strands of unpaired bases. They contribute a factor
1/zb( f )5sinh(bflb)/(bflb) to the partition function. For the
single strands in between we will restrict ourselves to
simple model of a freely jointed chain. If one wants to fit
experimental data@5#, one should, however, consider a mo

FIG. 7. RNA under an external force. The force pulls on the fr
part of the chain that can be subdivided into single-stranded
tions containingSi unpaired bases (i 50, . . . ,m). Those are sepa
rated by closed structures, containingLi bases (i 51, . . . ,m). The
free length derives from the terminating bonds of the closed st
tures@contributingzb

21( f ) to the partition function# and the back-
bone elements in the single-stranded parts@contributingzss

21( f ) in
the approximation of uncorrelated monomers#.
4-7
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realistic description involving correlations of the monome
on the scale of the persistence length (l p'3l ). At high
forces, bond elasticities should also be included. Both mo
fications can straightforwardly be taken into account in
formalism below.

The partition functionZN
f ( f ) including the external force

can easily be obtained once the partition functionZN
c ( f ) of

closed structures is known. We may decompose the sum
all structures into a sum over the numberm and sizesLi ( i
51, . . . ,m) of closed structures in the free part, and t
lengths Si ( i 50, . . . ,m) of the single-stranded segmen
linking them:

ZN
f ~ f !5 (

m>0
(

S0 , . . . ,Sm>0
(

L1 , . . . ,Lm>0

3dS S01(
i 51

m

~Li1Si !2NDZS0

ss

3 )
i 51

m21 FZLi

c ZSi11
ss ~ f !

zb~ f !
G ZLm

c ZSm

ss ~ f !

zb~ f !
. ~15!

Here we have introduced the partition functionZN
ss( f ) of a

single-stranded segment withN backbone elements under th
force f. The corresponding generating function follows fro
a discrete Laplace transform as

J f~z; f ![(
N

ZN
f ~ f !zN

5
Jss

2 ~z; f !z

„Jss~z; f !21…S 12
Jc~z!

zb~ f !

Jss~z; f !21

z D .

The partition function is again found by inverting th
Laplace transform, in particular, the free energy derives fr
the logarithm of the smallest singularity ofJ f(z; f ). Apart
from the singularities ofJc(z) that we discussed in Sec
II C, J f also has a pole singularityz( f ) when the denomi-
nator in Eq.~16! vanishes,

15
Jc„z~ f !…

zb~ f !

Jss~z~ f !; f !21

z~ f !
. ~16!

Let us now fix the temperature. The singularity deriving fro
Jc then takes the force-independent valuez* 5z* (T). A
phase transition occurs at the critical forcef c(T), wherez( f )
crossesz* (T). For larger forces, the force-extension chara
teristics follow from ^L( f )/N&52b21] ln@z(f)#/]f in the
thermodynamic limit. Here,L( f ) denotes the projection o
the end to end distance of the molecule onto the direction
the force.

In the following we are interested in two aspects of t
force-extension curve. First, we will examine in detail t
critical behavior aroundf c . Later, we address the temper
ture dependence off c(T) and an associated reentrance ph
nomenon slightly below denaturation. Finally, in Sec. IV w
02191
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will discuss in detail the dependence of the force-extens
characteristics on the parameterss andh.

B. The critical behavior around f c

In the following we treat the single-stranded parts
freely jointed chains, whose generating function is given

Jss~z; f !51/@12z/zss~ f !#, ~17!

where zss( f )5sinh(bfl)/(bfl). Furthermore, we only con
sider temperatures below denaturation.

In the vicinity of the~finite! critical force we may restrict
ourselves to the relevant singularity structure ofJ(z; f ) and
expand the denominator in Eq.~16! to lowest nontrivial or-
der aroundf c andz* . Using Eq.~7! we find

J f~z; f !'
B

~12z/z* !1/22A~ f 2 f c!
, ~18!

or, on substitutingz[e2s andz* [e2s
* ,

J f~s; f !'
B

~s2s* !1/22A~ f 2 f c!
. ~19!

A and B are slowly varying functions off and z that we
replace by their values at the critical point,A[A( f c ,z* ) and
B[B( f c ,z* ). The ~continuous! inverse Laplace transform
of Eq. ~19! is explicitly known, and we obtain the partitio
function in the transition region as

ZN
f ~ f !5

Bes
*

N

ApN
c„A~ f 2 f c!N

1/2
…, ~20!

wherec(x)511Apx exp(x2)erfc(2x). The force-extension
characteristics follow immediately as bL( f )
5AN1/2(ln c)8@A(f2fc)N

1/2#. In the asymptotic regimes o
the scaling variablex5A( f 2 f c)N

1/2 one obtains the expan
sions

bL( f )'5
2A2( f 2 f c)NF11

1

2x2
1OS e2x2

x3 D G , x@1

AN1/2ApF11
42p

Ap
x1O(x2)G , uxu!1

2

f c2 f F12
3

2x2
1OS 1

x4D G , x!21.

~21!

Sufficiently above the critical force (x@1), the extension
grows linearly withf 2 f c and scales as the system size. T
chain organizes in the kind of necklace: the number of clo
structures in the free chain is proportional toN, their average
size being finite. In the low force regime (x!1) the chain is
collapsed, but its extension diverges as 1/(f c2 f ) upon ap-
proaching the critical point.

There are two critical exponents characterizing this ph
transition: At the critical force (x!1) the extension obeys
4-8
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power lawL;Nd with d51/2. The second exponent is re
lated to the characteristic length scale in the problem,Nc
}( f 2 f c)

2n, wheren52, as one can read off from the form
of the scaling variable. Below we will see thatNc can be
understood as a correlation length.

C. Correlations and length scales atfÐf c

Slightly above the critical force, the typical number
bases in a closed structure is given byl typ5N/ncs( f ), where
ncs( f ) is the number of closed structures in the free part
has the same critical behavior as the extension, i.e.,ncs( f
> f c)}N( f 2 f c), and thus,l typ}1/( f 2 f c). This is surprising
since the characteristic length scaleNc}( f 2 f c)

22 diverges
much faster.

To understand the meaning ofNc let us introduce the
indicator functionh i which equals 1 if basei belongs to the
free part, and 0 otherwise. The correlation function^h ih j& is
simply obtained as the ratio between the partition funct
with basesi and j constrained to be free, and the total par
tion function,

^h ih j&5
Zi 21

f Zj 212( i 11)
f ZN2( j 11)

f

ZN
f

. ~22!

Using Eq.~20! we obtain the connected correlation functio
as

^h ih j&2^h i&^h j&

^h i&^h j&
5

Zj 2 i 22
f ZN

f

ZN2( i 11)
f Zj 21

f
21

'
e2( j 2 i 22)[A( f 2 f c)] 2

4Ap~ j 2 i 22!3/2@A~ f 2 f c!#
3

,

~23!

where the last approximation is valid in the scaling regi
above the critical force fori, N2 j , N@( j 2 i )@@A( f
2 f c)#22. The quantityNc5@A( f 2 f c)#22 clearly appears as
the correlation length beyond which the pairing behavior
comes essentially independent. To see why the correla
length is much larger than typical closed structures, let
look at the probability distribution of the sizes of the latte

Suppose that a closed structure starts at basei. The prob-
ability that it is paired to the basej 5 i 1 l 11 is given by

P~ l !5
Zi 21

f Zl
cZN2( i 1 l 12)

f

(
l 8.0

Zi 21
f Zl 8

c ZN2( i 1 l 812)
f

}
exp@2 lA2~ f 2 f c!

2#

l 3/2
,

~24!

from which we recover the expectation value for the str
ture sizel typ5^ l &5( l lP( l )}1/( f 2 f c). On the other hand
we can calculate the fractionx( l * ) of bases that belong to
closed structures of size at leastl * ,
02191
It

n

e

-
on
s

-

(
l 5 l

*

`

lP~ l !

(
l 51

`

lP~ l !

'

E
l
*

[A( f 2 f c)] 2

`

x21/2exp~2x!dx

E
0

`

x21/2exp~2x!dx

5erfc@A~ f 2 f c!l *
1/2#. ~25!

A finite fraction of all bases thus belong to structures of s
O„( f 2 f c)

22
… which sets the scale of the correlation leng

Nc . The vast majority of closed structures is much smal
however.

D. The critical behavior with sequence disorder

After having understood the critical behavior in the h
mogeneous case, it is natural to ask whether disorder in
form of sequence inhomogeneities and varying pairing
finities between the bases is a relevant perturbation for
force-induced phase transition. In Refs.@31,32# the authors
studied the force-induced unzipping of DNA and found t
presence of disorder to significantly alter the critical beh
ior with respect to that of a homogeneous double strand
RNA, the disorder effects are less pronounced, since the
opening transitions are not really of the same nature.
DNA, essentially all base pairs are broken up at the transi
and the double strand becomes denatured. The force alw
acts only on the single base pair closing the yet unzip
double helix. In RNA, however, the transition occurs at
point where the entropy of large secondary structures and
free energy gain from the extension of the chain compete
a quite subtle manner, the base-pairing energies playin
less important role at the critical force. Furthermore, alrea
in the critical region the force acts in parallel on a lar
number of globular structures aligned along the free par
the chain, which averages out the effect of disorder to so
extent@33,34#.

FIG. 8. Scaling plot of force-extension curves for disorder
models~power law distributions witha56 anda510, and the four
letters model! at high temperature (T50.6). For better visibility,
the extension of the four letters model has been multiplied by 1
4-9
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In the case of RNA will be interested in the low
temperature regime where we can simplify the model by
glecting the loop cost function, i.e., puttingf[1. Further-
more, we replace the pairing and stacking free energies
simple ~temperature-independent! pairing energiesei j be-
tween the basesi and j. This does not change the critica
behavior at the force transition in the homogeneous c
(ei j [e), and we checked numerically that a disorder
model with pure stacking energies leads qualitatively to
same results as the pairing model.

As in earlier work@18,29,35#, we consider different types
of disordered models. The most natural one starts from R
made of the four base speciesbiP$A,C,G,U%. The pairing
energies will then depend on the sequence viaei j
5E(bi ,bj ), whereE is a symmetric 434 matrix. We used
the simple matrix E(C,G)5E(G,C)523, E(A,U)
5E(U,A)522 ~Watson-Crick pairs! and E(G,U)
5E(U,G)521 ~wobble pairs!, and E51` for all other
pairs. Alternatively we considered more abstract rand
coupling models, where theei j are independent variable
taken from a distributionP(e). In the following we focus
onto the two cases whereP(e) is Gaussian or has power la
tails decaying likeueu2a, respectively, both being centere
on a negative value.

The numerical evaluation of force-extension characte
tics for these types of models is straightforward using
O(N3) recursion relation as introduced in Refs.@36,37# to
compute the partition functionZN

f exactly for a given real-
ization of the disorder~see Refs.@33#, for a related investi-
gation, and@34# for a more thorough discussion of the effec
of disorder and the low temperature behavior!. In Fig. 8 we
show scaling plots of the disorder-averaged force-exten
characteristics for several disordered models at tempera
well above the glass transition temperature@18,29#. The data
collapse in the critical regime was obtained optimizing t
critical force in the scaling ansatzL( f )5N1/2l@( f
2 f c)N

1/2# supposing that the critical exponents are the sa

FIG. 9. Force-extension curves from Fig. 8 and for homo
neous models at different temperaturesT and pairing energiese. All
curves superpose with the analytical prediction~21! L( f )
5DN1/2l@C( f 2 f c)N

1/2# upon rescaling with model-depende
factors C, D. The error bars are smaller than the symbol sizes.
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as in the homogeneous case (d51/n51/2). The scaling
works well for the model with four letters and for the rando
coupling models with a Gaussian probability distribution,
with P(e);e2a and a.4. However, the data obtained fo
distributionsP(e);e2a with a<4 ~not shown! cannot be
collapsed satisfactorily even when allowing for differe
critical exponents. This is due to the dominance of some r
but very strong couplings as will be explained in the follow
ing subsection.

By rescaling the axes of the plots with model-depend
metric factors C and D,L( f )5DN1/2l@C( f 2 f c)N

1/2#, one
can perfectly superpose the scaling functions for the differ
models with that of the homogeneous model, as shown
Fig. 9. This indicates that, above the glass transition temp
ture, disorder is irrelevant for the force-induced phase tr
sition in the sense that all sufficiently short-ranged dis
dered models fall into the same universality class
homogeneous RNA. The latter suggests that the behavio
disordered RNA at high temperatures is well captured b
coarse-grained homogeneous description with renormal
parameters. The effect of disorder is washed out by ther
fluctuations which allow for a large number of seconda
structures to be explored, so that the large entropy of seco
ary structures~with approximately the same number o
bonds! dominates the physics.

The situation is different at low temperatures where
molecule is restricted to a small number of favorable fo
ings. The disorder-averaged force-extension curves at
temperature are shown in Fig. 10 where the data collapse
been achieved with the general ansatzL( f )5Ndl@( f
2 f c)N

1/n#, optimizing for f c , d, andn. As we will discuss
in the next paragraph, the correlation length exponentn52
stays unchanged with respect to the homogeneous c
However, the exponentd is modified (d50.7) @34#.

E. Harris-type criterion for the relevance of disorder

The relevance of disorder for a phase transition can o
be judged by applying Harris’ criterion according to whic

- FIG. 10. Scaling plot of force-extension curves for the Gauss
model atT50. The critical exponent is modified by the disorder
d'0.7.
4-10
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disorder is relevant if the specific heat exponenta5dn22 is
positive. Plugging ind51, since the sequence of bases is o
dimensional, and using the correlation length exponenn
52, we are led to conclude that disorder is marginal for
force transition.

In order to derive this result, we start from the homog
neous model where the pairing behavior is correlated up
the scalej;u f 2 f cu22. The introduction of disorder will lo-
cally modify the value of the critical force,f c→ f c1D f c
whereby this only makes sense as long as one considers
strands that are large compared to the bare correlation len
To estimate the typical fluctuationsD f c(j) for regions of
size j we observe that the opening transition is mainly
entropic nature~see Sec. IV! and results from the compet
tion between the gain in stretching energy and the decre
of the number of possible secondary structures when
chain changes from a globular state to a necklace wit
larger number of closed substructures.

The effect of the pairing energies comes only as a per
bation. It is thus reasonable to expect thatD f c(j) scales like
the fluctuations of the average binding energy per base
secondary structures that are restricted to a substran
lengthj. This impliesD f c(j);j21/2.

Locally, the correlation length is modified according to

j;u f 2 f c2D f c~j!u22. ~26!

The scalingD f c(j);j21/2;( f 2 f c) corresponds just to the
limiting case, for which the critical force is still uniquel
defined and the exponentn52 remains unchanged. This re
flects the marginality as predicted by the vanishing ofdn
22.

The above considerations are wrong if the disorder dis
bution has large tails in which case very large though r
couplings may dominate the secondary structure pattern.
the random coupling model with power law tailsP(e)
;ueu2a we can easily find a lower bound ona below which
disorder will significantly alter the behavior of the mode
rendering it even non-self-averaging. The energy fluctuati
will scale like the energy of rare favorable secondary str
tures. We may estimate the latter by considering a ‘‘gree
algorithm that constructs a secondary structure by choo
iteratively the base pair with the most negative energy av
able while respecting the topological constraints imposed
the pairs already chosen. There areN(N21)/2 pairing ener-
gies available for the first step, and the best among them
scale asN2/a. There will be of the order of ln(N) further
choices that lead to comparable energies, while in la
stages the pairing energies will be significantly smaller.
thus expect the disorder induced energy~fluctuations! to
scale at least as DE(N);N2/a ln(N), or D f c(N)
;N2/a21 ln(N). Thus, the fluctuations dominate fora<4.
Indeed, we did not succeed in collapsing the numerical d
for a53, 4.

F. Why is the force induced transition of the second order?

It is rather unusual to find a continuous phase transition
force-extension experiments. The closely related globule-
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transition in polymers is of the first order which is a cons
quence of the large finite size corrections to the free ene
of the globular phase of a chain withN elements,Fgl(N)
5 f glN1aN2/3. The termaN2/3 takes into account solven
effects at the surface. Such corrections are essentially ab
in the ~extensive! random coil phase, since all monomers a
more or less in a similar environment; but the free ene
depends on the external forcef since the structure is exten
sible, Fcoil(N)5N fcoil( f ). At the force where the extensiv
parts of the free energy become equal,f gl5 f coil( f ), a discon-
tinuous transition from the globular to the random coil pha
takes place@38,39#. Mathematically, the first-order nature o
the force transition is reflected by an essential rather t
algebraic singularity in the Laplace transform of the partiti
function in the globular phase.

In our model for RNA a surface term in the globula
phase is absent since solvation energies and surface ef
are part of the tertiary interactions that are far less import
than the base pairing~at least for small and intermediat
sizes!. The finite size corrections of the free energy in t
globular phase are only of order ln(N). Thus, a subdivision of
the chain into a necklace of globules is less costly than in
presence of surface effects. At the critical force, this lead
a continuous crossover from a single large globule to a ne
lace containing an extensive number of smaller globu
which takes place over a force window decreasing asN21/2.
In a two-dimensional homogeneous model of the globu
coil transition@40#, the authors found the force transition
be continuous, too, which can be traced back to the abse
of surface energies that grow polynomially with the syste
size.

It is worth mentioning that the thermodynamic phase tra
sition would be absent in our model if the secondary str
tures were not allowed to contain multibranched loops,
were limited to single hairpins~with possible alignment
gaps!. Instead, there would only be an opening crossov
Although the continuous phase transition is an otherwise
bust feature of all models irrespective of the details of
pairing and stacking rules, it critically depends on the top
logical constraints.

IV. DISCUSSION OF FORCE-EXTENSION CURVES IN
THE THERMODYNAMIC LIMIT

In a recent paper@6# the authors claim that the inclusio
of large stacking energies in the model renders the fo
transition first order in contrast to the second-order transit
found in a model with only pairing energies. This has r
sulted from an erroneous analysis of a system of equat
for generating functions that are real space analogs of
Eqs.~16! and~4!. The authors were misled by a sharp forc
induced denaturation crossover that masks the true ther
dynamic transition at a smaller force where the extens
begins to grow only very slowly as a function of force.

Before we discuss the general properties of for
extension curves, let us recall the parameters entering
model: Helices are required to contain at leastn base pairs,
and terminal loops closing a hairpin consist of at leastt un-
paired bases. The distance between monomers in the b
4-11
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bone is denoted byl, while l b is the average distance be
tween covalently bound bases. If we describe homogene
RNA, we should use the empirically determined valuesl b
'4l , n53 for the minimal helix length andt53 for the
minimal hairpin loop. However, if the model is used to d
scribe disordered RNA on a coarse-grained level, natural
ues arel b! l , n51, andt50.

The base pair interactions are described by two par
eters,s(T) andh(T), accounting for the pairing and stack
ing energy per base pair, and the cost for the initiation o
helix, respectively. As mentioned earlier, under physiologi
salt conditions the cooperativity parameterh(T) is very
small and thus favors the formation of long helices. T
parameters(T)5exp(2bfpair) is large at sufficiently low
temperatures, but approachess'1 in the denaturation re
gime. In the following discussion we will considerh(T) to
be small throughout ands(T) to be large at low tempera
tures, while approaching 1 around the denaturation temp
tureTd . We distinguish the three temperature regimes, dr
ping the explicit temperature dependence ofs andh: s@1,
1@s21@h1/3, and 0,s21!h1/3. The cases,1 corre-
sponds to denatured RNA which is not of interest for forc
extension studies.

For analytical simplicity we use the model without loo
cost function,f[1, see Eq.~5!. This is expected to be jus
tified in the low-temperature regimes@1, as well as at high
forces, while the results fors'1 at low force have to be
taken with some care.

For the details of the calculations the reader should re
to the Appendix.

A. Critical force and reentrance

In order to discuss the thermodynamic limit of forc
extension curves, we need the free energy per basef( f ) as a
function of the force. It follows viaz( f )[exp@2bf(f)# from
Eq. ~16! that we rewrite as

zss~ f !5z~ f !1
Jc„z~ f !…

zb~ f !
. ~27!

Here we treat the single strands linking the closed structu
as freely jointed chains, whose free energy per base is rel
to zss( f ) via zss( f )[exp@2bfss( f )#. The free energy pe
base in the globular phasef* is determined from the singu
larity z* 5exp(2bf* ) of Jc .

The chain begins to open when both free energies
equal, i.e., whenf* 5f( f ), and the critical force is deter
mined by the equationz* 5z( f c).

In the low-temperature regime (s@1), the critical force
depends on the parametert for the minimal length of termi-
nal loops. Fort>1 we find

f c~T!'
t

4~ l b1 l !
u f pair~T!u. ~28!

The dependence ont is due to the fact that each hairp
terminates in a loop with at leastt unpaired bases. The co
responding loss in energy is very important at low tempe
02191
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tures and limits the thermally accessible phase space
rather elongated hairpinned structures with few branchin
This manifests itself in the critical force being proportion
to the pairing free energy, almost as in the unzipping
DNA.

For t50 the situation is different, since there is no ener
cost associated to a hairpin, and therefore the available p
space of secondary structures is still large, even at low t
peratures. The phase transition is governed by the comp
tion between the force, trying to increase the number
closed structures in the free part, and the entropy that fav
one big closed structure. The equation for the critical fo
reduces to

2zss~ f c!zb~ f c!'1, ~29!

and thusf c(T)}T/ l , almost independently ofs. This reflects
the purely entropic origin of the critical force sufficientl
below denaturation.

Clearly, t50 corresponds to an unphysical situation if t
monomers in our model are interpreted as nucleotides. H
ever, if we regard the homogeneous model as a coa
grained description of a disordered base sequence, the m
mers in the model stand for short substrands with an ave
affinity to pair with other substrands. The frustration in t
secondary structure of disordered RNA necessarily lead
gaps in the base pairing that are usually larger than the m
mal length of terminal loops. It is therefore unnecessary
impose a constraint on the terminal loops, i.e., we may sa
put t50 in this case. At the same time, the minimal lengthn
of helices and the length parametersl and l b have to be
renormalized appropriately, as we indicated earlier.

In the denaturation regime,s'1, the critical force be-
comes small. Independently oft, it decreases as

f c~T!5H O„~s21!1/2
…, 1@s21@h1/3

O~h1/6!, s21!h
~30!

on approaching denaturation.
For t50 an interesting reentrance phenomenon occ

We have seen that in this casef c(T) is an increasing function

FIG. 11. Phase diagram of disordered RNA as a function
temperature and the force. The molecule undergoes a contin
opening transition at a critical forcef c(T) that we predict to be
nonmonotonic as a function of temperature. This gives rise t
reentrance phenomenon at fixed forces in a certain interval. At
temperature the system is in a glassy phase characterized by a
number of low-lying metastable states. At higher temperatu
RNA is in a molten state, that behaves in essentially the same
as a homopolymer. There is a thermal denaturation transition if
entropic penalties for loops are sufficiently large. Otherwise ther
simply a crossover, andf c(T) never really vanishes.
4-12
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of temperature at sufficiently low temperatures, which is d
to the entropic nature of the critical point. The large value
the binding parameters merely forces the dominant secon
ary structure to have all bases paired, but does not influe
the critical behavior otherwise. This picture does, howev
not apply near denaturation where the base pairs are
loosely bound. Rather, Eq.~30! shows thatf c decreases es
sentially to zero in the denaturation regime. This is a con
quence of the vanishing of the pair binding free ene
(}s21) which competes with the free energy gained fro
stretching. The latter grows asf 2 at low forces, and thus, th
phase transition takes place on a force scale of the orde
(s21)1/2 which vanishes at the denaturation transition.

The different behavior at low and high temperatures i
plies that the critical force reaches a maximum somewh
below the denaturation temperature which gives rise to
following reentrance phenomenon~see Fig. 11!: If one fixes
the external force at a value smaller than the maximum
f c(T) and then decreases the temperature, starting in the
natured regime, the molecule will collapse into the globu
state when it crosses the critical line for the first time. Ho
ever, it will reenter the stretched phase again at lower te
perature when the second crossing occurs. Since the tr
tions are of second order this behavior would be seen
~continuous! breathing of the molecule upon changing t

FIG. 12. At large cooperativity, the slope of thef-l curves at the
transition is proportional toh. The phase transition is masked b
the subsequent crossover whose steepness scales ash21/2, indepen-
dently of s.

FIG. 13. At intermediate cooperativity the critical point and t
crossover merge for sufficiently small values ofs.
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temperature. We expect this effect to be relevant for dis
dered RNA sequences, wheret50 applies as we argue
above. Such a behavior has been seen in numerical sim
tions of protein unfolding@41#. A similar effect was also
predicted in the form of cold denaturation in DNA unzippin
@42,43#.

B. The opening crossover abovef c

In the following, we discuss several features of the forc
extension curves in the thermodynamic limit, in particul
we will derive how the linear slope above the critical poi
and the characteristics of the subsequent crossover depen
the energy parameters of the model. The results are il
trated in Figs. 12, 13, and 14 where we plot force-extens
curves for various pairs ofs andh. The structural parameter
are those appropriate for homogeneous RNA (n53, t53,
and l b54l ).

As we discussed in Sec. III, the extensionL( f ) of the
molecule slightly above the critical force grows likeN( f
2 f c). The prefactor and the range of validity of the line
regime can be calculated from an expansion of Eq.~27!
around the critical point. In the different temperature r
gimes, we find

L~ f !/N~ f 2 f c!;H O~hs2t/4!, s@1

O„h/~s21!4
…, 1@s21@h1/3

O~h21/3!, s21!h1/3

~31!

valid within a force window

f 2 f c5H O~1!, s@1

O~s21!, 1@s21@h1/3

O~h1/3!, s21!h1/3.

~32!

Note that at low temperatures (s@1), the extension is
suppressed by a factor ofh ~see Fig. 12!. This is a conse-
quence of the cooperativity in the system, i.e., the tende
to form long helices and large structures. Their size increa
typically ash21, so that necklaces composed of such str

FIG. 14. In the absence of cooperativity, the large closed str
tures first open up to form smaller units. The plateau correspond
necklaces of hairpins of the smallest possible size. Those struc
are disrupted only at a higher force. This behavior is an artifac
very strong pairing energies.
4-13
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tures are very short. The effect is even enhanced fort.0
where it is favorable to form longer helices in order to redu
the energy loss in terminal loops. The extension grows
early with the force over a range of orderO(1), which is
comparable to the critical force itself. This is in contrast
the case near denaturation where the extent of the linea
gime is much smaller thanf c and the coefficient of the linea
term can be appreciably large.

At higher forces the force-extension characteristics
comes nonlinear, and finally, the majority of base pairin
opens up in a sharp crossover. This happens at a forcf *
where the free energy of bases in the free part of the ch
equals half of the base pairing free energy,zss( f * )'s21/2.
Note that this is the analog of the critical force in DN
unzipping which is of a different nature thanf c . Beyondf * ,
the molecule behaves essentially as a freely jointed cha

The crossover is most interesting at low temperatures
@1. In the Appendix it is shown to take place within a for
window determined byr( f )[@hs2(11t)/2/zb( f )#1/2/uzss( f )
2s21/2u5O(1). Its width scales like

D f ;~hs11( l b / l 2t21)/2!1/2'~hs!1/2, ~33!

where we assumedl b / l't11 for homogeneous RNA. This
expresses the fact that the smallest possible hairpin
@with length l (t11)] will almost be a direct, stretche
bridge between the bases of the adjacent pair~at distancel b).
The crossover is very sharp if the cooperativity, as measu
by h21, is high.

Below the crossover@r( f )!1# we find the extension to
be small as compared to that of a freely jointed chain sub
to the same force,

L~ f !

N
'

LFJC~ f !

N
r~ f !. ~34!

Above the crossover@r( f )@1#, the role played by closed
structures is negligible, and the force-extension curve
proaches that of a freely jointed chain,

L~ f !

N
'

LFJC~ f !

N F11OS 1

r~ f ! D G . ~35!

Near denaturation (s'1), the situation is less interestin
since both the phase transition and the final opening of
secondary structures take place at very small forces. S
there is a discernible crossover in the cases21@h1/3 that
occurs at a forcef * ' f c1O(s21) while its width scales
like D f ;@h/(s21)#1/2. In the limit s21!h1/3, however,
no crossover can be seen since all characteristic force s
behave ash1/3.

V. CONCLUSION

We have studied several aspects of RNA folding on
level of the secondary structure. We concentrated on a
mogeneous model that we expect to describe random
quences on a coarse-grained level as well, provided tha
parameters are appropriately renormalized. This point
view is strongly supported by the finding that, at sufficien
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high temperatures, disorder is an irrelevant perturbation
the force-induced opening transition in the sense that sca
functions for disordered sequences superpose perfectly
the analytical curve calculated in the homogeneous case

Our model takes into account base pairing and stack
energies, as well as entropic costs for loops. The latter h
been shown to give rise to a thermodynamic denatura
transition if they are sufficiently strong. However, even wh
loop penalties are included, the dominant secondary st
tures in the collapsed phase of large molecules are too d
to be accommodated in three-dimensional space. Eve
moderate, biologically relevant sizes, it is questiona
whether the usual neglect of excluded volume~and other
tertiary! interactions in the prediction of secondary structu
is justified.

The force-induced unfolding has been studied in det
We have characterized the second-order phase trans
separating a globular from a necklacelike extensive phas
correlation length diverging like (f 2 f c)

22 has been identi-
fied as the typical size of the largest closed structures
appear in the necklace abovef c . The critical scaling of the
correlation length remains~marginally! unchanged upon in-
troduction of disorder, as follows from a Harris-type crit
rion. However, in the low temperature glassy phase the o
critical exponents are modified, in contrast to the hig
temperature phase which belongs to the same univers
class as a homogeneous polymer. This difference of the t
perature regimes manifests itself as well in the forc
extension characteristics. In the present paper, we have
stricted ourselves to the discussion of the homogeneou
high-temperature case. The jumplike force-extension cur
in the glassy regime are discussed in Ref.@34#.

The second-order phase transition in force-induced
folding has been shown to be a very robust feature of
model. In particular, it is independent of the specific pairi
and stacking energies and further structural parameter
occurs at a critical force that we predict to be a nonmo
tonic function of temperature in the case of disordered
quences. This gives rise to a reentrance phenomenon w
the temperature is varied at constant force.

When the stacking energy is large, the pairing behavio
highly cooperative. This can render the second-order ph
transition almost invisible, since the extension grows ve
slowly as a function off 2 f c . On the other hand, a ver
sharp first-order-like crossover occurs at the~higher! force
where essentially all base pairs are disrupted.
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APPENDIX

In this appendix we outline in more detail how to obta
the characteristics of the force-extension curves of Sec.
4-14
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1. The singularities of the partition function

Let us start from Eq.~27!,

zss~ f !5z~ f !1
Jc~z~ f !!

zb~ f !
, ~A1!
d

s-

02191
which determines the pole singularityz( f ) as a function of
the force for f . f c . The functional form of the generatin
function Jc(z) for closed structures can be obtained fro
Eq. ~5! as
Jc~z!5
1

2 S 12z2
h~sz2!n~12z t!/~12z!

12sz21h~sz2!n D 2A1

4 S 12z2
h~sz2!n~12z t!/~12z!

12sz21h~sz2!n D 2

2
h~sz2!nz t

12sz21h~sz2!n
. ~A2!
r
us

e
Eq.

-

g

m

ve

Eq.
The free energy per base of the globular phase is relate
the singularityz* of Jc via z* 5exp@2bfc#. z* is given by
the vanishing of the square root in Eq.~A2!. In the low-
temperature regime,s@1, we find

z* '

¦

s21/2S 12
3h

2 D , t50

s21/2S 12
h

s1/4D , t51

s21/2S 12
2h

s1/2D , t52

s21/2S 12
h

s1/2D , t>3,

~A3!

while near the denaturation,s21!1, we obtain

z* 'H s21/2S 12
8h

~s21!2D , 1@s21@h1/3

12~2h!1/3, s21!h1/3.

~A4!

We recall that we assumeh!1 throughout.

2. The critical force

The critical forcef c has to be determined from the cros
ing of the two singularities,z( f c)5z* , or more explicitly,

zss~ f c!5z* 1Jc~z* !/zb~ f c!, ~A5!

where we can use the fact that the square root in Eq.~A2!
vanishes atz* ,

Jc~z* !5A h~sz2!nz t

12sz21h~sz2!n
. ~A6!

In the low-temperature regime,s@1, we have to distinguish
different values oft. In the caset>1 we find approximately

zss„f c~T!…'z* 1
z
*
t/2

zb„f c~T!…
. ~A7!
toWe can neglect the first term on the right-hand side fot
,2(l b / l 11) which is always satisfied for homogeneo
RNA, where we havet' l b / l 21.

Recalling the definitions5exp(bufpair(T)u) and approxi-
mating zss( f )[b l f /sinh(blf )'exp(2blf ) and zb( f )
[b l bf /sinh(blbf)'exp(2blbf) at low temperatures, we find

f c~T!'
t

4~ l b1 l !
u f pair~T!u. ~A8!

The behavior fort50 is different since all bases can b
paired, even those at the end of a hairpin. In that case,
~A5! reduces to

2zss~ f c!zb~ f c!'1, ~A9!

implying f c(T)}T/ l , almost independently ofs. This under-
lines the purely entropic origin of the critical force suffi
ciently below denaturation.

In the regimes'1 the critical force is small, decreasin
as

f c~T!5H O~~s21!1/2!, 1@s21@h1/3

O~h1/6!, s21!h
~A10!

on approaching the denaturation. This follows simply fro
an expansion of Eq.~A5! at low forces.

3. The linear regime abovef c

In the thermodynamic limit, the force-extension cur
starts off linearly from zero extension atf c . To obtain the
slope of the curve, we expand Eq.~A1! around the critical
point. In particular, we have to expand the square root in
~A2! at z* ,

Jc~z!'
1

2 S 12z2
h~sz2!n

12sz21h~sz2!n~12z t!/~12z!
D

2AA~z* 2z!1B~z* 2z!2. ~A11!

As long as we can neglectB(z* 2z)2 with respect toA(z*
2z), i.e., forz* 2z( f )!A/B, we may obtainz( f ) approxi-
mately from@see Eq.~A1!#
4-15
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zss~ f !zb~ f !u f c

f '~ f 2 f c!@zsszb#8~ f c!

'
!

Jc~z!uz
*

z( f )'2@A„z* 2z~ f !…#1/2,

~A12!

and thus,

z~ f !'z* 2
~ f 2 f c!

2

A
@zsszb#82~ f c!. ~A13!

The extension in the linear scaling regime abovef c then
follows via L( f )52Nb21] ln@z(f)#/]f;N(f2fc). In the dif-
ferent temperature regimes, the coefficient ofN( f 2 f c)
scales like

L~ f !/~N~ f 2 f c!!;H O~hs2t/4!, s@1

O~h/~s21!4!, 1@s21@h1/3

O~h21/3!, s21!h1/3.
~A14!

The linear regime extends up to forces determined byz*
2z( f )'A/B, from which we obtain the force windows

f 2 f c5H O~1!, s@1

O~s21!, 1@s21@h1/3

O~h1/3!, s21!h1/3.

~A15!

4. The nonlinear regime and the crossover

At higher forces the force-extension curve becomes n
linear, but the typical size of closed structures is still large,
that the second term on the right-hand side of Eq.~A1! can-
not be neglected. Only in a later stage the base pairs ope
completely, and the molecule becomes a freely jointed ch

In the further discussion of the characteristics of t
force-extension curve we will restrict ourselves to~real! ho-
mogeneous RNA with 1,t' l b / l 21. We will only treat the
cases@1 in some detail, the cases'1 can be treated analo
gously.

Beyond the linear regime, we can solve forz( f ) using the
following approximation: The generating function for clos
structures can be simplified by expanding the square roo
Eq. ~A2! with respect to the second term

Jc„z~ f !…'
h~sz2!nz t

~12z!@12sz21h~sz2!n#2h~sz2!n
12z t

12z

.

~A16!

Equation~27! for z( f ) then reduces to a quadratic equati
up to terms of the order ofAh, except in a narrow region
around the forcef * where the opening crossover tak
places. The crossover forcef * is approximately determined
by zss( f * )5s21/2.

Before proceeding let us estimate the width of the cro
over. Considering the right-hand side of Eq.~A1!, we note
02191
-
o

up
n.

in

-

that the closed structures are important as long as the v
tion of Jc„z( f )…/zb( f ) with force dominates that ofz( f ).
The crossover to the freely jointed chain regime occurs w
both variations become comparable. Let us therefore w
z( f )5s21/2

„12e( f )… and determine the valueeX at which
the correction s21/2eX begins to dominate the term
Jc„z( f )…/zb( f ). Using Eq.~A16! and the fact thath/eX will
be small, we find Jc's2t/2h/eX . Equating this to
s21/2eXzb( f ), we find

s21/2eX[s21/22z~ f !;@hs2(11t)/2/zb~ f !#1/2. ~A17!

More quantitatively, one finds that for forces such th
zss( f )2s21/2@@hs2(11t)/2/zb( f )#1/2, z( f ) is given by

z~ f !'s21/2S 12
hs2t/2

2zb~ f !@zss~ f !2s21/2#
D . ~A18!

The extension follows from a logarithmic derivative,

L~ f !

N
'

LFJC

N

hs2t/2zss~ f !

zb~ f !@zss~ f !2s21/2#2
, ~A19!

which is small as compared to that of a freely jointed ch
at the same force.

For forces such that zss( f )2s21/2!
2@hs2(11t)/2/zb( f )#1/2 closed structures play a negligibl
role. To the same degree of approximation as before
finds

z~ f !'zss~ f !F11OS hs2(11t)/2

zb~ f !@zss~ f !2s21/2#
D G , ~A20!

and the force-extension curve joins that of a freely joint
chain

L~ f !

N
'

LFJC~ f !

N F11OS hs2(11t)/2

zb~ f !@zss~ f !2s21/2#
D G .

~A21!

The force window over which the crossover takes place
rives from Eq.~A17! and scales like

D f ;~hs11( l b / l 2t21)/2!1/2. ~A22!

For the case near denaturation,s'1 the calculations are
analogous and yield a crossover aroundf * ' f c1O(s21)
with a width scaling like D f ;@h/(s21)#1/2 for s21
@h1/3. In the limit s21!h1/3, however, all characteristic
force scales behave ash1/3, and a separation into differen
regimes does not make sense.
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