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Université Paris-Dauphine, PSL Research University, CNRS, CEREMADE, 75016 Paris, France

3
Paul Scherrer Institute, PSI, 5232 Villigen, Switzerland

(Received 13 October 2017; revised manuscript received 31 August 2018; published 2 October 2018)

We propose a multiscale diagonalization scheme to study disordered one-dimensional chains, in
particular, the transition between many-body localization (MBL) and the ergodic phase, expected to be
governed by resonant spots. Our scheme focuses on the dichotomy of MBL versus validity of the eigenstate
thermalization hypothesis. We show that a few natural assumptions imply that the system is localized with
probability one at criticality. On the ergodic side, delocalization is induced by a quantum avalanche seeded
by large ergodic spots, whose size diverges at the transition. On the MBL side, the typical localization
length tends to the inverse of the maximal entropy density at the transition, but there is a divergent length
scale related to the response to an inclusion of large ergodic spots. A mean-field approximation analytically
illustrates these results and predicts a power-law distribution for thermal inclusions at criticality.
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Introduction.—The phenomenology and theory of many-
body localization (MBL), i.e., the absence of thermalization
in interacting quantum systems [1–16], challenges our
understanding of statistical mechanics. In d ¼ 1, the main
outstanding issue is the nature of the transition [17–29] that
separates the MBL from the ergodic (thermalizing) phase.
To describe it, several phenomenological renormalization
schemes have been introduced [19,20,26,27], with partially
conflicting predictions.
In the present Letter, we develop a theory which is rooted

in two microscopic principles. The first principle, gov-
erning nonresonant couplings, is the spectral perturbation
theory. The second principle is the use of the randommatrix
theory for resonant couplings [30–36], which strikingly
predicts an “avalanche” instability: An infinite localized
system can be thermalized by a finite ergodic seed if the
typical localization length ζ exceeds a critical ζc [36].
We implement these principles in the form of a multistep
diagonalization procedure [37–42], described compactly
below and in more detail in the companion paper [43].
Analyzing first the general consequences of this scheme,

we find that the critical point must be localized with
probability one. This conclusion, which rests on a few
basic facts and does not involve any detailed analysis,
contrasts with predominantly numerical RG studies
[19,27], which reported the half-chain entanglement
entropy at the critical point to follow a (subthermal) volume
law. Our result instead implies that the bipartite entangle-
ment entropy of typical cuts is discontinuous at the
transition, as in Ref. [21], and that the typical localization
ζ does not diverge. The latter is a direct consequence of the
explicit upper bound ζ ≤ ζc [36]. On the other hand, we do
identify a length scale l⋆ that does diverge as ðζ − ζcÞ−1 as

one approaches the transition from the MBL side; see
Fig. 1. This is caused by the divergent susceptibility of the
sample to the insertion of large ergodic spots. In our
scheme, such spots trigger delocalization by an avalanche
instability, a central aspect that distinguishes our work from
previous approaches [19,20,26,27]. The validity of the
avalanche scenario and the associated bound on ζ were
recently verified through high-precision numerics [44], and
we show here that it leads to a consistent and physical
picture of the MBL transition. On the thermal side, instead,
we find no divergent correlation length, but only a
diverging crossover length Lþ, beyond which typical
samples appear thermal. Lþ is associated with a typical
timescale of local thermalization, tþ, that diverges qua-
siexponentially at the transition.

MBL phase Thermal phase

FIG. 1. Phase diagram where 1=ε quantifies the disorder
strength. ζ is the typical localization length. It is bounded
by the critical localization length ζc, which equals the inverse of
the entropy density. l⋆ quantifies the susceptibility to the
insertion of large ergodic spots. ξ̄ is the average eigenstate
correlation length and tþ a typical local thermalization time-
scale in the thermal phase.
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We illustrate these aspects with a mean-field approxi-
mation of our scheme. While it introduces some over-
simplifications, as discussed below, it offers a concrete
implementation of the main ideas developed in this Letter
and yields several conclusions that have been confirmed by
a full numerical analysis of the scheme [43]. This includes
the fact that the upper bound ζc is indeed saturated at the
transition, as well as a power-law distribution of the sizes of
thermal inclusions at criticality.
Multistep diagonalization scheme.—We consider a chain

of spins Si, with ds states per site i, with a generic local
Hamiltonian, which we write in the form

H ¼
X

I

DI þ
X

I

VI: ð1Þ

Here, I denotes a stretch of consecutive sites that the
operatorsDI and VI act on. The operatorsDI act diagonally
in a preferred basis that, for concreteness, we take to be the
Szi basis. The VI are not diagonal, and we refer to them as
“couplings”. We express lengths in units of the lattice
spacing a. A special role is played by the entropy density
s ¼ logðdsÞ=a. We now diagonalize the system by iter-
atively eliminating couplings; see Fig. 2.
Perturbative couplings: The distinction between pertur-

bative and resonant couplings is at the heart of our
procedure. We declare a coupling VI “perturbative” if
typical eigenstates of DI þ VI are small perturbations of
the eigenstates of DI and can hence be obtained by
the perturbation theory. Following Ref. [38], we prefer
to think in terms of a unitary transformation UI that
eliminates the coupling VI to lowest order by acting on

H as H → UIHU†
I . This is achieved by choosing UI ¼ eAI

with hη0jAIjηi≔ ðhη0jVIjηi=EIðη0Þ−EIðηÞÞ. Here, η; EIðηÞ
are eigenstates and eigenvalues of DI . This procedure is
meaningful if

G≡max
η0

jhη0jAIjηij < 1 for typical η; ð2Þ

see Supplemental Material [45]. If VI is not perturbative,
i.e., if G ≥ 1, then we call the coupling VI resonant and we
do not eliminate it. By eliminating a perturbative coupling,
we generate new, but usually smaller, couplings. Indeed,
whenever I ∩ J ≠ ∅, we will create a new coupling VI0 ¼
UIVJU−1

I − VJ ≈ ½AI; VJ& (at first order) with I0 ≡ I ∪ J.
Resonant couplings: We first eliminate all perturbative

couplings that do not touch resonant regions; see Fig. 2. We
then assume that the remaining resonant couplings induce
full ergodicity locally, i.e., within their range. We thus
diagonalize them by a unitary that we consider as an
effective random matrix. Such a strong dichotomy has been
theoretically predicted [36], and these predictions are in
remarkable agreement with numerics [44]. The random
matrix ansatz remains consistent throughout the scheme if
the perturbation theory is used as much as possible to
“isolate” resonances from their environment [36,38]. For
this reason, we diagonalize resonances in order of increas-
ing size and leave untouched perturbative couplings that
link to ergodic spots [43,46]. The diagonalization of a
resonant region alters the perturbative couplings attached to
it and can turn them resonant (and thereby potentially start
an avalanche). If they remain perturbative, they can be
eliminated in the next step as the scheme is iterated; see
Fig. 2. After a number of iterations which scales logarithmi-
cally with the system size, all couplings will be eliminated.
End of the procedure: The final result of our procedure

is encoded in the diagonalizing unitaryU. It is obtained as a
product of unitaries UIn , each acting on a single stretch In,
as described above. A region Y is ergodic if Y ¼ ∪γIγ for a
collection of intersecting stretches fIγg and such that
all UIγ are nonperturbative. The full system is thermal if
the whole sample is ergodic; otherwise, it is by definition
MBL. From U, one obtains local integrals of motion
[38,47–49] by inverse conjugation:

τi ¼ U†SziU: ð3Þ

We decompose τi ¼
P

Iτi;I in spatial components, where
τi;I acts on the stretch I. The decay of τi;I with increasing jIj
defines the typical localization length:

ζ−1 ¼ − lim
jIj→∞

hlog jjτi;Ijji
jIj

; ð4Þ

where k·k is the operator norm [50], whose crucial role will
be explained below, and where h·i denotes the disorder

FIG. 2. Evolution of the spin chain during the diagonalization
procedure. Black dots are spins, and the green ellipse is a group of
nonperturbatively diagonalized spins. Arcs symbolize couplings
that act on all spins they embrace. Red ones are resonant, and
black ones are perturbative. (a) Initial nearest-neighbor couplings.
(b) All perturbative couplings that do not touch resonant
couplings have been eliminated, which generates weak couplings
to the adjacent resonant spots. (c) Some resonant sites have been
fused into a green spot, requiring a reevaluation of the existing
couplings. Some arcs to sites close to the green spot have thereby
become resonant (red). (d) The new resonant coupling is fused
into the green spot. No new red couplings emerged. They are
eliminated in step (e). A next resonant spot can be fused now, as
in (b), until no resonances are left.
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average, assuming that some randomness enters in the
Hamiltonian (1). The locality properties of the unitary U
also reflect in the spatial decay of couplings VI (created and
eliminated in the course of our scheme), as they arise from a
transformation inverse to (3). ζ can thus also be defined by
replacing τi;I in (4) by VI.
General analysis of the scheme.—For any disorder

realization, at a finite length L, let ρthðLÞ be the density
of sites in an ergodic region, as determined by the scheme.
Let us now assume that our scheme has the two following
properties. (i) Denoting the inverse disorder strength by ε
(see below), we assume that hρðLÞiε is continuous and
nondecreasing as ε increases. (ii) For any given disorder
realization, all sites declared thermal remain so if more sites
are added to the chain at one or both ends. One should
probably expect (ii) to hold only up to rare exceptions (e.g.,
coupling a site strongly to a very disordered region might
increase the effective disorder on that site; see also [43]).
Yet, it seems reasonable that, despite the neglect of such
rare cases, our assumptions capture correctly the phenom-
enology of the scheme.
We first deduce that hρðLÞiε reaches a limit ρ⋆ðεÞ

as L → ∞, for any ε. Indeed, (ii) directly implies the
superadditivity property ρðLþ L0Þ ≥ ðL=Lþ L0ÞρðLÞ þ
ðL0=Lþ L0ÞρðL0Þ, and then the limit exists by Fekete’s
superadditivity lemma. Second, we show a concentration
property: For any disorder strength ε and for all but a
vanishing fraction of the samples, the thermal density
approaches ρ⋆ðεÞ, i.e., P½jρðLÞ − ρ⋆ðεÞj > δ& → 0 for any
δ > 0 as L → ∞. Since this property is valid, in particular,
at the critical point ε ¼ εc, it implies that it must be either
localized or thermal with probability 1. To see the con-
centration of ρ, let us fix δ > 0 and let L0 be large enough
so that jhρðL0Þiε − ρ⋆ðεÞj < δ=2. Let us then consider a
“product” system made of blocks of size L0 that are
decoupled from each other. (ii) implies that P½ρðLÞ > a&Þ ≥
Pprod½ρðLÞ > a&. The concentration property that we seek
holds definitely true for the product system. We thus
conclude that P½ρðLÞ−ρ⋆ðεÞ<−δ& goes to 0 as L → ∞,
and, since the average value of ρ converges to ρ⋆ðεÞ,
we also conclude that P½ρ − ρ⋆ðεÞ > δ& must vanish as
L → ∞.
It remains to decide whether the critical point is localized

or thermal. Since hρðLÞiε is nondecreasing in both L and ε
and continuous in ε by (i) and (ii), we conclude that ρ⋆ðεÞ is
nondecreasing and left-continuous. Hence, either ρ⋆ðεÞ is
actually continuous at the transition and the critical point is
thermal, or it has a jump at the transition and the critical
point is localized. It is clear that the localization length ζ
should diverge as ρ⋆ approaches 1 (cf. the “rule of halted
decay: below). Hence, the bound ζ ≤ ζc [36,44] implies
that ρc < 1 and, thus, that the critical point is localized.
Understanding the transition.—We now develop a gen-

eral picture for the transition. By making a simple mean-
field assumption, we obtain explicit analytical results that

substantiate this picture. Detailed numerics in Ref. [43]
yields further support for our theory.
Resonances and scales: The simplest resonances are

associated to couplings VI on single bonds I ¼ fi; iþ 1g.
Let ε be the probability that such a VI is resonant, and let us
use this as a measure for the inverse disorder strength. We
call a bare spot of the order of k a set of k adjacent resonant
bonds. The density of such bare spots is εk=a, and their
distribution is the only randomness taken into account: The
localized material between these spots is homogeneous
with bare localization length ζ1. In other words, we
consider a bimodal distribution of nearest-neighbor cou-
plings. We parametrize [43] ζ1ðεÞ ¼ −1= logðε=KÞ with a
nonuniversal constant K. In our scheme, we treat the
smallest resonant spots first, and thus it is natural to think
of the order k as an effective scale. We introduce the
running localization length ζk as above, but using a unitary
U that eliminates only the spots of the order of k0 < k
(alternatively, replacing jIj → ∞ by jIj ∼ aε−k). ζk is thus
the effective localization length seen by spots of the order
of k. It increases with k, since increasingly more effects of
resonant spots are included. Indeed, a calculation yields the
important rule of halted decay: If a fraction ρI of a stretch I
is thermal, then one finds kVIk ∼ e−ð1−ρIÞjIj=ζ1 for couplings
VI that are relevant to our scheme; see [45].
A spot of the order of k melts (or thermalizes) a region

of length lk on each side of the bare spot. The fraction
of space occupied by such thermal regions is ρk ≡
εkðkþ 2lk=aÞ. Hence, ρk is the density of additional
thermalized regions that has to be accounted for when
passing from ζk to ζkþ1. How precisely ζ is assumed to
increase does not affect the resulting key features. Using the
rule of halted decay, a simple possibility is the mean-field
approximation (see [45])

ζ−1kþ1 ¼ ð1 − ρkÞζ−1k : ð5Þ

Large resonant spots: We now derive an expression for
the length of the melted region lk, in agreement with the
theory developed in Refs. [36,44]. The couplings linking a
bare spot of the order of k ≫ 1 to its close surroundings
are typically resonant in the early iterations of the scheme;
see Fig. S2(d) in [45]. After thermalizing l spins on each
side, the couplings VE−l, VE−r from the spot to the spins l, r
just outside it originate microscopically from the (by now
rotated) couplings ṼE−l, ṼE−r between the spins l, r and the
peripheral spins of the bare spot. Those scaled as kṼE−lk,
kṼE−rk ∼ g0e−l=ζk . Since we have diagonalized the spot by
a random unitary, any structure distinguishing the coupling
operators from random matrices [i.e., eigenstate thermal-
ization hypothesis (ETH) behavior] has been erased, but the
norm of the operators is preserved. Hence, we know that
kVE−l;rk ¼ kṼE−l;rk. As this coupling is now indeed a
random matrix acting on a space of dimension dl ≡
esðakþ2lÞ (since the spot has grown on two sides), its matrix
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elements scale as g0e−l=ζkd
−1=2
l . These become perturbative

only once they fall below the level spacing ∼d−1l , i.e., if
esðakþ2lÞ=2e−l=ζk ≤ 1. Thus, spins are thermalized up to
distance l ¼ lk with

lk ¼ k
sa
2

!
1

ζk
− s

"
−1
: ð6Þ

Since ζk → ζ as k → ∞, but lk < ∞ in the MBL phase,
we derive a bound on the typical localization length

ζ ≤ ζc ≡ s−1: ð7Þ

If this bound were violated, a finite spot would trigger an
avalanche and delocalize an arbitrarily large system. As we
have seen above, a system appears less localized at larger
scales. The picture that emerges is thus that at criticality
limk→∞ζk ¼ s−1, with the transition being driven by infi-
nitely large spots.
Discussion: From the relation (6) and assuming the

recursion equation (5), we can render the flow of ζk near
the transition explicit; see [45]. We find a transition at
ε ¼ εc ∈ &0; 1½ defining three regimes: (i) Localized regime
ε < εc.—At a large scale, ζk → ζ < ζc, and, from Eq. (6),

lk=k → l⋆ ∼ ðζc − ζÞ−1 ð8Þ

as k → ∞, where lk=k represents the susceptibility of the
material to the insertion of a bare thermal spot of size k. We
expect ζc − ζ ∼ ðεc − εÞν− , leading to l⋆ ∼ ðεc − εÞ−ν− .
Numerics yields ν− ∈ ½1=2; 1& to be nonuniversal: It
depends on the parameter K. Moreover, l⋆ is the scale
at which the power law distribution of thermal spot sizes is
cut off by an exponential tail; see [45].
(ii) Critical regime ε ¼ εc.—At a large scale, ζk → ζc,

and the bound (7) is saturated. From Eq. (6), the suscep-
tibility lk=k diverges thus as k → ∞ (lk ∼ ε−k=2c ). Yet, the
system is localized, and the thermal density ρ is strictly
smaller than 1. The probability of having a thermal region
of size l centered on a given site scales as pðlÞ ∼ l−τ, with
τ ¼ 3. While the typical half-chain entanglement entropy S
is hence bounded, its average (over samples) diverges as
S̄ ∼

R
L l2pðlÞdl ∼ logðLÞ with system size L.

(iii) Thermal regime ε > εc.—At small scales, the system
appears localized (ζk < ζc), but at a finite k', ζk' ≥ ζc
implying lk' ¼ ∞ and triggering an avalanche. The critical
core size k' diverges logarithmically k'∼νþ½logðε−εcÞ=
logðεcÞ& with νþ > 0.
Finite-size scaling.—Let us evaluate the probability

pðε; LÞ of a chain of length L to be thermal. For large
L, to exponential accuracy, we find pðε; LÞ ¼ expð−L=L−Þ
with L− ∼ jε − εcj−ν− in the MBL phase (by requiring
a thermal spot to cover the whole system). On the
thermal side, the system is ergodic unless it contains no
explosive spots. This yields pðε; LÞ ¼ 1 − ð1 − εk'ÞL ≈
1 − expð−L=LþÞ with Lþ ¼ ε−k' ∼ jε − εcj−νþ , with a

nonuniversal νþ ∈ ½1; 2&. In the critical fan, one finds
pðε; LÞ ∼ L−β with β ¼ τ − 2 ¼ 1, as follows from the
estimate pðε; LÞ ∼ L

R
l>L pðlÞdl. In particular, closely

above the transition point, pðε; LÞ has a nonmonotonic
behavior as a function of L: It first decreases polynomially
and then grows to 1 exponentially fast.
Correlation lengths.—The MBL transition does not

manifest itself in thermodynamic correlation functions
but only in dynamic properties such as eigenstate corre-
lation functions like

CorðO0; OlÞ≡ ¯jhΨ; O0OlΨi − hΨ; O0ΨihΨ; OlΨij; ð9Þ

for local operators Oi acting around site i, where the
average is over both Ψ and disorder. Numerical studies
[42,51] had suggested that

ξ̄−1 ¼ lim
l→∞

1

l
logCorðO0; OlÞ ð10Þ

diverges at the transition while being finite in both bulk
phases. Let us thus analyze what our scheme predicts for ξ̄.
MBL phase: A detailed analysis [45] yields the follow-

ing picture: If O0, Ol are located on either side of, but just
outside, a thermal region (bare spotþ full melted region),
then CorðO0; OlÞ ∼ 1. This is easiest understood by
realizing that the couplings connecting the spot to sites
0 or l are barely nonresonant, because those sites are
just outside the melted regions. This self-organized
criticality affects the diagonalizing unitaries, yielding
CorðO0; OlÞ ∼ 1. Taking into account the probability of
thermal regions, we conclude that ξ̄ ∼ l⋆.
Thermal phase: It is often suggested that ξ̄ as defined in

(10) also diverges from the thermal side. However, within
our scheme, an infinite chain on the thermal side is thermal
with probability 1, so that ETH applies and the correlator
(9) thus decays exponentially in l. Yet, if ξ̄ is defined [51]
via Eq. (10) with local operators acting on the two ends of
the chain, then, with probability e−L=Lþ, the correlator
probes a localized chain, and it can hence fail to decay. By
exhibiting [45] a mechanism for long-range correlations,
we put the lower bound ðlogLþÞ−1

ffiffiffiffiffiffi
Lþ

p
on the associated

divergent correlation length.
Critical slowing down.—While there is no natural

diverging correlation length on the thermal side, there is
definitely a diverging timescale tþ: the inverse of local
thermalization rates for typical spins. Indeed, if a spin is
eventually thermalized by a thermal region emanating from
a bare spot at distance l, the Fermi golden rule roughly
yields a flipping rate e−2l=ζΓ0 with a microscopic rate Γ0.
In the thermal phase, most spins will be thermalized by a
bare spot of the order of k' ¼ k'ðεÞ, located at a typical
distance ε−k' ∼Lþ∼ðε−εcÞ−νþ . Therefore, tþ ∼ eCðε−εcÞ

−νþ

diverges (quasi)exponentially. While this result concerns
typical sites in the chain, transport over long distances
L ≫ Lþ is dominated by rare localized Griffiths regions
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[14,52–56], realized here as regions containing no explosive
spots with k ≥ k'. This leads [45] to the subdiffusive
scaling RðLÞ ∼ LCðε−εcÞ−νþ of resistance R ¼ RðLÞ close
to the transition.
Beyond mean field.—We emphasize that the mechanism

driving the transition and its consequences [such as the
divergence of the susceptibility (l⋆) and of the correlation
length ξ̄, the saturation of the bound (7), etc.] follow simply
from the consistency of a scale-by-scale analysis. They do
not rely on the specific flow equation (5) we used to
analyze the scheme more quantitatively. Thus, as expected,
they are confirmed by the numerical analysis [43] of our
full, nonsimplified scheme. The most important new
feature that emerges there is the fact that ergodic spots
of low order k arranged close to each other in a fractal
pattern have the same delocalizing power as a spot of much
higher order. This means that the concept of a bare ergodic
spot should be refined. As a consequence, the tail of the
subcritical probability pðlÞ of thermal spots is a stretched
exponential rather than an exponential. Hence, ξ̄ is strictu
sensu always infinite in the localized phase. However,
replacing 1=l by 1=lb in the definition (10), with an
appropriate choice of b, yields a finite ξ̄, which diverges at
the transition. Furthermore, in the full scheme the expo-
nents τ, β, and ν( are modified [their (non)universality
being hard to assess], e.g., 3> τ> 2, implying S̄∼L3−τ≪L
at the transition. In particular, the rigorous Harris bounds
[57] on ν( (violated by the mean field) are satisfied, as it
has to be. As ν− seems unrelated to avalanches, we expect
νþ ≠ ν− also beyond the mean field, but we have not been
able to settle this numerically in the full scheme.
Conclusion.—By studying the role of ergodic spots, we

have argued that the MBL-to-ETH critical point is local-
ized. The transition occurs as a quantum avalanche kicked
off by the largest ergodic spots. The associated divergent
length scales all derive from a divergent susceptibility to
large ergodic spots.
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