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We develop an analytic approach for the study of lattice heteropolymers and apply it to copolymers
with correlated Markovian sequences. According to our analysis, heteropolymers present three
different dense phases depending upon the temperature, the nature of the monomer interactions, and
the sequence correlations:~i! a liquid phase,~ii ! a ‘‘soft glass’’ phase, and~iii ! a ‘‘frozen glass’’
phase. The presence of the intermediate ‘‘soft glass’’ phase is predicted, for instance, in the case of
polyampholytes with sequences that favor the alternation of monomers. Our approach is based on
the cavity method, a refined Bethe–Peierls approximation adapted to frustrated systems. It amounts
to a mean-field treatment in which the nearest-neighbor correlations, which are crucial in the dense
phases of heteropolymers, are handled exactly. This approach is powerful and versatile; it can be
improved systematically and generalized to other polymeric systems. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1738639#

I. INTRODUCTION

In the last 20 years much effort has been devoted to the
theoretical study of heteropolymers.1,2 One of the main mo-
tivations was to understand the statistical physics of protein
folding.3–8 Despite the insight that has been accumulated, the
goal remains distant. On the one hand, most analytical stud-
ies have been limited to random bond models9,10 ~in which
the interaction energies of all the couples of monomers along
the chain are independent random variables! or to uncorre-
lated random copolymer sequences.11,12 However, there are
many indications that sequence correlations induced by natu-
ral selection play an important role for the folding and sta-
bility of proteins. On the other hand, in this difficult problem,
analytic computations have to resort to some approximations
which are not easy to control. It is thus important to have a
variety of different techniques at hand in order to cross-
check the predictions.

In this paper we develop a tool for the analytical study of
heteropolymers, based on the cavity method as used in vari-
ous frustrated systems~a short account of our results can be
found in Ref. 13!. We use this method to investigate the
phase diagram of copolymers with Markovian sequences.
Within our approach we find copolymers to exist in three
distinct dense phases~apart from the diluted coil phase at
high temperature! depending upon the structure of the inter-
action energy matrix, the sequence correlations, and the tem-
perature:~i! the liquid globule phase in which distinct mono-
mers are essentially uncorrelated and can freely rearrange
within the globule~apart from obvious constraints on mono-
mers that are close along the chain!, ~ii ! the ‘‘frozen glass’’
phase in which the polymer is stuck in one out of a few
well-separated low-energy conformations, and~iii ! a ‘‘soft
glass’’ phase with broken ergodicity~in the thermodynamic
limit ! in which the thermodynamically relevant conforma-

tions form a continuum in configuration space. This last
phase has never been predicted in an analytical computation
~although such a possibility has been envisioned in phenom-
enological models,7,14 and a very similar phase seems to be
present in the numerical results of Ref. 15 on the dynamics
of heteropolymers.!. Albeit frustrated, it has a much larger
entropy and appears already at a smaller density than the
usual ‘‘frozen glass’’ phase.

Some of the most successful tools used so far in the
study of random heteropolymers are mean field approaches
based on the replica method.9,10,12 Crucial to these calcula-
tions was the identification of some relevant order parameter
and the proposition of a suitable ansatz describing the phase
transition in a coupled space of real space coordinates and
replica indices. This type of approach is potentially very
powerful, but it becomes quite complex for heteropolymers.
On the one hand, it requires a physical intuition for identify-
ing the relevant degrees of freedom and of their behavior. On
the other hand, an ansatz tailored to describe a certain type of
physics may hide other, unexpected features.

Our cavity method consists in a refined version of the
Bethe–Peierls approximation. While this also represents a
kind of mean-field approximation, it differs fundamentally
from the previous ones. Applying the Bethe–Peierls approxi-
mation to lattice heteropolymers allows one to describe self-
consistently the frustration on a local microscopic level. This
approach can be thought of as the first step in the series of
cluster variational~or Kikuchi! approximations.16 Its general
philosophy consists in keeping track of local correlations in-
side some small region exactly, while treating the external
degrees of freedom as an environment whose statistical prop-
erties have to be determined self-consistently. In the Bethe
approximation, the only correlations which are treated ex-
actly are the ones between neighboring sites on the lattice.
This is an improvement with respect to the naive mean field
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that treats distinct sites as statistically independent. More-
over, it is the first of such approximations to be meaningful
for polymers, since the backbone structure induces strong
correlations between neighbors.17,18Another potential advan-
tage of the cavity method is that it can be used for one given
polymer, without the need to average over an ensemble of
sequences as in the replica method. While in the present
work we focus on ensemble-averaged properties, one should
keep in mind this possibility which could lead to interesting
algorithmic developments in the future. Finally, the refined
Bethe–Peierls approximation is supposed to be exact on lo-
cally treelike structures~e.g., on random graphs!. This is an
important feature: It allows one to set up the mean-field
analysis in a mathematically well-defined way, and its pre-
dictions can be checked against numerical simulations on
those random ‘‘mean-field’’ lattices for which the theory is
expected to be exact.

Within our cavity method, any heteropolymer is found to
undergo a glass transition at large enough densities. Two
main schemes of glass transitions can occur, depending on
the details of the sequence, each of them being associated
with one of the types of glasses mentioned above.

The transition to the frozen glass phase is a discontinu-
ous transition, which is called a random first-order or one-
step replica symmetry breaking~1RSB! transition in the rep-
lica language. It corresponds to the type of transition which
has been found in many previous studies, of which the ran-
dom energy model19 ~REM! is the simplest archetype.

The transition to the soft glass phase is a continuous one,
corresponding to full replica symmetry breaking~FRSB!.
This is more in line with recent scenarios proposing a freez-
ing that proceeds gradually from small scales to larger and
larger structures.20,21In a series of papers exploiting a Gauss-
ian variational technique to deal with the dynamics of het-
eropolymers, copolymers in particular, a much richer phase
diagram was proposed, where the ultimate REM-like folding
to a unique ground state is preceded by a less structured but
still frustrated glassy phase.22 As for the glass transition, the
random copolymer was proposed to be in the same univer-
sality class as the Ising spin glass,20 which would imply a
continuous transition with a full breaking of the replica sym-
metry.

Beside providing an alternative and well-controlled ana-
lytical approach, our cavity analysis adds to the above pic-
tures in that it highlights the dependence of the scenario to be
expected on the correlations of the monomer sequences.

In order to keep the computations more transparent we
avoid here the use of replicas~although it would be possible
to write all of the ensemble-averaged cavity equations using
replicas!, but we keep to the traditional replica vocabulary of
1RSB and FRSB to denote the two types of transitions.

We will apply here the general method to treat Markov-
correlated sequences. However, a much wider range of pos-
sible applications of this technique is open.

The paper is organized as follows: In Sec. II we define
the lattice model and review the treatment of polymers in the
grand canonical ensemble. We then introduce the basic ideas
of the Bethe approximation and discuss theQ collapse from
the random coil to the liquid globule phase. Section III dis-

cusses the shortcomings of the liquid solution and general-
izes the method to the case where many pure states exist~as
typically in a glassy phase!. In particular, we propose a set of
local order parameters that allow us to distinguish both theo-
retically and experimentally between two different types of
glass transitions. In Sec. IV we describe some basic tools for
analyzing the glass transition. We present a local stability
criterion for the liquid phase and the 1RSB cavity equations
which are used to describe the glassy phase. This formalism
is illustrated in Sec. V by considering the exemplary cases of
alternating sequences with attractive or repulsive interactions
of like monomers.

It turns out that the two types of interactions imply very
different phase transitions: either a continuously emerging
‘‘soft’’ glass phase or the ‘‘standard’’ discontinuous freezing
transition. These two scenarios are found in the study of
Markovian chains in Sec. VI. The properties of the strongly
frozen phase are analyzed in Sec. VII by focusing on maxi-
mally compact conformations. We conclude with a summary
of our results and a discussion of their relevance for protein
folding. Several technical developments are included in the
seven appendixes.

II. CAVITY APPROACH TO HETEROPOLYMERS

In this section we describe the type of heteropolymer
models which we shall study. We derive their phase diagram
under the assumption that the polymer is ‘‘liquid,’’ meaning
that any statistically relevant conformation is dynamically
accessible to the molecule. In replica jargon this corresponds
to assuming replica symmetry. The next sections will render
more precise the regions of the phase diagram where this
liquid phase is stable and corresponds to the physically rel-
evant state.

A. Lattice polymer model

Our starting point is the standard model of lattice
polymers,23,24 which we generalize for polymers residing on
a general graphG. We denote byi , j , . . .PV the vertices ofG
~with uVu5V), and by (i , j ), . . .PE the edges ofG. Let v
5(v1 . . . vN), vaPV, denote a self-avoiding walk~SAW!
of lengthN on G. The position of a monomer along the chain
is denoted bya,b, . . .P$1, . . . ,N%, and we assume an inter-
action matrixeab to be assigned. The corresponding energy
reads

HN~v!5 (
(a,b)u(va ,vb)PE

eab , ~1!

where the sum runs over couples of nonconsecutive mono-
mers which are nearest neighbors on the lattice.

The choice of the matrixeab is crucial. The standard
homopolymer model is recovered by settingeab5e0 . A
popular model in heteropolymer studies is therandom bond
model10 which assumes theeab to be independent identically
distributed~i.i.d.! quenched random variables. In this work
we study the more realistic case where the interaction ener-
gies are determined by the underlying monomer sequence.
The sequence will be given by$s1 , . . . ,sN%, with saPA
being the type of the monomer at positiona in the sequence.
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The interaction energy of two monomers is assumed to de-
pend only upon the monomer type:eab5Esasb

. In particular,
we shall focus on copolymers~although the approach is gen-
eral! where there are only two types of monomers:A
5$A,B%. Interaction matricesEs,s8 of particular interest are
the following:

~i! The HP model. A andB monomers represent~respec-
tively! hydrophobic and polar aminoacids, and the interac-
tion matrix is chosen accordingly—e.g.,EAA521, EAB

5EBB50. This is a popular toy model for protein folding.25

~ii ! The polyampholyte. A and B are supposed to carry
screened charges which suggestsEAA5EBB511 andEAB

5EBA521. Sometime we shall refer to this interaction ma-
trix as the antiferromagnetic~AF! model.

~iii ! The symmetrized HP model. We take EAA5EBB

521 andEAB5EBA511. This is the standard model for
copolymers with monomers that have a tendency to
segregate.2 We shall refer to it as the ferromagnetic~F!
model.

As for the graphG we shall consider two particular
cases:~i! A V-site portion of thed-dimensional cubic lattice.
~ii ! A V-site Bethe lattice—i.e., a random lattice with con-
nectivity (k11). Its interest stems from the observation that,
in the thermodynamic limit, our mean-field calculations are
exact on such a graph.

Both for our analytical computations and for the simula-
tions on the Bethe lattice we shall need to consider periodic
sequences with periodL: s i5s i 1L . The complete sequence
is therefore determined by its first period (s1 , . . . ,sL).
Hereafter, we shall use the shorthand notation ‘‘monomera’’
to refer to all monomers in positionsa1nL with integern.
Furthermore, monomer indices always should be read
moduloL. We expect the nonperiodic case to be recovered in
the L→` limit, even if this limit is takenafter the limit
N,V→`.

The random-bond model is obtained in theuAu5L→`
limit by settings1Þs2Þ¯ÞsL , and taking theEs,s8 to be
i.i.d. random variables.

In order to understand the influence of the correlations in
the sequence of monomers, we shall consider Markovian
random copolymer chains in the largeL limit. In these chains
the probability of a monomer to be of a certain type depends
only on the preceding monomer in the sequence. For the sake
of simplicity we assume the two types of monomers to occur
with the same frequencies. The statistical ensemble of the
chains is then fully characterized by the probabilityp
P@0,1# of a monomer to be of the same type as the preced-
ing one.

We study the system at thermal equilibrium at a tempera-
ture T51/b. We define a canonical free energy density as

2b f L~b,r!5 lim
N,V→`
N5rV

1

V
EG lnS (

v
e2bHN(v)D ~2!

and its grand-canonical counterpart

2bvL~b,m!5 lim
V→`

1

V
EG lnS (

N>0
ebmN(

v
e2bHN(v)D ,

~3!

where the expectation valueEG is taken with respect to
the graph ensemble~wheneverG is a random graph!. The
L→` limit and the expectation with respect to the sequence
(s1 , . . . ,sL) are ~eventually! taken afterwards.

The two free energies defined above satisfy the usual
Legendre transform relationvL(b,m)5 f L(b,r)2mr. In or-
der to describe free polymers~in equilibrium with the sol-
vent! the chemical potential has to be adjusted to the critical
valuemc such thatvL(mc)50.26 In the grand-canonical pic-
ture this critical line corresponds to a phase transition be-
tween an infinitely diluted phase form,mc and a dense
phase with nonvanishing osmotic pressure form.mc . If this
phase transition is continuous, the density on the coexistence
line vanishes, while it is finite if the transition is first order.
On this coexistence line, the tricritical point where the nature
of the transition changes is nothing but theQ point where the
collapse of the unconstrained polymer takes place.

In a homopolymer, the above description captures the
essential of the phase diagram.27 However, in a heteropoly-
mer, the low-temperature dense phase will be strongly influ-
enced by the sequence heterogeneity. Due to the connectivity
of the polymer chain, it is in general impossible to find a
compact folding where all interactions are favorable. The
system is frustrated, and a glass transition will take place at
sufficiently low temperature.

B. Bethe–Peierls approximation

As already mentioned, the Bethe approximation is as-
ymptotically exact on locally treelike graphs. Following Ref.
28, we define a Bethe lattice as a random lattice with fixed
connectivity. Such a lattice is locally tree like since the typi-
cal loop size diverges as lnV with lattice size. In order to
handle the heteropolymer problem on ad-dimensional hy-
percubic lattice within the Bethe approximation, our ap-
proach idealizes the graph as a Bethe lattice with the same
connectivity,k1152d.

The local tree structure of the graph can be exploited in
a recursion procedure. Suppose for a moment that the lattice
is a tree, and let us single out a single branch of the tree
which is rooted at one ‘‘cavity site’’ 0 having onlyk neigh-
borsi 51,...,k. In the absence of 0, the branch would become
a collection ofk other branches, rooted ati 51,...,k. This
structure allows for a recursive computation of the probabili-
ties of the polymer’s conformations on the tree.

We first list the possible local conformations of the cav-
ity site 0 in its branch~see Fig. 1!. ~0!: the site is unoccupied;
(↑a) or (↓a): the site is occupied by the monomera and the
backbone continues towards the remainder of the tree, with
monomera21 or a11, respectively; (2a): the site is occu-
pied by monomera, but the polymer returns back to the
leafs. ~On a real tree the parts of the polymer on different
branches are necessarily disconnected. However, on the
Bethe lattice this is no longer the case and the polymer may
be present on more than two leaves.!

For each local conformation aP$0,↑a,↓a,2a%
of the root site 0, we denote bypa

(0) the corresponding prob-
ability ~as given by the Boltzmann measure!. The
(3L11)-dimensional vector of weightsp(0), with compo-
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nentspa
(0) , can be expressed in terms of the correspondingk

weight vectorsp( i ) on the neighboring sites. Note thatpa
( i ) is

the Boltzmann weight for the configurationa on i when the
site 0 is absent. We will refer to these weight vectors on root
sites as cavity fields.

The mapping between cavity fields, p(0)

5I @p(1), . . . ,p(k)#, can be written explicitly as

p0
(0)5C21)

i 51

k

c0
( i ) , ~4!

p↑a
(0)5C21ebm(

i 51

k

p↑a11
( i ) )

j Þ i
ca

( j ) , ~5!

p↓a
(0)5C21ebm(

i 51

k

p↓a21
( i ) )

j Þ i
ca

( j ) , ~6!

p2a
(0)5C21ebm (

i 1Þ i 2
p↓a21

( i 1) p↑a11
( i 2) )

j Þ i 1 ,i 2
ca

( j ) , ~7!

where C[C@$p( i )%# is a normalization constant which en-
forces the condition(apa

(0)51 and we have introduced the
quantities

c0
( i )5p0

( i )1 (
a851

L

p2a8
( i ) , ca

( j )5p0
( j )1 (

a851

L

p2a8
( j ) e2beaa8.

~8!

The full lattice is built by mergingk11 branches.
Therefore, once the cavity fields have been computed, one
can express any local quantity using the neighboring cavity
fields. The monomer densityr ( i ) at sitei is a function of the
k11 cavity fields p( j ) on the j 51, . . . ,k11 neighboring
sites of i ~recall thatp( j ) gives the probability of a local
conformation onj in the absence ofi ):

r ( i )5 (
a51

L

(
j 1Þ j 2

p↑a11
( j 1) p↓a21

( j 2)
) j Þ j 1 , j 2

ca
( j )

ws
( i )~p(1), . . . ,p(k11)!

, ~9!

where we have defined the normalization constant

ws
( i )~p(1), . . . ,p(k11)!5)

j 51

k11

c0
( j )1ebm (

a51

L

(
j 1Þ j 2

p↓a21
( j 1)

3p↑a11
( j 2) )

j Þ j 1 , j 2

ca
( j ) . ~10!

The internal energyui j of a link (i , j ) can be written in
terms of the cavity fields oni and j @giving the probabilities
of local conformations oni and j in the absence of the link
( i , j )]:

ui j 5 (
a,b51

L

eabni j ~a,b!, ni j ~a,b!5
p2a

( i )p2b
( j )e2beab

wl
( i j )~p( i ),p( j )!

,

~11!

where ni j (a,b) is the probability of having a contact be-
tween two monomersa and b along the link (i j ) of the
graph. The normalizationwl(p

( i ),p( j )) is given by

wl
( i j )~p( i ),p( j )!5p0

( i )p0
( j )1 (

a,b51

L

p2a
( i )p2b

( j )e2beab

1 (
a51

L

~p0
( i )p2a

( j )1p2a
( i )p0

( j )

1p↓a21
( i ) p↑a

( j )1p↑a
( i )p↓a21

( j ) !. ~12!

For each edge (i , j ) of a given graph, one can introduce
a pair of cavity fields, describing, respectively, the probabil-
ity of local configurations of the two pointsi and j in the
absence of the edge (i , j ). One can write a Bethe free energy,
which is a functional of all these cavity fields and has Eqs.
~4!–~7! as stationarity conditions. It reads

Vbv@$p( i )%#52(
i PV

ln@ws
( i )#1 (

( i j )PE
ln@wl

( i j )#, ~13!

wherews
( i ) and wl

( i j ) are the expressions given in Eqs.~10!
and~12!, respectively. Notice, moreover, that the density~9!
and the internal energy~11! can be obtained by differentiat-
ing the Bethe free energy with respect to the chemical poten-
tial m and the inverse temperatureb.

It is easy to show that the above expressions are exact if
the graphG is a tree. On a general lattice it holds approxi-
mately to the extent that one can neglect the correlations
between the fields on thek11 neighbors of any sitei , once
the sitei itself has been deleted.

On a Bethe lattice, since the typical loop size diverges as
ln V in the large-V limit, thesek11 sites neighbors ofi are
generically distant from each other, wheni is absent. There-
fore the correlations of their fields can be neglected, if the
system is in a single pure state: at low temperature the Gibbs
measure usually has to be decomposed into pure states,
within which the correlations between two sites decay with
their distance along the graph. We thus expect the above
cavity approximation to become asymptotically exact, inso-
far as cavity fields are computed within one pure state.

C. Liquid solution and the Q-point

Both on the random Bethe lattice and on the
d-dimensional cubic graph, each site has generically the
same environment within any distanceR ~as long asR is
kept finite in theV→` limit !. A liquid phase is therefore
expected to enjoy translational invariance and will be de-
scribed by a set of fieldspa

( i ) that is independent of the site.
We thus look for a fixed pointpa

( i )[pa* of the recursions
~4!–~7!.

FIG. 1. Possible conformations of a site~or oriented edge! on the regular
Bethe lattice. The cavity site is considered as the root of a branch withk
leaves~here k55). The thick lines and solid circles represent the chain
backbone and monomers, respectively.
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It turns out that the liquid solutions can be found by
solving a system ofuAu12 nonlinear equations,uAu being
the number of monomer species in the model. This is a great
complexity reduction with respect to the 3L11 equations
~4!–~7!. The task can be further simplified by using particu-
lar symmetries of the interaction matrix. This is, for instance,
the case of the F and AF models defined in Sec. II A, which
are symmetric under the interchangeA↔B. We refer to Ap-
pendix A for a detailed discussion of how the solution is
obtained.

As shown in Appendix A all the thermodynamic quanti-
ties depend upon the sequence (s1 , . . . ,sL) only through
the fractionsns of monomers of types. As a by-product, the
L→` limit can immediately be taken. The physical meaning
of this result is easily understood. In the liquid phase, the
correlations induced by the sequence play some role just
along the chain, and their net effect vanishes at large dis-
tance. In particular, the monomera is surrounded by a cer-
tain fraction of monomers of types8 which only depends on
the type ofa, sa ~apart from the sites occupied by the mono-
mersa21 anda11, of course!.

Let us now discuss the various solutions of liquid type.
The random coil phase is described by the trivial solu-

tion pa* 5da,0 , which exists for any choice of the parameters.
This phase has vanishing grand potentialv and densityr. At
high temperatures this is the only solution whenm is smaller
than the critical chemical potentialmc given by exp(bmc)
51/k. At mc a nontrivial solution emerges continuously. The
latter describes a liquid phase under pressure (v,0 for m
.mc) with a density that vanishes on approaching the criti-
cal line.

The collapse of a free polymer from the random coil
state to the liquid globule occurs at the so-calledQ point. In
the grand-canonical description, it appears as the tricritical
point on the line exp(bm)51/k. Expanding aroundpa*
5da,0 , one obtains the following relation which determines
the Q-point temperature:

(
s,tPA

nsnte
2bQEst5

k

k21
; ~14!

see Appendix A. This result has previously been obtained
within the framework of the standard cluster variational
method.29 At temperatures below theQ point, b.bQ , the
grand-canonical phase transition becomes first order~see
Fig. 2!.

The critical linemc(b) is obtained by equating the grand
potentials in the coil and globule phases—i.e., by solving
v50 for the globule solution. The density, internal energy,
and free energy are obtained by plugging the globule solu-
tion pa* into Eqs.~9!, ~11!, and~13!.

In the low-temperature regionb.bQ , the dense solu-
tion can be continued to values of the chemical potentials
smaller than the critical onemc(b) and ceases to exist on a
spinodal line.

Likewise, the trivial dilute solution stays locally stable
beyond the coexistence line up to the spinodal exp(bm)
51/k.

The above results compare reasonably with the out-
comes of numerical simulations on ad-dimensional lattice—

for instance, the homopolymerQ point on the cubic lattice
given by TQ51.50 for d52,30 3.716~7! for d53,31 and
5.98~6! (d54).32 Moreover the authors of Ref. 33 found
TQ52.25(10) on the three-dimensional diamond lattice
~connectivity k1154). These results should be compared
with the outcome of the Bethe approximation@cf. Eq. ~14!#,
which yields TQ,Bethe'2.466 303 5~for k53), 3.476 059 5
(k54), 4.481 420 1 (k55), and 6.487 159 2 (k57). As for
heteropolymers, the authors of Refs. 34 and 35 estimated
TQ'1.2 both for the F and AF models of Sec. II A ind
53. This result is compatible withTQ51/ln(2)'1.442 695
which comes out of Eq.~14!.

Finally, several numerical studies36,37 have focused on
theQ point of random bonds models and have argued that its
location is extremely well approximated by an annealed
computation. Once again, this confirms that Eq.~14! is a
reasonable approximation~the random-bond model is recov-
ered by settinguAu5L, ns51/L and Est i.i.d.’s random
variables!. This is also related to the numerical finding that
the global collapse in protein folding dynamics is essentially
unsensitive to the specific structure of the sequence, but only
depends on its global composition.3

III. GLASS PHASES

If we follow the entropy densitys(b) of the liquid so-
lution as a function of temperature, we find that in any het-
erogeneous sequences(b) turns negative at sufficiently low
temperatures. This indicates the existence of a phase transi-
tion to a glass phase which breaks the translational invari-
ance.

As we will show, this glass transition can be of two
types. In certain sequences the ‘‘entropy crisis’’ is preceded
by a local instability of the liquid fixed pointpa* of the
cavity recursions~4!–~7!. This implies the divergence of a
properly defined spin-glass susceptibility and signals a con-
tinuous glass transition towards a phase with fully broken
replica symmetry.

FIG. 2. The phase diagram corresponding to the liquid~translation invari-
ant! solution in the grand canonical ensemble. Above theQ temperature,
b,bQ , the phase transition from the random coil phase (m,mc) to the
globule solution with finite density (m.mc) is continuous. At low tempera-
tures,b.bQ , the transition becomes first order and is accompanied by two
spinodals. The globule solution on the critical line describes a free polymer
in coexistence with the surrounding pure solvent. The free polymer under-
goes a collapse transition at theQ point.
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In other sequences and in the Gaussian random bond
model, this local instability is irrelevant since it occurs—if at
all—in the region of negative entropy of the liquid globule.
The glass transition is thus necessarily discontinuous
~1RSB!, as was predicted from replica calculations for the
random-bond model.10

Dealing with the glass phases requires some modifica-
tions of the simple Bethe–Peierls approximation which we
have been using so far. In this section we will describe first
some general properties of the glass phases and explain the
general technical tools that can be used to study glass tran-
sitions using the cavity method.

A. Proliferation of pure states

In a glassy phase, the space of conformations is expected
to split up in a multitude of pure states that are separated by
large free energy barriers. The slowest time scale of the sys-
tem, corresponding to jumps between pure states, increases
dramatically.

In a mean-field approximation or on the Bethe lattice,
this time scale diverges and ergodicity is broken at the ‘‘dy-
namic’’ phase transition. The system eventually undergoes a
‘‘static’’ phase transition~with a nonanalyticity in the ther-
modynamic potentials! at a lower temperature.38,39

In a finite-dimensional model the ‘‘dynamic’’ phase tran-
sition becomes a crossover where the nature of the most
important dynamical processes changes. Whether the
‘‘static’’ phase transition survives in a given model or not is
not known in general. We shall not enter this dispute here
since we have little to say about it. In any case, the mean-
field-like Bethe approximation, assuming the existence of
many pure states, yields some useful insight into the glass
phase.

Within one pure state, the conformational probabilities
on a given site are well defined.28,40 However, there is no
reason to assume the equality of local fields on different
sites. Rather one expects that in a given pure state the sites
will have different preferences for certain polymer confor-
mations.

To proceed, one has to use a statistical description of
local fields. We shall not explain here all the details of this
description, but just give the main definitions and refer the
Refs. 28 and 40 for detailed discussions. In a glassy phase,
the number of pure statesNV(v) increases exponentially
with the volume of the system. The complexityS~v! is the
monotonously increasing, concave function defined by
NV(v);exp@VS(v)#. The natural order parameter is the dis-
tribution of local fields over the pure statesg whose free
energy densityvg is fixed to a valuev0 :

r~p!}(
g

d~p2p( i ,g)!d~vg2v0!. ~15!

An alternative description consists in using a Legendre trans-
formation of the complexity by introducing the parameter
m5(1/b)S8(v0) and working at fixedm instead of fixed
v0 .41 This computation is equivalent to a 1RSB scheme with
Parisi parameterm. From the free energy at fixedm, f1(m),
the complexityS~v! is obtained through the Legendre trans-
form: mbf1(m)5mbv2S(v).

In a system with a discontinuous~1RSB! glass transi-
tion, this approach gives a full description. The complexity is
strictly positive in the intervalvs,v,vd , corresponding to
the intervalmd,m,ms in the 1RSB parameter. The thermo-
dynamically dominant metastable states are obtained by
minimizing the one-replica free energyv2b21S(v). In an
intermediate temperature regimeTs,T,Td , the minimum
is attained for some free energyv* ~corresponding tom*
51), with vs,v* ,vd . Below the glass transition,T
,Ts, the minimum is attained at the lower edgev* 5vs

@with S(v* )50], corresponding to the 1RSB parameter 0
,m* ,1.

In a system with a continuous glass transition~FRSB!,
the full solution should involve grouping states into clusters
and clusters into superclusters, building up a continuous ul-
trametric hierarchy. The approach above amounts to a 1RSB
approximation of this full structure, and we shall not attempt
to go beyond this level of approximation.

B. Order parameters

In this section we present two types of order parameters
which can be used to identify the glass phase.

For a polymer in Euclidean space, described by the po-
sition RW i of monomeri , let us consider two replicas of the
polymer in the same pure state. In the glass phase, provided
the global rotation symmetry is broken, the local conforma-
tion of the two polymers will have a certain tendency to be
the same while the liquid phase is completely disordered in
this respect. In order to measure this effect, we introduce the
scalar product of the distance vectors between nearby mono-
mers in the replicas~1! and ~2!:

Fd
(1,2)5(

i
~RW i 1d

(1) 2RW i
(1)!•~RW i 1d

(2) 2RW i
(2)!. ~16!

We shall be interested in computing the average of this quan-
tity when the replicas are constrained to remain in the same
pure state. More precisely, we want to evaluate

^Fd
(1,2)&state5(

g
wg^Fd

(1,2)&1,2Pg , ~17!

where we average over all statesg with their Boltzmann
weigthwg . This quantity is accessible numerically. We con-
sider a polymer which is thermalized at time 0 in a configu-
ration RW i(t50). We let it evolve for a timet, to a configu-
ration RW i(t). The order parameter is given by the quantity

^Fd
(1,2)&state5K 1

tMAX
E

0

tMAX
dt

1

N (
i

~RW i 1d~ t !2RW i~ t !!

•~RW i 1d~0!2RW i~0!!L
$Ri (t50)%

, ~18!

evaluated over time scalestMAX which are large but much
smaller than the typical time scale for interstate transitions or
even full equilibration~in particular much smaller than the
time scale for diffusion or rotation of the polymer, which
diverges withN).
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A simpler order parameter can be defined by first intro-
ducing, on each sitei of the lattice, the quantitysi which
takes the valuesi51 if the site is occupied by a monomerA,
si521 if there is aB monomer, andsi50 if the site is
empty. Then the overlap between two configurations 1 and 2
of the polymer can be defined as

qAB
(1,2)5

1

V (
i 51

V

si
(1)si

(2) . ~19!

Again, one can compute the typical distance^qAB
(1,2)&state be-

tween two conformations in the same state by recurring to
dynamical simulations.

Notice that bothqAB
(1,2) andFd

(1,2) define a notion of dis-
tance~or similarity! between polymer configurations. How-
ever, they describe two complementary aspects of the poly-
mer: qAB

(1,2) essentially characterizes the bias of single sites
towards a specific monomer type, whereas the order param-
etersFd

(1,2) measure theconformationalsimilarity of the rep-
licas in the vicinity of a given site, once the monomer on that
site has been fixed. They measure the freezing of the local
degrees of freedom of the polymer’s backbone, similarly to
the approach of Ref. 22. In contrast the parameterqAB

(1,2) is
hardly sensitive to the geometric constraints induced by the
backbone.

A dynamical evaluation of the above order parameters is
particularly convenient on finite-dimensional lattices. Notice
that the equilibrium probability for two independent replicas
to have a finite overlapqAB

(1,2) vanishes with the volume of the
lattice because of translation invariance.

On the Bethe lattice it is more natural to work at a finite
monomer density~see Sec. V D!. In this case, the random
structure of the lattice acts as a ‘‘pinning field,’’ and two
replicas of the same system typically have a finite overlap.
Following the practice from spin-glass theory, we shall con-
sider the probability distribution of the quantity~19! with
respect to the Gibbs measure:

PAB~q!5^d~q2qAB
(1,2)!&. ~20!

In a liquid phase,̂ qAB
(1,2)&state vanishes and the function

PAB(q) is a d function. In a glass phasêqAB
(1,2)&state.0 and

the functionPAB(q) becomes nontrivial, with support in the

interval @2^qAB
(1,2)&state,^qAB

(1,2)&state#. In the case of a continu-
ous transition,̂ Fd

(1,2)&state and ^qAB
(1,2)&state vanish at the tran-

sition point, while they exhibit a jump in the discontinuous
case.

IV. METHODS TO STUDY THE GLASS PHASES
IN THE CAVITY APPROACH

In this section we present the methods that we use to
study the glass transition on the Bethe lattice. They are ap-
plied to various types of polymers in the next sections.

A. Local instability towards a soft glass phase

The simplest glass transition is the one associated with
an instability of the liquid. The liquid solution is always
embedded in the 1RSB formalism as the single pure state
that exists at high temperature: it is described by the field
distribution r(p)5d(p2p* ). If fluctuations aroundp* in-

crease under the cavity recursion~4!–~7! this solution be-
comes locally unstable. This phenomenon occurs when

klmax
2 >1, ~21!

wherelmax is the largest eigenvalue of the transfer matrix for
the propagation of deviations from the liquid under the re-
cursion~4!–~7!:

M aa85]I a@p(1), . . . ,p(k)#/]pa8
(1)up( i )5p* . ~22!

@Notice that the stronger instabilitykulmaxu51 Ref. 42 is ir-
relevant on a random lattice, since it is associated to the
establishment of a crystalline order that is inherently frus-
trated because of the presence of large loops.# Beyond the
local instability, the distribution of local fieldsr(p) becomes
nontrivial, but it remains centered around the unstable liquid
fixed point. In physical terms this indicates that phase space
begins to divide up into a small number of states that com-
prise a large number of microconfigurations. These states are
characterized by weak local preferences for certain polymer
conformations that deviate only slightly from the homoge-
neous liquid state.

In general, the instability~21! develops below a tem-
peratureTi . Calling Tcris the temperature where the entropy
vanishes, one can have two types of situations:

~i! When Ti,Tcris, the local instability of the liquid is
clearly irrelevant, and a discontinuous glass transition must
take place at some temperature>Tcris.

~ii ! When Tcris,Ti , either the instability drives a con-
tinuous glass transition~as we will see in specific examples,
this seems to be the generic case when the instability occurs
in a region where the liquid entropy is still large! or there
exists again a discontinuous glass transition taking place at
temperaturesT.Ti and rendering the instability irrelevant. It
is also possible that a first continuous glass transition to-
wards a slightly frustrated phase undergoes a successive dis-
continuous phase transition at lower temperatures where a
stronger degree of freezing takes place.

It turns out that the stability condition~21! can be stud-
ied explicitly for AB copolymers with an interaction matrix
which is symmetric underA↔B interchange. The detailed
calculation is given in Appendix B. The dangerous eigenval-
ues l of the matrixM in Eq. ~22! are found to obey the
equation

6
1

k

w sinh~b!

11w cosh~b!

5
l@12~kl!2L#

~k22!1k~kl!2L12~k21!( i 51
L21qi~kl!2 i , ~23!

where the sign corresponds to ferromagnetic (1) and anti-
ferromagnetic (2) interactions, respectively. The
temperature-dependent parameterw5(a51

L p2a* /p0* charac-
terizes the liquid solution and is independent ofL: cf. Ap-
pendix A and Eqs.~B1! and ~B2!. The sequence properties
enter the above expression only through the autocorrelation
function qi5(1/L)(a51

L sasa1 i .
The local instabilityb i occurs at the smallest value ofb

where the characteristic polynomial~23! has a root with
ulu2k51. Usually, for attractive interactions between equal
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monomers, the relevant eigenvalue isl51/Ak while the in-
stability occurs in general withl521/Ak in ampholytes.

The location of the instability for the various types of
interactions and sequences will be studied in the next sec-
tions. Let us just mention here that the~periodic! Gaussian
random-bond heteropolymer generically undergoes a discon-
tinuous 1RSB glass transition, in agreement with previous
studies.10

B. Cavity recursion within the 1RSB approximation

In order to study the glass phase itself, we need to com-
pute the distribution of local fields of Eq.~15! for the Bethe
lattice. We shall do it here within the 1RSB cavity formalism
of Refs. 28 and 40. We shall not rederive the full formalism
but give the main ingredients needed for our study. Taking
the statistical average of the simple cavity recursion~4–7!,
which holds individually for every pure state, one obtains a
recursion relation for this distribution:

r~p!5
1

Z E )
i 51

k

dr~p( i )!d~p2I @p(1), . . . ,p(k)# !

3e2mbD f [p(1), . . . ,p(k)] , ~24!

where I @p(1), . . . ,p(k)# is given by Eqs.~4!–~7! andZ is a
normalization. The nontrivial reweighting, which depends on
the parameterm defined in Sec. III A, involves the free en-
ergy change induced by the recursion, which is given by
D f @$p( i )%#[2b21 ln(C@$p( i )%#), whereC@$p( i )%# is the nor-
malization term appearing in Eqs.~4!–~7!. This reweighting
accounts for the fact that the number of pure states increases
exponentially with their free energy.

The free energy is obtained by properly weighting the
contributions of different pure states:

bmf1~m!52 lnF E )
i 51

k11

dr~p( i )!ws
m~$p( i )%!G

1
k11

2
lnF E )

i 51

2

dr~p( i )!wl
m~p(1),p(2)!G ,

~25!

where ws and wl are the site and link partition functions
defined in Eqs.~10! and ~2!. The complexityS~v! is ob-
tained from f1(m) through a Legendre transform:

mbf1(m)5mbv2S(v). Note that the recursion relation
~24! corresponds to the saddle point equation for the func-
tional f1(m) with respect tor(p).

Close to a continuous glass transition,r is strongly
peaked around the liquid fixed pointp* , and we can expand
the free energy as a function of the moments of the fluctua-
tionsp2p* over the pure states, as outlined in Appendix D.
To leading order the corrections to the liquid free energy
arise from fluctuations in the ‘‘replicon’’ mode, the unstable
eigenvector of the transfer matrix~22!, whose magnitude
grows as (Ti2T)1/2. The continuous glass transition is found
to be of third order:

f12f liq5c
12m

~22m!2 ~Ti2T!31O„~Ti2T!4
…, ~26!

wherec is a positive constant. This is in contrast to discon-
tinuous glass transitions which are~generally! of second or-
der in the free energy.

V. TWO EXEMPLARY CASES: THE ALTERNATING
AMPHOLYTE AND HP MODEL

In this section we apply the cavity 1RSB formalism to
two specific sequences: the regularly alternating copolymer
chains ABABAB. . . for ampholytic and symmetrized-HP
interactions. These turn out to be rather extreme representa-
tives in the ensemble of possible neutral copolymers, but
they are the simplest ones, and they exhibit the characteris-
tics of the continuous~ampholyte! and discontinuous~HP!
transition in a very clear manner.

The folding of an alternating copolymer on a regular
Bethe lattice is a frustrated problem, while, clearly, on a
regular cubic lattice, it would just behave as a homopolymer
with homogeneous interactionsEAB[e. However, we expect
that as soon as a certain number of defects are introduced in
such sequences, their folding on the cubic lattice will be
similarly frustrated. In terms of Markovian sequences, we
consider here the case ofp!1.

While these sequences are expected to behave differently
from the alternating onep50 on the cubic lattice, it is rea-
sonable to assume that thep→0 limit is smooth on the
Bethe lattice. Then the Bethe approximation ofp!1 se-
quences can be studied using the perfectly alternating se-
quence, as we do here here. Alternating chains are more eas-
ily studied with the cavity method, since the number of local
fields may be reduced to 5~with four independent degrees of
freedom!: due to the inversion symmetry the local conforma-
tions reduce toaP$0,1A,1B,2A,2B%, where 1A (1B) com-
prises the two conformations↑A and↓A (↑B and↓B). The
cavity recursion relation~24! can then be solved efficiently
using a population dynamics algorithm described in Appen-
dix G.

A. Ordered structures, correlations, frustration, and
the order of the glass transition

Before embarking on the details of the cavity computa-
tion for the alternating chains, we present here some simple
arguments explaining the very different physical nature of

FIG. 3. Unfrustrated, maximally dense structures on a tree (k53). The
ampholyte~left! has an evident stratified order and long-range correlations
of site occupancies. The location ofA’s andB’s in the HP polymer~right!
is correlated with the backbone configuration~thick edges! which makes the
distribution of monomers look random.
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the glass phase in the alternating ampholyte, which has a
continuous transition, and in the symmetrized HP model,
which has a discontinuous transition.

Instead of a Bethe lattice, let us consider a regular tree
and ask for a maximally dense polymer configuration such
that all interactions are satisfied (AB interactions in am-
pholytes andAA or BB interactions in the symmetrized HP
model!. In Fig. 3 we show typical configurations for each
case.

While there is a stratified order in ampholytic configura-
tions that manifests itself in strong long-range correlations,
the symmetrized HP model has an ‘‘ordered’’ structure that is
highly correlated with the backbone configuration. No long-
range correlations may persist, and this dense ground state is
difficult to distinguish from a dense liquid configuration.

If we turn back to a Bethe lattice, frustration is induced
by the presence of large loops. Odd loops are inherently
frustrated in the ampholyte since they necessarily have to
break up the long-range correlations of the layered structure.

This is not the case in the HP-like model where most con-
straints from loops can be satisfied when the backbone is
arranged in the right way. In other words, the information
about local conformations and the associated constraints can-
not be propagated far away in the case of the HP-like chain,
since the correlations of ordered structures die out quickly
with distance. As long as the density is not too large and
there are sufficient voids in the globule, a global frustration
will not be able to establish. For the ampholyte, however, it
will be favorable, even at lower density, to develop local
~site! preferences for a certain monomer type and thus in-
crease the probability of satisfied interactions. This mecha-
nism is at the basis of the instability of local fields in the
liquid. Note that in the first place this instability is related to
the type of monomer accommodated on a given site rather
than the backbone structure. The latter will only come into
play at larger densities and lower temperatures.

This qualitative discussion applies equally to correlated
sequences which are not perfectly alternating but have a
strong tendency to alternate~small p!. At the other extreme,
if one considers the case ofp close to 1, where consecutive
monomers tend to be alike, one can apply the same type of
considerations, but with the roles of ampholyte and HP-like
chain reversed. We can thus conclude that the local instabil-
ity of a HP-like chain with long blocks of like monomers is
associated to the appearance of pure states characterized by
the samemonomer preferences for small regions on the lat-
tice. This is reminiscent of the microphase separation43

~MPS! which has been much discussed in this context and
becomes relevant for sequences with a distinct block
structure.1,12,44,45 However, one should remember that the
present formulation of the cavity method, which neglects
small loops in the lattice, does not allow any quantitative
study of this phenomenon~this could be addressed using
more refined cluster variational methods!.

Repeating the above arguments for more general cases
of short-range correlated sequences, one sees that in general
a local instability is favored by sequences whose monomer
distribution tends to be annealed~e.g., ampholytes with a
tendency towards charge alternation along the sequence!. It
is interesting to note that such ‘‘annealed sequences’’ natu-
rally result from common protein design schemes.46–49

B. Continuous transition in the AB ampholyte

We start our quantitative study with the alternating am-
pholyte on a lattice with connectivityk1156. For this poly-
mer, the local instability of the liquid found from Eq.~23!
develops at the inverse temperatureb i'0.7947, much
smaller than in most other neutral sequences. The Parisi pa-
rameterm remains small throughout this phase.

A closer analysis of the instability shows that the most
unstable eigenvector is antisymmetric with respect to the ex-
change ofA and B. This indicates that the pure states are
essentially characterized by the preference of the sites to ac-
commodate one of the two monomer species, in agreement
with our qualitative discussion.

On lowering the temperature, the preference of sites for
certain conformations~and not only for the respective mono-

FIG. 4. Observables for the alternating ampholyte~top! and an alternating
HP-like polymer~bottom! on a lattice with six neighbors per site. The thick
lines show the densityr, entropys, and internal energyu computed in the
glass phase using the 1RSB approximation. The thin lines give the corre-
sponding values in the liquid solution. In the case of the ampholyte the
liquid solution is unstable beyondb i'0.7947, and the glass transition is
continuous. For the HP-like polymer the liquid solution is always locally
stable, and the glass transition is discontinuous. It is an almost perfect freez-
ing transition as in the REM.
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mers!, increases. This could be interpreted as a growing de-
gree of freezing that affects larger and larger length scales.

Figure 4 shows the basic thermodynamic observables
r,s,u in the glass phase, computed in the cavity method, and
compares them to the values found in the unstable liquid
solution. The data have been computed on the coexistence
line—i.e., by fixing mc(b) such that the glass static free
energy vanishes,f1(ms ;mc)50 ~as explained in Appendix
C!. The strong frustration of the polymer can clearly be seen
from the suppression of the density in the glass phase that
saturates aroundr50.71, while in a liquid phase it would
tend tor51. The entropy crisis of the liquid is prevented,
the internal entropy of the pure states remaining rather large
even at low temperature. There is no sign of a strong~dis-
continuous! freezing transition.

In Appendix E we explain how to obtain the order pa-
rameter~17! within the cavity approximation. The result for
the alternating ampholyte is shown in the top panel of Fig. 5,
confirming again the continuous nature of the transition.

C. Discontinuous transition
in the alternating HP model

The case of the symmetrized-HP alternating sequence,
always on a lattice with connectivityk1156, is extreme in
the opposite sense. The liquid solution is always locally
stable, even in the region of negative entropy. However, run-
ning the population dynamics algorithm for the 1RSB cavity
method, one finds a discontinuous glass transition. The dy-
namic transition takes place atbd'1.387, just before the
entropy crisis of the liquid (bcris51.4525). The static phase
transition follows atbs'1.442, in a region of very high
density,r'0.95, and almost vanishing entropy. In the bot-
tom panel of Fig. 5, we plot the density, entropy and internal
energy for the alternating HP-polymer along the coexistence
curve. The internal entropy of the statically dominating pure
states is seen to nearly vanish in the frozen phase, and the
system barely evolves upon lowering the temperature. This
scenario is very similar to the abrupt freezing encountered in
the REM.

The order parameter~17! is obtained as in the case of the
ampholyte. The result is shown in the lower panel of Fig. 5
where a clearly discontinuous transition can be seen.

D. Numerical simulations

As we already stressed, one advantage of our approach
consists in the possibility of checking mean-field computa-
tions using numerical simulations of well defined polymer
models on a Bethe lattice. Here we want to demonstrate this
feature by considering the alternatingAB ampholyte.

We made extensive simulations on Bethe lattices with
connectivity (k11)56 and volumesV ranging from 100 to
800. For all of the data presented in this section, we fixed
b52.0 above theQ-point inverse temperaturebQ'0.693
and varied the chemical potentialm. As m is increased, the
system undergoes at first a second-order collapse transition
~at m'23.218 87) and then a continuous glass transition to
the soft glass phase@m i(b)'22.384 31#.

FIG. 5. The order parameters^Fd
(1,2)&state for the glass phase, defined as the

time-persistent part of the distance vector between monomers at a distance
d51, 2, 3, 4 in the backbone@see Eq.~17!#, plotted versus the inverse
temperatureb. The upper graph corresponds to the alternating ampholyte,
while the lower graph refers to alternating HP-like polymers. Note the con-
siderably higher values in the latter case, indicating a much stronger freez-
ing of local conformational degrees of freedom.

FIG. 6. Average length of the polymers simulated on the Bethe lattice. Sizes
of the lattice are indicated in the legend. The arrow signal the liquid–soft-
glass phase transition.
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Notice that most of the algorithms for simulating poly-
mers on finite-dimensional graphs cannot be applied to the
Bethe lattice. In fact local moves are impossible because of
the absence of short loops. On the other hand, global moves
would require a detailed knowledge of the loop structure for
any graph realization.

This problem can be overcome by simulating a melt of
variable-length polymers, the length being finite in the ther-
modynamic limit. The single-polymer physics is recovered
when the average length diverges. We refer to Appendix F
for a detailed description of our algorithm. In Fig. 6 we show
our numerical data for the average polymer length^ l &. No-
tice that^ l &'10– 25 within the dense phase. As will be clear
from the other numerical results, this is enough for assuring
small deviations from the infinite-length limit. The main ef-

fects are a rounding of the collapse transition and a small
shift of the soft glass transition@which occurs at
m i(b,finite l )'22.409 23].

In order to achieve equilibration within the soft glass
phase we adopted the parallel tempering technique.50,51 We
tested equilibration using the method of Ref. 52 and always
checked that the acceptance rate for temperature exchange
moves to be larger than 50%.

In Fig. 7 we plot the energy per lattice site and the
monomer density, as functions of the chemical potentialm.
Notice that the liquid—soft-glass phase transition is barely
discernible from the monomer density, and the energy curve
is also quite smooth. The 1RSB cavity result gives a very
good quantitative description of the transition.

In order to get a finer description of the glass phase, we
have measured the order parameter functionPAB(q) defined
in Eq. ~20!. In Fig. 8 we report our numerical data for this
quantity at the highest chemical potential considered (m
521). Because of the large finite-V effects, it would be
difficult to conclude from the numerics alone that the
infinite-V function is nontrivial. However, the data agree
with the 1RSB predictions for the Edwards–Anderson pa-
rameter,qEA'0.259.

In the same figure~top frame! we consider the spin-glass
susceptibility

FIG. 7. Simulations of the alternating ampholyte on the Bethe lattice with
connectivityk1156. The energy per site of the polymer~top! and its den-
sity ~bottom! are plotted versus the chemical potential. In the main frames
numerical data~symbols! for various lattice sizes are compared with the
cavity results~dashed line! for an average polymer lengtĥl &→`. The
agreement is very good. In the insets we plot the liquid prediction for infi-
nite ~solid line! and finite ~dashed line! average polymer length, which
shows that the finite-length corrections are already small. Notice that in the
density inset the theoretical curve for finite length is barely visible because
it is superimposed on the data. The arrows indicate the analytic result for the
glass transition pointm i .

FIG. 8. Top: finite-size scaling of the spin-glass susceptibility. It exhibits a
clear divergence as a function of system size at the expected valuemc .
Bottom: probability distribution of theAB overlap, evaluated in the soft
glass phase atm521. In the inset of the upper frame we compare the

second moment of theAB overlap^qAB
2 & with the analytical prediction.
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xSG5
1

V (
i , j

^sisj&
25V^@qAB~s(1),s(2)!#2&. ~27!

This quantity diverges asm→mc
2 in the thermodynamic

limit. In a finite-size sample, its behavior is ruled by the
usual finite-size scaling form

xSG~V,m!5V22hx̄@V1/n~m2mc!#. ~28!

From the cavity solution of the model, one finds that^qAB
2 &

'A(b)@m2mc(b)#2 for m*mc(b). This result implies the
following relation between the critical exponents defined in
Eq. ~28!:

22h12/n51. ~29!

In fact we find a nice collapse of data corresponding to dif-
ferent sizes usingn54 and h53/2. The comparison of
^qAB

2 & with the 1RSB cavity prediction is quite good.
An alternative approach for exploring the low-energy

structure of the system consists in coupling two replicas
through their overlap: cf. Eq.~19!. In practice, one adds a
term of the form 2NbeqAB(s(1),s(2)) to the two-replica
Hamiltonian and tries to estimateqEA as follows:

qEA5 lim
e→0

lim
N→`

^qAB~s(1),s(2)!&N,e . ~30!

In Fig. 9 we show the numerical results for^qAB&N,e on a
large-size lattice (V5104) and several values ofe. In order
to simulate large lattices, we did not use parallel tempering
here. Furthermore, we adopted a weaker equilibration crite-
rium, requiring^qAB&N,e to be roughly time independent on a
logarithmic scale. Once again, the numerical results compare
favorably with the outcome of the cavity calculation.

VI. RANDOM MARKOVIAN COPOLYMERS

Using the formula~23! one can show that the local in-
stability appears the earlier, the stronger the tendency of
monomers to be annealed along the sequence—that is, the
more A’s and B’s tend to alternate in an ampholyte or to
form blocks in an HP model. In both cases the autocorrela-

tion function qi is large and its sign oscillates~alternating
sequence! or remain positive~‘‘blocky’’ sequence!.

To be more quantitative, let us consider a random co-
polymer chain in the limitL→` characterized by the prob-
ability pP@0,1# of two neighboring monomers to be of the
same type. The autocorrelation function of such a chain is~in
the L→` limit ! qi5(2p21)i .

In Fig. 11 we plot the inverse temperatureb i at the local
instability as a function of the parameterp for the ampholyte
and symmetrized-HP models.

This instability is certainly irrelevant whenb i is larger
than the inverse temperature of the entropy crisis of the liq-

FIG. 9. AverageAB overlap^qAB& among two replicas coupled through a
term of the type2NeqAB . The solid line is the prediction of the cavity
method for thee→0 limit. HereV5104.

FIG. 10. Phase diagram for ampholytes~top! as a function of sequence
correlations and inverse temperature. The solid line indicates the local in-
stability b i of the liquid as a function of the Markov chain parameterp. The
points with error bars indicate the dynamic phase transitionsbd found nu-
merically for several sequences of periodL520. An effective parameterpeff

is associated to each chain such that the local instability predicted frompeff

coincides with the actual one. Almost independently of the chain composi-
tion we find a highly frozen phase beyondbd'1.23 that is reached via a
discontinuous glass transition well before the liquid would undergo an en-
tropy crisis atbcris . For p<0.50, this freezing is preceded by a continuous
glass transition, as predicted from the local stability analysis of the liquid.
The actual thermodynamic freezing transition occurs at a lower temperature
bs.bd . The horizontal lines for the static and dynamic transitions are an
educated guess for the location of these transitions in the limitL→`. The
same general phenomenology holds for the HP-type models~bottom!, but
here the continuous transition takes place atp>0.5. Notice that thepeff

window displayed here is larger than in the upper graph.
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uid, bcris51.4525. This situation occurs forp.0.4480 in
ampholytes and proves the existence of a discontinuous tran-
sition. But already whenb i is smaller than, but close to,
bcris, one should expect a discontinuous 1RSB transition to
take place at ab,b i .

In order to complete the diagram, we have numerically
solved the cavity recursion by population dynamics for neu-
tral sequences of periodL520, but otherwise random com-
position. From the experience gained for the extreme case of
the alternating HP model~see below!, we expected a kind of
frozen solution with rather strong local conformational pref-
erences to dominate the low-temperature phase. Such a solu-
tion is rather nontrivial to find in a huge functional space, in
particular since it has to be expected that it occurs in a dis-
continuous manner and cannot in general be found by ran-
domly perturbing the liquid solution.

We therefore proceeded by initializing the population in
a highly polarized state that we will discuss in more detail in
the next section. This state actually corresponds to an un-
stable fixed point, but it turns out that at low temperatures, it
is usually quite close to a stable nontrivial solution of the
1RSB cavity equations. At each temperature, we iterated the
cavity recursion for about 100 sweeps of the population dy-
namics~cf. Appendix G!, fixing the chemical potential to its
liquid critical value, since this value describes correctly the
thermodynamic equilibrium up to the static phase transition.
The Parisi reweighting parameter was set tom51 in order to
detect the dynamic transition—i.e., the local instability of the
frozen solution. For reasons of numerical stability, we re-
stricted ourselves to sequences with an antipalindromic
structure—i.e., sequences invariant under inversion and sub-
sequent exchange ofA’s and B’s. The field distributions
r(p) inherit this invariance, and thus in each update of a new
cavity field we can decide at random to apply a symmetry
operation to the new fields first. This stabilizes the iteration
since it counteracts the numerical tendency to spontaneously

break the balance between↑ and↓ states. Indeed, there is a
gauge degree of freedom associated to the relative weight of
the two orientations of the chain, and in general it is difficult
to maintain them balanced, while it can be enforced in se-
quences with a palindromic symmetry. The reason to choose
antipalindromic rather than palindromic ones is to avoid at
the same time an asymmetry betweenA andB states which
likely occurs in small populations, in particular in the case of
attractive interactions among equal monomers.

Our findings for the sequences of periodL520 are sum-
marized in the plots 10 and 11. Figure 11 shows the variance
~square of the standard deviation! of the local field for
↑(a51) over the distributionr(p) for several sequences as
a function of inverse temperature. This is a measure for the
degree of the local bias away from the liquid. Almost inde-
pendently of the particular sequence statistics we find that for
b.bd'1.23 a strongly frozen phase~with very low internal
entropy! exists with an associated dynamic transition atbd .
Depending on the sequence statistics, the regime of higher

FIG. 11. The variancêp↑(a51)
2 &r2^p↑(a51)&r

2 of a selected local field as a
function of inverse temperature for a variety of antipalindromic sequences
of periodL520. In general, there is a very distinct discontinuous transition
aroundbd'1.23, which is preceded by a glassy regime with smaller fluc-
tuations in the local fields if the sequence has a tendency for anticorrelation
in ampholytes~main frame! or correlation in symmetrized HP-like chains
~inset!. The sequences are characterized by their effective Markov chain
parameterpeff as in Fig. 10.

FIG. 12. Schematic phase diagram of copolymers as a function of inverse
temperatureb and chemical potentialm. A polymer in equilibrium with the
solvent is described by the coexistence line. Beyond theQ point, b.bQ , it
is in a collapsed phase with a finite density. Depending on the sequence
correlations of the copolymer there may be a local instability of the liquid
~dash-dotted line!, giving rise to a continuous glass transition atb i ~see
upper graph!. In the absence of a local instability down to a critical tem-
perature in the range ofb'1.23, a discontinuous glass transition will take
place. The thermodynamic~static! phase transition atbs is preceded by a
dynamic glass transition atbd where the phase space splits up into different
pure states. In the glass phase, the critical chemical potential depends on
whether the dynamically relevant threshold states~dashed line! or the states
dominating the static equilibrium~solid line! are described.
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temperatures is either entirely liquid~e.g., forp<0.50 in the
ampholytes! or exhibits a weaker form of frustration in a
phase of presumably fully broken replica symmetry. The lat-
ter continuously joins the liquid solution at the local instabil-
ity predicted by Eq.~23!. For the phase diagram in theb–m
plane for either of the two scenarios we refer to Fig. 12.

The generic picture of a quench in temperature is thus
the following: For ampholyte sequences with some tendency
to alternation or HP-like sequences with a preference for
block formation, there is a continuous glass transition whose
location depends strongly on the composition of the se-
quence. The corresponding glass phase is characterized by a
relatively weak frustration and a rather small number of
states that comprise many microconfigurations with some
weak local preferences for certain conformations. This pre-
liminary glass phase undergoes a further discontinuous phase
transition at a lower temperaturebd'1.23 that is almost in-
dependent of the sequence structure and might be called the
effective freezing transition. For sequences with correlations
of the opposite kind, the freezing transition is the only phase
transition and occurs directly from the liquid. It is interesting
to note that in numerical simulations of the folding dynamics
of neutral HP-type copolymers, the dynamical glass transi-
tion was also found to be essentially independent of the
sequence.3

It is intriguing that the critical parameter ofp separating
the FRSB from the 1RSB freezing scenario is very close to
p51/2 which corresponds to sequences without correlations.
This is particularly interesting from the point of view of
protein folding. The nature of correlations present in the
amino acid sequences of natural proteins is still a matter of
intensive debate. The analysis of Pandeet al.53 argues in
favor of a tendency for sequences to be annealed—i.e., to
exhibit positive correlations in the hydrophilicity and anti-
correlations in the charge of amino acids, which would sug-
gest a bias towards the FRSB freezing scenario for proteins.
However, the studies by Irba¨ck et al.54,55 rather point to-
wards anticorrelations in the HP-type degrees of freedom
which would favor a scenario with a direct transition from
the liquid to the frozen glass. The discrepancies of these
studies mainly concern the nature of long-range correlations,
while on the level of nearest-neighbor correlations, the pro-
tein sequences appear to be rather random, havingp'1/2
with respect to both charge and hydrophobic–hydrophilic de-
grees of freedom. It would be very interesting to understand
whether the folding of natural proteins takes advantage from
their sequences being very close to the critical border be-
tween the two scenarios. On the other hand, as mentioned
earlier, most protein sequence design schemes tend to result
in ~partially! annealed monomer chains which are therefore
likely to exhibit the intermediate soft glass phase.

VII. CLOSE-PACKED LIMIT

In this section we provide a detailed analysis of the fro-
zen phase in the limit of high density. We first show the
existence of a special ‘‘REM-like’’ fully polarized solution of
the 1RSB cavity equations at temperatures below the liquid’s
entropy crisis. Then we show that this solution is stable in
the close-packed limit of high densities.

A. Fully polarized solution

There always exists a ‘‘fully polarized’’ solution to the
cavity equation~24! which describes pure states consisting
of essentially one unique frozen polymer configuration. In
each such state, a given site only admits one specific local
conformation. On averaging over the different pure states,
the given site will be found in conformationa with fre-
quencywa . The local field distributions then take the form

rpol~p!5(
a

wa~b,m!d~p2e(a)! ~31!

@where the fieldse(a) are defined byea8
(a)

5daa8 . This distri-
bution solves the cavity equations when the frequencies
wa(b,m) coincide with the local fields of a liquid at the
renormalized inverse temperatureb85mb—i.e., wa(b,m)
5pa* (b85mb). The replicated free energy of this fully po-
larized solution isf1(b,m)5f liq(mb). The internal free
energy of the corresponding frozen states is related to the
liquid quantities via f pol(b,m)5d@mf1(b,m)#/dm
5uliq(mb)2mr liq(mb), and the complexity of states is
found from Spol(b,m)5sliq(mb). As is evident from the
nature of the pure states, their internal entropy vanishes.

Let us for a moment postpone the discussion of the rel-
evance of this solution and first discuss its physical interpre-
tation. At each value ofb we have to maximizef1 over 0
<m<1, under the conditionS>0. For temperatures above
the liquid’s entropy crisis,b,bcris, the maximum is attained
at m51 and we havevg5v liq . When b.bcris, the static
glass transition takes place and the free energy freezes to
vg5v liq(bcris), the Parisi parameter taking the valuems

5bcris/b. So this solution describes a full freezing of the
polymer in some isolated specific configurations, taking
place atb5bcris. Notice that this scenario exactly parallels
the one found in the REM.

In the highly frozen phase of theAB copolymers~be-
yond bd'1.23) we numerically find a solutionr(p) which
is close to the form~31!, although small deviations persist,
and the polarization is not complete. In the particular case of
the alternating chain we numerically confirmed that the op-
timal Parisi parameter is well fitted byms5T/Ts on the co-
existence line.

B. Stability analysis and the limit of maximal density

So far we have not discussed the range of validity and, in
particular, the stability of the polarized solution~31!. Unfor-
tunately, this is a difficult problem, and we only can provide
partial answers.

In order to obtain further insight we should perturb the
ansatz~31! and check whether the perturbation increases un-
der the cavity iteration~24!. A simple perturbation consists in
adding to Eq.~31! some ‘‘almost polarized’’ fields with a
small total weight. Namely, we take a field distribution of the
form

r~p!5~12a«!rpol~p!1«(
a

wara~p!, ~32!

wherera(p) is concentrated on fieldsp close toe(a). In fact,
it is more convenient to think of it as a distribution over the
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‘‘small’’ fields pW [$pa8%a8Þa . Hereafter, we shall use the
notation ra(pW ) instead of ra(p). Finally notice that the
ra(pW )’s need not be normalized. Normalization is enforced
by the constanta in Eq. ~32!.

Plugging the ansatz~32! into Eq. ~24! and expanding to
linear order ine, we obtain

ra0
8 ~pW !5k (

a1 ,. . ., ak

P~a1 ,. . .,akua0!E dra1
~qW !

3d~pW 2 IW@qW ;a2 ,. . .,ak# !. ~33!

Here we distinguished the distribution on the right-hand side,
ra(•), from the one on the left-hand side,ra8 (•). In fact we
are interested in the stability of the iteration~24! and not just
in its fixed point. HereP(a1 , . . . ,akua0) is the probability
of finding conformationsa1 , . . . ,ak on thek leaves of the
branch in Fig. 1, constrained to the root being in conforma-
tion a0 . This must be computed within the solution de-
scribed by Eq.~31! and can explicitly be written in terms of
the weightswa(b,m). Finally IW@qW ;a2 , . . . ,ak# denotes the
‘‘small’’ components of the cavity iteration:

~ IW@qW ;a2 , . . . ,ak# !a5I a@q,e(a2), . . . ,e(ak)# for aÞa0 .

Instead of continuing in full generality, let us consider
the example of an alternating F model in the closed-packed
limit with EAA5EBB52EAB521 ~remember that in this
case we found a discontinuous phase transition with a highly
polarized low temperature phase; cf. Sec. V C!. Equations
~33! reduce to

r1A8 ~pW !5 (
n50

k21

f nd~p2A ,p2B!E dr1B~qW !d~p1B

2e22b(k2122n)q1A!

1gAd~p1B ,p2B!E dr2A~qW !d~p2A2e2bq1B!

1gBd~p1B ,p2B!E dr2B~qW !d~p2A2ebq1B!,

~34!

r2A8 ~pW !52d~p1B ,p2B!E dr1B~qW !

3d~p1A2ebq2A2e2bq2B!, ~35!

plus two equations obtained by interchangingA andB. Here
we used the shorthandd(x,y)5d(x)d(y) and expanded
IW@qW ;a2 , . . . ,ak# in the delta functions to linear order inqa

for aÞa1 . The weights$ f n% andgA/B are given by

f n5
1

~2 coshbm!k21 S k21
n De2bm(k2122n),

~36!

gA/B5
k21

11e62bm .

A little thought shows that, after one iteration of Eqs.
~34! and ~35!, we can set

r1A~pW !5d~p2A ,p2B!r1A→1B~p1B!

1d~p1B ,p2B!r1A→2A~p2A!, ~37!

r2A~pW !5d~p1B ,p2B!r2A→1A~p1A!, ~38!

and that the linearized recursions decouple in the three ‘‘sec-
tors’’ $1A→1B,1B→1A%, $1A→2A,2B→1B%, and $1B
→2B,2A→1A%. The first sector corresponds to shifts of the
chain and turns out to be marginally stable~the function
IW@qW ;a2 , . . . ,ak# has to be developed to second order inqW ).

The other two sectors correspond to structural rearrange-
ments of the backbone and become unstable whenmb
,(mb)c[yc5 1

2• ln(2k23). This instability has a simple
physical interpretation. The pure states described by (mb)c

have a free energy densityf c51/2. This means that, on av-
erage, a randomly chosen site has one violated neighboring
bond—i.e., one neighbor occupied by a monomer of the op-
posite type. It is thus possible to rearrange the backbone of
the alternating chain without paying energy by opening the
chain at the given site and redirecting it in the direction of
the violated bond and propagating the rearrangement through
the lattice; see Fig. 13.

For k<6 the instability appears at a smaller value than
the liquid entropy crisis,yc,bcris(m→`). Thus, at low tem-
peraturesb.yc , the thermodynamically relevant close-
packed states are correctly described by the stable polarized
solution withms5bcris/b. In particular, we can immediately
deduce the ground-state energy of Hamiltonian walks of an
alternating HP chain on a fixed connectivity random graph
from the value off liq(bcris;m→`): This yields 0.083 686,
0.120 619, 0.172 602, and 0.236 348 violated bonds per site
for k53, 4, 5, and 6, respectively.

A numerical study of the cavity recursion equations at
maximal density actually finds, fork<6, a coexistence of the
polarized solution with another solution in some intermediate
range@yc ,yt#. This is a peculiarity of the infinite-m regime,
the numerics at finite but largem suggesting that the polar-
ized solution is unphysical belowyt . However, sinceyt

,bcris, the polarized ansatz still correctly describes the low-
temperature regime.

What happens away from them→` limit? The possibil-
ity of voids allows for new terms in the sum over conforma-
tions; cf. Eq. ~33!. It turns out that the iterations become
unstable in the new sectors$0→↑a,↑a→0% and
$0→↓a,↓a→0%. Physically, this means that the presence of
voids in the lattice always allows for a rearrangement of the
polymer configuration in some~perhaps very rare! regions,

FIG. 13. Instability of the completely frozen solution due to rearrangements
of the backbone.
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preventing a complete freezing in a single state. However, at
y>yt , a stable fixed point close to the polarized solution
~31! still exists.

Let us finally notice that the stability of the polarized
solution can be studied within a larger 2RSB ansatz.56 The
results coincide with the simplified treatment presented here.
These results are further confirmed if one studies the behav-
ior of field distributions in theT→0 limit following Ref. 57.

C. Exact enumerations on a cube

In an attempt to verify the 1RSB or even REM-like na-
ture of heteropolymers, Shakhnovich and Gutin have exactly
enumerated all conformations of fully compact random 27-
mers on a 33333 cube and calculated the overlap distribu-
tion function P(q) as a function of temperature.59,58 They
interpreted their results in favor of a REM-like scenario
where only a small number of states dominated the low-
temperature regime andP(q) exhibited typical features of a
discontinuous glass phase. In view of our mean-field predic-
tions, one would expect to find a different scenario when
repeating this analysis for copolymers~with a certain amount
of sequence correlations! in their soft glass phase.

We first repeated this enumeration study forrandomam-
pholytes and found aP(q) order parameter very similar to
the random-bond case studied originally,59 in agreement with
the results of Ref. 58. However, the same analysis done for
correlated ampholytic sequences with various values ofp
did not show any clear dependence onp. This absence of
evidence can have two origins. On the one hand, it might be
due to the extreme restrictions that full packing imposes on
the conformations. We have seen above that the fully dense
limit is very subtle since physically important degrees of
freedom, which are found in a system with voids, are artifi-
cially suppressed, as has been put forward by many
authors.7,22,60On the other hand, it seems that these sizes are
too small to study the true phase-space structure of the glass
phase.

VIII. DISCUSSION AND CONCLUSION

The cavity method approaches the lattice heteropolymer
problem from a point of view that analyzes the conforma-
tional degrees of freedom of chains with quenched-in se-
quences. Furthermore, this method allows to study the whole
temperature range and describes theQ collapseand the low-
temperature physics within the same formalism. In this sense
we believe it provides an interesting perspective in the ana-
lytic studies of heteropolymer folding.

With this local approach we have studied the frustration
effects on a given site of the lattice. We find that the decisive
features determining the nature of the low-temperature phys-
ics are the short-range correlations in the monomer sequence.
Polymers whose monomer distribution along the chain tends
to be annealed have a proclivity to undergo a continuous
glass transition to a soft glass phase before the strong freez-
ing transition takes place. In oppositely correlated sequences
the freezing occurs directly from the liquid phase. A weakly
polarized phase with broken ergodicity and a high sensitivity
to the specific sequence has also been observed in the exten-

sive numerical analysis of the phase diagram for specific
hydrophilic–hydrophobic chains,22 and the qualitative differ-
ences found between selected sequences indeed reflect the
general tendencies that we predict from the cavity analysis of
the slightly different but closely related HP-like model.

The temperature of the dynamic transition at which
highly frozen pure states appear is almost independent of the
correlations in the sequence as we found from the numerical
solution of the 1RSB cavity equations. For the time being we
do not have a deeper understanding of this finding, which is
in accordance with numerical observations in the dynamics
of copolymer folding. We hope to obtain better analytical
insight into this phenomenon from a thorough analysis of the
stability of the highly polarized low-temperature states. This
would probably also explain why the border between the
2RSB freezing scenario with an intermediate soft glass and
the scenario of a direct liquid–frozen-glass transition is so
close to the Markov parameterp51/2, corresponding to un-
correlated chains.

It would be interesting to verify the predictions for Mar-
kovian chains experimentally~preferably with ampholytes
where the pair interactions are rather strong!. In fact it is
possible to fabricate Markovian copolymers from a random
polymerization process, wherep can be controlled by chang-
ing the chemical parameters of the solution. Furthermore, it
will be very interesting to review the studies of sequence
correlations in natural proteins in the light of our findings.

The results of the cavity method are expected to be exact
for polymers on random~Bethe! lattices, as is indeed cor-
roborated by numerical simulations. However, on real-space
lattices the Bethe approximation neglects the correlations
arising from small loops.

It would thus be very important to check the effect of
sequence correlations through numerical simulations of poly-
mers on a cubic lattice, using our mean-field predictions as a
guideline. One regime in which the small loops of the cubic
lattice can yield a behavior which is qualitatively different
from the present mean-field analysis is the case where the
polymer has a strong tendency to form local crumples, as
happens in block copolymers which undergo a microphase
separation. In order to study such problems analytically, it
would be interesting to improve the Bethe approximation by
considering enlarged cavities that contain not only a single
site but a small cluster of nearby sites. This actually amounts
to a further step in the framework of the cluster variational
method. For the homopolymeric case a first step in this di-
rection has been carried out in Ref. 61.

Already on the level of the simplest copolymer model
we found a surprisingly rich phase diagram as a function of
temperature and sequence correlations. But clearly, the cav-
ity method is amenable to a number of generalizations that
allow one to study more sophisticated models of biopoly-
mers, including, for instance, backbone stiffness, orienta-
tional degrees of freedom, or additional structural constraints
such as the saturation of monomer–monomer interactions,
which are crucial, e.g., for the folding of RNA.
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APPENDIX A: FINDING THE LIQUID SOLUTION

In this appendix we show how the translation invariant
liquid solution can be found by solving a set ofuAu12 equa-
tions @instead of 3L11 equations as may appear from Eqs.
~4!–~7!#. First of all it is convenient to make a change of
variables defining

w0
( i )[ (

a51

L p2a
( i )

p0
( i ) , z↑a

( i )[
p↑a

( i )

p0
( i ) , z↓a

( i )[
p↓a

( i )

p0
( i ) ,

~A1!

ws
( i )[ (

a51

L p2a
( i )

p0
( i ) exp~2bEs,sa

!.

It is easy to see that the cavity equations~4!–~7!, as well as
the free energy~13!, and all the others observables can be
rewritten in terms of these 2L1uAu11 variables. In using
the new variables, when not specified, we shall assume that
the indexs belongs to the enlarged space$0%øA. We will
setE0,s5Es,050.

The liquid fixed point has the translation invariant form
ws

( i )5ws , z↑a
( i )5z↑a , z↓a

( i )5z↓a . The corresponding equations
are easily written:

z↑a5kebm
z↑,a11

11w0
S 11wsa

11w0
D k21

, ~A2!

z↓a5kebm
z↓,a21

11w0
S 11wsa

11w0
D k21

, ~A3!

ws5k~k21!ebm (
a51

L

e2bEs,sa

z↑,a11

11w0

z↓,a21

11w0

3S 11wsa

11w0
D k22

. ~A4!

It is important to notice that the above equations are invari-
ant under the transformationz↑a→g•z↑a , z↓a→g21

•z↓a for
any positiveg: we shall fix this freedom below. The reader
can easily check that any physical observable~such as the
free energy, the local energy, or the local density! is also
invariant under such a transformation. This happens because,
when following the chain along its conventional direction,
each time we arrive at a sitei , we are obliged to leave the
site as well.

The above equations admit of course the trivial coil so-
lution z↑a5z↓a50. Moreover, if one hasz↑a0

50 (z↓a0
50)

for a particulara0 , this impliesz↑a50 (z↓a50) for anya.
Therefore, we shall hereafter assume thatz↑a ,z↓aÞ0 for any
a. In this case Eqs.~A2! and ~A3! imply the consistency
condition

15S kebm

11w0
D L

)
sPA

S 11ws

11w0
D (k21)Lns

. ~A5!

Equations~A2! and ~A3! are easily solved:

z↑a5 )
b5a

L
kebm

11w0
S 11wsb

11w0
D k21

z↑ , ~A6!

z↓a5 )
b51

a
kebm

11w0
S 11wsb

11w0
D k21

z↓ , ~A7!

wherez↑ , z↓ are two integration constants. We can exploit
the invariance mentioned above in order to fixz↑5z↓5z.

Substituting the expressions~A6! and~A7! into Eq.~A4!
and using Eq.~A5!, we get

ws5~k21!Lz2 (
tPA

nte
2bEst

11wt
. ~A8!

We are therefore left with a set ofuAu12 equations@Eq.
~A5! plus theuAu11 equations in Eq.~A8!# for uAu12 real
variables (z and theuAu11 variablesws). As anticipated
these equations depend on the sequence just through the fre-
quenciesns , sPA. The reader will easily check that the
same is true for any physical observable.

Near theQ point all ws are small, and Eq.~A8! shows
that to lowest order they satisfyws'w0(tPAnte

2bEst. By
imposing that a nontrivial solution of Eq.~A5! should exist
one immediately obtains Eq.~14! for the location of theQ
point.

APPENDIX B: NEUTRAL AB COPOLYMERS:
LOCAL STABILITY ANALYSIS

Here we outline the computation of the local stability
condition for anAB copolymer having a generic period-L
sequence. We shall use, depending on the context, the nota-
tion saP$A,B% or saP$1,2% for the sequence.

As already mentioned in Sec. IV A, we consider the case
of an interaction matrix symmetric underA↔B interchange.
Without loss of generality, we can restrict ourselves to the
cases of the AF and F models defined in Sec. II A. Moreover,
we shall assume that the sequence is neutral—i.e.,nA5nB

51/2. Under these hypothesis, Eqs.~A2!–~A4! admit the
symmetric solution z↑a5z↓a5z/AL, w05w, wa

5w coshb, wherez and w are determined by solving the
equations

z5kebmS z

11wD S 11w coshb

11w D k21

, ~B1!

w5k~k21!ebmS z

11wD 2S 11w coshb

11w D k22

. ~B2!

We want to compute the local stability of the cavity re-
cursions ~4!–~7! around the above solution. We therefore
imagine that the cavity fields for one of the sites 1,. . . ,k ~let
us say the site 1! have been slightly perturbed and compute
the effect of such a perturbation on the site 0. To linear order
we get

dz↑a
(0)5Adz↑,a11

(1) 2Bdw0
(1)1Cdwsa

(1) , ~B3!

dz↓a
(0)5Adz↓,a21

(1) 2Bdw0
(1)1Cdwsa

(1) , ~B4!
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dw0
(0)5D (

a51

L

~dz↑a
(1)1dz↓a

(1)!2Edw0
(1)

1F (
sP$A,B%

dws
(1) , ~B5!

dws
(0)5G(

a51

L

~e2bEss(a21)dz↑,a
(1)1e2bEss(a11)dz↓,a

(1) !

2Hdw0
(1)1F (

tP$A,B%
e2bEstdwt

(1) . ~B6!

The constantsA–H are all positive and can be expressed in
terms of the solution of Eqs.~B1! and~B2!. In the following
we will just need the combinations below:

A5
1

k
, CG5

k21

k2L

w

11cw
, F5

k22

2k

w

11cw
, ~B7!

where we used the shorthandc[coshb.
We must now identify the most relevant perturbation—

i.e., the largest eigenvalue of the linear transformation~B3!–
~B6!. One can show that the subspace

H dw050; (
a51

L

dz↑a50; (
a51

L

dz↓a50; (
sP$A,B%

dws50J
~B8!

is stable under the iteration~B3!–~B6!. It can be shown that
the most relevant eigenvector lies indeed within this sub-
space. We restrict to it by defining the variables

dw̄[dwA2dwB , d↑b[ (
a51

L

dz↑asa2b ,

~B9!

d↓b[ (
a51

L

dz↓asa1b ,

where we usedsaP$1,2% for the polymer sequence. Using
the new variables we can rewrite the iteration~B3!–~B6! as
follows:

d↑a
(0)5Ad↑,a11

(1) 1
L

2
Cq2adw̄(1), ~B10!

d↓a
(0)5Ad↓,a11

(1) 1
L

2
Cqadw̄(1), ~B11!

dw̄(0)52Gs~d↑1
(1)1d↓1

(1)!12Fsdw̄(1), ~B12!

where we introduced the notations[sinhb ~for the F model!
or s[2sinhb ~for the AF model! and the sequence correla-
tion function

qb5
1

L (
a51

L

sasa1b . ~B13!

Notice thatqb5q2b . This remark allows us to sum Eqs.
~B10! and ~B11! and to introduce the Fourier transform~for
p52pn/L, nP$1, . . . ,L21%)

d~p!5 (
a51

L

~d↑,a1d↓,a!e2 ipa. ~B14!

We obtain therefore

d (0)~p!5Aeipd (1)~p!1LCq~p!dw̄(1), ~B15!

dw̄(0)52Gs
1

L (
p

d (1)~p!eip12Fsdw̄(1). ~B16!

We can now setd (0)(p)5ld (1)(p), dw̄(0)5ldw̄(1), and
solve forl, thus recovering Eq.~23!.

APPENDIX C: COEXISTENCE CONDITION
FOR A MANY-STATE MOLECULE

It may be interesting to explicitly treat the case of an
isolated molecule in equilibrium with the solvent and deter-
mine the coexistence condition in the glass phase. The result
is not obvious since the system can exist in many different
states gP$1, . . . ,N% with ~extensive! grand potential
$V1 , . . . ,VN%. Each one of these states describes a molecule
confined to a volumeV.

Let us suppose that each state can be traced as the vol-
umeV of the system is changed. This gives us the volume-
dependent potentialsVg(V). If the stateg is to describe a
molecule in equilibrium with the solvent, it should exert no
pressure on the walls of the container:

dVg

dV
50. ~C1!

We want to compute the typical value of the above quan-
tity for states having a certain free-energy density:Vg

'Vv. Let us step back for a moment and consider the ex-
tensive complexityŜ(V;V,m), where we made explicit the
dependence upon the volumeV and the chemical potentialm.
If we assume that states do not bifurcate and do not die~or
come into existence! as the volume is changed, it is easy to
show that,62 for almost any stateg,

Ŝ~Vg1dVg ;V1dV,m!5Ŝ~Vg ;V,m!. ~C2!

Using the asymptotic behaviorŜ(V;V,m)'VS(v,m) and
the general relations from Sec. III A, we can establish the
coexistence condition either in the (m,m) or in the ~v, m!
plane~we always assumeb and the energy parameters to be
fixed!. From Eq.~C2!, we immediately obtain the condition
in the ~m,v! plane:

v
]S

]v
~v,m!5S~v,m!. ~C3!

This is suggestive of a balance between an ‘‘internal’’ os-
motic pressurev and an ‘‘interstate’’ pressure (S/]vS). In
the (m,m) plane, the condition assumes a more compact
form f1(m,m)50. If we consider the lowest-lying states,
their free energy densityvs(m) is determined by the vanish-
ing of the complexity:S(vs(m),m)50. Therefore Eq.~C3!
is satisfied form5ms, with vs(ms)50. This coincides with
the condition for a unique pure state. If metastable states are
considered, Eq.~C3! receives a nonvanishing contribution
from the complexity: in particular, one obtainsv.0. This is
quite striking since we did not assume the system to equili-
brate among states of a given free energy~which indeed does
not happen on the short time scales that are relevant to de-
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termine the boundary conditions with the solvent!. In Fig. 14
we illustrate the condition~C3! in the ~v, m! plane. Notice
that in general metastable states~with S.0) on the coexist-
ence line correspond to lower chemical potential than that of
thermodynamically relevant states.

Let us finally consider the coexistence line at thermody-
namic equilibrium. Dominant states are obtained by mini-
mizing the free energyv2b21S(v,m) with respect tov.
The coexistence chemical potentialm* is then obtained from
Eq. ~C3!. In a more compact~but formal! way, it is deter-
mined from the condition

max$f1~m,m* !umP@0,1#%50. ~C4!

In the main body of the paper we focus on the behavior of
the polymer on this line. Generally speaking, at high tem-
perature the maximum in Eq.~C4! is attained atm51. Since
f1(m51,m)5f liq(m), in this region the coexistence line is
the same as for the liquid phase. At lower temperatures the
maximum is attained for 0,m* ,1 and the thermodynamic
coexistence line lies above the liquid one. We refer to Fig. 12
for a summary of this behavior.

APPENDIX D: EXPANSION OF MOMENTS
AT THE CONTINUOUS GLASS TRANSITION

Here we analyze the solution of the cavity recursion near
the continuous transition to first nontrivial order in an expan-
sion of its moments.

Calculating the moments of the cavity fields by using
both sides of the cavity recursion equation on the 1RSB level
~24!, one obtains a set of coupled nonlinear equations for the
moments of the fieldspa over the distributionr~p!. It is
convenient to change coordinates and define the fieldsDm

5(aAm
a(pa2pa* ) that diagonalize the matrix~22!. Hereafter

we shall denote bym51 the most instable~‘‘replicon’’ ! di-
rection in this matrix and byl the corresponding eigenvalue.

A careful analysis allows to establish the scaling of the
moments with respect to the small parameterkl221;Ti

2T. The leading moment is given by the second moment of
the replicon mode. One finds^D1

2&;(Ti2T) ~the bracketŝ &
denote the average with respect tor!, while all other mo-

ments of deviations from the liquid fixed pointp* are at least
of second order inTi2T. The only moments of order (Ti

2T)2 are the first-order moments of^Dm&, the remaining
second momentŝD1Da&, ^DmDn&, with m,n.1, and the
higher momentŝD1

3&, ^D1
2Dm&, and^D1

4&.
Let us now expand the 1RSB free energy~25! in powers

of Ti2T around the liquid solution.
The site term gives rise to a series

lnH ~ws
liq!mF11S m

1 D K (
i 51

k11

ws,mDm
( i )1

1

2 (
iÞ j

k11

ws,mnDm
( i )Dn

( j )

1
1

6 (
iÞ j Þ l

k11

ws,mnrDm
( i )Dn

( j )Dr
( l )L 1¯

1S m
2 D K S (

i 51

k11

ws,mDm
( i )1

1

2 (
iÞ j

k11

ws,mnDm
( i )Dn

( j )

1
1

6 (
iÞ j Þ l

k11

ws,mnrDm
( i )Dn

( j )Dr
( l )D 2L 1¯G J , ~D1!

where summation over direction indicesm,n,r51, . . . ,3L is
tacitly understood and we used the shorthand notation

ws,m5F 1

ws

]ws

]Dm
(1)G

liq

, ~D2!

ws,mn5F 1

ws

]2ws

]Dm
(1)]Dn

(2)G
liq

, ~D3!

ws,mnr5F 1

ws

]3ws

]Dm
(1)]Dn

(2)]Dr
(3)G

liq

. ~D4!

Note that we have made use of the fact thatws is a multilin-
ear function of the fieldsp( i ) so that higher derivatives have
to occur with respect to variables on different sites. The
average ^ & is with respect to the distributions
r(p(1)), . . . ,r(p(k11)) on all sites. The link term has an
analogous expansion as Eq.~D1!, but the triple sum vanishes
since there are only two different field variables.

To proceed, we note the identity

ws~p(1), . . . ,p(k11)!5C@p(2), . . . ,p(k11)#

3wl~p(1),I @p(2), . . . ,p(k11)# !,

~D5!

from which one immediately deduces

ws,m5wl ,m ~D6!

for all directionsm. Using that]C/]D1
(2)u liq50, this follows

from the properties of the subspace~B8! to which the repli-
con belongs, one further finds

ws,15wl ,150 ~D7!

and

ws,1n5lwl ,1n . ~D8!

Let us now discuss the terms that appear to increasing
order inTi2T in the expansion of the free energy. There is

FIG. 14. A schematic view of the coexistence between a multistate molecule
and the solvent. Each line represents the evolution of the internal free energy
of a state as the volume is changed@S(v,m)5const#. The thick line shows
the states which are in equilibrium with the solvent. In particular, we signal
the coexistence chemical potentials for static and dynamic states.
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no first-order term proportional tôD1
2&, because of Eq.

~D7!. The second-order termŝDm&, ^DmDn&, ^D1
3&, and

^D1
2Dm& come with products of factorsws/ l ,m and cancel ex-

actly between the site and link contributions, due to Eq.
~D6!. The only remaining term to second order is

bmf (2)5S m
2 D F2

~k11!k

2
~ws,11!

21
k11

2
~wl ,11!

2G^D1
2&2.

~D9!

However, using Eq.~D8!, the coefficient in brackets is seen
to be of orderkl221;Ti2T.

The same mechanism suppresses thea priori third-order
terms^D1

2&^DmDn& and ^D1
2&^D1

2Dn& by an additional factor
kl221 while the terms^D1

2&^Dm&, ^D1
3&^D1

2&, and ^D1
4&

3^D1
2& do not appear, again because of Eq.~D7!. The only

surviving third-order contributions are the site terms propor-
tional to ^D1

2&3:

bmf (3)52~k11!k~k21!F1

6 S m
2 Dws,111

2 1S m
3 Dws,11

3 G^D1
2&3.

~D10!

To first nontrivial order we finally have

f15f liq1f (2)1f (3)1O„~kl221!4
…

5f liq1
12m

4b
~k11!kws,11

2 ~kl221!^D1
2&2

1
12m

2b
~k11!k~k21!S 1

6
ws,111

2 2
22m

3
ws,11

3 D
3^D1

2&31O„~kl221!4
…. ~D11!

Since the form~25! of the free energy is variational the
saddle point condition]f1 /]^D1

2&50 must hold. This allows
us to obtain the leading moment to first order inTi2T,

^D1
2&5

1

~k21!

ws,11
2

@~22m!ws,11
3 2ws,111

2 /2#
~kl221!

1O„~kl221!2
…. ~D12!

Using this result in Eq.~D11! we get

f15f liq1
~12m!

12b

k~k11!

~k21!2

ws,11
6

@~22m!ws,11
3 2ws,111

2 /2#2

3~kl221!31O„~kl221!4
…. ~D13!

Note that the prefactor of (kl221) in Eq. ~D12! has to
be positive for consistency. A negative value indicates that
there is no stable solution close to the liquid fixed point and
the glass transition would be discontinuous. By explicit cal-
culation of this coefficient at the instability point we found
this to happen only in very atypical sequences with highly
nonsymmetric interactions.

Evaluating the coefficientsws,11 and ws,111 requires
knowledge of the replicon eigenvector. This can be derived
for the case of copolymers with symmetric interaction matrix
EAA5EBB52EAB , and equally frequent monomer species,
nA5nB51/2, extending the arguments of Appendix B. In
particular we obtain~using the variables defined in Appen-
dixes A and B!

dw050, dz↑a5
Cdw

2l (
n50

`

sa1n~kl!2n,

~D14!

dz↓a5
Cdw

2l (
n50

`

sa2n~kl!2n, dws5sdw.

Things simplify considerably in several important cases:
~i! alternating copolymers,~ii ! antipalindromic sequences,
and ~iii ! Markov sequences in theL→` limit. In all this
cases the ratiows,111

2 /ws,11
3 vanishes. The basic reason is that,

because of Eq.~D14!, ws,111 turns out to be an odd function
of $sa%. In these cases the free energyf1(m) takes the
simpler form@cf. Eq. ~26!#

f12f liq5
~k11!k2

12~k21!2b

12m

~22m!2 ~kl221!3

1O„~kl221!4
…. ~D15!

At the glass transition the maximum off1 is attained at
ms50. The fourth-order term will shift its position toms

}kl221;Ti2T, as we have explicitly checked in the al-
ternatingAB ampholyte.

APPENDIX E: COMPUTING THE ORDER PARAMETER
IN THE CAVITY METHOD

In this appendix, we show how to calculate the local
structural order parameters~17! using the cavity method.

In the spirit of the Bethe–Peierls approximation we treat
the self-avoidance of the polymer chain just on a local level,
forbidding it to leave a site on the edge on which it arrived,
but neglecting further constraints that arise on a real space
lattice. In the following, we call ‘‘nonreversal random
walks’’ ~NRRWs! this restricted class of walks on the cubic
lattice.

Let us rewrite the distance vector between monomersi

and i 1d as RW i 1d
(1) 2RW i

(1)5(n51
d rWn

(1) with rWn
(1)5RW i 1n

(1)

2RW i 1n21
(1) . If the positions along the chain are statistically

equivalent, the overlap̂Fd&statecan be written as

^Fd
(1,2)&state5K (

l 50

d S (
n51

l

rWn1 (
n5 l 11

d

rWn
(1)D

3S (
n51

l

rWn1 (
n5 l 11

d

rWn
(2)D L

state

, ~E1!

where we split the sum according to the lengthl over which
the replicas stay together and putrWn

(1)5rWn
(2)5rWn for n< l .

Note that oncel is fixed the common part of the path and the
two legs of lengthd2 l can be considered as nonreversal
random walks, only subject to the constraint that the legs
leave in different directions at the bifurcation. These random
walks have all the same weight when averaging over pure
states. Hence, in order to evaluate Eq.~E1! it is sufficient to
calculate the probabilitŷ P( l )&state for two replicas in the
same state to follow the same path over a distancel , from
which we obtain

^Fd
(1,2)&state5(

l 50

d

^P~ l !&statef ~ l ;d!, ~E2!
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where

f ~ l ;d!5K S (
n51

l

rWn1 (
n5 l 11

d

rWn
(1)D

3S (
n51

l

rWn1 (
n5 l 11

d

rWn
(2)D L

NRRW(l )

, ~E3!

the average being taken over the uniform distribution of two
NRRWs afterl common links.

Using that in a NRRW one haŝ rWn1
•rWn2

&NRRW

51/kun12n2u and distinguishing the different possible confor-
mations at the bifurcation, one easily finds

f ~ l ;d!5 l 12(
j 51

l 21
l 2 j

kj 1
2

k (
n151

l

(
n251

d2 l
1

kn11n222

2
1

k (
n151

d2 l

(
n251

d2 l
1

kn11n222 . ~E4!

~The first two terms stem from the self overlap of the com-
mon part, the term in the middle is the cross term between
the common part and a leg that continues straight with re-
spect to the common part, and the last term is a negative
contribution due to two legs leaving in opposite directions.!

In the liquid state,̂ P( l )& liq is just given by the probabil-
ity that two NRRWs stay together over a distancel :

Pliq~ l 50!5
k

k11
, ~E5!

Pliq~ l .0!5
k21

k11

1

kl . ~E6!

Upon injecting Eqs.~E4!, ~E5!, and~E6! in Eq. ~E2! one may
verify that ^Fd& liq50.

In the glass phase,^P( l )&stateis most easily evaluated as
N( l )^P̃( l )&state, whereN( l ) is the number of rooted NRRWs
of lengthl andP̃( l ) is the probability for two replicas to stay
on a specific path of lengthl .

In the Bethe–Peierls approximation the latter can be
computed within an enlarged cavity containing all sites of
the path. The average over the states is done by averaging
independently over the local field distributions on all neigh-
boring sites, taking into account proper weighting factors,

^P̃~ l !&state5
1

L (
a51

L *)iPIl
dr~p(i)!Pl ;aWl ;tot~$p

i%iPIl
!m

*)iPIl
dr~p(i)!Wl ;tot~$p

i%iPIl
!m ,

~E7!

where we have introduced the set of indicesIl labeling the
neighbors of thel 11 sites on the path:

Il5ø i 051
k $~0,i 0!%ø l 851

l 21
„ø i l 851

k21 $~ l 8,i l 8!%…ø i l51
k $~ l ,i l !%.

~E8!

Pl ;a denotes the probability, given the local field configura-
tion, for two replicas to both stay on the given path up to site
l and to separate afterwards, under the condition to start off
at site 0 with monomera:

Pl ;a5
( j 2Þ j 1

k Wl ;a1

( j 1) Wl ;a1

( j 2)

Wl ;a~$pi%iPIl
!2 . ~E9!

The weightsWl ;a6
( j ) are the Boltzmann factors associated

with a polymer starting with monomera on site 0, staying on
the path, and leaving it at the sitel via neighbor (l , j ),

Wl ;a6
( j ) 5ebm( l 11)S (

j 851

k p↓(a21)
(0,j 8)

ca
(0,j 8) )

i 51

k

ca
(0,i )D

3 )
l 851

l 21 S )
i 51

k21

ca6 l 8
( l 8,i )D S p↑a6( l 11)

( l , j )

ca6 l
( l , j ) )

i 51

k

ca6 l
( l ,i )D ,

~E10!

the sign6 indicating that monomer indices increase or de-
crease along the path. Notice that in Eq.~E9! we selected
arbitrarily one of the two equivalent directions. In the above
formulas,Wl ;tot and Wl ;a are the Boltzmann factors associ-
ated with the ensemble of all possible configurations on the
path and of the configurations restricted to have a monomer
a on site 0, respectively. They are conveniently calculated
recursively via

Wl ;a/tot~$p
i%iPIl

!5C~p( l ,1), . . . ,p( l ,k)!

3Wl 21;a/tot„$p
i%iPIl 21

up( l 21,k)

5I ~p( l ,1), . . . ,p( l ,k)!…, ~E11!

whereI denotes the cavity iteration functional as defined by
Eqs.~4!–~7! andC is the corresponding normalization con-
stant. The initial conditions for Eq.~E11! are simply

W0;a~p(0,1), . . . ,p(0,k11)!

5ebm (
i 1Þ i 2

k11

p1a21↓
(0,i 1) p1a11↑

(0,i 2) )
j Þ i 1 ,i 2

k11

csa

(0,j ) ~E12!

and

W0;tot~p(0,1), . . . ,p(0,k)!5ws~p(0,1), . . . ,p(0,k)!. ~E13!

APPENDIX F: MONTE CARLO SIMULATIONS
ON THE BETHE LATTICE

In this appendix we describe our approach to numerical
simulations of heteropolymers on the Bethe lattice. In the
first part we define a model for finite-length polymers. In the
second one we present our Monte Carlo algorithm.

1. Finite-length polymers

We consider a modified ensemble for a varying number
of finite-length random walks. More precisely, a configura-
tion is defined byn mutually avoiding SAW’s. The chaini
shall containNi monomers, the total number of monomers
being fixed,N11 ¯ 1Nn5N. The Hamiltonian~1! receives
contributions both from self-contacts within a single chain
and from mutual contacts between different chains. The
grand-canonical free energy is
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2bvL~b,m,mend!

5 lim
V→`

1

V
EG lnS (

n>0
ebmendn (

N>0
ebmN(

vI
e2bHN(vI )D .

~F1!

We introduced the chemical potentialmend which couples to
the number of chain ends in the solution~or, equivalently, to
the number of polymers!. The single-polymer ensemble is
recovered in themend→2` limit.

Extending the cavity formalism to the finite-mend case is
quite straightforward. As an illustration, we can easily write
down the generalization of Eqs.~4!–~7!:

p0
(0)5C21)

i 51

k

c0
( i ) , ~F2!

p↑a
(0)5C21ebm)

j 51

k

ca
( j )H ebmend1(

i 51

k

p̂↑a11
( i ) J , ~F3!

p↓a
(0)5C21ebm)

i 51

k

ca
( i )H ebmend1(

i 51

k

p̂↓a21
( i ) J , ~F4!

p2a
(0)5C21ebm)

i 51

k

ca
( i )H e2bmend1ebmend(

i 51

k

~ p̂↓a21
( i 1)

1 p̂↑a11
( i 2)

!

1 (
i 1Þ i 2

k

p̂↓a21
( i 1) p̂↑a11

( i 2) J , ~F5!

where we used the shorthandp̂↓a21
( i ) [p↓a21

( i ) /ca
( i ) , p̂↑a11

( i )

[p↑a11
( i ) /ca

( i ) .

2. Monte Carlo algorithm

As already mentioned in Sec. V D, numerical simula-
tions of long fixed-length polymers are quite difficult on the
Bethe lattice. We thus resort to simulating the variable-length
ensemble. The algorithm includes three types of moves illus-
trated graphically in Fig. 15:~a! monomer insertion and de-
letion, ~b! chain extension and reduction,~c! two-chain junc-
tion and disjunction. It is straightforward to show that these
three moves ensure ergodicity.

At each step of the algorithm the type of move and the
location in the graph are chosen randomly. The move is then
accepted according to the Metropolis rule in such a way as to
satisfy detailed balance with respect to the variable-length

ensemble~F1!. Evidently the algorithm is more efficient for
moderate lengths of the polymers—i.e., not too large values
of umendu. It can be therefore convenient, for producing
equilibrated configurations, to gradually decreaseumendu to
the desired value.

APPENDIX G: NUMERICAL SOLUTION
OF THE 1RSB CAVITY EQUATIONS
WITH POPULATION DYNAMICS

The form~24! of the cavity recursion equation is sugges-
tive of a numerical solution by an iterative population
dynamics:40 the distribution of local fieldsr~p! is represented
by a ~finite! population of fields. An iteration step in the
dynamics consists in choosing at randomk ‘‘parent’’ mem-
bersp( i ) of the population and calculating the corresponding
cavity fieldp(0)5I ($p( i )%) from Eqs.~4!–~7!. This new field
is then exchanged against an old field in the population with
probabilityC@$p( i )%#m/Cmax

m , proportional to the reweighting
C@$p( i )%#m ~normalized so as to make sure that the probabil-
ity never exceeds 1!. If the dynamics converges to a station-
ary distribution, its density satisfies the recursion equation
~24!.

In the soft glass phase, the iteration converges rapidly
since the distribution of fields remains centered around the
unstable liquid fixed point. However, the algorithm consid-
erably slows down in the frozen phase where the fields have
strong biases towards given conformations. Since the biases
of the k parent members are only rarely compatible with
each other, the reweighting is usually very small. The popu-
lation dynamics is then dominated by rare events with a low
degree of frustration. Obviously, the probability of frustrated
events rapidly increases with the number of different local
conformations and thus with the length of the periodL. For
this reason we have limited our numerical simulations in the
frozen glass phase to populations of 4000 fields for chains
with L520.
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13A. Montanari, M. Müller, and Mézard, e-print cond-mat/0307040; Phys.

Rev. Lett.~to be published!.
14S. S. Plotkin, J. Wang, and P. G. Wolynes, Phys. Rev. E53, 6271~1996!.
15E. G. Timoshenko, Y. A. Kuznetsov, and K. A. Dawson, Phys. Rev. E55,

5750 ~1997!.
16R. Kikuchi, Phys. Rev.81, 988 ~1951!.

FIG. 15. The three moves used in our Monte Carlo simulations on the Bethe
lattice. The monomers~chain links! which change due to the move are
represented with hatched circles~wiggly lines!.

11254 J. Chem. Phys., Vol. 120, No. 23, 15 June 2004 Mueller, Mezard, and Montanari

Downloaded 20 Jul 2008 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



17F. Aguilera-Granja and R. Kikuchi, Physica A176, 514 ~1991!; 182, 331
~1992!; 189, 81 ~1992!; 189, 108 ~1992!; 195, 53 ~1993!.

18J. Nagle, Proc. R. Soc. London, Ser. A337, 569 ~1974!.
19B. Derrida, Phys. Rev. B24, 2613~1981!.
20A. Moskalenko, Y. A. Kuznetsov, and K. A. Dawson, Europhys. Lett.40,

135 ~1997!.
21D. Thirumalai, V. Ashwin, and J. K. Bhattacharjee, Phys. Rev. Lett.77,

5385 ~1996!.
22E. G. Timoshenko, Y. A. Kuznetsov, and K. A. Dawson, Phys. Rev. E54,

4071 ~1996!; 55, 5750~1997!; 57, 6801~1998!.
23H. S. Chan and K. A. Dill, J. Chem. Phys.90, 492 ~1989!.
24H. Taketomi, Y. Ueda, and N. Go, Int. J. Pept. Protein Res.7, 445~1975!.
25K. A. Dill, Biochemistry 24, 1501~1985!.
26P. G. de Gennes, J. Phys.~Paris! Lett. 36, L55 ~1975!.
27S. Lise, A. Maritan, and A. Pelizzola, Phys. Rev. E58, R5241~1998!.
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