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Statistical physics of RNA folding
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We discuss the physics of RNA as described by its secondary structure. We examine the static properties of
a homogeneous RNA model that includes pairing and base stacking energies as well as entropic costs for
internal loops. For large enough loop costs the model exhibits a thermal denaturation transition which we
analyze in terms of the radius of gyration. We point out an inconsistency in the standard approach to RNA
secondary structure prediction for large molecules. Under an external force a second-order phase transition
between a globular and an extended phase takes place. A Harris-type criterion shows that sequence disorder
does not affect the correlation length exponent while the other critical exponents are modified in the glass
phase. However, at high temperatures, on a coarse-grained level, disordered RNA is well described by a
homogeneous model. The characteristics of force-extension curves are discussed as a function of the energy
parameters. We show that the force transition is always second order. A reentrance phenomenon relevant for
real disordered RNA is predicted.

DOI: 10.1103/PhysRevE.67.021914 PACS nuner87.14.Gg, 87.15:v, 64.60—i

I. INTRODUCTION model, while at low temperatures the collapsed phase be-
comes glassy and the critical behavior changes.

In this paper we discuss the equilibrium statistical me- In a recent articl¢6] the authors claim that the introduc-
chanics of RNA or single-stranded DNA as described bytion of base stacking energies instead of base pairing ener-
their secondary structurdase pairing pattejnWe mainly ~ gies may change the order of the force-induced phase tran-
concentrate on homogeneous polymers with uniform interacsition. However, they were misled by the appearance of a
tions between monomers which will be shown to captureShafp first-order-like crossover that occurs at a higher force
We” the physics Of random disordered Sequences at Suffr.han the C_Oﬂ'[inUOUS phase transition.described abOV-e. Wh"e
ciently high temperatures on a coarse-grained level. the latter is almost ent|_rely of en_trop|c nature, reflecting the

We generalize the results of de Gennes’ pioneering papé@rge space of energetically equivalent secondary structures,
[1] on (homogeneo[_)speriodic dAT po'ymers(sequences the .CI‘OSSOVGI’ IS gOVerned by the C.0mpet|t|0n bet\/\{een the
ATAT . ..) by including entropic penalties for internal loops Pairing energy and the energy gained from opening and
in order to account’ to some extent’ for self-avoidance efstretching it. The Shal’pneSS of the crossover results from the
fects. In the case where the latter are large, we predict §00perativity due to the base stacking energy that favors long
thermal denaturation transition that manifests itself in thehelices of stacked pairs.
scaling behavior of the radius of gyration. The scaling found
in the low-temperature phase is smaller theff, whereN is
the number of monomers of the polymer. This signals an
inconsistency for largeN, since the monomer density in RNA is a linear polymer made up of four types of nucle-
three-dimensional space becomes increasingly large Mith otides, A, C, G and U. In single-stranded DNA, U is replaced
Excluded volume effects can, therefore, not be neglected iby T. In solution with a sufficiently high ionic concentration
the secondary structure prediction of large molecules. to screen the charge of the phosphate backbone, the single

Recently diverse micromanipulation techniques have beeRNA strand has a tendency to fold back onto itself to form
developed that allow to monitor the response of single biolocal double helices of Watson-Crick base paissU and
molecules, RNA or ssDNA, in particul§P—4], to an exter- G-C) between complementary substrands of the base se-
nal force. These experiments have raised considerable intequence. The entropy loss due to a bound helix is compen-
est in the theoretical study of force-extension characteristicsated for by the pairing energy due to thér2A-U) or 3 (in
of biomolecules. Within our model, force-extension curvesC-G) hydrogen bonds of the base pairs and, more impor-
can easily be obtained upon coupling an external force to th&antly, the stacking energy which is gained by the expulsion
extremities of the polymer. The molecule undergoes a theref water molecules between the hydrophobic parts of neigh-
modynamic phase transition of second order that separatémring stacked base pairs.
the globular collapsed state from an extensive phase contain- The set of all base pairings in the RNA molecule deter-
ing a large number of small globul€S]. We characterize the mines its secondary structure. The typical scale of pairing
associated critical behavior and study in how far it is modi-and stacking energies is considerably larger than the energy
fied by the introduction of sequence randomness. Using acale associated with the tertiary structure, i.e., the spatial
Harris-type criterion we argue that the correlation length re-arrangement of the RNA moleculsee Ref[7], and refer-
mains unaffected by the disorder irrespective of temperaturences therein This separation of energy scales is at the basis
while other critical exponents maybe modified. Numericalof the usual paradigm to split the RNA-folding problem into
results indicate that at higher temperatures disordered modelse analysis of the base pairing pattern and a subsequent
belong to the same universality class as the homogeneowetermination of the tertiary structure. The set of all pairing

The secondary structure of RNA
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patterns considered as secondary structures is further re-
stricted by discarding all pairings between different loops,
so-called pseudoknots. Such structures lead to knotted con-
figurations if the helices between the loops are sufficiently
long to intertwine. While knots are prevented in nature by
the linear transcription process from DNA to RNA, short
helices between loops can occur, in principle, but they are
found to constitute only a minor fraction of all base pairings.
They are thus considered as elements of the tertiary interac-
tions that can be neglected when determining the secondary
structure. If we number the bases in the sequence as closed structures

=1,... N according to their position in the strand, the g 1. Elements of the secondary structure. The unpaired bases
above constraint can be formalized by forbidding the coexpetween the two closed structures constitute the free (tiaictk
istence of two(ordered base pairsi(,j1), (i2,j2) in the line) of the chain. The structure on the right contains a branched
secondary structure with eithey<i,<j;<j, ori,<i;<j,  loop with|=3 unpaired bases and’=m+1=4 outgoing stems.
<ji. The contour lengthL of the loop is taken to be the number of

As we mentioned above, the separation of energy scald¥ickbone elements in the loop, i.¢.=I+m’. Complementary
breaks down for large molecules, and the folding problem issut_)strands_ that d!rectly fold baclf (_)ntO themselves form hairpins
complicated by the highly nonlocal condition that the sec-"/Nch end in terminal loops containing at leasiases.
ondary structure must have a realization in 3D. However, for
intermediate degrees of polymerizatibhthe classical ap-
proach is expected to work well as is witnessed by the suc- Following the empiric rules established by Tinoco’s group
cess of secondary structure prediction tofs9] that are [10,1ﬂ we consider three dlfferent.terms in the fre_e energy
based on the above assumptions. of a given secondary struc_:tu(ef. Flg. 1 for |IIu§t(at|on of

In the following we will start from the usual paradigm and the notion$. Each base pair contributes the pairing free en-

concentrate on the secondary structures excludin rgy fpair that we normalize with respect to the cc_)mpletel_y
pseudoknots and other tertiary interactions. In Sec. Il w enatured chain where all bases are unpaired. This takes into

discuss the statistical properties of homogeneous RNAwork"flccount the mean pairing free enerfyond enthalpy and

ing directly in the abstract phase space of secondary struce-r.]tmpy cost for Io_cahzapdnas We” as the stacking energy
with the neighboring pair. In this way we count an excess

tures. This allows us to take into account systematicallyStacking energy at one end of the helices which we have to
some excluded volume effects that reduce significantly th%ompensate for by a free energy cost .
stack-

availat_)le_configuration space of interiqr loops, and to gain |, the following these free energies will appear in the
some insight into the Fhermal denaturation of RNA. The seCtyrm of the temperature dependent parameters

ond part of the paper is devoted to the response of RNAto an

external force. In Sec. lll the critical behavior at the force- 7=exXp Bf stack (1)
induced opening transition is characterized and the effect of

sequence disorder on the phase transition is discussed. Sé&gd

tion 1V deals with force-extension curves in the thermody-

namic limit and its properties as a function of the energy s=exp(— Bfpair), 2
parameters and temperature. We show that the phase transi- ] ] ) )
tion is always of second order, but can be masked by a su¥heres is the inverse of the temperatifeUnder biological
sequent first-order-like crossover when the cooperativity ofonditions(ionic strength ancH as in a living cel) <1,

the pairing behavior due to the stacking energy is high.  reflecting the importance of the stacking energy as compared
to the binding energy of the hydrogen bonds. As we will see

later, this is responsible for the high degree of cooperativity
in the denaturation transition.

In this section we neglect all effects due to sequence The last contribution is an entropic cost for each closed
specificity. Instead we consider an RNA model where anyinternal loop which accounts for the reduced phase space
two bases can form a bond, their pairing affinity being inde-available to the loop with respect to an unconstrained string
pendent of the bases. This exactly solvable model describe®ntaining the same number of bases. We assume this part of
the physics of “homogeneous” RNA/ssDNA strands the cost function to depend only on the lengtiof the loop
GCGCQC... or ATATAT... [1], renormalized on the andthe numbem’ of stems connected to it. The reduction of
level of dimers. We will provide some evidence that randomphase space gives rise to a free energy contribution of the
base sequences are also well described by a homogenedosm B8~ In[(L;m')]. Specific expressions fab will be dis-
model, at least at sufficiently high temperatures, if onecussed later.
switches to a more coarse-grained description where the When describing homogeneous RNA, we should add two
monomers of the model correspond to short subunits of th&urther constraints on the secondary structures to be consid-
single strands rather than to real bases. ered: First, terminal loop&he loops at the end of a hairpin

A. The model

II. FOLDING OF HOMOGENEOUS RNA
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FIG. 3. The effective entropy cost for internal loops of lenggth
FIG. 2. Schematic representation of the recursion relation fo€an be obtained by idealizing the environment of the loopmas
the partition functiorz, of closed structures used to obtain Eg).  outgoing rods(herem=5) and comparing the scaling expression
The sum on the rhs is over the lendtiof the terminal helix, the ~ for its configurational entropy with that of a starlike polymer with
number of unpaired basésn the first loop and the numben and  rays.
sizesL; (i=1, ... m) of closed structures attached to the loop. The
shown configuration corresponds ko=4, |=7, m=3. The loop The structure of Eq(3) suggests to study the generating
contributes an entropic cosp(L;m’), wherem'=m+1 is the  function Z.({)==§_on.Zn¢N of the partition function.
number of outgoing stems aridis the contour length of the loop, Taking the discrete Laplace transform we obtain
L=l+m'.
(s?)" EdOm¢ m-+|
(=7 1—S§2 {mi} d(l+m+1;m+1)

I

G

have to contain a minimal numberof unpaired basest (
=3 from experiments since the bending rigidity of single-
stranded RNA is finite and the typical distance of a hydrogerTo proceed we have to make an assumption about the loop
bondly, is about 3—4 times larger than the base distdrine cost function¢(L;m). Neglecting loop costs altogether cor-
the backbone. Secondly, stacks of less than three base paresponds to puttingd(L;m) =1, which yields

are unstable, and we thus require a helix to have a minimal

m

length ofn=3 bases. _ (s¢H)" 1 — 1-¢
These two conditions do not make sense for the descrip- BelD)= ’71_S§2 1-E.(0-¢ ~Ecld) 1-7)
tion of real disordered base sequences on a coarse-grained (5)
level. The natural values to be taken in this casetar@ and
n=1. We will use this simple model in Sec. IV to discuss the

general shape of the force-extension characteristics. We ex-

pect it to describe well the low-temperature regime where

large internal loops are negligible. In order to describe dena-
We denote byZ{, the partition function of alosedRNA  turation we should, however, use a more realistic loop cost

molecule withN bases whose ends are required to form gfunction.

helix. We can easily obtain a recursion relation & (cf.

Fig. 2: The closed secondary structure terminates in a helix C. Denaturation

containingk=n base pairs. It is followed by a first loop |t RNA were an ideal chain without self-interaction, the
which contains|=0 unpaired bases and=0 closed sub-  gnopic cost of a closed loop would just derive from the

structures, containing;=2n-+t bases, respectively. The ar- qhapility of a three-dimensional random walk to return to
rangement of the free bases and substructures within the logRe origin, and thusb(L;m) <L 32 for large values of.. This
underlies no constraints and gives rise to a combinatoric facCorresponds to the case discussed in Rf&] where the

tor. The loop contributes an entropic casL;m’=m+1),  guihors start from real space recursion relations treating the
where we take the length to be given by the number of gjngle strands as ideal chains. If one considers the loops as
backbone elements it contains, i.les1+m+1. Finally, the  gelf-avoiding walks, forgetting about the stems that are con-

B. The partition function

sum over all configurations can be decomposed as nected to them, one is lead to uséL:m)ocL3"saw, with the
wandering exponentgay= 0.588(in 3D) characteristic of a
Z8=n> s> > . X self-avoiding walk.(This is the form used for large interior
k=n  {l.m} Ly;=2n+t  Lp=2n+t loops in the Zuker algorithrfil2].) Clearly, this is too simple
m since the branches attached to the loop have a non-negligible
X 8| 2k+1+ >, Li—N> effect on the conformational degrees of freedom of the loop
i=1 and one should consider a more sophisticated form of the
m loop cost.
m+| 1 I1 z¢ 3) A generalization of these entropy cost functions can be
m | ¢(l+m+1;m+1)i=; L obtained from the results of Duplantier and co-workers

[13,14 for the configurational entropy of a network with

given topology. In order to find the scaling of the effective
In the sum ovet (number of unpaired baseandm (number  entropy cost of an internal loop as a function of its size we
of outgoing stemsthe following pairs have to be excluded: consider the secondary structure as a treelike network of he-
(m=0,J<t) to prevent terminal loops smaller thanand lices, linked by internal loops. Let us single out one internal
(m=1]=0) to avoid double counting of structures. loop with m branches that we idealize as outgoing r¢skse
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Fig. 3. In the limit of loop sizes much smaller than the
extension of the rods the scaling of the entropy cost for the
internal loop follows from comparison of the expressions for
the configurational entropy of a starlike network withrays
I'sta(m) with that of a small loop withm attached branches
Cioop(L;m). The latter scale ad g,(m)~N?sa(™ =1 and
[joop(L ;M) ~NYosl™ =g (1 /N), where N is the typical T
length scale of the attached ro@ke remainder of the net- d T
work), L is the length of the loop, and(x) is a scaling
function. In the limitL/N— 0 the scaling of two expressions
should coincide which requireg(x) ~ x oo™ ~7stal™  The
effective loop cost function then follows ag(L;m)
~Tioop(L;M)/Tiam) ~a(m)(L)*™,  where  v(m)

I IN My,
d/IN

FIG. 4. The denaturation transition is best described by the typi-
cal distanced between bases within the secondary structure whose
scaling changes frorii*2 in the globular state at low temperatures
to N in the necklacelike state abovig,. (The dashed curve indi-
L catesd/N for a molecule with finiteN. The transition becomes
= ¥stalM) ~ Yioop(M).  The renormalization group results sharp only in the thermodynamic limitin contrast, the fraction of
from Refs.[13,14 yield »(m)=3vsay— Mog+ o, where paired bases,, or the relative number of helices, /N only exhibit
oy Is the exponent related to the renormalization of a vertesx ¢rossover at the denaturation temperature, but never drop to zero.
with k legs.(See also Refd§15-17] for a completely analo-
gous reasoning in the closely related problems of DNA decyitical behavior at the force-induced denaturation transition.
naturation and studies of “slip-linked” polymeisWhile  Note that the preexponential factor is essentially independent
good estimates are available \éaxpansion for small values of the specific choice of the model, in particular, it does not
of m[13,14 the thermodynamics of denaturation is essengepend on the shape of the loop cost functian
tially determined by the behavior of the cost for loops with  The second possible singularity corresponds to the double
many attached stems, i.e., bym) for largem, about which  sum on the right-hand side of E¢#) being evaluated at its
very little is known. We can proceed, however, without radius of convergence. To analyze this situation in more de-
knowing an exact expression fe{m). Instead we will il-  tajl we suppose that the loop penalty assumes the form
lustrate the general conditidB) below with a discussion of = 4(L:m)=a(m)L*™. According to Hadamard's formula,
the ad hoc forms ¢(L;m)=a(m)(L)"™ with »(m)=v*  the radius of convergence is determined by
=const, andv(m)=vy+mv,, the first one being a reason- ]

able approximation for the case th&tm) saturates at™* for _ (BE(Z )™ ( L) "

. ; L —
large values of, the second one assuming that each branch  lIm__...| {x m§=:O a(m+ 1)(L+1)*m D {m =1
contributes a further entropic constraint on the loop confor- ®)

mations, as suggested by the temmr; above. The prefactor

a(m) is assumed to be a moderate functionnothat does | the case where(m) grows at most sublinearly im, i.e.,
not grow exponentially. v(m)/m—0, as m—O0, the sum can be estimated by its

The asymptotic behavior of the partition functi@f can  saddle point, and one finds the condit@(Z, )+, =1. In
be derived from the generating functi@y(¢) without per-  the same wayp(m) = vy+ v;m (with »;<1) leads to the
forming the full inverse Laplace transform. It is given by condition £, =1, but, since the sum diverges whép—1,
Z{~ ¢ NIN®, where{, is the smallest value of at which  the singularity is ruled out in this case.
E(¢) becomes nonanalytic. The leading finite size correc- The singularity given by Eq(6) is always the smallest
tions in the form of the preexponential factoNt/are deter- one at low temperatures. The system undergoes a thermody-
mined by the nature of that nonanalyticity. namic phase transition when the singularity determined by

There are only two possible singularities f8¢(¢): Tak-  Eq. (8) crosses the first one as a function of temperature.
ing successive derivatives of E@}) one can check that all This can only occur if the first derivative with respectZq
derivativesd“E (£)/d ¥ exist, unless the partial derivatives of the double sum in Eq4) stays finite on approaching the
of both sides of Eq(4) with respect ta= . are equal, i.e., radius of convergence from below, that is, (. )+ {4

=
(Sg“i ) mEc(g*)(m‘l’g'* —1. This requiresim,_,..v(m)=2. As we will show below

_ m-+1 6) the corresponding phase transition is associated to thermal
771_ 2 o d(l+m+1;m+1)
s, m

denaturation. In all other cases our model does not exhibit a
phase transition but only a crossover whose sharpness de-
In turn this condition is sufficient to ensure a nonanalyticity P€nds both on the loop cost function and the stacking as
of 2.(2). Writing E({)=E(Z,)— & and expanding Eq. described by the parametgr
(4) for small (£, —¢) one finds8°~({, —¢). Hence the
singularity of 2.(¢) is approached as D. Radius of gyration
Let us now characterize the thermodynamic properties of
Ed(D=EdL)—consty, =0+ 0(4—), () RNA. Most observables can be obtained as appropriate de-
rivatives of the free energy per base which is simply related
which leads to finite size corrections of the forZf, to ¢, viaf=p8"1In(Z,). For example, the fraction of paired
~{, N/N®2. This result is central to the discussion of the bases is given by, = d1In(Z,)/dIn(s) and the average num-

m
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paired bases to either side #fin the loop. Them;+m,
closed structures just contribute the product of their partition
functions, together with appropriate combinatorial factors for
their arrangement within the loop, whereas the strucXire
contributes the Boltzmann su@, (d’) for a distanced’
that is reduced with respect tbby the lengthk of the ter-
minal helix and half of the loop contoun;+1;+m,+I,
+2. This results in the recursion

FIG. 5. Definition of the distancd between bases in terminal
loops: The unique shortest path through helices and loops from on& (d)= z K (N—2k)6(d—N/2—1/2)
terminal loop to another allows us to defideas the sum of the N &7 ¢(N—2k+1)
lengths of the helices and half of the contour lengths of the encoun-
tered loops, including the two terminal loops. For the bases in the

figure one hasl=3/2+ 3+ 15/2+ 3+ 15/2+ 3+ 3/2. n 2 my+1y
my,17=0 my,1,=0 Ly=2n+t  Lij=2n+t; mq
ber of helices im,=NdIn(Z,)/dIn(7). Evaluating these de- =1 mgtmy
rivatives in the two possible phases one finds thatand Mo+ my+my
. 2 2
nL/N are both finite at all temperatures and thus do not pro- ( ) S| 2k+1,+1,+ > Li+Ly— N)
vide a good order parameter for the phase transitee Fig. 2 i=1

4). The (smal) extensive number of pairings even in the C,_X[d—k—(m1+I1+m2+I2+2)/2]m1+m2

high-temperature phase is due to accidental pairings of bases 7¢
that are close to each other within the linear RNA strand. d(li+my+1,+my+2) = Th
This result is independent of the details of the model such as

the minimal number of bases in a hairpin loop, entropy costs, (10)

and energy parameters.

A better choice of observable is the average distance be- Here we used the formp(L;m)=¢(L) for simplicity.
tween two bases that belong to two different terminal loopsPassing to the Laplace transform with respect to both vari-
of the secondary structure. This quantity is a measure for thgblesN andd,
diameter of the molecule and distinguishes the compact
globular phase from the denatured loose phase. We define the
distance between two bases as the length of the shortest path C(¢ ,p)=N 2 2
linking them through the secondary structure, see Fig. 5. This
path is a succession of loops and helices, its length beinghe equation is easily solved,
given as the sum of the lengths of the helices and half the

Cn(d)MNe P, (12)

=2n+t d=n+t/2

contour lengths of the loops. n(s¢?eP)ne PlgW(reP12)
. . . _ ¢
Alternatively, we can consider again closed secondaryC({,p)= s P — o
structures constrained to terminate in a helix. It is easy to see 1=sie P=n(sfe P)gy([{+E(D]e ")
that the same structural information as encoded by the dis- (12)

tance between terminal bases is captured by the average dis-
tance of terminal bases from the closing base paM)1The
latter quantity is more convenient to compute, however. " \ L
Letqus der}:ote bwyi(d;S) the number of tr:ases in terminal l\_Iotg thatC(¢,p=0) has two p035|bl_e smgu_lar!:ues, the
loops at distance from the pair (1N). We define the Boltz- vanishing of the denominator and the singularitygip that

mann weighted sum over secondary structures on a closé¥CUrs whert+=.({) = 1. The first singularity is associated
strand withN bases with the globular phase, the vanishing of the denominator

being equivalent to condition(6) in the case ¢(L;m)
=¢(L). The singularity related tg)(x—1) governs the
Cn(d)= % ZX(8)n(d;S), ©) denatured phase. The denaturation qtbransition occurs when the
two singularities cross which can only happergg(l) is
for which we can write down a recursion relation in the sameﬂthee't us now calculate the mean distance from bases in
spirit as in Eq(3): The sum over all secondary structures caniarminal loops to the free part. This is given by the logarith-
be decomposed into a sum over the lengthn of the ter-  ic derivative ofCy(p) with respect tap,
minal helix starting at (IN), and the first loop. The latter
can either be a terminal loop containiMg— 2k unpaired <d>=ﬁpCN(p)|p:0/CN(p=0), (13
bases, or there can be further closed structures connected to
it. In the second case, we single out the closed structure which can be evaluated by inverse Laplace transform of
whose terminal loops we want to consider, and denote by?pC(g,p)|p:0 and C(¢{,p=0) with respect to. Note that
my,l; and m,,l, the number of closed structures and un-d,Cn(p)|p-0 and Cy(p=0) have the same leading expo-

We have introduced the functions g%})(x)
=SN=NXY $(N+1) andg4(x) = Zy= 1 X" S(N+1).
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nential asymptotics since their smallest singularities are the
same, but their finite size correctiotig/N® differ and will
determine the scaling dfd) as a function ofN.

Let us now analyze the case of a loop cost function with
asymptoticsp(L)ocL” andv>2 which implies a phase tran-
sition. In the low-temperature phase, the denominator in Eq.

(12) vanishes like {, — ¢)Y? as{ approacheg, from below O J —
[cf. Eq. (7)] which gives rise toa=1/2 for the back trans-
form of C(¢{,p=0). On the other hand, the derivative

dC(¢,p)/ap|p—o diverges like ¢, —¢)~* which yields
=0, whence(d)~N*2,

The situation changes in the high-temperature phase
where the denominator remains finite, but the generating FIG. 6. Schematic “fractal” secondary structure. The large
function develops aleading singular partCgnf¢,p="0) circles represent internal loops, the rods symbolize helices and the
~(L—0) v=2 giving rise toa=r— 1. Correspondingly, the small circles hairpin loops. By choosing various complementary
singular part of the derivative behaves &s ¢ ¢) »=3 \which G-C sequences on the helices and As in the terminal loops, e.g., it

implies a=v—2, and therefore (d)~N. The high- is easy to design sequences that the structure prediction algorithms

. . . . edict to fold as depicted. The resulting structure is extremely
temperature phase is characterized by typical distances (gﬁnse in real space and must be discarded as an admissible folding.

order N from terminal bases down to the free part. This is
what one expects for an essentially free, noncollapsed chain ) _
[but constrained to be paired at the end$)], The second- them, the so-called chemical distartg. The exponent.,
ary structure is rather trivial in this case, consisting essendefined bydeufvd;ﬁh is exactly known for the special case of
tially of one big loop with small structures attached to it. Thea space-filling branched polymer, where it takes the value
low-temperature scalingd)~NY2 however, indicates the v ,=4/5 [20]. It is to be expected that the exponent is
collapse to a globular state with a rich branched secondarglightly smaller in the case of a branched polymer of arbi-
structure. trary density and thus almost equalsy, . This suggests that
We mention that the latter scaling can easily be derived irthe wandering behavior is only weakly affected by the pres-
the absence of loop costs from the “mountain height” repre-ence of branches connected to a self-avoiding walk, and the
sentation of secondary structurds8] where the distance of approximation ofv, by vgay is quite good.
terminal bases to the free part scales like the height of the
mountain representation. This in turn is the typical excursion
of a random walk oN steps in one dimensidm constrained
by h>0 andh(1)=h(N)=0 which is known to scale as If we assume that also in the three-dimensional case the
N2 There is, however, no simple equivalent of the abovepresence of side branches does not increase substantially the
phase transition in the mountain height or random walk picwandering exponent from its value for the self-avoiding walk
ture, since the loop cost translates into an awkward nonlocaind SUPPOS(RQ~N”SAW’2 we encounter a consistency prob-
energy term. lem in the thermodynamic limit: the monomer density in
The distancel is a structural property of the treelike skel- space diverges a8/R3~N1~37sm"2 in the collapsed phase.
eton of the secondary structure. In order to relate it to the realhis problem is common to all models considered above,
diameter of the molecule we assume that the helices andrespective of the existence of a denaturation transitftn.
parts of internal loops connecting a terminal loop to the freedoes not occur if the side branches have a much stronger
part essentially realize @onstrainegirandom walk in space. effect than in two dimensions and increase the wandering
If we assumed the random walk to be ideal, the radius oexponent beyond 2/3.) It reflects the fact tfiatal) entropy
gyration of RNA molecules would follow from the above cost functions for interior loops are not sufficient to take into
findings ang~d”RW~N1’4with the wandering exponent for account global spatial constraints. The model customarily
ideal random walksvgy=1/2. This has already been ob- used in RNA prediction will thus be inconsistent for suffi-
tained in Ref[1]. However, the random walks should at leastciently large molecules in that it neglects excluded volume
be considered as self-avoiding, having a larger wanderingffects, deferring them to the subsequent analysis of the ter-
exponentvgay, and correspondinglﬁg~NVSAW’2~. In ad- tiary structure. This separation is, however, only justified as
dition, there are also constraints from the presence of th®ng as typically obtained secondary structures can easily be
remainder of the molecule which have the tendency to inaccommodated in space.
crease the value of the wandering exponent. This effect is In order to demonstrate that the standard RNA structure
difficult to estimate, but we may obtain some idea about itpredicting programgZuker’s mfold [12], Vienna package
importance by considering the two-dimensional case: Thé9]) are indeed limited by their neglection of excluded vol-
wandering exponent for self-avoiding walks is known ex-ume effects, we have used them to determine the folding of
actly asvgay=3/4[19]. On the other hand, we need to know RNA sequences that were deliberately designed to form frac-
how the Euclidean distance,, between two points on a tal secondary structurésee Fig. 6. These were constructed
branched polymefa coarse grained version of the secondarystarting from a short terminal helix that ends in a loop with
structure scales with the length of the shortest path betweeriwo closed structures attached to it. Each of them again starts

E. Discussion
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with a short helix that ends in a branched loop with two
outgoing stems, and so fourth in a self-similar way. The den-
sity of such treelike or starlike structures grows exponen-
tially with their radius. Even with a modest number of bases,
one can design sequences for which the structure prediction
indeed yields the desired pairing pattern that can hardly be
accommodated in space, and should therefore be ruled out.
While this is not a problem for small RNA mole_cules such FIG. 7. RNA under an external force. The force pulls on the free
as transfer RNA or ribosomal RNA, the natural sizes of mes_bart of the chain that can be subdivided into single-stranded por-
senger RNA are on the order of several thousand bases Whigls containings, unpaired bases €0, . .. m). Those are sepa-
is likely in the regime where excluded volume effects play anated by closed structures, containingbases (=1, . .. m). The
important role for the folding, and the usual structure prediC4ree length derives from the terminating bonds of the closed struc-
tion algorithms based solely on the base pairing pattern willures[contributing ;, *(f) to the partition functiohand the back-
likely fail. The inclusion of a effective loop costs to take into hone elements in the single-stranded pactntributing Z.1(f) in
account the reduced available phase space might help to tak& approximation of uncorrelated mononiers
into account those effects to some extent, but as we have
seen they fail to cure the problem completely in the low-ary structures probably plays an equally important role. It
temperature phase. will be a major challenge to understand the interplay of sec-

At this point, it is worth mentioning that although neither ondary and tertiary structure and its relation with the closely
loop costs nor the topological condition on the absence ofelated problem of protein folding.

pseudoknots are able to avoitho) dense secondary struc-

tures, the situation would be much worse if no topological || RESPONSE OF RNA TO AN EXTERNAL FORCE
constraints were introduced in the model at all, that is, if all N _ _
base pairings were allowed, irrespective of the resulting en- A. The partition function with force

tanglement of the structure. It is rather obvious that a generic |, this section we will extend our formalism to treat prob-
base pairing pattern obtained in such a model could not bems with an external force. In experiments, the RNA mol-
accommodated in space: Let us consider a base pair and t@gje is usually fixed on one end, while the other end is
two strands to which it belongs. If there is no constraint ONmanipulated by optical tweezers, magnetic beads in an inho-
the pairing behavior of the nearby bases within these strandg,ogeneous field, or the cantilever of an atomic force micro-
they can be paired to completely different parts of the chainscope. The extension of the molecule is monitored as a func-
which are then all forced into the same spatial region. Thgjon of the applied force, or the position is imposed and the
topological constraint forbidding pseudoknots weakens thigyerage force needed to maintain the position is measured.
tendency, since the substrand embraced by the given baggre we will concentrate on the situation where the force is
pair is only allowed to interact with itself, which reduces fixed while the extension is subject to thermal fluctuations.
largely the possibilities of spatial entanglement. _ Toinclude the effect of an external force we have to add
The above observations lead to the conclusion that typlcz%lhe term— If-(FN— Fl) to the energy of the system, whefrie

Eggcggfv\?e]:r: g\?;:;?;eg:f; a;eiri(r:i]egerg:]lget(:]:yr: E(i)rg]rf]gt'c'{enotes the spatial position of tht base. The force only
P Y q "Wets on the free part of the chain, see Fig. 7 and we can

Fhat the resu!tlng_secondqry structure can be accommodatt?gwrite the additional term as
in space. This will result in rather densely packed and en-

tangled spatial arrangements of RNA that we expect to ex- lp—1

hibit_very slow dynamics and glassiness due to the inevitable _E. (FN_ Fl) = Z E. (Fb(i - Fb(i)), (14)
spatial hindrance to pass from one favorable folded state to i=1

another. This is indeed observed in folding experiments on

large ribozymes, where several misfolded states compet&here{b(i)} is the ordered list of all bases in the free part,
with the correctly folded native staf@1,22. Thirumalai and andb(ly)=N. There are two types of contributions to the
Woodson[23] propose a “kinetic partitioning mechanism” sum: Terms wittb(i+1)=b(i)+ 1 correspond to successive
to describe this type of slow dynamics, according to which abases in the backbone of the RNA, while terms wlith
fraction of all molecules fold directly to the ground state, +1)>b(i)+1 correspond to the paired bases terminating
while the remaining molecules remain in metastable misthe closed structure between bad¥s) and b(i+1). For
folded state until they find a pathway via the transition statesimplicity we consider both the distantef bases within the
ensemble to the native state. Glassiness may also arise purdigckbone and the distantg of covalently bonded bases as
on the level of secondary structurk8,24—-29, where topo- fixed. We treat the terminating hydrogen bonds of closed
logical constraintgin the form of backbone connectivity or structures as free joints that are inserted between single
constraints on pseudoknptmtroduce a weak frustration in strands of unpaired bases. They contribute a factor of
the system and establish a multiplicity of metastable valleyd/{,(f) = sinh(Bfl,)/(Bfl,) to the partition function. For the

in phase space. For small molecules this has been shown single strands in between we will restrict ourselves to the
lead to slow dynamicE30]. In large molecules the jamming simple model of a freely jointed chain. If one wants to fit to
of the spatial arrangement of energetically favorable secondexperimental datg5], one should, however, consider a more
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realistic description involving correlations of the monomerswill discuss in detail the dependence of the force-extension
on the scale of the persistence lengih~3l). At high  characteristics on the parametsrand 7.

forces, bond elasticities should also be included. Both modi-

fications can straightforwardly be taken into account in the B. The critical behavior around f,

formalism below.

The partition functionZL(f) including the external force
can easily be obtained once the partition funct&fy(f) of
closed structures is known. We may decompose the sum over EdH=111-8L4F)], 17
all structures into a sum over the numherand sized; (i
=1,...m) of closed structures in the free part, and thewhere { {f)=sinh(sfl)/(5fl). Furthermore, we only con-
lengths S, (i=0,...m) of the single-stranded segments Sider temperatures below denaturation.
linking them: In the vicinity of the(finite) critical force we may restrict

ourselves to the relevant singularity structure(f¢;f) and
‘ expand the denominator in E¢L6) to lowest nontrivial or-
ZN(f)sz, > > der aroundf. and{, . Using Eq.(7) we find

In the following we treat the single-stranded parts as
freely jointed chains, whose generating function is given by

m _ B
“HZEzZ8 (D)) ZE Z5 () or, on substituting=e"° and {, =e™ >,

X ' nr (15)
i=1 {u(f) Lu(f) B

(19

Ei(sif)~ 7 :
Here we have introduced the partition functi@gi(f) of a (s=8, ) —A(f = fo)
single-stranded segment withbackbone elements under the
forcef. The corresponding generating function follows from

a discrete Laplace transform as

A and B are slowly varying functions of and ¢ that we
replace by their values at the critical poiAs=A(f.,{,) and
B=B(f.,{,). The (continuou$ inverse Laplace transform
of Eq. (19 is explicitly known, and we obtain the partition

Ef(g;f)zz ZfN(f)éTN function in the transition region as
N
=2 . ‘ BeS*N .
_ BN Z\(f)= —\/_ Y(A(F— TN, (20)
= (r Edd) B -1 7N

&u(f) 4 wherey(x) =1+ Jmx exp@@erfc(—x). The force-extension
characteristics follow immediately as BL(f)
The partition function is again found by inverting the = ANYZ(In )’ [A(f—fo)NY?]. In the asymptotic regimes of
Laplace transform, in particular, the free energy derives fromhe scaling variable= A(f — f.)N*2 one obtains the expan-
the logarithm of the smallest singularity &;(Z;f). Apart  sjons
from the singularities ofZ.(¢) that we discussed in Sec.

Il C, E; also has a pole singularit§(f) when the denomi- ( 1 e X
2
nator in Eq.(16) vanishes, 2A(fF—T)N| 1+ yﬂLO =) | x>1
E((f) B d(f);f) -1 4— 1
Cc S
=0 0 : (16) BL(f)~{ ANY2\z| 1+ 7 x+0(x?) |, |x|<1
Let us now fix the temperature. The singularity deriving from 2 3 1
. then takes the force-independent valfie=¢, (T). A fo—f 1_§+O IR x<-1.
phase transition occurs at the critical forfcéT), where{(f) \ (22)

crosses, (T). For larger forces, the force-extension charac-
teristics follow from (L(f)/N)=—p"1aIn[{(f))/of in the  Sufficiently above the critical forcext1), the extension
thermodynamic limit. Herel (f) denotes the projection of grows linearly withf —f, and scales as the system size. The
the end to end distance of the molecule onto the direction ofhain organizes in the kind of necklace: the number of closed
the force. structures in the free chain is proportionalNptheir average

In the following we are interested in two aspects of thesize being finite. In the low force regime<1) the chain is
force-extension curve. First, we will examine in detail thecollapsed, but its extension diverges asf 14 f) upon ap-
critical behavior around,. Later, we address the tempera- proaching the critical point.
ture dependence df.(T) and an associated reentrance phe- There are two critical exponents characterizing this phase
nomenon slightly below denaturation. Finally, in Sec. IV we transition: At the critical force X<1) the extension obeys a
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power lawL~N? with §=1/2. The second exponent is re- %
lated to the characteristic length scale in the problé&h, IP(l) f X~ Y2exp( —x)dx
«(f—f,)~", wherev=2, as one can read off from the form =l _ I IA 11

of the scaling variable. Below we will see thi, can be f“ 1 9
understood as a correlation length. ‘ IP(1) 0 X rexp—x)dx

M

8

_ g L2
C. Correlations and length scales af=f. =erfd A(f—fo)l7]. (25)

Slightly above the critical force, the typical number of ) )
bases in a closed structure is givenlgy=N/n.{f), where A finite fra_cznon qf all bases thus belong to structu_res of size
nd ) is the number of closed structures in the free part. IC((f —fc) %) which sets the scale of the correlation length
has the same critical behavior as the extension, ne(f N.. The vast majority of closed structures is much smaller,
=fc)«N(f—f.), and thus| e 1/(f—f.). This is surprising however.
since the characteristic length scalg (f—f.) 2 diverges
much faster. D. The critical behavior with sequence disorder

To understand the meaning &f; let us introduce the
indicator functionz; which equals 1 if basebelongs to the
free part, and O otherwise. The correlation functjan;) is
simply obtained as the ratio between the partition functio
with bases andj constrained to be free, and the total parti-
tion function,

After having understood the critical behavior in the ho-
mogeneous case, it is natural to ask whether disorder in the
form of sequence inhomogeneities and varying pairing af-
finities between the bases is a relevant perturbation for the
force-induced phase transition. In Reff81,32 the authors
studied the force-induced unzipping of DNA and found the
presence of disorder to significantly alter the critical behav-
; (220  ior with respect to that of a homogeneous double strand. In
Zy RNA, the disorder effects are less pronounced, since the two
opening transitions are not really of the same nature. In
Using Eq.(20) we obtain the connected correlation function DNA, essentially all base pairs are broken up at the transition
as and the double strand becomes denatured. The force always
acts only on the single base pair closing the yet unzipped
double helix. In RNA, however, the transition occurs at a

f oSt f
Zi1Zj_1-(i+1)8N—(j+1)

(mim;)=

(mm)—(m)(m)  Z] i o2y point where the entropy of large secondary structures and the
(o)) ot i -1 free energy gain from the extension of the chain compete in
VA N-(i+1)%j-1 a quite subtle manner, the base-pairing energies playing a

e (i-1-2)A(f-1)]? less important role at the critical force. Furthermore, already

~ — 2 T in the critical region the force acts in parallel on a large
ANm(j—i—2)%A(f—1o)] number of globular structures aligned along the free part of

(23) the chain, which averages out the effect of disorder to some
extent[33,34.

where the last approximation is valid in the scaling regime

" . : . 12 . :
above the critical force fori, N—j, N>(j—i)>[A(f R —
—f.)] 2 The quantityN.=[A(f — f.)] 2 clearly appears as wl PL =6 N=600 +x— ~
the correlation length beyond which the pairing behavior be- PL 0=6 N=1000 = g¥
comes essentially independent. To see why the correlatior gl ﬁ g:;z %:‘;gg e .
length is much larger than typical closed structures, let us PL 0=10 N=1000 +--- LB e
look at the probability distribution of the sizes of the latter. SZ Zietters %ﬁgg e F,‘m"
_ < r etters N= RS b
.S.uppose' that a closed structu_re .starts aF haféhe prob 5 4 Lottors N=500 - o*® p
ability that it is paired to the base=i+I1+1 is given by i 4 Letters N=1000 o - 2
L LT |
g »?
f f o o
P()= Zi_ 1 ZVZN (4142 . exfd —IA%(f—f;)?] 2t ™ gwc,w"
- 312 d B AN
D ZAZUZY irrea | P D . . .
1’>0 (24) -4 -2 0 2 4
(Ff,)N"?

from which we recover the expectation value for the struc- FiG. 8. Scaling plot of force-extension curves for disordered
ture sizely,=(1)==IP(1)<1/(f—f.). On the other hand, models(power law distributions withv=6 anda= 10, and the four
we can calculate the fractiog(l,) of bases that belong to letters modal at high temperatureT(=0.6). For better visibility,
closed structures of size at ledgt, the extension of the four letters model has been multiplied by 1.5.
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FIG. 9. Force-extension curves from Fig. 8 and for homoge- £ 10, Scaling plot of force-extension curves for the Gaussian
neous models at different temperatueand pairing energies Al o461 atT=0. The critical exponent is modified by the disorder to
curves superpose with the analytical predictiqg@l) L(f) 5~0.7.
=DNY2\[C(f—f.)N¥?] upon rescaling with model-dependent
factors C, D. The error bars are smaller than the symbol sizes.

as in the homogeneous casé=(1/vr=1/2). The scaling

In the case of RNA will be interested in the low- works well for the model with four letters and for the random

temperature regime where we can simplify the model by neg:(_)upling mo<:£els with a Gaussian probability distripution, or
glecting the loop cost function, i.e., putting=1. Further- With P(e)~e ¢ and a>4. However, the data obtained for
more, we replace the pairing and stacking free energies byfistributionsP(e)~e™“ with a=<4 (not shown cannot be
simple (temperature-independgnpairing energiese;; be- cql[apsed sansfacton_ly.even when aIonvmg for different
tween the bases andj. This does not change the critical critical exponents. This is due to the dominance of some rare

behavior at the force transition in the homogeneous casBUt Very strong couplings as will be explained in the follow-
(e;=e), and we checked numerically that a disordered"Y subsection.

model with pure stacking energies leads qualitatively to the BY rescaling the axes of the pllgts with modelll-dependent
same results as the pairing model. metric factors C and DL.(f)=DNYA\[C(f—f)NY?], one

As in earlier work[18,29,39, we consider different types C&n perfegtly superpose the scaling functions for the different
of disordered models. The most natural one starts from RNANCdels with that of the homogeneous model, as shown in
made of the four base specibse {A,C,G,Ut. The pairing Fig. 9. ThIS |nd_|cgtes that, above the glas_s transition tempera-
energies will then depend on the sequence g tg(e, d_|sorder is irrelevant for thg _force-lnduced phase _tran-
—E(b; ,b;), whereE is a symmetric & 4 matrix. We used sition in the sense that all sufficiently short-ranged disor-
the sin{ple matrix E(C,G)=E(G,C)=-3, E(A,U) dered models fall into the same universality class as
—E(U,A)=—2 (Watson-Crick pairs and E(G,U) homogeneous RNA. The latter suggests that the behavior of
—E(U,G)=—1 (wobble pairs, and E=+ for all other dlsordered_RNA at high temperatures is WeI_I captured b_y a
pairs. Alternatively we considered more abstract randon{;oarse—gralned homogeneo_us desgrlptlon with renormalized
coupling models, where the;; are independent variables parameters. Th_e effect of disorder is washed out by thermal
taken from a distributiorP(€). In the following we focus fluctuations which allow for a large number of secondary
onto the two cases wheR¥(e) is Gaussian or has power law structures to be e_xplored, SO that the large entropy of second-
tails decaying likele| ~¢, respectively, both being centered gg} dsgtr(ljjgtmuirr?;{((\a/\gt?heagﬁ;(;ﬂrgately the same number of
on a negative value. .

The numerical evaluation of force-extension characteris- The situation is different at low temperatures where the

tics for these types of models is straightforward using themolecule is restricted to a small number of favorable fold-

O(N3) recursion relation as introduced in Ref86,37 to ings. The dlsorder—averageq force-extension curves at zero
" % . temperature are shown in Fig. 10 where the data collapse has
compute the partition functio@,, exactly for a given real-

. . — 5
ization of the disordefsee Refs[33], for a related investi- tiefe;]Nf}f]hlivfi?nizv;/r:th f(;[rh fe %enaer:gly a:: ﬁf\?villNdi;\c[Lgs
gation, and 34] for a more thorough discussion of the effects. .° » OP g e :

; . : in the next paragraph, the correlation length exponeng
of disorder and the low temperature behaién Fig. 8 we stays unchanged with respect to the homogeneous case.

show scailmlg plots of the dl_sorder—averaged force—extensmp'owever’ the exponent is modified (5=0.7) [34].
characteristics for several disordered models at temperatures

well above the glass transition temperat[t8,29. The data
collapse in the critical regime was obtained optimizing the
critical force in the scaling ansatz (f)=NY2\[(f The relevance of disorder for a phase transition can often
— f)N¥2] supposing that the critical exponents are the samée judged by applying Harris’ criterion according to which

E. Harris-type criterion for the relevance of disorder
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disorder is relevant if the specific heat exponertdv—2 is  transition in polymers is of the first order which is a conse-
positive. Plugging ird=1, since the sequence of bases is onequence of the large finite size corrections to the free energy
dimensional, and using the correlation length exponent of the globular phase of a chain witk elements,Fg(N)
=2, we are led to conclude that disorder is marginal for the=f N+aN?3 The termaN?? takes into account solvent
force transition. effects at the surface. Such corrections are essentially absent
In order to derive this result, we start from the homoge-in the (extensivé random coil phase, since all monomers are
neous model where the pairing behavior is correlated up tehore or less in a similar environment; but the free energy
the scale¢~|f—f¢| ~% The introduction of disorder will Io-  gepends on the external forésince the structure is exten-
cally modify the value of the critical forcefc—fc+Afe  giple, F_i(N)=Nf(f). At the force where the extensive

whereby this only makes sense as long as one congiders Stglérts of the free energy become equgl= f oo;(f), a discon-
strands that are large compared to the bare correlation leng nuous transition from the globular to the random coil phase

T.O estlmatebthe typ;;]ca;I tﬂuctuatpn&ff(g) f?r regions cle ftakes placg38,39. Mathematically, the first-order nature of
size ¢ we observe that the opening transition is mainly o the force transition is reflected by an essential rather than

e_ntroplc naturgsee Se_c. IVand _results from the compet- algebraic singularity in the Laplace transform of the partition
tion between the gain in stretching energy and the decreasfﬁnction in the globular phase

of the number of possible secondary structures when the In our model for RNA a surface term in the globular

chain changes from a globular state to a necklace with %hase is absent since solvation energies and surface effects

larger number of close_d_ substruc_tures. are part of the tertiary interactions that are far less important
The effect of the pairing energies comes only as a pertur;,

. . / than the base pairingat least for small and intermediate
bation. Itis thus reasonable to expect thdg(£) scales like sizeg. The finite size corrections of the free energy in the

T e &) e oo [ Hobularphaseare anyof rder W Thus,asubdiono
length £ }I/'his impliesAf (&)~ ¢ 12 e chain into a necklace of globules is less costly than in the
I?ocail the coprrelatiocn lenath is.modified according to presence of surface effects. At the critical force, this leads to
Y. 9 9 a continuous crossover from a single large globule to a neck-
E~|f—f.—Af(8)] 2 (26)  lace containing an extensive number of smaller 7glgbules
which takes place over a force window decreasinglas’.
In a two-dimensional homogeneous model of the globule-
o ) . C X ) X coil transition[40], the authors found the force transition to
I|m|_t|ng case, for which the crltlca_l force is still umquely be continuous, too, which can be traced back to the absence
defined and the exponent=2 remains unchanged. This re- ot g, rface energies that grow polynomially with the system
flects the marginality as predicted by the vanishingdef ;¢

—2 . . ) ) .. Itis worth mentioning that the thermodynamic phase tran-
The above considerations are wrong if the disorder distrisition would be absent in our model if the secondary struc-

bution has large tails in which case very large though rargres were not allowed to contain multibranched loops, but
couplings may domlnate the secpndary structure pattern. FQfere jimited to single hairpingwith possible alignment

the Eaandom coupling model with power law taiB(€)  gapg. Instead, there would only be an opening crossover.
~|e[“ we can easily find a lower bound anbelow which ~  Ajthough the continuous phase transition is an otherwise ro-
disorder will significantly alter the behavior of the model, st feature of all models irrespective of the details of the

rendering it even non-self-averaging. The energy fluctuationgairing and stacking rules, it critically depends on the topo-
will scale like the energy of rare favorable secondary StrUC1ogicaI constraints.

tures. We may estimate the latter by considering a “greedy”
algorithm that constructs a secondary structure by choosing |\, n5cyssION OF FORCE-EXTENSION CURVES IN
iteratively the base pair with the most negative energy avail- THE THERMODYNAMIC LIMIT
able while respecting the topological constraints imposed by
the pairs already chosen. There &N —1)/2 pairing ener- In a recent pap€l6] the authors claim that the inclusion
gies available for the first step, and the best among them wilbf large stacking energies in the model renders the force
scale asN?®. There will be of the order of In) further transition first order in contrast to the second-order transition
choices that lead to comparable energies, while in latefound in a model with only pairing energies. This has re-
stages the pairing energies will be significantly smaller. Wesulted from an erroneous analysis of a system of equations
thus expect the disorder induced ener@luctuations to  for generating functions that are real space analogs of our
scale at least asAE(N)~N?Z?In(N), or Af,(N) Egs.(16) and(4). The authors were misled by a sharp force-
~N?2=1In(N). Thus, the fluctuations dominate far<4. induced denaturation crossover that masks the true thermo-
Indeed, we did not succeed in collapsing the numerical datdynamic transition at a smaller force where the extension
for =3, 4. begins to grow only very slowly as a function of force.
Before we discuss the general properties of force-
extension curves, let us recall the parameters entering the
model: Helices are required to contain at leadtase pairs,
It is rather unusual to find a continuous phase transition irand terminal loops closing a hairpin consist of at ldasi-
force-extension experiments. The closely related globule-coipaired bases. The distance between monomers in the back-

The scalingAf (&)~ & Y2~ (f—f,) corresponds just to the

F. Why is the force induced transition of the second order?
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bone is denoted by, while I, is the average distance be-

tween covalently bound bases. If we describe homogeneous £ f(T)-  stretched
RNA, we should use the empirically determined valligs ~\ (denatured)
~4l, n=3 for the minimal helix length and=3 for the @obular

minimal hairpin loop. However, if the model is used to de- melting
scribe disordered RNA on a coarse-grained level, natural val- ‘glassy molten \_ g

ues ard,<l, n=1, andt=0. D

The base pair interactions are described by two param- FiG. 11. Phase diagram of disordered RNA as a function of
eters,s(T) and 5(T), accounting for the pairing and stack- temperature and the force. The molecule undergoes a continuous
ing energy per base pair, and the cost for the initiation of @pening transition at a critical forc&,(T) that we predict to be
helix, respectively. As mentioned earlier, under physiologicahonmonotonic as a function of temperature. This gives rise to a
salt conditions the cooperativity parametg(T) is very reentrance phenomenon at fixed forces in a certain interval. At low
small and thus favors the formation of long helices. Thetemperature the system is in a glassy phase characterized by a small
parameterS(T)=exp(—,8fpair) is large at sufficiently low number of low-lying metastable states. At higher temperatures,
temperatures, but approaches:1 in the denaturation re- RNAIs in a molten state, that behaves in essentially the same way
gime. In the following discussion we will considefT) to ~ @s @ homopolymer. There is a thermal denaturation transition if the
be small throughout and(T) to be large at low tempera- eptropic penalties for loops are sufficiently Iarge. Otherwise there is
tures, while approaching 1 around the denaturation temper&iMPly & crossover, antt(T) never really vanishes.
ture T4 . We distinguish the three temperature regimes, drop- . .
ping the explicit temperature dependencesaind »: s> 1, tures and limits the t_hermally acce53|b_le phase space to
1>s5—15 7" and O<s—1<75"3 The cases<1 corre- rather elongated hairpinned structures with few branchings.

sponds to denatured RNA which is not of interest for force—ThIS manlfgsts itself in the critical force_bemg proporponal

: ; to the pairing free energy, almost as in the unzipping of
extension studies. DNA
For analytical simplicity we use the model without loop :

cost function,¢p=1, see Eq(5). This is expected to be jus- Ftort=0.trt1edst|tuat|r?n_ |s_d|ffer§|:rt], su;ce t?r(]are IS r_1|obe|nerrg];y
tified in the low-temperature reging>1, as well as at high costassociated to a hairpin, and therefore the avaliable phase

forces. while the results fos~1 at low force have to be SPace of secondary structures is still large, even at low tem-

taken ;Nith some care peratures. The phase transition is governed by the competi-
For the details of the calculations the reader should refepon between the_force, Irying to increase the number of
to the Aopendix closed structures in the free part, and the entropy that favors
PP ' one big closed structure. The equation for the critical force

N reduces to
A. Critical force and reentrance

In order to discuss the thermodynamic limit of force- 28sdfe)do(fe)~1, (29)

extension curves, we need the free energy per Bdsgasa  anq thysf (T)«T/I, almost independently af This reflects
function of the force. It follows vid(f)=exf —B¢(f)] from  he Hurely entropic origin of the critical force sufficiently

Eq. (16) that we rewrite as below denaturation.
=.(2() Clearly,t=0 corresponds to an unphysical situation if the
(dD)=0(f)+ —————. (27)  monomers in our model are interpreted as nucleotides. How-
¢o(f) ever, if we regard the homogeneous model as a coarse-

he sindl linki he rained description of a disordered base sequence, the mono-
Here we treat the single strands linking the closed structurégyq s in the model stand for short substrands with an average

as freely jointed chains, whose free energy per base is relateginiry 1o pair with other substrands. The frustration in the
to {{f) via {{f)=exd—B¢{f)]. The free energy per gecondary structure of disordered RNA necessarily leads to
base in the globular phask, is determined from the singu-  gaps in the base pairing that are usually larger than the mini-
larity £, =exp(=p;) of .. _ mal length of terminal loops. It is therefore unnecessary to
The chain begins to open when both free energies argnnose a constraint on the terminal loops, i.e., we may safely
equal, i.e., whenp, = ¢(f), and the critical force is deter- ;11— 0 in this case. At the same time, the minimal length

mined by the equatiod, = {(fc). . of helices and the length parametérand |, have to be

In the low-temperature regimes%-1), the critical force  yenormalized appropriately, as we indicated earlier.
depends on the param_eteior the minimal length of termi- In the denaturation regimes~1, the critical force be-
nal loops. Fort=1 we find comes small. Independently tfit decreases as

O((s—1)¥?, 1>s—1>4"

t
fc(T)%m“pair(T)L (28) fe(T)= 0(771/6), s—1<y

(30

The dependence onis due to the fact that each hairpin on approaching denaturation.
terminates in a loop with at leastuunpaired bases. The cor- For t=0 an interesting reentrance phenomenon occurs:
responding loss in energy is very important at low temperaWe have seen that in this cak€T) is an increasing function
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FIG. 12. At large cooperativity, the slope of thécurves at the FIG. 14. In the absence of cooperativity, the large closed struc-
transition is proportional ta;. The phase transition is masked by res first open up to form smaller units. The plateau corresponds to
the subsequent crossover whose steepness scajes‘dsindepen-  pecklaces of hairpins of the smallest possible size. Those structures
dently of s are disrupted only at a higher force. This behavior is an artifact of

very strong pairing energies.
of temperature at sufficiently low temperatures, which is due
to the entropic nature of the critical point. The large value oftemperature. We expect this effect to be relevant for disor-
the binding parametes merely forces the dominant second- dered RNA sequences, whete=0 applies as we argued
ary structure to have all bases paired, but does not influeng@ove. Such a behavior has been seen in numerical simula-
the critical behavior otherwise. This picture does, howeverfions of protein unfolding[41]. A similar effect was also
not apply near denaturation where the base pairs are onfgredicted in the form of cold denaturation in DNA unzipping
loosely bound. Rather, Eq30) shows thatf, decreases es- [42,43.
sentially to zero in the denaturation regime. This is a conse-
guence of the vanishing of the pair binding free energy B. The opening crossover abové,
S 1.) which competes with the free energy gained from In the following, we discuss several features of the force-
stretching. The latter grows 48 at low forces, and thus, the

h i ition tak | ; le of th q etxtension curves in the thermodynamic limit, in particular,
b asel/£ans! lon takes place on a force scale ot e order Qie \vj derive how the linear slope above the critical point
(s—1)"“ which vanishes at the denaturation transition.

. ; . . and the characteristics of the subsequent crossover depend on
The different behavior at low and high temperatures im- 9 P

. S X the energy parameters of the model. The results are illus-
plies that the critical force reaches a maximum somewherg . i Figs. 12, 13, and 14 where we plot force-extension
. : ; . Burves for various pairs afand ». The structural parameters
following reentrance phenomendsee Fig. 11 If one f_|xes re those appropriate for homogeneous RNA-@, t=3,
the external force at a value smaller than the maximum o ndl,=4l).

fo(T) and then decreases the temperature, starting in the de- As we discussed in Sec. Ill, the extensibgf) of the
natured regime, the molecule will collapse into the globular

state when it crosses the critical line for the first time. How-T?k)acql!ﬁes“?g;ycé?%\% ttf;ee ?g;'czl c:? :/(:ii dg?trovg/fs tlk:i({aéfiaear
ever, it will reenter the stretched phase again at lower temr-e ?rﬁe canp be calculated from gan ex ansi)c/m of &)
perature when the second crossing occurs. Since the trangi2 d th itical point. In the diff P ’
tions are of second order this behavior would be seen as & - the critical point. In the different temperature re-

(continuou$ breathing of the molecule upon changing the 9'Mes: We find
O(ns ™), s>1

Ly L(f)/N(f—f.)~4{ O(n/(s—1)%, 1>s—1> 913
08 O( 77_1/3), s—1< 771/3
(31
06 valid within a force window
0O(1), s>1
04
- s=2 |8=10 /—s=100 f—f,={ O(s—1), 1>s—1>9"? (32
02 s=1.1 1=0.0001 O( 7]1/3), s—1< 7]1/3.
8=1.01 Note that at low temperaturess1), the extension is
suppressed by a factor of (see Fig. 12 This is a conse-
2 4 3 e —f guence of the cooperativity in the system, i.e., the tendency

to form long helices and large structures. Their size increases

FIG. 13. At intermediate cooperativity the critical point and the typically as”—ly so that necklaces composed of such struc-

crossover merge for sufficiently small valuessof
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tures are very short. The effect is even enhancedtfo®  high temperatures, disorder is an irrelevant perturbation for
where it is favorable to form longer helices in order to reducethe force-induced opening transition in the sense that scaling
the energy loss in terminal loops. The extension grows linfunctions for disordered sequences superpose perfectly with
early with the force over a range of ordéx(1), which is  the analytical curve calculated in the homogeneous case.
comparable to the critical force itself. This is in contrast to  Our model takes into account base pairing and stacking
the case near denaturation where the extent of the linear renergies, as well as entropic costs for loops. The latter have
gime is much smaller thafy, and the coefficient of the linear been shown to give rise to a thermodynamic denaturation
term can be appreciably large. transition if they are sufficiently strong. However, even when
At higher forces the force-extension characteristics beloop penalties are included, the dominant secondary struc-
comes nonlinear, and finally, the majority of base pairinggures in the collapsed phase of large molecules are too dense
opens up in a sharp crossover. This happens at a fiqrce to be accommodated in three-dimensional space. Even at
where the free energy of bases in the free part of the chaimoderate, biologically relevant sizes, it is questionable
equals half of the base pairing free energiy(f,)~s 2 whether the usual neglect of excluded voluit@ad other
Note that this is the analog of the critical force in DNA tertiary) interactions in the prediction of secondary structure
unzipping which is of a different nature thép. Beyondf, , is justified.
the molecule behaves essentially as a freely jointed chain.  The force-induced unfolding has been studied in detail.
The crossover is most interesting at low temperatuses, We have characterized the second-order phase transition
>1. In the Appendix it is shown to take place within a force separating a globular from a necklacelike extensive phase. A
window determined byp(f)=[ s 972/, (£)1¥%|¢{f)  correlation length diverging likef(- f¢) 2 has been identi-

—s 13=0(1). Itswidth scales like fied as the typical size of the largest closed structures that
L 11 " appear in the necklace abo¥g. The critical scaling of the
Af~ (st (b= D12 (576) 172 (33 correlation length remaingnarginally unchanged upon in-

. troduction of disorder, as follows from a Harris-type crite-
where we assumeld /I ~t+1 for homogeneous RNA. ThiS jon “However, in the low temperature glassy phase the other
expresses the fact that the smallest possible hairpin 100pijtica| exponents are modified, in contrast to the high-
[with length I(t+1)] will almost be a direct, stretched yomperature phase which belongs to the same universality
bridge between the bases of the adjacent (adidistancé,).  ¢jass as a homogeneous polymer. This difference of the tem-
The crlos_sov_er is very sharp if the cooperativity, as measureﬂerature regimes manifests itself as well in the force-
by 7”7, is high. , . extension characteristics. In the present paper, we have re-

Below the crossovefrp(f)<1] we find the extension 10 gyricted ourselves to the discussion of the homogeneous or
be small as compared to that of a freely jointed chain subjetignh-temperature case. The jumplike force-extension curves
to the same force, in the glassy regime are discussed in R8#].

L(f) Ledf) T_he second-order phase transition in force-induced un-

— p(f). (34)  folding has been shown to be a very robust feature of the

N N model. In particular, it is independent of the specific pairing

and stacking energies and further structural parameters. It
occurs at a critical force that we predict to be a nonmono-
Ponic function of temperature in the case of disordered se-
quences. This gives rise to a reentrance phenomenon when
the temperature is varied at constant force.
) (35 When the stacking energy is large, the pairing behavior is
highly cooperative. This can render the second-order phase
transition almost invisible, since the extension grows very
glowly as a function off —f.. On the other hand, a very
Fharp first-order-like crossover occurs at tinghen force
Where essentially all base pairs are disrupted.

Above the crossovelp(f)>1], the role played by closed
structures is negligible, and the force-extension curve a|
proaches that of a freely jointed chain,

L(1) _ Lrdf)

N N +0

L)
p(f)

Near denaturations&1), the situation is less interesting
since both the phase transition and the final opening of th
secondary structures take place at very small forces. Stil
there is a discernible crossover in the casel> 7' that
occurs at a forcd, ~f.+O(s—1) while its width scales

like Af~[7/(s—1)]¥2 In the limit s—1< %3, however, ACKNOWLEDGMENTS
no crossover can be seen since all characteristic force scales . ,
behave as)*3. It is a pleasure to thank Florent Krzakala, Marc 2ded,

and Andrea Montanari for many helpful discussions. | am
indebted to Marc Meard for carefully reading the manu-
script. The LPTMS is a Unitele Recherche de I'Universite
We have studied several aspects of RNA folding on theParis Xl associe au CNRS.
level of the secondary structure. We concentrated on a ho-
mogeneous model that we expect to describe random se-
guences on a coarse-grained level as well, provided that the
parameters are appropriately renormalized. This point of In this appendix we outline in more detail how to obtain
view is strongly supported by the finding that, at sufficiently the characteristics of the force-extension curves of Sec. IV.

V. CONCLUSION

APPENDIX
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1. The singularities of the partition function which determines the pole singularityf) as a function of
Let us start from Eq(27), the force forf>f.. The functional form of the generating
function E.(¢) for closed structures can be obtained from
c(g( ) Eqg. (5) as

(D) =)+ ——— (A1)

Zp(f) 7

g 1 n(Siz)”(l—Zt)/(l—é)) \/1< 2sMA-MNIA-0)\F  p(sAE
Ecd)=5|1-¢- —“\zl|1-¢ - . (A2
O T T sy A\ T sy 1=si sty

The free energy per base of the globular phase is related e can neglect the first term on the right-hand side tfor
the singularityZ, of = via ¢, =exd—B¢:). {, isgiven by  <2(I,/I+1) which is always satisfied for homogeneous
the vanishing of the square root in EGA2). In the low-  RNA, where we have~I, /I —1.
temperature regimes>1, we find Recalling the definitiors= exp(ﬁ|fpa"(T)|) and approxi-
3 mating {{f)=pIf/sinh(@lf)~exp(—=pIf) and ¢u(f)
2

S 1/2( 1— = Bl f/sinh(@l,f)~exp(—Bl,f) at low temperatures, we find

2
t
_1,2( 1_%) 1 (D)= g7y T Tl (A8)

Lo~ (A3)  The behavior fort=0 is different since all bases can be
—1/2( 1— ) , t=2 paired, even those at the end of a hairpin. In that case, Eg.
st (A5) reduces to

—1/2

1- %) =3, 20 f)bol(fo) =1, (A9)

implying f.(T)=T/l, almost independently &f This under-
lines the purely entropic origin of the critical force suffi-

while near the denaturatios-1<1, we obtain . h
ciently below denaturation.

In the regimes~1 the critical force is small, decreasing
~112 87 13
S 1- 5|, 1>s—1>9 as
Lu™ (s—1) (A4)
1-(29)'¥3, s—1<y43 O((s—=1)"?), 1>s—1=49"°

fo(T)= (A10)

O(7"), s—1<p
We recall that we assume<1 throughout.

on approaching the denaturation. This follows simply from

2. The critical force an expansion of EqA5) at low forces.
The critical forcef . has to be determined from the cross-
ing of the two singularities{(f.)=¢, , or more explicitly, 3. The linear regime abovef,
- In the thermodynamic limit, the force-extension curve
d =L T E L) Go(fo), (A5) Y

starts off linearly from zero extension &t. To obtain the
slope of the curve, we expand E@1) around the critical

where we can use the fact that the square root in(Eg) 4 ) .
point. In particular, we have to expand the square root in Eq.

vanishes at, ,

(A2) at ¢, ,
n(sg?)"¢ -
Bo(ly)= \/— (A6) D 7(si?)
1_S§2+ 7](352) '-’C(é’) 2 1-¢ 1_S§2+ 77(352)n(l_§t)/(1_§)
In the low-temperature regime3 1, we have to distinguish — VAL, O +B(L, - 02 (A11)

different values ot. In the casé=1 we find approximately

As long as we can negle&({, — £)? with respect toA(Z,
=), i.e., for¢, — ¢(f)<A/B, we may obtair/(f) approxi-
mately from[see Eq(Al)]

t/2
{x

(T (A7)

LT~ +
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Ld D (D] ~(F= Tl Leo] (o)

~E 080~ ~[AQ— a2,
(A12)
and thus,

f—f.)2
o,

()~ — (A13)
The extension in the linear scaling regime abdyethen
follows viaL(f)=—Ng~ 1 In[{(f)/of~N(f—fJ). In the dif-
ferent temperature regimes, the coefficient N{f—f.)
scales like

O(ns™ ™), s>1
L(F)/(N(f—f.)~3{ O(n/(s—1)%), 1>s—1> '3
O( 77—1/3), s—1< 771/3_

(A14)

The linear regime extends up to forces determinedZby
—{(f)=A/B, from which we obtain the force windows

0(1), s>1
f—f.={ O(s—1), 1>s—1>7"  (A15)
O(7"9), s—1<p™

4. The nonlinear regime and the crossover

PHYSICAL REVIEW E 67, 021914 (2003

that the closed structures are important as long as the varia-
tion of Z.(£(f))/ {x(f) with force dominates that of (f).

The crossover to the freely jointed chain regime occurs when
both variations become comparable. Let us therefore write
L(f)=s"Y(1—€(f)) and determine the valuey at which

the correction s”*%, begins to dominate the term
E(L(f)) &,(f). Using Eq.(A16) and the fact that/ ex will

be small, we find E,~s "y/ey. Equating this to

s Y2 (f), we find

571/26X5571/2_ Z(f)~[ nsf(l+t)/2/é«b(f)]l/2. (Al?)

More quantitatively, one finds that for forces such that
{{f) =57V s 211 (£)]M2, {(F) is given by

7]57“2

(fy~s ¥4 1— .
¢ 20p(F)[ L f) =57

(A18)

The extension follows from a logarithmic derivative,

L(f) _ Lesc ns V2L ()
N N (DL f)—s 132

(A19)

which is small as compared to that of a freely jointed chain
at the same force.

For forces such that [ {f)—s %<
—[ s~ (*V%21£,(£)]Y? closed structures play a negligible
role. To the same degree of approximation as before one

At higher forces the force-extension curve becomes nonfinds
linear, but the typical size of closed structures is still large, so

that the second term on the right-hand side of &d.) can-

not be neglected. Only in a later stage the base pairs open up
completely, and the molecule becomes a freely jointed chain.
In the further discussion of the characteristics of the

force-extension curve we will restrict ourselves(teal) ho-
mogeneous RNA with £t~1,/I —1. We will only treat the

s (1002

L(DlEd -5

{(f)=L(t) . (A20)

ol

and the force-extension curve joins that of a freely jointed

cases>1 in some detail, the case=1 can be treated analo- chain

gously.
Beyond the linear regime, we can solve {gff) using the

following approximation: The generating function for closed
structures can be simplified by expanding the square root in

Eq. (A2) with respect to the second term

2\n #t
=21~ eV -
(1= OIL=sL%+ n(sE)" = (L) 1=
(A16)

Equation(27) for {(f) then reduces to a quadratic equation

L(f)  Ledf)
N N

( g~ (112 ) }
(DL H—s 3] |
(A21)

The force window over which the crossover takes place de-
rives from Eq.(A17) and scales like

Afw(nsl+(|b/|*t*1)/2)l/2. (A22)

up to terms of the order of/7, except in a narrow region For the case near denaturaticsw=1 the calculations are
around the forcef, where the opening crossover takesanalogous and yield a crossover aroundsf.+O(s—1)
places. The crossover fordg is approximately determined with a width scaling like Af~[ 5/(s—1)]*? for s—1

by {{f,)=5""2

> 73, In the limit s—1< 73, however, all characteristic

Before proceeding let us estimate the width of the crossforce scales behave ag’®, and a separation into different

over. Considering the right-hand side of E&1), we note

regimes does not make sense.
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