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Glassy phases in random heteropolymers with correlated sequences

M. Mdller and M. Mézard
Laboratoire de Physique Theique et Modes Statistiques, Universitearis-Sud, bament 100,
F-91405 Orsay, France.

A. Montanari
Laboratoire de Physique Theéque de I'Ecole Normale Supeure, Paris, France

(Received 12 January 2004; accepted 17 March 004

We develop an analytic approach for the study of lattice heteropolymers and apply it to copolymers
with correlated Markovian sequences. According to our analysis, heteropolymers present three
different dense phases depending upon the temperature, the nature of the monomer interactions, and
the sequence correlation8) a liquid phase(ii) a “soft glass” phase, andiii) a “frozen glass”

phase. The presence of the intermediate “soft glass” phase is predicted, for instance, in the case of
polyampholytes with sequences that favor the alternation of monomers. Our approach is based on
the cavity method, a refined Bethe—Peierls approximation adapted to frustrated systems. It amounts
to a mean-field treatment in which the nearest-neighbor correlations, which are crucial in the dense
phases of heteropolymers, are handled exactly. This approach is powerful and versatile; it can be
improved systematically and generalized to other polymeric system20@ American Institute of
Physics. [DOI: 10.1063/1.1738639

I. INTRODUCTION tions form a continuum in configuration space. This last
phase has never been predicted in an analytical computation
In the last 20 years much effort has been devoted to théalthough such a possibility has been envisioned in phenom-
theoretical study of heteropolyméré.One of the main mo-  enological modelé** and a very similar phase seems to be
tivations was to understand the statistical physics of proteipresent in the numerical results of Ref. 15 on the dynamics
folding.3~® Despite the insight that has been accumulated, thef heteropolymers. Albeit frustrated, it has a much larger
goal remains distant. On the one hand, most analytical stucentropy and appears already at a smaller density than the
ies have been limited to random bond modé?gin which  usual “frozen glass” phase.
the interaction energies of all the couples of monomers along Some of the most successful tools used so far in the
the chain are independent random variablasto uncorre-  study of random heteropolymers are mean field approaches
lated random copolymer sequenc¢e®? However, there are based on the replica methdd®2 Crucial to these calcula-
many indications that sequence correlations induced by natuions was the identification of some relevant order parameter
ral selection play an important role for the folding and sta-and the proposition of a suitable ansatz describing the phase
bility of proteins. On the other hand, in this difficult problem, transition in a coupled space of real space coordinates and
analytic computations have to resort to some approximationeeplica indices. This type of approach is potentially very
which are not easy to control. It is thus important to have gpowerful, but it becomes quite complex for heteropolymers.
variety of different techniques at hand in order to cross-On the one hand, it requires a physical intuition for identify-
check the predictions. ing the relevant degrees of freedom and of their behavior. On
In this paper we develop a tool for the analytical study ofthe other hand, an ansatz tailored to describe a certain type of
heteropolymers, based on the cavity method as used in vangphysics may hide other, unexpected features.
ous frustrated system{a short account of our results can be Our cavity method consists in a refined version of the
found in Ref. 13. We use this method to investigate the Bethe—Peierls approximation. While this also represents a
phase diagram of copolymers with Markovian sequenceskind of mean-field approximation, it differs fundamentally
Within our approach we find copolymers to exist in threefrom the previous ones. Applying the Bethe—Peierls approxi-
distinct dense phasdgpart from the diluted coil phase at mation to lattice heteropolymers allows one to describe self-
high temperatunedepending upon the structure of the inter- consistently the frustration on a local microscopic level. This
action energy matrix, the sequence correlations, and the tenapproach can be thought of as the first step in the series of
peratureii) the liquid globule phase in which distinct mono- cluster variationalor Kikuchi) approximations?® Its general
mers are essentially uncorrelated and can freely rearrang#ilosophy consists in keeping track of local correlations in-
within the globule(apart from obvious constraints on mono- side some small region exactly, while treating the external
mers that are close along the chaifii) the “frozen glass” degrees of freedom as an environment whose statistical prop-
phase in which the polymer is stuck in one out of a fewerties have to be determined self-consistently. In the Bethe
well-separated low-energy conformations, afiit) a “soft ~ approximation, the only correlations which are treated ex-
glass” phase with broken ergodicifyn the thermodynamic actly are the ones between neighboring sites on the lattice.
limit) in which the thermodynamically relevant conforma- This is an improvement with respect to the naive mean field
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that treats distinct sites as statistically independent. Moreeusses the shortcomings of the liquid solution and general-
over, it is the first of such approximations to be meaningfulizes the method to the case where many pure states(asist
for polymers, since the backbone structure induces strontypically in a glassy phageln particular, we propose a set of
correlations between neighbdrs®Another potential advan- local order parameters that allow us to distinguish both theo-
tage of the cavity method is that it can be used for one givenetically and experimentally between two different types of
polymer, without the need to average over an ensemble dflass transitions. In Sec. IV we describe some basic tools for
sequences as in the replica method. While in the presemnalyzing the glass transition. We present a local stability
work we focus on ensemble-averaged properties, one shoutiiterion for the liquid phase and the 1RSB cavity equations
keep in mind this possibility which could lead to interesting which are used to describe the glassy phase. This formalism
algorithmic developments in the future. Finally, the refinedis illustrated in Sec. V by considering the exemplary cases of
Bethe—Peierls approximation is supposed to be exact on I&lternating sequences with attractive or repulsive interactions
cally treelike structure¢e.g., on random graphsThis is an  of like monomers.
important feature: It allows one to set up the mean-field It turns out that the two types of interactions imply very
analysis in a mathematically well-defined way, and its predifferent phase transitions: either a continuously emerging
dictions can be checked against numerical simulations ofsoft” glass phase or the “standard” discontinuous freezing
those random “mean-field” lattices for which the theory is transition. These two scenarios are found in the study of
expected to be exact. Markovian chains in Sec. VI. The properties of the strongly
Within our cavity method, any heteropolymer is found to frozen phase are analyzed in Sec. VII by focusing on maxi-
undergo a glass transition at large enough densities. Twanally compact conformations. We conclude with a summary
main schemes of glass transitions can occur, depending ¢¥ our results and a discussion of their relevance for protein
the details of the sequence, each of them being associatéelding. Several technical developments are included in the
with one of the types of glasses mentioned above. seven appendixes.
The transition to the frozen glass phase is a discontinu-
ous tran;mon, which is callgd a random fl_rst-c_)rder Or ON€Y,  ~AVITY APPROACH TO HETEROPOLYMERS
step replica symmetry breakif@RSB) transition in the rep-
lica language. It corresponds to the type of transition which  In this section we describe the type of heteropolymer
has been found in many previous studies, of which the ranmodels which we shall study. We derive their phase diagram
dom energy modé&! (REM) is the simplest archetype. under the assumption that the polymer is “liquid,” meaning
The transition to the soft glass phase is a continuous onehat any statistically relevant conformation is dynamically
corresponding to full replica symmetry breakiftGRSB). accessible to the molecule. In replica jargon this corresponds
This is more in line with recent scenarios proposing a freezto assuming replica symmetry. The next sections will render
ing that proceeds gradually from small scales to larger andnhore precise the regions of the phase diagram where this
larger structureé®2'In a series of papers exploiting a Gauss-liquid phase is stable and corresponds to the physically rel-
ian variational technique to deal with the dynamics of het-evant state.
eropolymers, copolymers in particular, a much richer phas .
diagram was proposed, where the ultimate REM-like folding%" Lattice polymer model
to a unique ground state is preceded by a less structured but Our starting point is the standard model of lattice
still frustrated glassy phag8As for the glass transition, the polymers:>**which we generalize for polymers residing on
random copolymer was proposed to be in the same unive@ general grapy. We denote by,j, . .. € Vthe vertices ofj
sality class as the Ising spin gld¥swhich would imply a  (With V|=V), and by {,j), ... e the edges ofj. Let »
continuous transition with a full breaking of the replica sym- = (1 . . . 0y), @€V, denote a self-avoiding wallSAW)
metry. of lengthN on G. The position of a monomer along the chain
Beside providing an alternative and well-controlled ana-is denoted by,b, ... e{1,... N}, and we assume an inter-
lytical approach, our cavity analysis adds to the above picaction matrixe,, to be assigned. The corresponding energy
tures in that it highlights the dependence of the scenario to beeads
expected on the correlations of the monomer sequences.
In order to keep the computations more transparent we Hy(w)= 2 €ab > (D)
avoid here the use of replicéalthough it would be possible —  (@b)l(wg.ep)ed
to write all of the ensemble-averaged cavity equations usingvhere the sum runs over couples of nonconsecutive mono-
replicag, but we keep to the traditional replica vocabulary of mers which are nearest neighbors on the lattice.
1RSB and FRSB to denote the two types of transitions. The choice of the matrix,, is crucial. The standard
We will apply here the general method to treat Markov-homopolymer model is recovered by settieg,=¢e,. A
correlated sequences. However, a much wider range of pogopular model in heteropolymer studies is tamdom bond
sible applications of this technique is open. model® which assumes the,,, to be independent identically
The paper is organized as follows: In Sec. Il we definedistributed(i.i.d.) quenched random variables. In this work
the lattice model and review the treatment of polymers in theve study the more realistic case where the interaction ener-
grand canonical ensemble. We then introduce the basic idegges are determined by the underlying monomer sequence.
of the Bethe approximation and discuss theollapse from  The sequence will be given by, ... ,on}, with o€ A
the random coil to the liquid globule phase. Section Il dis-being the type of the monomer at positiarn the sequence.
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The interaction energy of two monomers is assumed to dewhere the expectation valug; is taken with respect to
pend only upon the monomer type;,= Es o IN particular, the graph ensemblévheneverG is a random graph The

we shall focus on copolymeralthough the approach is gen- L— limit and the expectation with respect to the sequence

era) where there are only two types of monometd: (o1, ....00) are(eventually taken afterwards.
={A,B}. Interaction matrice&, ,. of particular interest are The two free energies defined above satisfy the usual
the following: Legendre transform relation, (B,u1)=f_(8,p) — wp. In or-

(i) The HP modelA andB monomers represefitespec- der to describe free polymefgé equilibrium with the sol-
tively) hydrophobic and polar aminoacids, and the interacven? the chemical potential has to be adjusted to the critical
tion matrix is chosen accordingly—e.gEaa=—1, Eng  Valuepu such thatw (uc)=0.° In the grand-canonical pic-
=Egp=0. This is a popular toy model for protein foldidy. ture this critical line corresponds to a phase transition be-

(i) The polyampholyteA andB are supposed to carry tween an infinitely diluted phase foe<u. and a dense
screened charges which suggeBjs\=Egg=+1 andE,g  Phase with nonvanishing osmotic pressuregfor u. . If this
=Eg,= — 1. Sometime we shall refer to this interaction ma- phase transition is continuous, the density on the coexistence
trix as the antiferromagneticAF) model. line vanishes, while it is finite if the transition is first order.

(iii) The symmetrized HP modalVe take Exa=Egg  On this coexistence line, the tricritical point where the nature
=—1 andEpg=Ega=+1. This is the standard model for of the transition changes is nothing but epoint where the
copolymers with monomers that have a tendency tceollapse of the unconstrained polymer takes place.
segregaté. We shall refer to it as the ferromagneti€) In a homopolymer, the above description captures the
model. essential of the phase diagr@mHowever, in a heteropoly-

As for the graphG we shall consider two particular Mer, the low-temperature dense phase will be strongly influ-
cases{i) A V-site portion of thed-dimensional cubic lattice. €nced by the sequence heterogeneity. Due to the connectivity
(i) A V-site Bethe lattice—i.e., a random lattice with con- of the polymer chain, it is in general impossible to find a
nectivity (k+1). Its interest stems from the observation that,compact folding where all interactions are favorable. The
in the thermodynamic limit, our mean-field calculations aresystem is frustrated, and a glass transition will take place at
exact on such a graph. sufficiently low temperature.

Both for our analytical computations and for the simula-
tions on the Bethe lattice we shall need to consider periodic
sequences with peridd: o;= o, . The complete sequence B. Bethe—Peierls approximation

is therefore determined by its first periodry(, ... ,0.). As already mentioned, the Bethe approximation is as-
Hereafter, we shall use the shorthand notation “monoaier ymptotically exact on locally treelike graphs. Following Ref.
to refer to all monomers in positiorss+ nL with integern. 23 "\we define a Bethe lattice as a random lattice with fixed
Furthermore, monomer indices always should be reagonnectivity. Such a lattice is locally tree like since the typi-
moduloL. We expect the nonperiodic case to be recovered i) loop size diverges as \hwith lattice size. In order to
the L—co limit, even if this limit is takenafter the limit  phandle the heteropolymer problem ordadimensional hy-
N,V—o. percubic lattice within the Bethe approximation, our ap-
The random-bond model is obtained in §éf=L—  proach idealizes the graph as a Bethe lattice with the same
limit by settingo; # o,#- - # o, and taking thés,, . to be connectivity,k + 1= 2d.
i.d. random variables. The local tree structure of the graph can be exploited in
In order to understand the influence of the correlations iry recursion procedure. Suppose for a moment that the lattice
the sequence of monomers, we shall consider Markoviafy g tree, and let us single out a single branch of the tree
random copolymer chains in the largdimit. In these chains  \ynich is rooted at one “cavity site” 0 having only neigh-
the probability of a monomer to be of a certain type dependgorsj=1,...k. In the absence of 0, the branch would become
only on the preceding monomer in the sequence. For the sakg collection ofk other branches, rooted at1,...k. This

of simplicity we assume the two types of monomers to occUkrycture allows for a recursive computation of the probabili-

chains is then fully characterized by the probability We first list the possible local conformations of the cav-
<[0,1] of a monomer to be of the same type as the precedyy site 0 in its branchsee Fig. 1 (0): the site is unoccupied;
INg one. (1) or (] a): the site is occupied by the monomeand the

We study the system at thermal equilibrium at a temperapackbone continues towards the remainder of the tree, with
ture T=1/B. We define a canonical free energy density as monomera—1 ora+ 1, respectively; (2): the site is occu-
) pied by monomera, but the polymer returns back to the

1
—BfL(B,p)= lim vEgm(E e An(e) (2) leafs.(On a real tree the parts of the polymer on different

NN\SJ: @ branches are necessarily disconnected. However, on the
Bethe lattice this is no longer the case and the polymer may
and its grand-canonical counterpart be present on more than two leavyes.
For each local conformation «€{0,7a,|a,2a}
— B (Bp) = lim %Edn( S BNy eﬁHN(g)), of the root site 0, we denote tpt? the corresponding prob-
Voo N=0 © ability (as given by the Boltzmann measureThe

(3)  (3L+1)-dimensional vector of weights(®), with compo-
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FIG. 1. Possible conformations of a siter oriented edgeon the regular
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The internal energy;; of a link (i,j) can be written in
terms of the cavity fields onandj [giving the probabilities
of local conformations om and|j in the absence of the link

(DI
o Pllpfhe e
My (&:0)= e o 50y
(11)
where n;j(a,b) is the probability of having a contact be-

L
Ujj = > €apij(a,b),
a,b=1

Bethe lattice. The cavity site is considered as the root of a branchkwith tween two monomers and b along the link (J) of the

leaves(here k=5). The thick lines and solid circles represent the chain

backbone and monomers, respectively.

nentsp”), can be expressed in terms of the corresponging

weight vector() on the neighboring sites. Note tha{) is
the Boltzmann weight for the configuratianoni when the

graph. The normalizatiow,(p®",p\) is given by
L
wi(p®,p)=p(p+ 3 phiple e

L
+ 2 (pb'pll+phapt)

site 0 is absent. We will refer to these weight vectors on root

sites as cavity fields.

The mapping between cavity fields, p(®
=1[pW), ... p®], can be written explicitly as
k
pt”=c'11 vf, 4
=
k
plv=ctef2, pllall v, ®)
k
p9=c 163, ) T v, ®
piR=Cctefr 3 plY pf2, 1 v, )
i1 71y JFiq,00

where C=C[{p"}] is a normalization constant which en-
forces the conditior® ,p!”=1 and we have introduced the

guantities
L .
D=p+ 3 pie e
a'=1
(tS)
The full lattice is built by mergingk+1 branches.

L
w=pP+ S ol
a'=1

+p{a_1pf2+pidpt_y). (12)
For each edgei(j) of a given graph, one can introduce
a pair of cavity fields, describing, respectively, the probabil-
ity of local configurations of the two pointsand | in the
absence of the edge,{). One can write a Bethe free energy,
which is a functional of all these cavity fields and has Egs.
(4)—(7) as stationarity conditions. It reads

Infw{], (13

ij)e

VB[ {p"}]== 3 Infwi]+ >

wherew!” andw{'!) are the expressions given in Eq40)
and(12), respectively. Notice, moreover, that the denggy
and the internal energ§ll) can be obtained by differentiat-
ing the Bethe free energy with respect to the chemical poten-
tial » and the inverse temperatuge

It is easy to show that the above expressions are exact if
the graphg is a tree. On a general lattice it holds approxi-
mately to the extent that one can neglect the correlations
between the fields on thet+ 1 neighbors of any site, once
the sitei itself has been deleted.

On a Bethe lattice, since the typical loop size diverges as
InV in the largeV limit, thesek+ 1 sites neighbors af are
generically distant from each other, whieis absent. There-
fore the correlations of their fields can be neglected, if the

Therefore, once the cavity fields have been computed, onsystem is in a single pure state: at low temperature the Gibbs
can express any local quantity using the neighboring cavityneasure usually has to be decomposed into pure states,

fields. The monomer densipf! at sitei is a function of the
k+1 cavity fieldspl) on thej=1,... k+1 neighboring
sites ofi (recall thatp) gives the probability of a local
conformation onj in the absence af):

(i) 32 (i)
P(i):i pTal+1p1§71HJ#J1,iz'/’a ©)
i, wleW, .. pka)

where we have defined the normalization constant

k+1 L
e g 0)=T] eSS o,
j=1 a=1ji1#js
02, T 0. o
1#11.]2

within which the correlations between two sites decay with
their distance along the graph. We thus expect the above
cavity approximation to become asymptotically exact, inso-
far as cavity fields are computed within one pure state.

C. Liquid solution and the  @-point

Both on the random Bethe Ilattice and on the
d-dimensional cubic graph, each site has generically the
same environment within any distan&e (as long asR is
kept finite in theV—o limit). A liquid phase is therefore
expected to enjoy translational invariance and will be de-
scribed by a set of fieldp! that is independent of the site.
We thus look for a fixed poinp!’=p* of the recursions

@—().
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It turns out that the liquid solutions can be found by
solving a system of.A|+2 nonlinear equationd,A| being
the number of monomer species in the model. This is a great
complexity reduction with respect to thed.3-1 equations
(4)—(7). The task can be further simplified by using particu-
lar symmetries of the interaction matrix. This is, for instance, By
the case of the F and AF models defined in Sec. Il A, which
are symmetric under the interchariye-B. We refer to Ap-
pendix A for a detailed discussion of how the solution is p=0
obtained.

As shown in Appendix A all the thermodynamic quanti-
ties depend upon the sequenee, (... ,0.) only through p
the fra(;thnSV(, (_)f monpmers of type. As a by'prOdUCt' th? FIG. 2. The phase diagram corresponding to the liqtianslation invari-
L— <o limit can immediately be taken. The physical meaningany solution in the grand canonical ensemble. Above Ehéemperature,
of this result is easily understood. In the liquid phase, thes<pgg . the phase transition from the random coil phage<(s.) to the
correlations induced by the sequence play some role juﬁlobule solution with fir_li'te density,(>,.LC) is continuqus. At low tempera—
along the chain, and their net effect vanishes at large dighfe=/? s, e ransiton becomesfst rde nd s accomparied by o
tance. In particular, the monomaris surrounded by a cer- in coexistence with the surrounding pure solvent. The free polymer under-
tain fraction of monomers of type’ which only depends on goes a collapse transition at tiepoint.
the type ofa, o, (apart from the sites occupied by the mono-
mersa—1 anda+ 1, of course.

Let us now discuss the various solutions of liquid type. for instance, the homopolymé point on the cubic lattice

The random coil phase is described by the trivial solu-given by Tg=1.50 for d=2,* 3.7167) for d=32! and
tion pX =&, o, which exists for any choice of the parameters.5.986) (d=4).32 Moreover the authors of Ref. 33 found
This phase has vanishing grand potensiadnd densityp. At  Tg=2.25(10) on the three-dimensional diamond lattice
high temperatures this is the only solution whets smaller  (connectivity k+1=4). These results should be compared
than the critical chemical potentiat, given by expBuc) with the outcome of the Bethe approximatifef. Eq. (14)],
=1/k. At u a nontrivial solution emerges continuously. The which yields Tg gene~2.466 303 5(for k=3), 3.476 0595
latter describes a liquid phase under pressurecQ for u  (k=4), 4.4814201K=5), and 6.487 159 2k=7). As for
> uc) with a density that vanishes on approaching the criti-heteropolymers, the authors of Refs. 34 and 35 estimated
cal line. Te~1.2 both for the F and AF models of Sec. Il A th

The collapse of a free polymer from the random coil =3. This result is compatible witf'g=1/In(2)~1.442 695
state to the liquid globule occurs at the so-cali2ghoint. In which comes out of Eq(14).
the grand-canonical description, it appears as the tricritical ~ Finally, several numerical studi®s’ have focused on
point on the line exp§u)=1/k. Expanding aroundp? the ® point of random bonds models and have argued that its
=J,0, ONne obtains the following relation which determineslocation is extremely well approximated by an annealed

spinodal:v

the ®-point temperature: computation. Once again, this confirms that Etg) is a
K reasonable approximatigthe random-bond model is recov-

> v,v,e PeEor= — (14)  ered by setting A|=L, v,=1/L andE,, ii.d.s random
o,reA k=1 variables. This is also related to the numerical finding that

see Appendix A. This result has previously been obtaine(ﬁhe glol_)ql collapse in p_rgtein folding dynamics is essentially
within the framework of the standard cluster variationalUNSensitive to the specific structure of the sequence, but only
method?® At temperatures below th® point, 8>3, , the depends on its global compositidn.

grand-canonical phase transition becomes first ofdee
Fig. 2.

The critical lineu(8) is obtained by equating the grand
potentials in the coil and globule phases—i.e., by solving If we follow the entropy density(B) of the liquid so-
=0 for the globule solution. The density, internal energy,lution as a function of temperature, we find that in any het-
and free energy are obtained by plugging the globule soluerogeneous sequensgB) turns negative at sufficiently low
tion p% into Egs.(9), (11), and(13). temperatures. This indicates the existence of a phase transi-

In the low-temperature regiof>Bq, the dense solu- tion to a glass phase which breaks the translational invari-
tion can be continued to values of the chemical potentialgince.
smaller than the critical ong(8) and ceases to exist on a As we will show, this glass transition can be of two
spinodal line. types. In certain sequences the “entropy crisis” is preceded

Likewise, the trivial dilute solution stays locally stable by a local instability of the liquid fixed poinp% of the
beyond the coexistence line up to the spinodal gx)( cavity recursiong4)—(7). This implies the divergence of a

Ill. GLASS PHASES

=1k. properly defined spin-glass susceptibility and signals a con-
The above results compare reasonably with the outtinuous glass transition towards a phase with fully broken
comes of numerical simulations ordadimensional lattice—  replica symmetry.
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In other sequences and in the Gaussian random bond In a system with a discontinuoUdRSB glass transi-
model, this local instability is irrelevant since it occurs—if at tion, this approach gives a full description. The complexity is
all—in the region of negative entropy of the liquid globule. strictly positive in the intervab < w<wg, corresponding to
The glass transition is thus necessarily discontinuoushe intervalmy<m<mgin the 1RSB parameter. The thermo-
(1RSB), as was predicted from replica calculations for thedynamically dominant metastable states are obtained by
random-bond modéf minimizing the one-replica free energy— 873 (w). In an

Dealing with the glass phases requires some modificaintermediate temperature reginig<T<Ty, the minimum
tions of the simple Bethe—Peierls approximation which weis attained for some free energy, (corresponding tan,
have been using so far. In this section we will describe first=1), with o<w,<wq. Below the glass transitionT
some general properties of the glass phases and explain tkeT, the minimum is attained at the lower edgg = wq
general technical tools that can be used to study glass trafwith X (w,)=0], corresponding to the 1RSB parameter 0
sitions using the cavity method. <m, <1.

In a system with a continuous glass transiti&RSB),
the full solution should involve grouping states into clusters

In a glassy phase, the space of conformations is expecteghd clusters into superclusters, building up a continuous ul-
to split up in a multitude of pure states that are separated byrametric hierarchy. The approach above amounts to a 1RSB
large free energy barriers. The slowest time scale of the syspproximation of this full structure, and we shall not attempt
tem, corresponding to jumps between pure states, increasg&sgo beyond this level of approximation.
dramatically.

In a mean-field approximation or on the Bethe lattice,
this time scale diverges and ergodicity is broken at the “dy-B Order parameters
namic” phase transition. The system eventually undergoes a’ P

A. Proliferation of pure states

“static” phase transition(with a nonanalyticity in the ther- In this section we present two types of order parameters
modynamic potentiajsat a lower temperatur&:° which can be used to identify the glass phase.
In a finite-dimensional model the “dynamic” phase tran- For a polymer in Euclidean space, described by the po-

sition becomes a crossover where the nature of the mosijtion ﬁi of monomeri, let us consider two replicas of the
important dynamical processes changes. Whether thgolymer in the same pure state. In the glass phase, provided
“static” phase transition survives in a given model or not is the global rotation symmetry is broken, the local conforma-
not known in general. We shall not enter this dispute her&jon of the two polymers will have a certain tendency to be
since we have little to say about it. In any case, the meanthe same while the liquid phase is completely disordered in
field-like Bethe approximation, assuming the existence othis respect. In order to measure this effect, we introduce the
many pure states, yields some useful insight into the glasscalar product of the distance vectors between nearby mono-

phase. mers in the replicagl) and (2):
Within one pure state, the conformational probabilities
on a given site are well definéd*° However, there is no FL2=> (R —RW). (R@) —R(®). (16)
i

reason to assume the equality of local fields on different

sites. Rather one expects that in a given pure state the Sitgg, sha)| pe interested in computing the average of this quan-
will have different preferences for certain polymer confor- g \vhen the replicas are constrained to remain in the same

mations. . L pure state. More precisely, we want to evaluate
To proceed, one has to use a statistical description of

local fields. We shall not explain here all the details of this
description, but just give the main definitions and refer the
Refs. 28 and 40 for detailed discussions. In a glassy phase, . .
the number of pure stated|(w) increases exponentially wh_ere We average over all State’.SW'th thelr_ Boltzmann

with the volume of the system. The complexifyw) is the We'gthWY' This qu;_anut_y IS acces_smle nu_merlca_lly. we con-
monotonously increasing, concave function defined byS|d.er a polymer which is thermalized at time 0 in a configu-

Ny(w)~exg V3 (w)]. The natural order parameter is the dis- ration I?i(t:O). We let it evolve for a timé, to a configu-
tribution of local fields over the pure statgswhose free rationR;(t). The order parameter is given by the quantity

energy densityw, is fixed to a valuew: 1 (w1 )
(F8 st { f dt5 2 (R a(H)—Ri(1)
tvax Jo N 45

(F) i ; wW( Fél'2)>1,ze i (17)

p(p)ocZy 8(p—p") 8(w,— wo). (15)

An alternative description consists in using a Legendre trans-
formation of the complexity by introducing the parameter
m=(1/8)2'(wy) and working at fixedm instead of fixed evaluated over time scaldégax Which are large but much
wo.* This computation is equivalent to a 1RSB scheme withsmaller than the typical time scale for interstate transitions or
Parisi parametem. From the free energy at fixad, ¢,(m), even full equilibration(in particular much smaller than the
the complexity>(w) is obtained through the Legendre trans-time scale for diffusion or rotation of the polymer, which
form: mB¢(m)=mBw—2(w). diverges withN).

-(ﬁi+d<0>—ﬁi<0>>> : (18)
{Ri(t=0)}

Downloaded 20 Jul 2008 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 23, 15 June 2004 Glassy phases in random heteropolymers 11239

A simpler order parameter can be defined by first intro-crease under the cavity recursiof)—(7) this solution be-
ducing, on each sité of the lattice, the quantityy; which ~ comes locally unstable. This phenomenon occurs when
takes the valus; =1 if the site is occupied by a monomar 2 =1 (21)
s,=—1 if there is aB monomer, ands;=0 if the site is max— =
empty. Then the overlap between two configurations 1 and @here\ .4 is the largest eigenvalue of the transfer matrix for

of the polymer can be defined as the propagation of deviations from the liquid under the re-
1V cursion(4)—(7):
(1L.9)_ — (1)5(2)
axs _Vi=21 SIS (19 M or=01,[pD, ... ,p(k)]/&pfyl,)|p(i):p* . (22

Again, one can compute the typical distafehs?)qaebe-  [Notice that the stronger instabilityi\ | =1 Ref. 42 is ir-
tween two conformations in the same state by recurring tdelevant on a random lattice, since it is associated to the
dynamical simulations. establishment of a crystalline order that is inherently frus-

Notice that bothg{:? and F{? define a notion of dis- trated because of the presence of large IdoBsyond the
tance(or similarity) between polymer configurations. How- local instability, the distribution of local fields(p) becomes
ever, they describe two complementary aspects of the polyrontrivial, but it remains centered around the unstable liquid
mer: qi:? essentially characterizes the bias of single sitedixed point. In physical terms this indicates that phase space
towards a specific monomer type, whereas the order paranfegins to divide up into a small number of states that com-
eterngl'z) measure theonformationalsimilarity of the rep-  prise a large number of microconfigurations. These states are
licas in the vicinity of a given site, once the monomer on thatcharacterized by weak local preferences for certain polymer
site has been fixed. They measure the freezing of the locg&onformations that deviate only slightly from the homoge-
degrees of freedom of the polymer’s backbone, similarly toheous liquid state.

the approach of Ref. 22. In contrast the paramefgf is In general, the instability21) develops below a tem-
hardly sensitive to the geometric constraints induced by th@eratureT; . Calling T the temperature where the entropy
backbone. vanishes, one can have two types of situations:

A dynamical evaluation of the above order parameters is (i) WhenT;<Tcs, the local instability of the liquid is
particularly convenient on finite-dimensional lattices. Noticeclearly irrelevant, and a discontinuous glass transition must
that the equilibrium probability for two independent replicastake place at some temperatueel ¢ ;s.

to have a finite overlapL? vanishes with the volume of the (i) WhenTg;s<T;, either the instability drives a con-
lattice because of translation invariance. tinuous glass transitiofas we will see in specific examples,

On the Bethe lattice it is more natural to work at a finite this seems to be the generic case when the instability occurs
monomer densitysee Sec. VD In this case, the random in a region where the liquid entropy is still larger there
structure of the lattice acts as a “pinning field,” and two €Xists again a discontinuous glass transition taking place at
rep”cas of the same System typ|Ca||y have a finite over|aptemperature§—>-ri and rendering the |nStab|l|ty irrelevant. It
F0||owing the practice from Spin-g|ass theory’ we shall COI"I-iS also possible that a first continuous glass transition to-
sider the probability distribution of the quantitt9) with ~ wards a slightly frustrated phase undergoes a successive dis-

respect to the Gibbs measure: continuous phase transition at lower temperatures where a
(1.2) stronger degree of freezing takes place.
Pag(q)=(8(d—dag"))- (20) It turns out that the stability conditiof21) can be stud-

In a liquid phase(qgléz)%tateVaniSheS and the function ied explicitly for AB copolymers with an interaction matrix
Pag(q) is a & function. In a glass phas@(:?)qe>0 and ~ Which is symmetric undeA«— B interchange. The detailed

the functionP A(q) becomes nontrivial, with support in the calculation is given in Appendix B. The dangerous eigenval-

interval[_<Q,(A\léz)>statei<q,(o\lé2)>stat<;|- In the case of a continu- ggz;ﬂg; the matrix M in Eq. (22) are found to obey the

ous transition{ F{?) ¢, and (q{%?) ¢tare Vanish at the tran-
sition point, while they exhibit a jump in the discontinuous 1  wsinh(B)
-

case. “k 1+wcoshB)

_ —L
IV. METHODS TO STUDY THE GLASS PHASES _ )‘[% (kn) 7] r N
IN THE CAVITY APPROACH (k=2)+k(kN) "=+ 2(k=1D) 22 gi(kn)

(23

In this section we present the methods that we use twhere the sign corresponds to ferromagnetic) (and anti-
study the glass transition on the Bethe lattice. They are agerromagnetic () interactions, respectively. The
plied to various types of polymers in the next sections. temperature-dependent parameve+ E'e;:lp;a/p(’; charac-
terizes the liquid solution and is independentLofcf. Ap-
pendix A and Eqgs(B1) and (B2). The sequence properties

The simplest glass transition is the one associated witlenter the above expression only through the autocorrelation
an instability of the liquid. The liquid solution is always functiong;=(1/L)=5_ 0,004 -
embedded in the 1RSB formalism as the single pure state The local instabilityB; occurs at the smallest value gf
that exists at high temperature: it is described by the fieldvhere the characteristic polynomi&23) has a root with
distribution p(p) = 8(p—p*). If fluctuations around* in- IN|?k=1. Usually, for attractive interactions between equal

A. Local instability towards a soft glass phase
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mBd1(M)=mBw—2(w). Note that the recursion relation
(24) corresponds to the saddle point equation for the func-
tional ¢4(m) with respect top(p).

Close to a continuous glass transitiom,is strongly
peaked around the liquid fixed poipt, and we can expand
the free energy as a function of the moments of the fluctua-
tionsp—p* over the pure states, as outlined in Appendix D.
To leading order the corrections to the liquid free energy

, arise from fluctuations in the “replicon” mode, the unstable
FIG. 3. Unfrustrated, maximally dense structures on a tiee3). The . . .
ampholyte(left) has an evident stratified order and long-range correlationse'genveCtor of the transfer matri22), whose magnitude

1/2 . L2
of site occupancies. The location Afs andB'’s in the HP polymerrighty ~ 9rows as T;—T) ™% The continuous glass transition is found
is correlated with the backbone configuratigiick edgeswhich makes the  to be of third order:
distribution of monomers look random.

1-m 3 4
¢1_¢|iq:C(2_—m)2(Ti_T) +O((Ti—T)9, (26)

monomers, the relevant eigenvaluexis 1/Jk while the in-  wherec is a positive constant. This is in contrast to discon-

stability occurs in general with = —1/\k in ampholytes.  tinuous glass transitions which afgenerally of second or-
The location of the instability for the various types of der in the free energy.

interactions and sequences will be studied in the next sec-

tions. Let us just mention here that thgeriodig Gaussian

random-bond heteropolymer generically undergoes a discon-

V. TWO EXEMPLARY CASES: THE ALTERNATING

in 1RSB gl ransition, in agreement with previ
anuaus RSB glass transition, in agreement With PIEVIOUS,pHoLYTE AND HP MODEL

B. Cavity recursion within the 1RSB approximation In this section we apply the cavity 1RSB formalism to
_ two specific sequences: the regularly alternating copolymer

In order to study the glass phase itself, we need t0 CoMgpains ABABAB. .. for ampholytic and symmetrized-HP
pute the distribution of local fields of EGLS5) for the Bethe  jyieractions. These turn out to be rather extreme representa-
lattice. We shall do it here within the 1RSB cavity formalism iyes in the ensemble of possible neutral copolymers, but

of Refs. 28 and 40. We shall not rederive the full formalismthey are the simplest ones, and they exhibit the characteris-

but give the main ingredients needed for our study. Takingjs of the continuougampholyte and discontinuougHP)
the statistical average of the simple cavity recursién?), i ansition in a very clear manner.

which holds individually for every pure state, one obtains a  he folding of an alternating copolymer on a regular

recursion relation for this distribution: Bethe lattice is a frustrated problem, while, clearly, on a
1 k _ regular cubic lattice, it would just behave as a homopolymer
p(p)= EJ IT do(p®™)s(p—1[p®, ... ,pM7) with homogeneous interactiofis,g=e. However, we expect
=1 that as soon as a certain number of defects are introduced in
Xe_mmf[pa) ,,,,, p(y (24) such sequences, their folding on the cubic lattice will be
' similarly frustrated. In terms of Markovian sequences, we
wherel[p®), ... p®] is given by Eqs(4)—(7) and Zis a  consider here the case af<1.

normalization. The nontrivial reweighting, which depends on  While these sequences are expected to behave differently
the parametem defined in Sec. Il A, involves the free en- from the alternating oner=0 on the cubic lattice, it is rea-
ergy change induced by the recursion, which is given bysonable to assume that the—0 limit is smooth on the
Af[{pMH=— B~ tIn(C[{p™}]), whereC[{p}] is the nor-  Bethe lattice. Then the Bethe approximation @f<1 se-
malization term appearing in Eq&)—(7). This reweighting quences can be studied using the perfectly alternating se-
accounts for the fact that the number of pure states increasegience, as we do here here. Alternating chains are more eas-

exponentially with their free energy. ily studied with the cavity method, since the number of local
The free energy is obtained by properly weighting thefields may be reduced to(Wvith four independent degrees of
contributions of different pure states: freedon): due to the inversion symmetry the local conforma-
K+1 tions reduce tar e {0,1A,1B,2A,2B}, where 1A (1B) com-
Bma,(m)=—1In f H dp(p(i))W?({p(i)})} prisgs the twp conformation]SA and |A (1B andlB).' The
i=1 cavity recursion relatiorf24) can then be solved efficiently

using a population dynamics algorithm described in Appen-
dix G.

A. Ordered structures, correlations, frustration, and
(250 the order of the glass transition

2
k+1 _
5 In{ f [T dp(p®)w"(p™,p®)
=1

where wg and w, are the site and link partition functions Before embarking on the details of the cavity computa-
defined in Egs(10) and (2). The complexity>(w) is ob-  tion for the alternating chains, we present here some simple
tained from ¢,(m) through a Legendre transform: arguments explaining the very different physical nature of
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This is not the case in the HP-like model where most con-
straints from loops can be satisfied when the backbone is
arranged in the right way. In other words, the information
about local conformations and the associated constraints can-
not be propagated far away in the case of the HP-like chain,
since the correlations of ordered structures die out quickly
with distance. As long as the density is not too large and
there are sufficient voids in the globule, a global frustration
will not be able to establish. For the ampholyte, however, it
will be favorable, even at lower density, to develop local
(site) preferences for a certain monomer type and thus in-
crease the probability of satisfied interactions. This mecha-
nism is at the basis of the instability of local fields in the
liquid. Note that in the first place this instability is related to
the type of monomer accommodated on a given site rather
than the backbone structure. The latter will only come into

It play at larger densities and lower temperatures.
E L}’glass This qualitative discussion applies equally to correlated
05 ! sequences which are not perfectly alternating but have a
! strong tendency to alternatemall 7). At the other extreme,
0 ; if one considers the case afclose to 1, where consecutive
} monomers tend to be alike, one can apply the same type of
-0.5 ! considerations, but with the roles of ampholyte and HP-like
I chain reversed. We can thus conclude that the local instabil-
-1t | ity of a HP-like chain with long blocks of like monomers is
i glass associated to the appearance of pure states_ characterized by
—-L5r ! the samemonomer preferences for small regions on the lat-
! tice. This is reminiscent of the microphase separéfion
-2 ' ' p ' ' (MPS) which has been much discussed in this context and
0.6 0.8 1 1.2 B 1.6 18

becomes relevant for sequences with a distinct block

structure124445 However, one should remember that the
FIG. 4. Observables for the alternating ampholftegp) and an alternating present form_UIatlon Of. the cavity method, which ne_gle,CtS
HP-like polymer(bottom on a lattice with six neighbors per site. The thick Small loops in the lattice, does not allow any quantitative
lines show the density, entropys, and internal energy computed in the  study of this phenomenofthis could be addressed using

glass phase using the 1RSB approximation. The thin lines give the corremore refined cluster variational methds

sponding values in the liquid solution. In the case of the ampholyte the .

liquid solution is unstable beyon@;~0.7947, and the glass transition is Repeating the above arguments for more gene_ral cases

continuous. For the HP-like polymer the liquid solution is always locally Of short-range correlated sequences, one sees that in general

stable, and the glass transition is discontinuous. It is an almost perfect freez local instability is favored by sequences whose monomer

ing transition as in the REM. distribution tends to be annealdd.g., ampholytes with a
tendency towards charge alternation along the sequelice

the glass phase in the alternating ampholyte, which has ig interesting to note that such “annealed sequences” natu-
rally result from common protein design scherfigg'?

continuous transition, and in the symmetrized HP model,
which has a discontinuous transition.

Instead of a Bethe lattice, let us consider a regular tre
and ask for a maximally dense polymer configuration suc
that all interactions are satisfiedAB interactions in am- We start our quantitative study with the alternating am-
pholytes andAA or BB interactions in the symmetrized HP pholyte on a lattice with connectivity+ 1= 6. For this poly-
mode). In Fig. 3 we show typical configurations for each mer, the local instability of the liquid found from E23)
case. develops at the inverse temperatuf~0.7947, much

While there is a stratified order in ampholytic configura- smaller than in most other neutral sequences. The Parisi pa-
tions that manifests itself in strong long-range correlationsrameterm remains small throughout this phase.
the symmetrized HP model has an “ordered” structure thatis A closer analysis of the instability shows that the most
highly correlated with the backbone configuration. No long-unstable eigenvector is antisymmetric with respect to the ex-
range correlations may persist, and this dense ground stateéeange ofA and B. This indicates that the pure states are
difficult to distinguish from a dense liquid configuration. essentially characterized by the preference of the sites to ac-

If we turn back to a Bethe lattice, frustration is induced commodate one of the two monomer species, in agreement
by the presence of large loops. Odd loops are inherentlyith our qualitative discussion.
frustrated in the ampholyte since they necessarily have to  On lowering the temperature, the preference of sites for
break up the long-range correlations of the layered structuresertain conformationgand not only for the respective mono-

. Continuous transition in the ~ AB ampholyte
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14 d=3 FIG. 6. Average length of the polymers simulated on the Bethe lattice. Sizes
12 L /—,' of the lattice are indicated in the legend. The arrow signal the liquid—soft-
' glass phase transition.
1t ]
M% d=2
(F;i 08 7 _ _ o
C. Discontinuous transition
0.6 1 1 in the alternating HP model
e ii{,_______; The case of the symmetrized-HP alternating sequence,
0.2 | 1 always on a lattice with connectivity+ 1=6, is extreme in
0 . . L s the opposite sense. The liquid solution is always locally
1.36 B; 142 B, 4 stable, even in the region of negative entropy. However, run-
B ning the population dynamics algorithm for the 1RSB cavity

method, one finds a discontinuous glass transition. The dy-
FIG. 5. The order parametet§ {2 for the glass phase, defined as the namic transition takes place @#,~1.387, just before the
time-persistent part of the distance vector between monomers at a distan@htropy crisis of the liquid B.is=1.4525). The static phase

d=1, 2, 3, 4 in the backbongsee Eq.(17)], plotted versus the inverse e ~ . . .
temperatureB. The upper graph corresponds to the alternating ampholyte,tranSItlon follows ats 1.442, in a region of very hlgh

while the lower graph refers to alternating HP-like polymers. Note the con-d€nsity, p~0.95, and almost vanishing entropy. In the bot-
siderably higher values in the latter case, indicating a much stronger freezom panel of Fig. 5, we plot the density, entropy and internal

ing of local conformational degrees of freedom. energy for the alternating HP-polymer along the coexistence
curve. The internal entropy of the statically dominating pure
states is seen to nearly vanish in the frozen phase, and the
system barely evolves upon lowering the temperature. This

mers, increases. This could be interpreted as a growing desScenario is very similar to the abrupt freezing encountered in

gree of freezing that affects larger and larger length scales.the REM.

Figure 4 shows the basic thermodynamic observables
p,S,u in the glass phase, computed in the cavity method, an
compares them to the values found in the unstable liquid
solution. The data have been computed on the coexistence
line—i.e., by fixing u.(8) such that the glass static free D- Numerical simulations
energy vanishesp;(mg; u.)=0 (as explained in Appendix As we already stressed, one advantage of our approach
C). The strong frustration of the polymer can clearly be seertonsists in the possibility of checking mean-field computa-
from the suppression of the density in the glass phase thaions using numerical simulations of well defined polymer
saturates aroungd=0.71, while in a liquid phase it would models on a Bethe lattice. Here we want to demonstrate this
tend top=1. The entropy crisis of the liquid is prevented, feature by considering the alternatiAd® ampholyte.

the internal entropy of the pure states remaining rather large e made extensive simulations on Bethe lattices with

even at low temperature. There is no sign of a str@tig- gggne':ctivit)lll «:ﬁ):de and volumedS/. rarr:ging frc_)m 100 t]? d
continuous freezing transition. . For all of the data presented in this section, we fixe

In Appendix E we explain how to obtain the order pa-’BZZ'O above thed-point inverse temperaturge ~0.693

L : o and varied the chemical potential As w is increased, the
rameter(lﬂ_ within the cav_|ty appro>_<|mat|on. The result _for system undergoes at first a second-order collapse transition
the alternating ampholyte is shown in the top panel of Fig. 5(at,uw —3.21887) and then a continuous glass transition to
confirming again the continuous nature of the transition.  the soft glass phade;(8)~ —2.384 31.

The order parametéi 7) is obtained as in the case of the
mpholyte. The result is shown in the lower panel of Fig. 5
here a clearly discontinuous transition can be seen.
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24 FIG. 8. Top: finite-size scaling of the spin-glass susceptibility. It exhibits a
0 e, clear divergence as a function of system size at the expected yalue

Bottom: probability distribution of theAB overlap, evaluated in the soft
glass phase at=—1. In the inset of the upper frame we compare the

" second moment of th&B overlap(q3g) with the analytical prediction.

FIG. 7. Simulations of the alternating ampholyte on the Bethe lattice with

connectivityk+1=6. The energy per site of the polymgop) and its den- . .
sity (bottom) are plotted versus the chemical potential. In the main framesfects are a rounding of the collapse transition and a small

numerical data'symbolg for various lattice sizes are compared with the shift of the soft glass transition[which occurs at
cavity results(dashed ling for an average polymer lengtf)—c. The wi(B.finite 1)~ —2.409 23].

agreement is very good. In the insets we plot the liquid prediction for infi- . - . L
nite (solid line) and finite (dashed ling average polymer length, which In order to achieve equilibration within the soft glass

shows that the finite-length corrections are already small. Notice that in th@hase we adopted the parallel tempering technifteWe
density inset the theoretical curve for finite length is barely visible becausgested equi|ibration using the method of Ref. 52 and a|Ways
itis superimposed on the data. The arrows indicate the analytic result for thEhecked that the acceptance rate for temperature exchange
glass transition poing; .
moves to be larger than 50%.
In Fig. 7 we plot the energy per lattice site and the
monomer density, as functions of the chemical potential
Notice that most of the algorithms for simulating poly- Notice that the liquid—soft-glass phase transition is barely
mers on finite-dimensional graphs cannot be applied to thédiscernible from the monomer density, and the energy curve
Bethe lattice. In fact local moves are impossible because a6 also quite smooth. The 1RSB cavity result gives a very
the absence of short loops. On the other hand, global movegod quantitative description of the transition.
would require a detailed knowledge of the loop structure for  In order to get a finer description of the glass phase, we
any graph realization. have measured the order parameter funcBgg(q) defined
This problem can be overcome by simulating a melt ofin Eqg. (20). In Fig. 8 we report our numerical data for this
variable-length polymers, the length being finite in the ther-quantity at the highest chemical potential considergd (
modynamic limit. The single-polymer physics is recovered=—1). Because of the large finité-effects, it would be
when the average length diverges. We refer to Appendix Hifficult to conclude from the numerics alone that the
for a detailed description of our algorithm. In Fig. 6 we showinfinite-V function is nontrivial. However, the data agree
our numerical data for the average polymer length No-  with the 1RSB predictions for the Edwards—Anderson pa-
tice that(l)~10—25 within the dense phase. As will be clearrameter,ggza~0.259.
from the other numerical results, this is enough for assuring  In the same figurétop frame we consider the spin-glass
small deviations from the infinite-length limit. The main ef- susceptibility
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FIG. 9. AverageAB overlap{gag) among two replicas coupled through a
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This quantity diverges agt— u. in the thermodynamic 7k B 8
limit. In a finite-size sample, its behavior is ruled by the d \
usual finite-size scaling form 09 r 7 ~
xsol Vo) = V2 IV (= ). (28 os  liquid globule :
From the cavity solution of the model, one finds tkaf ) 0.7 0 0'1 0'2 0'3 0'4 0'5 0'6 0'7 08
~A(B)[ w— pe(B)1? for u=u(B). This result implies the ' ’ ’ TIZ ' ' ’ ’
following relation between the critical exponents defined in eff
Eq. (28):

FIG. 10. Phase diagram for ampholytéep) as a function of sequence
2—p+2/v=1. (29 correlations and inverse temperature. The solid line indicates the local in-
stability B; of the liquid as a function of the Markov chain parameieihe
In fact we find a nice collapse of data corresponding to dif-points with error bars indicate the dynamic phase transitignéound nu-

ferent sizes using=4 and n=3/2. The comparison of merically for several sequences of perlog 20. An effective parametery

2 : ; [ ; ; is associated to each chain such that the local instability predicted#ggm
<qAB> with the 1RSB cavity predICtlon IS quite gOOd. coincides with the actual one. Almost independently of the chain composi-

An alternative approach fpr e>_<p|oring _the |0W'ene_r9y tion we find a highly frozen phase beyo~1.23 that is reached via a
structure of the system consists in coupling two replicasiiscontinuous glass transition well before the liquid would undergo an en-

through their overlap: cf. Eq19). In practice, one adds a tropy crisis atB.s. For m=<0.50, this freezing is preceded by a continuous
term of the form — N,BEQAB(S(l) S(2)) to the two-replica glass transition, as predicted from the local stability analysis of the liquid.
. . . . ’ . The actual thermodynamic freezing transition occurs at a lower temperature

Hamiltonian and tries to estimatg:, as follows: Bs>Bq. The horizontal lines for the static and dynamic transitions are an
—lim i M <2 educated guess for the location of these transitions in the limit. The

Qea=lim Iim <qAB(S 'S )>N,E' (30 same general phenomenology holds for the HP-type mdtelsom), but

€ 0N—ee here the continuous transition takes placerat0.5. Notice that themqy

window displayed here is larger than in the upper graph.

In Fig. 9 we show the numerical results f(qag)n  ON &
large-size lattice {=10%) and several values af In order
to simulate large lattices, we did not use parallel tempering

here. Furthermore, we adopted a weaker equilibration critetion functiong; is large and its sign oscillate@lternating
rium, requiring(dag)n. . to be roughly time independent on a sequenceor remain po_s,|t|ye(“blocky” sequ_ence.

logarithmic scale. Once again, the numerical results compare 10 be more quantitative, let us consider a random co-

favorably with the outcome of the cavity calculation. polymer chain in the limil. —o characterized by the prob-
ability 7 <[0,1] of two neighboring monomers to be of the

same type. The autocorrelation function of such a chafimis
the L—o limit) q;=(2w—1)'.

Using the formula(23) one can show that the local in- In Fig. 11 we plot the inverse temperatyBeat the local
stability appears the earlier, the stronger the tendency dhstability as a function of the parameteifor the ampholyte
monomers to be annealed along the sequence—that is, tlaad symmetrized-HP models.
more A’s and B’s tend to alternate in an ampholyte or to This instability is certainly irrelevant whepg; is larger
form blocks in an HP model. In both cases the autocorrelathan the inverse temperature of the entropy crisis of the lig-

VI. RANDOM MARKOVIAN COPOLYMERS

Downloaded 20 Jul 2008 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 23, 15 June 2004

Glassy phases in random heteropolymers

11245

0.16 : '
0.16
~ 0.14 F enl 4 T, =0.479 llquld globule
— ot @ We=0.518
~ 012 | at X neﬁr=0.539 q I/k
h ws} O Tyr=0.632
§ 0.1 t o 1 1
S~ o0 (<=}
0.08 | o 1 ;
! o o2 o coexistence
X o0 | ] line :
Il o
N L wx=(). 5 ¢ : ¢
~S o Topy =0.542 4 random coil Do
< T4 =0.498 o
~ 002} Rp=0.466 | P
| Togy=0.400 0 i
ols _— ~b s B, B
! Lo5 L1 115 12 125 13 135 1 B Sk

FIG. 11. The variancép? ,_i),—(P;a-1))> of a selected local field as a

function of inverse temperature for a variety of antipalindromic sequences

of periodL=20. In general, there is a very distinct discontinuous transition
aroundBy~1.23, which is preceded by a glassy regime with smaller fluc- 1/k
tuations in the local fields if the sequence has a tendency for anticorrelation

in ampholytes(main frame or correlation in symmetrized HP-like chains

(inse). The sequences are characterized by their effective Markov chain
parameterr as in Fig. 10.

liquid globule

coexistence
line

random coil

uid, Beis=1.4525. This situation occurs for>0.4480 in
ampholytes and proves the existence of a discontinuous tran
sition. But already wherB; is smaller than, but close to,
Beris: one should expect a discontinuous 1RSB transition to B
take place at #<p; . FIG. 12. Schematic phase diagram of copolymers as a function of inverse
In order to complete the diagram, we have numericallytemperaturgs and chemical potentigk. A polymer in equilibrium with the
solved the cavity recursion by population dynamics for neu-solvent s described by the coexistence line. Beyonditmint, 8> B¢ , it
tral sequences of peridd= 20, but otherwise random com- is in a gollapsed phase with a finite density. Dependmg on the sequence
. . . correlations of the copolymer there may be a local instability of the liquid
position. From the experience gained for the extreme case ansh—dotted ling giving rise to a continuous glass transition &t (see
the alternating HP modétee beloy, we expected a kind of  upper graph In the absence of a local instability down to a critical tem-
frozen solution with rather strong local conformational pref-perature in the range ¢8~1.23, a discontinuous glass transition will take
erences to dominate the low-temperature phase. Such a so@l‘i‘ce- The thermodynamitatig phase transition a8, is preceded by a
. . .. . . . . dynamic glass transition g, where the phase space splits up into different
tion is rather nontrivial to find in a huge functional space, Inpure states. In the glass phase, the critical chemical potential depends on
particular since it has to be expected that it occurs in a diswhether the dynamically relevant threshold stdtisshed lingor the states
continuous manner and cannot in general be found by rarflominating the static equilibriurtsolid line) are described.
domly perturbing the liquid solution.
We therefore proceeded by initializing the population in
a highly polarized state that we will discuss in more detail inbreak the balance betweénand | states. Indeed, there is a
the next section. This state actually corresponds to an urgauge degree of freedom associated to the relative weight of
stable fixed point, but it turns out that at low temperatures, ithe two orientations of the chain, and in general it is difficult
is usually quite close to a stable nontrivial solution of theto maintain them balanced, while it can be enforced in se-
1RSB cavity equations. At each temperature, we iterated thguences with a palindromic symmetry. The reason to choose
cavity recursion for about 100 sweeps of the population dyantipalindromic rather than palindromic ones is to avoid at
namics(cf. Appendix G, fixing the chemical potential to its the same time an asymmetry betweermndB states which
liquid critical value, since this value describes correctly thelikely occurs in small populations, in particular in the case of
thermodynamic equilibrium up to the static phase transitionattractive interactions among equal monomers.
The Parisi reweighting parameter was sette 1 in order to Our findings for the sequences of perioe 20 are sum-
detect the dynamic transition—i.e., the local instability of themarized in the plots 10 and 11. Figure 11 shows the variance
frozen solution. For reasons of numerical stability, we re-(square of the standard deviatjoof the local field for
stricted ourselves to sequences with an antipalindromid¢ (a=1) over the distributiorp(p) for several sequences as
structure—i.e., sequences invariant under inversion and sula-function of inverse temperature. This is a measure for the
sequent exchange d&’s and B’s. The field distributions degree of the local bias away from the liquid. Almost inde-
p(p) inherit this invariance, and thus in each update of a newpendently of the particular sequence statistics we find that for
cavity field we can decide at random to apply a symmetry3> B84~ 1.23 a strongly frozen phaseith very low internal
operation to the new fields first. This stabilizes the iterationentropy exists with an associated dynamic transitiorBat
since it counteracts the numerical tendency to spontaneousBiepending on the sequence statistics, the regime of higher

1 P Brs
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temperatures is either entirely liquid.g., form<0.50 in the  A. Fully polarized solution
ampholyte$ or exhibits a weaker form of frustration in a
phase of presumably fully broken replica symmetry. The lat
ter continuously joins the liquid solution at the local instabil-

There always exists a “fully polarized” solution to the
‘cavity equation(24) which describes pure states consisting
. : . ) of essentially one unique frozen polymer configuration. In
ity predicted by Eq(23). For the phase diagram in thf-u each such state, a given site only admits one specific local

plane for e|the.r of.the two scenarios we refer to Fig. .12' conformation. On averaging over the different pure states,
The generic picture of a quench in temperature is thug, given site will be found in conformatior with fre-

the following: For ampholyte sequences with some tendenc}ﬁuencyw . The local field distributions then take the form
to alternation or HP-like sequences with a preference for *

block formation, there is a continuous glass transition whose
location depends strongly on the composition of the se-

guence. The corresponding glass phase is characterized by a i () i (@) o
relatively weak frustration and a rather small number oflwhere the fielde'® are defined b, = 8., . This distri-

Ppol(P) = g Wo(B8,m) 8(p—€) (31)

states that comprise many microconfigurations with som&ution solves the cavity equations when the frequencies
weak local preferences for certain conformations. This preWa(/5,m) coincide with the local fields of a liquid at the
liminary glass phase undergoes a further discontinuous pha$gnormalized inverse temperatugé =mg—i.e., w,(3,m)
transition at a lower temperatug~1.23 that is almost in- =P (8’=mp). The replicated free energy of this fully po-
dependent of the sequence structure and might be called ti@ized solution is¢1(8,m)= ¢i(mB). The internal free
effective freezing transition. For sequences with correlation§Nn€rgy of the corresponding frozen states is related to the
of the opposite kind, the freezing transition is the only phasdiquid — quantities ~ via fpo(8,m)=d[md¢,(B8,m)]/dm
transition and occurs directly from the liquid. It is interesting = UYiq(MB) ~ #pig(MB), and the complexity of states is
to note that in numerical simulations of the folding dynamicsfound from 2 ,5(8,m)=sq(mB). As is evident from the
of neutral HP-type copolymers, the dynamical glass transihature of the pure states, their internal e_ntropy vanishes.
tion was also found to be essentially independent of the L€t us for a moment postpone the discussion of the rel-
sequencé. evance of this solution and first discuss its physical interpre-
It is intriguing that the critical parameter of separating ~ tation. At each value o8 we have to maximizep, over 0
the FRSB from the 1RSB freezing scenario is very close tg=M<1, under the conditio=0. For temperatures above
7= 1/2 which corresponds to sequences without correlationdhe liquid’s entropy crisisB< Bcis, the maximum is attained
This is particularly interesting from the point of view of & m=1 and we havasy=wjq. When B> B, the static
protein folding. The nature of correlations present in thedlass transition takes place and the free energy freezes to
amino acid sequences of natural proteins is still a matter og= @iiq(Bcri), the Parisi parameter taking the valug
intensive debate. The analysis of Pareteal® argues in = Bcris/ 8- S0 this solution describes a full freezing of the
favor of a tendency for sequences to be annealed—i.e., tBolymer in some isolated specific configurations, taking
exhibit positive correlations in the hydrophilicity and anti- Place at8=B;s. Notice that this scenario exactly parallels
correlations in the charge of amino acids, which would sughe one found in the REM.
gest a bias towards the FRSB freezing scenario for proteins. N the highly frozen phase of thaB copolymers(be-
However, the studies by Ifbl et al>*® rather point to- Yond Bq~1.23) we numerically find a solutiop(p) which
wards anticorrelations in the HP-type degrees of freedoni$ close to the forn(31), although small deviations persist,
which would favor a scenario with a direct transition from @nd the polarization is not complete. In the particular case of
the liquid to the frozen glass. The discrepancies of theséh€ alternating chain we numerically confirmed that the op-
studies mainly concern the nature of long-range correlationdimal Parisi parameter is well fitted bips="T/Ts on the co-
while on the level of nearest-neighbor correlations, the pro€Xistence line.
tein sequences appear to be rather random, hawhyd/2
with respect to both charge and hydrophobic—hydrophilic deB- Stability analysis and the limit of maximal density

grees of freedom. It would be very interesting to understand  gg far we have not discussed the range of validity and, in
whether the folding of natural proteins takes advantage fro%articular, the stability of the polarized soluti¢81). Unfor-
their sequences being very close to the critical border bepnately, this is a difficult problem, and we only can provide
tween the two scenarios. On the other hand, as mentiongshrtial answers.

earlier, most protein sequence design schemes tend to result |n order to obtain further insight we should perturb the
in (partially) annealed monomer chains which are thereforeansat231) and check whether the perturbation increases un-

likely to exhibit the intermediate soft glass phase. der the cavity iteratioii24). A simple perturbation consists in
adding to Eq.(31) some “almost polarized” fields with a
VII. CLOSE-PACKED LIMIT small total weight. Namely, we take a field distribution of the

In this section we provide a detailed analysis of the fro-form
zen phase in the limit of high density. We first show the
existence of a special “REM-like” fully polarized solution of p(P)=(1—a&)ppo(P) + &2 Wapa(Pp), (32
the 1RSB cavity equations at temperatures below the liquid’s “
entropy crisis. Then we show that this solution is stable inwherep,(p) is concentrated on fieldsclose toe®. In fact,
the close-packed limit of high densities. it is more convenient to think of it as a distribution over the
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“small” fields f={p. '} «o- Hereafter, we shall use the
notation p,(p) instead ofp,(p). Finally notice that the
p.(P)’s need not be normalized. Normalization is enforced
by the constana in Eq. (32).

Plugging the ansat@32) into Eq.(24) and expanding to
linear order ine, we obtain

p&o( p)=k E Plag,... oy ao)J dpal((j) FIG. 13. Instability of the completely frozen solution due to rearrangements
RF RN of the backbone.

XS(P—1G .. ... ). (33

Here we distinguished the distribution on the right-hand side,

po(-), from the one on the left-hand side,(-). In fact we P1A(P) = 8(P2 . P2e) P1a-18(P1e)

are interested in the stability of the iterati@#) and not just + 8(P1g,P28)P1A2A(P24) (37
in its fixed point. HereP(ay, . . ., | @) is the probability
of finding conformationsyy, . . .,y on thek leaves of the paa(P)=8(P1g,P2s)P2a—1a(P1A), (38

branch in Fig. 1, constrained to the root being in conforma-

tion ay. This must be computed within the solution de- and that the linearized recursions decouple in the three “sec-
scribed by Eq(31) and can explicitly be written in terms of tors” {1A—1B,1B—1A}, {1A—2A,2B—1B}, and {1B

the weightsw,(8,m). Finally i[G; s, . .. ;] denotes the —2B,2A—1A}. The first sector corresponds to shifts of the

“small” components of the cavity iteration: chain and turns out to be marginally stakitbe function
) F[q;az, ...,ay] has to be developed to second ordeg)n
(I[G;az, . . .o ) o=1,[0,62, ... W] for a#ay. The other two sectors correspond to structural rearrange-

o ) ) ments of the backbone and become unstable wimgh
Instead of continuing in full generality, let us consider <(MB)c=Y.= % In(2k—3). This instability has a simple

the example of an alternating F model in the closed-packefl, sical interpretation. The pure states describedrbg)
limit with Eaa=Epg=—Exg=—1 (remember that in this | ae 3 free energy densify=1/2. This means that, on av-

case we found a discontinuous phase transition with a high')érage, a randomly chosen site has one violated neighboring
polarized low temperature phase; cf. Sec. V Equations  ponq_je. one neighbor occupied by a monomer of the op-

(33) reduce to posite type. It is thus possible to rearrange the backbone of

k-1 the alternating chain without paying energy by opening the

pia(P)= 2, fna(pZAaPZB)f dp1s(G) 8(p1s chain at the given site and redirecting it in the direction of
n=0 the violated bond and propagating the rearrangement through
_e—2ﬁ(k—l—2n)qlA) the lattice; see Fig. 13.

For k=6 the instability appears at a smaller value than

_ i the liquid entropy crisisy < Beis( 4. — ). Thus, at low tem-
+0a0(P18,P28) | dp2a(d)5(P2a—€ "018) peratures 8>y, the thermodynamically relevant close-
packed states are correctly described by the stable polarized
+9506(P1p, st)J dpa(G) (Pap—€5a1s), solution withmg= B/ 8. In particular, we can immediately
deduce the ground-state energy of Hamiltonian walks of an

(34) alternating HP chain on a fixed connectivity random graph
from the value ofeiq(Beris; u—): This yields 0.083 686,

P . 0.120619, 0.172602, and 0.236 348 violated bonds per site
Paa(P)=28(P1g.P2s) | dp1s(d) for k=3, 4, 5, and 6, respectively.
_ A numerical study of the cavity recursion equations at
_afB _a B
X 5(p1a—€”02a—€ "d2p), 39 maximal density actually finds, fde<6, a coexistence of the

plus two equations obtained by interchangi@ndB. Here  Polarized solution with another solution in some intermediate
we used the shorthand(x,y)=&(x)5(y) and expanded range(y, th]- Thi; ?s a peculiarity of thg infinitgs regime,
I[§: s, . .. ] in the delta functions to linear order iy, the numerics at finite but large suggesting that the polar-

for o+ . The weiahts f.1 and are given b ized solution is_unphysical b_elovyt. However,_ sincey;
er ghts{fn} O g y < Buis» the polarized ansatz still correctly describes the low-

temperature regime.

- + (k_l — pm(k—1—2n) e -
n—mm n /€ s _ Whgt happens away from thﬁgoo limit? The possibil-
(36) |Fy of voids allows for new terms in the sum over conforma-
k—1 tions; cf. Eq.(33). It turns out that the iterations become
9aB=1 g 2Bm" unstable in the new sectors{f0—7a,7a—0} and

{0— |a,|a—0}. Physically, this means that the presence of
A little thought shows that, after one iteration of Eqgs. voids in the lattice always allows for a rearrangement of the
(34) and(35), we can set polymer configuration in soméerhaps very rajeregions,
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preventing a complete freezing in a single state. However, aive numerical analysis of the phase diagram for specific
y=Yy;, a stable fixed point close to the polarized solutionhydrophilic—hydrophobic chair,and the qualitative differ-
(31) still exists. ences found between selected sequences indeed reflect the
Let us finally notice that the stability of the polarized general tendencies that we predict from the cavity analysis of
solution can be studied within a larger 2RSB ans&fEhe  he slightly different but closely related HP-like model.
results coincide with the simpljfied trgatment prgsented here. The temperature of the dynamic transition at which
_These_resul_ts are furthgr conﬂrmed 'f_ one stL_Jd|es the behaYﬁghly frozen pure states appear is almost independent of the
ior of field distributions in thel — 0 limit following Ref. 57. . . .
correlations in the sequence as we found from the numerical
. solution of the 1RSB cavity equations. For the time being we
C. Exact enumerations on a cube do not have a deeper understanding of this finding, which is
In an attempt to verify the 1RSB or even REM-like na- in accordance with numerical observations in the dynamics
ture of heteropolymers, Shakhnovich and Gutin have exactlpf copolymer folding. We hope to obtain better analytical
enumerated all conformations of fully compact random 27-nsight into this phenomenon from a thorough analysis of the
mers on a X 3X3 cube and calculated the overlap distribu- stapility of the highly polarized low-temperature states. This
tion function P(q) as a function of temperatuf&™ They  \ould probably also explain why the border between the
interpreted their results in favor of a REM-like scenario ;rsp freezing scenario with an intermediate soft glass and
where only a small number of states dominated the 10Wye geenario of a direct liquid—frozen-glass transition is so

temperature regime arfd(q) exhibited typical features of a close to the Markov parameter=1/2, corresponding to un-

discontinuous glass phase. In view of our mean-field predic- :
correlated chains.

tions, one would expect to find a different scenario when It d be int ting t ify th dicti for M
repeating this analysis for copolymégith a certain amount . wou . ein ere_s ing to verify the pre. Ictions for Mar-
kovian chains experimentallypreferably with ampholytes

of sequence correlations their soft glass phase. = ; =
We first repeated this enumeration study fandomam- where the pair interactions are rather strprig fact it is

pholytes and found &®(q) order parameter very similar to possible to fabricate Markovian copolymers from a random
the random-bond case studied origindfiyn agreement with ~ polymerization process, whetecan be controlled by chang-
the results of Ref. 58. However, the same analysis done fong the chemical parameters of the solution. Furthermore, it
correlated ampholytic sequences with various valuesrof will be very interesting to review the studies of sequence
did not show any clear dependence snThis absence of correlations in natural proteins in the light of our findings.
evidence can have two origins. On the one hand, it might be  The results of the cavity method are expected to be exact
due to the extreme restrictions that full packing imposes ofgr polymers on randontBethe lattices, as is indeed cor-
the conformations. We have seen above that the fully densgporated by numerical simulations. However, on real-space
limit is very subtle since physically important degrees ofjattices the Bethe approximation neglects the correlations
freedom, which are found in a system with voids, are art'f"arising from small loops.

cially suppressed, as has been put forward by many It would thus be very important to check the effect of

7,22,60 ;i i
authors. On the other hand, it seems that these sizes &'€equence correlations through numerical simulations of poly-

too small to study the true phase-space structure of the glass . . . ' -
phase. mgrs gn a cubic Iat.tlce,. usmg our mean-field predictions a§ a
guideline. One regime in which the small loops of the cubic
lattice can yield a behavior which is qualitatively different
from the present mean-field analysis is the case where the
The cavity method approaches the lattice heteropolymepolymer has a strong tendency to form local crumples, as
problem from a point of view that analyzes the conforma-happens in block copolymers which undergo a microphase
tional degrees of freedom of chains with quenched-in seseparation. In order to study such problems analytically, it
guences. Furthermore, this method allows to Study the WhOlﬁ/oukj be interesting to improve the Bethe approximation by
temperature range and describes ¢heollapseand the low-  consjdering enlarged cavities that contain not only a single
temperature physics within the same formalism. In this sensgite hyt a small cluster of nearby sites. This actually amounts
we believe it provides an interesting perspective in the anag, 5 fyrther step in the framework of the cluster variational

lytic SFUd'e.S of heteropolymer folding. . . _method. For the homopolymeric case a first step in this di-
With this local approach we have studied the frustration_ .. : .
. . . . .. rection has been carried out in Ref. 61.
effects on a given site of the lattice. We find that the decisive Already on the level of the simplest cobolvmer model
features determining the nature of the low-temperature phys- y v 'mp poly

ics are the short-range correlations in the monomer sequenc\gfe found a surprisingly rich phase diagram as a function of

Polymers whose monomer distribution along the chain tendi€MPerature and sequence correlations. But clearly, the cav-
to be annealed have a proclivity to undergo a continuoudy Method is amenable to a number of generalizations that
glass transition to a soft glass phase before the strong free@llow one to study more sophisticated models of biopoly-

ing transition takes place. In oppositely correlated sequencd¥ers, including, for instance, backbone stiffness, orienta-
the freezing occurs directly from the liquid phase. A weaklytional degrees of freedom, or additional structural constraints
polarized phase with broken ergodicity and a high sensitivitysuch as the saturation of monomer—monomer interactions,

to the specific sequence has also been observed in the extemhich are crucial, e.g., for the folding of RNA.

VIIl. DISCUSSION AND CONCLUSION
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APPENDIX A: FINDING THE LIQUID SOLUTION : . :
wherez;, z, are two integration constants. We can exploit

In this appendix we show how the translation invariantthe invariance mentioned above in order to4ix=z =z.

liquid solution can be found by solving a set|of| + 2 equa- Substituting the expressiof&6) and(A7) into Eq.(A4)
tions[instead of & +1 equations as may appear from Egs.and using Eq(A5), we get
(4)—(7)]. First of all it is convenient to make a change of e BEqos
variables defining w,=(k—-1)LAD>, ——. (A8)
. 7 TEA 1+W7’
N0} o opf) p(®
w(l)_z B(T Z(T'a)n Em (1:31 p%% We are therefore left With a set 0f4| +2 equationg Eq.
0 (A5) plus the| A|+ 1 equations in Eq(A8)] for |.A|+2 real
L o) (A1) variables ¢ and the|.A|+1 variablesw,). As anticipated
W(')— E _(TeXp( BE,4). these equations depend on the sequence just through the fre-

qguenciesv,, oe.A. The reader will easily check that the

It is easy to see that the cavity equatigds—(7), as well as ~ Same is true for any physical observable.
the free energy13), and all the others observables can be ~ Near the® point all w,, are small, and Eq(A8) shows
rewritten in terms of thesel2+|.A|+1 variables. In using that to lowest order they satisfy,~w,X . 4v.€" %%~ By
the new variables, when not specified, we shall assume th#Posing that a nontrivial solution of EGAS) should exist
the indexo belongs to the enlarged spaf@ U.4. We will ~ one immediately obtains Eq14) for the location of the®
setEq,=E,0=0. point.

~The liquid fixed point has the translation invariant form
w=w,, z)=z,, z{)=2,,. The corresponding equations

are easily written: APPENDIX B: NEUTRAL AB COPOLYMERS:
T+w. k-1 LOCAL STABILITY ANALYSIS
la=kepn LAt LW, (A2) i i i
T+w | 1+w, ' Here we outline the computation of the local stability

condition for anAB copolymer having a generic peridd-
sequence. We shall use, depending on the context, the nota-
' (A3)  tion o,€{A,B} or o,e{+,—} for the sequence.
As already mentioned in Sec. IV A, we consider the case
Ziav1 Zja-1 of an interaction matrix symmetric undér— B interchange.
1+wy 1+w, Without loss of generality, we can restrict ourselves to the
cases of the AF and F models defined in Sec. Il A. Moreover,
we shall assume that the sequence is neutral—iges vy
(A4)  =1/2. Under these hypothesis, Eq#2)—(A4) admit the
symmetric ~ solution z;,= zla—z/\/— Wo=W, Wy
It is important to notice that the above equanons are invari —=w coshB, wherez andw are determined by solving the
ant under the transformatian,— y-z4, Z;a— 7y 'z, for equations

any positivey. we shall fix this freedom below. The reader

1+w, k=1

= w—bazd Zja-1
=ke’ 1+wy

1+W0

L
=k(k—1)ef*> e FEso,
a=1

1+w, k=2

X

1+wg

can easily check that any physical observalsiech as the Z:keﬂﬂ( z | [1+wcoshg\<? (B1)
free energy, the local energy, or the local density also 1+w 1+w '

invariant under such a transformation. This happens because, 214w coshg| 2

when following the chain along its conventional direction, — w=k(k—1)ef* ) (B2)
each time we arrive at a sii¢ we are obliged to leave the 1+w 1+w

site as well. We want to compute the local stability of the cavity re-
The above equations admit of course the trivial coil so-cursions(4)—(7) around the above solution. We therefore

lution z;,=2,=0. Moreover, if one hag;, =0 (2,5, =0)  imagine that the cavity fields for one of the sites .1,k (let

for a particularag, this impliesz;,=0 (z,,=0) for anya. us say the site)lhave been slightly perturbed and compute

Therefore, we shall hereafter assume thatz ,#0 forany the effect of such a perturbation on the site 0. To linear order

a. In this case Eqgs(A2) and (A3) imply the consistency we get

condition 520 =AozY) ,—Bowg+CowD, (B3)

L (k=1)Lv,

[ ke~
14w,

1+w,
1+wy

155 (A5) szQ=Asz{)_ —Bowg+Cowd, (B4)
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o L " o o We obtain therefore
0)_ 1 1)y _ 1 _
OWGI=D 2, (9203 o2l ~E o 5°(p)=AdP 5D (p)+ LCq(p) oW, (B15)
1 :
+F > swd, (B5) &W“’):zestz sW(p)eP+2Fsswi). (B16)
oe{AB} p
L We can now sets?(p)=x6D(p), sw®=xsw?), and
owi9=G> (efﬁEa’(r(a—l)ﬁz%lgﬁ- e*BEmr(au)gz(ﬁ;) solve for\, thus recovering E¢(23).
a=1 ' '
_ (14 —BEgr syu(1) APPENDIX C: COEXISTENCE CONDITION
H oW FTE%B} © oW~ (B8 FOR A MANY-STATE MOLECULE

The constant®\—H are all positive and can be expressed in It may be interesting to explicitly treat the case of an
terms of the solution of Eq$B1) and(B2). In the following  isolated molecule in equilibrium with the solvent and deter-
we will just need the combinations below: mine the coexistence condition in the glass phase. The result
is not obvious since the system can exist in many different

A= 1, CG= k_;_l L k=2 _w , (B7) States ye{l,... A} with (extensive grand potential

k kL 1+cw 2k 1+cw {Q4,...Q,}. Each one of these states describes a molecule
where we used the shorthane:coshg. confined to a volumey.

We must now identify the most relevant perturbation— L€t us suppose that each state can be traced as the vol-
i.e., the largest eigenvalue of the linear transformat@®)—  UmeV of the system is changed. This gives us the volume-
(B6). One can show that the subspace dependent potential® (V). If the statey is to describe a

. . molecule in equilibrium with the solvent, it should exert no
pressure on the walls of the container:
MWo=0; X, 82;,=0; X, 62,,=0; > éw,=0
a=1 a=1 oe{AB} de
(B8) v =0 (Cy

is stable under the iteratiai33)—(B6). It can be shown that W ('t te the tvpical val fthe ab
the most relevant eigenvector lies indeed within this sub- € want to compute the typical value or the above quan-

: : - : tity for states having a certain free-energy densi€y:
space. We restrict to it by defining the variables . Y
P y 9 ~Vw. Let us step back for a moment and consider the ex-
L R

_ tensive complexity (2;V,u«), where we made explicit the
OW= SWp— OWg, 5Tb5321 02120ab> dependence upon the voluriieand the chemical potential.
(B9) If we assume that states do not bifurcate and do no{atie

come into existengeas the volume is changed, it is easy to
51b5a21 0Za0a+p» show thaf? for almost any state,

where we used, e {+,—} for the polymer sequence. Using 2(Q,+dQ,;V+ dV,M)ZEA(Qy?V’M)- (C2)
the new variables we can rewrite the iterati@8)—(B6) as  Using the asymptotic behavid (Q;V,u)~V3 (w,x) and

L

follows: the general relations from Sec. lllA, we can establish the
L coexistence condition either in then(u) or in the (o, w)
SQ=Asl), + ECq,aéW(”, (B10)  plane(we always assumg and the energy parameters to be

fixed). From Eq.(C2), we immediately obtain the condition

SO—AsD 4+ S g s in the () plane:
la =Adar1t 5 ClaOW, (B11) s

0 (1) 4 5D 1 w-—(o,p)=2(o,u). (C3)
WO =2Gs( 8D+ 5(D) + 2F sow®), (B12)

This is suggestive of a balance between an “internal” os-
motic pressuras and an “interstate” pressureX(d,,>). In
the (m,u) plane, the condition assumes a more compact
form ¢,.(m,u)=0. If we consider the lowest-lying states,
1 their free energy density () is determined by the vanish-
o= & Ta%atb- (B13)  ing of the complexity= (w4 u),u)=0. Therefore Eq(C3)
is satisfied foru= ug, with wy(ug) =0. This coincides with

Notice thatq,=q_ . This remark allows us to sum Egs. the condition for a unique pure state. If metastable states are

(B10) and(B11) and to introduce the Fourier transfor(fior considered, Eq(C3) receives a nonvanishing contribution

where we introduced the notatigs=sinh 3 (for the F model
or s= —sinhg (for the AF mode) and the sequence correla-
tion function

L

p=2mn/L, ne{l,... L—1}) from the complexity: in particular, one obtaias>0. This is
L quite striking since we did not assume the system to equili-
8(p)= > (8%, e ira, (B14) brate among states of a given free endngliich indeed does
a=1 ' ' not happen on the short time scales that are relevant to de-
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® : ments of deviations from the liquid fixed poipt are at least
of second order inT;—T. The only moments of orderT{

—T)? are the first-order moments ¢\ ,), the remaining
second moment§A;A,), (A,A,), with u,»>1, and the
higher momentgA3), (AZA ), and(A?).

Let us now expand the 1RSB free enef@¥) in powers
of T,—T around the liquid solution.

The site term gives rise to a series

m k+1 k+1
(M4 = () 7 1)
1)<§1 ws , A+ 5 z s, ADAL

1+

|n[(ng)m

k+1

1 o
L . . _ DA M AN
FIG. 14. A schematic view of the coexistence between a multistate molecule ~ + 6 ;l Ws,,pr,L A v Ap > +
and the solvent. Each line represents the evolution of the internal free energy 7l
of a state as the volume is chand&{ w, ) = consi. The thick line shows m k+1 k+1
+
( 2 ) < (

the states which are in equilibrium with the solvent. In particular, we signal i), — @ A G)
the coexistence chemical potentials for static and dynamic states. izl WSvMAM + 2 IE#J WSvMVA# AV
1 2
termine the boundary conditions with the solyeit Fig. 14 s E WS,MVPAS)AE,‘)AE,') > +--
we illustrate the conditiofC3) in the (w, «) plane. Notice 12
that in general metastable statesth >>0) on the coexist- where summation over direction indicgsv,p=1,...,d is

ence line correspond to lower chemical potential than that ofacitly understood and we used the shorthand notation
thermodynamically relevant states.

k+1

] , (B1)

Let us finally consider the coexistence line at thermody- _ i IWs (D2)
namic equilibrium. Dominant states are obtained by mini- Sk WSWP i ’
mizing the free energy— B 13 (w,u) with respect tow. K
The coexistence chemical potentia] is then obtained from |1 F*Ws
Eq. (C3). In a more compactbut forma) way, it is deter- Ws uv™= VTS &AmaA(f; o (D3)
mined from the condition g g

max ¢b1(M, s, )| me [0,1]}=0. c4 B A

X 1 ( M*)l [0,1]} (C4 Ws uvp= WSW "q- (D4)

In the main body of the paper we focus on the behavior of

the polymer on this line. Generally speaking, at high tem-Note that we have made use of the fact thais a multilin-
perature the maximum in EQC4) is attained am=1. Since  ear function of the fieldp) so that higher derivatives have

¢1(m=1,u) = ¢jig(w), in this region the coexistence line is to occur with respect to variables on different sites. The
the same as for the liquid phase. At lower temperatures thgverage () is with respect to the distributions

maximum is attained for &€m, <1 and the thermodynamic ,(p®) ... p(p**) on all sites. The link term has an
coexistence line Iies-above the |IQU|d one. We refer to Flg 1%na|ogous expansion as E@]_), but the trip]e sum vanishes
for a summary of this behavior. since there are only two different field variables.

To proceed, we note the identity

we(p®, ... D) =Cp@, .. plkr D]

Here we analyze the solution of the cavity recursion near xwy(p,1[p@, ... kb)),
the continuous transition to first nontrivial order in an expan- (D5)
sion of its moments.

Calculating the moments of the cavity fields by using
both sides of the cavity recursion equation on the 1RSB level W, =W, (D6)
(24), one obtains a set of coupled nonlinear equations for the o ) @ .
moments of the fieldp, over the distributionp(p). It is  for all directionsu. Using thatdC/dA1”’|jq=0, this follows
convenient to change coordinates and define the fialgs ~from the properties of the subspa@8) to which the repli-
=3 ,A5(p,—p}) that diagonalize the matri22). Hereafter ~ CON belongs, one further finds
we shall denote by.=1 the most instablé¢‘replicon”) di- W =W, ;=0 (D7)
rection in this matrix and by the corresponding eigenvalue. ’ '

A careful analysis allows to establish the scaling of theand
moments with respect to the small paramet&f—1~T;

—T. The leading moment is given by the second moment of
the replicon mode. One finda )~ (T;—T) (the bracketg ) Let us now discuss the terms that appear to increasing
denote the average with respectdp while all other mo-  order inT;—T in the expansion of the free energy. There is

APPENDIX D: EXPANSION OF MOMENTS
AT THE CONTINUOUS GLASS TRANSITION

from which one immediately deduces

WS,lV:>\W|,lV' (D8)
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no first-order term proportional t¢A%), because of Eq. Cow =
(D7). The second-order term& ), (A, A,), (Ai), and Swp=0, 5275‘:?2 Oarn(kN)™",
<A§A «) come with products of factors, , and cancel ex- n=0

actly between the site and link contributions, due to Eq. Cow = (D14)
(D6). The only remaining term to second order is 5zla:T 2 Oan(kKN)7", Sw,=0odw.
n=0
+ +
Bm¢(2):(r;> { — (k Zl)k(Ws,11)2+ le(WLn)Z <A§>2, Things simplify considerably in several important cases:
(D9) (i) alternating copolymers(ii) antipalindromic sequences,

and (iii) Markov sequences in the—oo limit. In all this

However, using Eq(D8), the coefficient in brackets is seen cases the ratiwglll/wgll vanishes. The basic reason is that,

to be of ordek\?>—1~T,—T. because of EqD14), ws 147 turns out to be an odd function
The same mechanism suppressesatipeiori third-order  of {o,}. In these cases the free energy(m) takes the

terms(A$)(A,,A,) and(AT)(AJA,) by an additional factor simpler form[cf. Eq. (26)]

kan2—1 while the terms(AT)(A,), (A})(AZ), and (AT) k+Dk  1-m

x(Ai) do not appear, again because of H37). The only b1~ ig= " . S (K\2—1)3
surviving third-order contributions are the site terms propor- 12k=1)%B (2—m)
tional tO<Ai>32 +O((k)\2—1)4). (D15)

1/m m At the glass transition the maximum @f,; is attained at
®)=_— _1\Z 2 3 2\3 g 1
pmé (k+ Dk(k 1){6( Z)st“ﬁ( S)WSv“}<Al> ' m¢=0. The fourth-order term will shift its position tmg
(D100  =kn%2—1~T;—T, as we have explicitly checked in the al-

To first nontrivial order we finally have ternatingAB ampholyte.

IPRNE ) 2_1\4
1= Piigt ¢+ ¢+ O((KN"—1)%) APPENDIX E: COMPUTING THE ORDER PARAMETER

1-m IN THE CAVITY METHOD
=+ ——(k+ 2 2_ 2\2 . .
gt 48 (ke Dkws (kA== 1)(A7) In this appendix, we show how to calculate the local
1 1 o structural order paramete(%7) using the cavity method.
+ —_m(k+ Dk(k—1){ Zw2 5~ —mW311 In the spirit of the Bethe—Peierls approximation we treat
2pB 6 3 the self-avoidance of the polymer chain just on a local level,
><(A§>3+O((k)\2—1)4). (D11) forbidding it to leave a site on the edge on which it arrived,

but neglecting further constraints that arise on a real space
Since the form(25) of the free energy is variational the lattice. In the following, we call “nonreversal random
saddle point conditiod¢, /9(AT)=0 must hold. This allows walks” (NRRWS this restricted class of walks on the cubic

us to obtain the leading moment to first orderTin-T, lattice.
W2 Let us rewrite the distance vector between mononers
(A= g oy (2 ) and i+d as ROY-RO=30r) with rI=RY),
(k1) L2 m)Ws 1= Ws10/2] —RM .. If the positions along the chain are statistically
+0O((kA?>—1)?). (D12 equivalent, the overlapF 4) e CaN be written as
Using this result in Eq(D11) we get d ! d
g q(D11) we g 6 (Fél’2)>state:<z (E P+ :E r»gl))
(1_m) k(k+1) Ws,ll I=0 \n=1 n=I+1
$1= bt 128 (k—1)° [(Z_m)wg,ll_wg,lll/z]z : d
X (kA2—=1)3+0((kn2—1)%) (D13 8 n§=:l Fn+n=§|:+l ng))> ' (ED
. state

Note that the prefactor okf2—1) in Eq.(D12) has to  where we split the sum according to the lengibver which
be positive for consistency. A negative value indicates thathe replicas stay together and pijf’=F?=r, for n<I.
there is no stable solution close to the liquid fixed point andNote that once is fixed the common part of the path and the
the glass transition would be discontinuous. By explicit cal-two legs of lengthd—1 can be considered as nonreversal
culation of this coefficient at the instability point we found random walks, only subject to the constraint that the legs
this to happen only in very atypical sequences with highlyleave in different directions at the bifurcation. These random
nonsymmetric interactions. walks have all the same weight when averaging over pure
Evaluating the coefficientsvg;; and wgqq; requires  states. Hence, in order to evaluate HEgl) it is sufficient to
knowledge of the replicon eigenvector. This can be derivedtalculate the probability P(l))sae for two replicas in the
for the case of copolymers with symmetric interaction matrixsame state to follow the same path over a distdndeom
Ean=Egg= —Eag, and equally frequent monomer species,which we obtain
va=vg=1/2, extending the arguments of Appendix B. In d
S;rg;:lljbl\a;nv(\j/eaobtalr(umng the variables defined in Appen (Fél’2)>state:|20 (PN sd (15d), (E2)
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k (i1) \a/i2)
where P _212¢J1WI;;+WI;§+ (E9)
I N o ~(1) lia Wl;a({pL}LEI')Z '
fhd)={ | X fot > 7§
n=1 n=1+1

The Weights\N,(fl;:, are the Boltzmann factors associated

L d 2 with a polymer starting with monomeron site 0, staying on
x| X ot X T : (E3)  the path, and leaving it at the sitevia neighbor (,j),
n=1 NRRW(1)

n=I+1

k 0,’ k

the average being taken over the uniform distribution of two ) _ gu(i+1) > pﬁ(é_)l)l—[ o)

NRRWs aftel common links. hax ORI SR
Using that in a NRRW one has(f, -7 )nrrw

-1 k-1 - k
=1/ki"~"2l and distinguishing the different possible confor- «T1 | T1 l//(l"i) Pgléji)(ul) TT w00
mations at the bifurcation, one easily finds o \ic1 axl’ (v[fa(-’:llj oy raxl
-1 I od-l
I-j 2 1 (E10
f(l;dy=1+2> —kJ—+EE > T2 o o
=1 np=1n,=1 the signtindicating that monomer indices increase or de-
q 91 d 1 crease along the path. Notice that in E9) we selected
S P m— (E4)  arbitrarily one of the two equivalent directions. In the above
Kni=1np=1 kM2 formulas, W,..; and W,., are the Boltzmann factors associ-

(The first two terms stem from the self overlap of the COm_ated with the ensemble of all possible configurations on the
. . X P I;?ath and of the configurations restricted to have a monomer
mon part, the term in the middle is the cross term betwee

. ; . a on site 0, respectively. They are conveniently calculated
the common part and a leg that continues straight with re- P y y y

. .recursively via
spect to the common part, and the last term is a negative y

contribution due to two legs leaving in opposite directipns. W.. ¢ =c(plD. plk
In the liquid state(P(1))q is just given by the probabil- anol {Pez) = CPTT, - PTE)
ity that two NRRWs stay together over a distarice ><W|71;a/tot({p‘}bez|71|D('fl’k)
_oy= K =1(pty, ... ptHhy), (E1D
Piq(1=0)= K1 (E5)

wherel denotes the cavity iteration functional as defined by
k=11 Egs.(4)—(7) andC is the corresponding normalization con-

Pig(1>0) = K+1 K- (E6) stant. The initial conditions for EE11) are simply
Upon injecting Eqs(E4), (E5), and(E6) in Eq.(E2) one may ~ Wq.o(p®Y, ... p@k+1)
verify that (Fg);q=0. _ _ k+1 k+1

InNthe glass phas«éP(I)}statels most easily evaluated as :egﬂlz p(lglf)llp(lzlf)lw H 0D (E12
N (P(I))stater WhereN(l) is the number of rooted NRRWSs i1#ip jAiip 8
of lengthl andP(l) is the probability for two replicas to stay nd
on a specific path of length a

In the Bethe—Peierls approximation the latter can be W (p©D (0K = w.(pOD (0k) E13
computed within an enlarged cavity containing all sites of oo P DU = WP ). (ELY
the path. The average over the states is done by averaging
independently over the local field distributions on all neigh-APPENDIX F: MONTE CARLO SIMULATIONS
boring sites, taking into account proper weighting factors, ON THE BETHE LATTICE

1L T, 2 dp(P) P aWiol (P e )™ In this appendix we describe our approach to numerical
P s > : 0 — r:] , simulations of heteropolymers on the Bethe lattice. In the
L=t JlLezdp(P™)Wiod{P%.cz) first part we define a model for finite-length polymers. In the

(E7) second one we present our Monte Carlo algorithm.

where we have introduced the set of indidgdabeling the 1. Finite-length polymers

i +1 si : . . .
neighbors of thé +1 sites on the path We consider a modified ensemble for a varying number

Ileikozl{(OJ O)}U:f_:ll(uikl,_:ll{(l ,!il’)})uiklzl{(l JiDk. qf finite—length random walks. More precis,ely, a configura—
(E8) tion is deflped byn mutually avoiding SAW’s. The chain
shall containN; monomers, the total number of monomers
P,.a denotes the probability, given the local field configura-being fixed,N;+ --- + N,=N. The Hamiltonian(1) receives
tion, for two replicas to both stay on the given path up to sitecontributions both from self-contacts within a single chain
| and to separate afterwards, under the condition to start ofind from mutual contacts between different chains. The
at site O with monomea: grand-canonical free energy is
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(a) ensemblgF1). Evidently the algorithm is more efficient for

moderate lengths of the polymers—i.e., not too large values

of |uend. It can be therefore convenient, for producing

equilibrated configurations, to gradually decredgg,{ to

the desired value.

® Ly,

APPENDIX G: NUMERICAL SOLUTION
OF THE 1RSB CAVITY EQUATIONS
WITH POPULATION DYNAMICS

) _ _ The form(24) of the cavity recursion equation is sugges-
FIG. 15. The three moves used in our Monte Carlo simulations on the Beth

lattice. The monomergchain linkg which change due to the move are five Of_ a40nume_nc"fll s_olutlon by _an |terqt|ve population
represented with hatched circlésiggly lines). dynamics:" the distribution of local fieldg(p) is represented

by a (finite) population of fields. An iteration step in the
dynamics consists in choosing at rand&niparent” mem-

—BorL(Bi s, end bersp" of the population and calculating the corresponding
1 cavity fieldp©@=1({pM) from Eqgs.(4)—(7). This new field
= lim < EgIn E eﬂﬂencﬁz eﬁﬂNz e BHN(e) | is then exchanged against an old field in the population with
VeV n=0 N=0 Z probability C[{p"}]™/CP., proportional to the reweighting

(F1) C[{p®M}]™ (normalized so as to make sure that the probabil-

) ) ) ) ity never exceeds)1If the dynamics converges to a station-
We introduced the chemical potentiab,q which couples to 4y gistribution, its density satisfies the recursion equation
the number of chain ends in the solutitr, equivalently, to (24).

the number of polymejs The single-polymer ensemble is

recovered in thgueng— — o limit. o ~ since the distribution of fields remains centered around the
_ Extending the cavity formalism to the finijgs,qcase is  ynstable liquid fixed point. However, the algorithm consid-

quite stralghtforwgrd.'As an illustration, we can easily W”teerably slows down in the frozen phase where the fields have

down the generalization of Eqed)—(7): strong biases towards given conformations. Since the biases
ko of the k parent members are only rarely compatible with
pP=cJ ¢, (F2)  each other, the reweighting is usually very small. The popu-
=1 lation dynamics is then dominated by rare events with a low
k . koo degree of frustration. Obviously, the probability of frustrated
p%%’=C‘1eﬁ“H zﬁg”| efrendt > f)(T'a)w 1], (F3)  events rapidly increases with the number of different local

=1 =1 conformations and thus with the length of the periadFor

In the soft glass phase, the iteration converges rapidly

k k this reason we have limited our numerical simulations in the
pﬁ?,):C’leﬁ”H ¢2)| eﬁuend+2 piie)ll], (F4)  frozen glass phase to populations of 4000 fields for chains
i=1 =1 with L=20.
k k
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