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We present a general hydrodynamic theory of transport in the vicinity of superfluid-insulator transitions in
two spatial dimensions described by “Lorentz”-invariant quantum critical points. We allow for a weak impurity
scattering rate, a magnetic field B, and a deviation in the density � from that of the insulator. We show that the
frequency-dependent thermal and electric linear response functions, including the Nernst coefficient, are fully
determined by a single transport coefficient �a universal electrical conductivity�, the impurity scattering rate,
and a few thermodynamic state variables. With reasonable estimates for the parameters, our results predict a
magnetic field and temperature dependence of the Nernst signal which resembles measurements in the cu-
prates, including the overall magnitude. Our theory predicts a “hydrodynamic cyclotron mode” which could be
observable in ultrapure samples. We also present exact results for the zero frequency transport coefficients of
a supersymmetric conformal field theory �CFT�, which is solvable by the anti–de Sitter �AdS�/CFT correspon-
dence. This correspondence maps the � and B perturbations of the 2+1 dimensional CFT to electric and
magnetic charges of a black hole in the 3+1 dimensional anti–de Sitter space. These exact results are found to
be in full agreement with the general predictions of our hydrodynamic analysis in the appropriate limiting
regime. The mapping of the hydrodynamic and AdS/CFT results under particle-vortex duality is also described.
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I. INTRODUCTION

A key indication that the normal state of the cuprate su-
perconductors is aberrant came from the pioneering measure-
ments of the Nernst effect by Ong and co-workers.1–4 Also of
interest here are measurements of the Nernst effect in
Nb0.15Si0.85 films by Behnia and co-workers.5,6 The Nernst
coefficient measures the transverse voltage arising in re-
sponse to an applied thermal gradient in the presence of a
magnetic field. The response of Fermi liquids is weak due to
the “Sondheimer cancellation.”7 The large observed response
and its striking and unexpected dependence on the magnetic
field, temperature, and carrier concentration indicated that an
explanation starting from a metallic Fermi liquid state could
not be tenable. Instead, Ong and co-workers argued that their
observations called for a description in terms of a liquid of
quantized vortices and antivortices in the superconducting
order �and its precursors� at low temperatures.

A complete theory of the dynamics of the vortex liquid
state is so far lacking. Ussishkin et al.8 used a classical
Gaussian theory of superconducting fluctuations, and Muk-
erjee and Huse9 extended this to a time-dependent Ginzburg-
Landau model. Podolsky et al.10 applied classical Langevin
equations to a model of phase variables residing on the sites
of a hypothetical lattice. Anderson11 has taken a speculative
view of the vortex liquid, arguing against the conventional
Debye screening of vortex interactions. While some experi-
mental trends are successfully described by Refs. 8–10, it
would be useful to have a kinematic approach which is also
able to include quantum effects and extends across the
superfluid-insulator transition. Quantum effects will surely
play a more important role at lower temperatures, especially
in the underdoped region. Indeed, it is the equal importance
of thermal and quantum fluctuations which underlies the dif-
ficulty in describing this vortex liquid.

As in the recent work by Bhaseen et al.,12 this paper will
advocate an approach departing from the quantum critical
region of a zero temperature �T� quantum phase transition
between a superconductor and an insulator. This is the region
where the primary perturbation from the physics of the T
=0 quantum critical point is the temperature. The single en-
ergy scale, kBT, then determines observable properties, in-
cluding the values of diffusion constants and transport coef-
ficients, in a manner that has been discussed at length
elsewhere.13,14 The electrical conductivity of this quantum
critical system, which we denote �Q, will play a prominent
role in our results. In 2+1 dimensions, near quantum critical
points which obey hyperscaling properties, this conductivity
is given by15–17

�Q =
4e2

h
��, �1.1�

wherein the quantum critical region �� is a universal dimen-
sionless number dependent only on the universality class of
the critical point.

The discussion so far applies, strictly speaking, only to
systems which are exactly at the commensurate density for
which a gapped Mott insulator can form. The cuprates, and
other experimental systems, are not generically at these spe-
cial densities, and so it is crucial to develop a theory that is
applicable at generic densities. Such a theory will emerge as
a special case of our more general results below. We allow
the density to take values � by applying a chemical potential
�, as shown in Figs. 1 and 2.

We emphasize that � measures the deviation in particle
number density from the density of the commensurate
insulator;19,20 so � can be positive or negative, and we will
see that the sign of � determines the sign of the Hall resis-
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tivity and other transport coefficients. Also, purely as a
choice of convention, we will measure � in terms of density
of pairs of holes; this choice does not imply that the degrees
of freedom of the underlying theory are Cooper pairs, al-
though this is the case in the simplest model. We will use
general hydrodynamic arguments �specialized to “relativis-
tic” quantum critical points� to show that the frequency ���
dependent conductivity �xx at a generic density � is given by

�xx = �Q +
4e2�2v2

�� + P�
1

�− i� + 1/�imp�
, �1.2�

where the system is characterized by the thermodynamic
state variables �, the energy density, and P, the pressure; we
will specify their temperature dependences shortly in Eq.
�1.8�. The factor �2e�2 is a consequence of our choice for the
normalization of �; note that product 2e� measures the net
charge density, and so is independent of this convention. We
assume that there is a dilute concentration of impurities
which relax the conserved momentum21 and lead to the scat-
tering rate 1 /�imp; the temperature dependence of �imp is
specified in Eq. �1.11�. The parameter v is a velocity charac-
teristic of the quantum critical point which is assumed to
have dynamic critical exponent z=1. Finally, the crucial pa-

rameter �Q is the same quantum conductance which ap-
peared in Eq. �1.1�. However, as one moves away from the
critical coupling g=gc and adds a nonzero � in Fig. 2, ��
will acquire a dependence on the ratios �g−gc� /T1/	 and � /T
which can be included unchanged in our results below �here,
	 is the usual correlation length exponent�.

It is perhaps helpful to note here the “nonrelativistic”
limit of Eq. �1.2�, which does not constitute the regime of
primary interest of this paper. In this limit, �+ P����mv2

�where m is the mass of the particles�, and then the second
term takes the form of the conventional Drude result. Note
also that the Drude-like contribution of the second term is
only present when there is particle-hole asymmetry with �
�0. For �=0, the conductivity is finite at zero frequency
even in the absence of impurities—this is because the elec-
trical current is then carried equally by particle and hole
excitations moving in opposite directions, and this current
carrying state has no net momentum and so can decay to zero
from particle-hole scattering.17

To develop a theory for the Nernst effect, we need to
apply a magnetic field B to the system described so far. A
central result of this paper is that for not too strong B fields,
the Nernst response and a set of related thermoelectric trans-
port coefficients are completely determined by the thermo-
dynamic variables and impurity scattering rate appearing in
Eq. �1.2� and the single universal transport coefficient �Q. In
particular, no additional transport coefficients are needed.
Thus, there are a large number of Wiedemann-Franz-like re-
lations which relate all the thermoelectric response functions
to the regular part of the electrical conductivity in zero field,
�Q. We will also determine the frequency dependence of
these transport coefficients; explicit expressions are given
below.

In their work, Bhaseen et al.12 only considered a nonzero
B, with �=1/�imp=0. Their primary result concerned the lon-
gitudinal thermal conductivity 
xx at zero frequency. Our re-
sult for 
xx��=0� is consistent with theirs, and further, we

g

�

0

Commensurate
Mott insulator

gc

Superfluid

Superfluid

For cuprates, this
insulator is realized
e.g. at hole
density = 1/8.

FIG. 1. �Color online� Zero temperature �T=0�, zero field �B
=0� phase diagram in the vicinity of the quantum critical point
described by the CFT, represented by the filled circle. The coupling
g represents a parameter which tunes between a superfluid and a
Mott insulator which is at a density commensurate with the under-
lying lattice. The chemical potential � introduces variations in the
density and � is the difference in the density of pairs of holes in the
superfluid from that in the Mott insulator. The thin dashed lines are
contours of constant �. In the application to the cuprate supercon-
ductors, the Mott insulator with �=0 could be, e.g., an insulating
state at hole density �I=1/8 in a generalized phase diagram; then,
�= ��−�I� / �2a2�, where a is the lattice spacing. The thick dotted
line represents a possible trajectory of a particular compound as its
hole density is decreased; note that the ground state is always a
superconductor along this trajectory, even at �=1/8 �although there
will be a dip in Tc near �=1/8 as is also clear from Fig. 2�. Note
that the parent Mott insulator with zero hole density is not shown
above. This paper will describe electrical and thermal transport in
the above phase diagram perturbed by an applied magnetic field B
and a small density of impurities.

0
Superfluid

0

Superfluid

Quantum
Critical

FIG. 2. �Color online� Nonzero temperature �T� phase diagram
at B=0 along three vertical cuts �i.e., fixed g� in Fig. 1. The lines
indicate Kosterlitz-Thouless phase transitions at T=TKT associated
with the loss of superfluid order as a function of � for different
values of g. At g=gc, TKT / ��� is a universal number determined by
the CFT at g=gc, �=0 �Ref. 18�. This paper describes transport
properties in the nonsuperfluid region above TKT, in the presence of
an applied magnetic field B and a small impurity scattering �imp.
The results of the supersymmetric CFT solvable by AdS/CFT in
Sec. V are limited to g=gc, but allow arbitrary variations in � and
B away from quantum criticality as long as there is no phase tran-
sition into a superfluid �or other� state.
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show that it is related to �Q by a Wiedemann-Franz-like
identity �Eq. �1.26b� below�. However, remarkably, unlike
the conventional identity which specifies the ratio of 
xx to
the electrical conductivity, our identity specifies the ratio of

xx to the electrical resistivity. This suggests a physical pic-
ture of transport currents carried by vortices rather than par-
ticles, at least when the perturbation associated with B is
larger than that associated with �.

A. Characterization of systems under consideration

Let us now specify the class of theories to which our
results apply. Current theories of the superfluid-insulator
transition in nonrandom systems in 2+1 dimensions are de-
scribed by quantum field theories which are Lorentz invari-
ant, and are therefore conformal field theories �CFTs�. Con-
sequently, we will mainly restrict our attention here to T
�0 “quantum critical” phases of CFTs and the general struc-
ture of their response to a nonzero � �which is not restricted
to be small� and small B and 1/�imp. We expect that many of
our results, and especially the magnetohydrodynamic analy-
sis in Sec. III, can be generalized to a wider class of systems,
but we will not discuss such a generalization here.

Specific examples of CFTs to which our results apply are
as follows.

�i� The superfluid-insulator transition of the boson Hub-
bard model on a two-dimensional lattice with a density of an
integer number of bosons per unit cell. The bosons carry
charge ±2e because they are caricatures of Cooper pairs. The
critical point is described22 by the Wilson-Fisher fixed point
of the �
�4 field theory of a complex scalar 
 �representing
the boson annihilation operator� �see Eq. �1.3� below�. This
field theory also has a dual representation23,24 in terms of a
vortex field � coupled to an emergent U�1� gauge field. Our
results apply equally to both representations, and the observ-
able properties do not depend, naturally, on whether the par-
ticle or vortex representation is used to describe the CFT.

�ii� The superfluid-insulator transition of the boson Hub-
bard model on a two-dimensional lattice with a mean density
of a rational number, p /q �with p and q coprime integers�, of
bosons per unit cell. A “deconfined” critical point25 is then
possible19,26 between the superfluid and an insulator with
valence-bond-solid order and is described by the theory of q
flavors of vortex fields �� coupled to an emergent U�1�
gauge field. This field theory can also be “undualized” to a
“quiver gauge theory” of fractionalized bosons with charge
±2e /q.19

�iii� Electronic models with a d-wave superconducting
ground state can also undergo deconfined phase transitions to
insulating states with valence-bond-solid order.27,28 The
CFTs of these transitions have Dirac fermion degrees of free-
dom, representing the gapless, Bogoliubov quasiparticle ex-
citations of the d-wave superconductor, in addition to the
multiple vortex and gauge fields found above in �ii�.

�iv� Yang-Mills gauge theories with an SU�N� gauge
group and N=8 supersymmetry. These are attracted in the
infrared to a superconformal field theory �SCFT� which is
solvable in the large N limit via the anti–de Sitter �AdS�/CFT
mapping. This solution has been used in previous work14,29

to obtain the collisionless-to-hydrodynamic crossover in the
transport of a conserved SO�8� R charge, as well as an exact
value for ��. Here, we will examine, as in other recent
work,30 the deformation of the SCFT by a nonzero B and �.
The B field and density � are both associated with a U�1�
subgroup of the SO�8� R charge. After the AdS/CFT map-
ping, B and � correspond to the magnetic and the electric
charge of a black hole in AdS space. We will present exact
results for the conserved current correlators of the dyonic
black hole in Sec. V, which allows us to obtain correspond-
ing exact results for the Nernst and related thermoelectric
responses of the SCFT. In the appropriate hydrodynamic
limit, these results are found to be in full agreement with the
more general magnetohydrodynamic analysis in Sec. III. Ad-
ditional comparisons between the hydrodynamic and AdS/
CFT results appear in a separate paper.31

It is worth reiterating that not all of the above CFTs are
purely bosonic, and the examples in �iii� and �iv� contain
fermionic degrees of freedom. Furthermore, in cases �ii� and
�iii�, the bosonic degrees of freedom of the CFT are not
Cooper pairs but fractions of a Cooper pair with charges
determined by the density of the Mott insulator.

B. Simple model

Before presenting our main results, it is useful to establish
notation by explicitly writing down the simplest of the CFTs
listed above. This is the �
�4 field theory for bosons with
charge ±2e and action

S =� d2rd��	
�� − i
2e

�
A��
	2

+ v2	
�� − i
2e

�c
A��
	2

− g�
�2 +
u

2
�
�4� , �1.3�

where r�= �x ,y� is a two-dimensional spatial coordinate, � is
imaginary time, g is the coupling which tunes the system
from the superfluid to the insulator �see Figs. 1 and 2�, and
the quartic coupling u is attracted to the Wilson-Fisher fixed
point value in the infrared limit associated with the CFT. The
electromagnetic gauge potential A� is nonfluctuating �and is
not to be confused with the emergent U�1� gauge field of the
vortex CFTs noted above�. Its time component takes an
imaginary value �in imaginary time� which determines the
chemical potential

i2eA� = � , �1.4�

while the spatial components take �-independent values so
that

�� � A� = B , �1.5�

with a space-time-independent magnetic field B. The density
� is defined, as usual, by the derivative of the partition func-
tion with respect to the chemical potential

� =
kBT

�V 
 �S
��
� , �1.6�

where V is the volume of the system. We reiterate that �
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measures the difference in the density from that of the com-
mensurate, T=0, insulating state, and not the total density.
Also, � is a charge density in the sense that it measures the
number density of particles minus the number density of
antiparticles.

Another parameter above which will be important for ex-
perimental comparisons is the velocity v. Note that it plays
the role of the velocity of “light” in the relativistic CFT. It is
determined here by the parameters of the underlying boson
Hubbard �or other microscopic� model whose superfluid-
insulator transition is described by the above CFT. It is im-
portant to distinguish v from the velocity c, which is the
actual velocity of light. Here, c merely plays the role of a
coupling constant which relates the value of B to physical
cgs units and is not a velocity associated with the dynamics
of the physical model under consideration. Because v�c, we
can neglect the actual relativistic corrections associated with
the physical quantum fluctuations of the photon field A�.

With the definition of v at hand, we can now begin com-
paring the various energy scales which characterize the sys-
tem. The largest energy scales which characterize the devia-
tion from the T=0 quantum critical point are kBT, an energy
scale m0��g−gc�	 associated with the deviation from critical
coupling, and the chemical potential �. We will generally
assume that kBT is the largest of these scales; our results
allow m0 and � to be of order kBT, but not too much larger.
For the solvable SCFT theories considered in Sec. V, the
energy scales associated with � and B will not be restricted to
small values. However, for the more general analysis in the
remainder of the paper which also applies to nonsupersym-
metric CFTs, we will assume that the perturbation due to B is
small and, in particular,

�v�2eB/��c�� kBT . �1.7�

Some thermodynamic state variables will also appear in
our transport result. Their temperature dependences obey
scaling forms similar to those computed earlier for the
present theory at �=0 in Ref. 32 and for ��0 in Ref. 33. In
particular, we will need results for the energy density � and
the pressure P which obey

� = kBT
 kBT

�v
�2

��,

P = kBT
 kBT

�v
�2

�P, �1.8�

where, as in Eq. �1.1�, ��,P are dimensionless universal num-
bers which depend on the ratios �g−gc� / �kBT�1/	 and
� / �kBT�.32,33 The dependence on B is not difficult to account
for, but will be subdominant and nonsingular under the con-
dition in Eq. �1.7�.

The final parameter to introduce in our theory of the
Nernst effect and other thermoelectric response functions is
the momentum relaxation rate 1 /�imp. The theory defined so
far conserves total momentum, and thus, such relaxation re-
quires an additional perturbation. We assume that the relax-
ation is caused by a weak random impurity potential V�r�
which couples to the most relevant perturbation allowed by

symmetry at the CFT fixed point. For the present theory, this
is the operator �
�2, and therefore the impurity action is

Simp =� d�� d2rV�r��
�r,���2. �1.9�

We will take a “quenched” average over the ensemble of
impurity potentials which obey

V�r� = 0, V�r�V�r�� = Vimp
2 �2�r − r�� , �1.10�

and work to order Vimp
2 . Note that total energy and charge are

conserved in the presence of V�r�, and momentum is the only
conserved quantity which will relax. We estimate the mo-
mentum relaxation rate in Sec. IV and find

1

�imp
� Vimp

2 T3−2/	. �1.11�

The condition for this scattering to be small is

�/�imp� kBT . �1.12�

The present model has 	�2/3, and so 1/�imp depends on
temperature only very weakly. Indeed, all the CFTs noted
earlier are expected to have a similar value for 	. It is there-
fore a reasonable first approximation to treat 1 /�imp as a
temperature-independent constant. We will also ignore the
dependence of 1 /�imp on B and �, under the condition in Eq.
�1.7�.

C. Summary of results for the thermoelectric response

We finally turn to a statement of our main results for the
transport coefficients. We are interested in the response of

the electrical current J� and the heat current Q� to an applied

electric field E� and a temperature gradient �� T. The precise

definitions of J� and Q� appear in the contexts of the models
studied in the body of the paper. The electric field can be
applied by allowing for a weak spatial dependence in the
chemical potential � �which is then, formally, the electro-

chemical potential� with 2eE� =−���, while the temperature
gradient describes a similar weak spatial dependence in T.
The transport coefficients are defined by the relation


 J�

Q�
� = 
 �̂ �̂

T�̂ 
̂̄
�
 E�

− �� T
� , �1.13�

where �̂, �̂, and 
̂̄ are 2�2 matrices acting on the spatial
indices x ,y. Rotational invariance in the plane imposes the
form

�̂ = �xx1̂ + �xy�̂ , �1.14�

where 1̂ is the identity and �̂ is the antisymmetric tensor
�̂xy =−�̂yx=1. �xx and �xy describe the longitudinal and Hall
conductivities, respectively. An analogous form holds for the
thermoelectric conductivity �̂ �which determines the Peltier,

Seebeck, and Nernst effects� as well as for the matrix 
̂̄
which governs thermal transport in the absence of electric
fields. The latter applies to samples connected to conducting
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leads, allowing for a stationary current flow. In contrast, the
thermal conductivity 
̂ is defined as the heat current response

to −�� T in the absence of an electric current �electrically
isolated boundaries�. It is given by


̂ = 
̂̄ − T�̂�̂−1�̂ . �1.15�

Finally, the Nernst response is defined as the electric field
induced by a thermal gradient in the absence of an electric

current, and is given in linear response by the relation E�

=−�̂�� T, with

�̂ = − �̂−1�̂ . �1.16�

The Nernst signal is the transverse response, eN��yx. The
Nernst coefficient is usually defined as 	=eN /B, which tends
to become field independent at small B. The Nernst signal is
expected to be positive if it is due to driven vortices, while it
is generally negative if it arises from quasiparticle
excitations.7

We now present our main results for the transport coeffi-
cients. For the computations using AdS/CFT applied to the
SYM theory in Sec. V, results can be obtained for general
external frequency �. However, our more general hydrody-
namic results apply only for ���kBT, and this condition is
assumed in the remainder of this section. We begin by pre-
senting our complete result for the frequency dependence of
the longitudinal electrical conductivity �whose B→0 limit
was already quoted in Eq. �1.2��:

�xx = �Q� �� + i/�imp��� + i� + i�c
2/� + i/�imp�

�� + i� + i/�imp�2 − �c
2 � .

�1.17�

The overall scale is set by the quantum conductance �Q in-
troduced in Eq. �1.2�, and the remainder depends on two
important frequency scales which will appear throughout our
analysis. These frequencies are

�c �
2eB�v2

c�� + P�
�1.18�

and

��
�QB2v2

c2�� + P�
. �1.19�

We identify the first frequency, �c, as a cyclotron frequency.
This seems a natural interpretation in view of the damped
resonance present in the denominator of Eq. �1.17�. Note that
in the nonrelativistic limit where �+ P����mv2, �c reduces
to the familiar result �c=2eB / �mc�. For relativistic particles,
the cyclotron frequency decreases with the energy E as
�c�E�=2eBc /E. In the present context where v plays the role
of the velocity of light, this is modified to �c�E�= �2eB /c�
��v2 /E�. The hydrodynamic expression �1.18� can be re-
garded as a thermal average over cyclotron frequencies
�c�E�T�, while the proportionality to the charge density,
�c��, reflects the fact that particles and antiparticles circle
in opposite senses.

We can consider the cyclotron mode as arising either from
the motion of particles and antiparticles or from the motion
of vortices and antivortices. In the latter interpretation, the
roles of B and � are interchanged, while the expression for
�c remains invariant. We will have more to say about this
“dual” interpretation in the body of the paper, and further
results appear in a separate paper.31

The second frequency, �, is the damping frequency of the
cyclotron mode of particles and antiparticles. Note that this
damping is present even in the absence of external impurities
and is a consequence of collisions between particles and an-
tiparticles which are executing cyclotron orbits in opposite
directions. This should be contrasted from the behavior of a
Galilean-invariant system �i.e., a system with no antiparticle
excitations� for which Kohn’s theorem34 guarantees an infi-
nitely sharp cyclotron mode. The sharpness of the cyclotron
resonance is determined by the ratio

�

�c
=��

B

�0�
, �1.20�

which up to the factor �� equals the number of flux quanta,

�0 =
hc

2e
, �1.21�

applied per charge 2e.
We will see later that a different frequency plays the role

of the damping of the cyclotron mode when it is interpreted
as due to the motion of vortices and antivortices. In that case,
the damping frequency is

�v =
�c

2

�
=

4e2�2v2

�Q�� + P�
. �1.22�

There is an obvious dual structure apparent upon comparing
Eqs. �1.19� and �1.22�, which we will discuss in more detail.
Note that the cyclotron resonance will be visible only in
ultrapure samples where 1/�imp��c. In this case, the cyclo-
tron resonance is sharp in the thermoelectric response asso-
ciated with particle transport if � /�c=B / ��0���1, while the
same condition implies a washed out resonance in the dual
response functions associated with vortices. In the opposite
regime, � /�c�1, the vortex response and, in particular, the
Nernst effect should exhibit a sharp cyclotron resonance in
ultrapure samples.

Another notable feature of Eq. �1.17� is the singular na-
ture of the limit associated with the small perturbations of
the quantum critical region of Fig. 2. In particular, note that
for the dc conductivity at �=0, the value of �xx depends on
the order of limits of �→0, B→0, and 1/�imp→0. This sin-
gular limit reflects the fact that the low frequency transport
studied previously at �=B=0 in Refs. 14 and 17 has ballistic
energy propagation and an infinite thermal conductivity. For
nonzero � or B, the energy and number currents can mix with
each other, leading to a finite thermal conductivity and an
order unity correction to �xx, as anticipated for the case �
=0 in Ref. 12.

A useful property of Eq. �1.17� is that it depends only on
the combination �+ i /�imp. This is actually a property of the
long distance limit of the hydrodynamic equations presented
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in Sec. III and is obeyed by all the transport coefficients. The
remainder of this section will therefore present results only
in the dc limit, while the � dependence can be easily recon-
structed by replacing 1/�imp→1/�imp− i� �as long as ��
�kBT�.

D. Nernst effect

Our central result for the Nernst signal is

eN = �yx = 
 kB

2e
�
� + P

kBT�
�� �c/�imp

��c
2/� + 1/�imp�2 + �c

2�
�1.23a�

=
1

��

 kB

2e
�
 � + P

kBTB/�0
�� �/�imp

��c
2/� + 1/�imp�2 + �c

2� ,

�1.23b�

where �� is the dimensionless universal number appearing
in the expression for the conductivity �Q in Eq. �1.1�. We
have expressed the Nernst signal in terms of its quantized
unit,

kB

2e
= 43.086 �V/K, �1.24�

times dimensionless ratios in the various brackets. We can
use the relation �+ P�Ts, where s is the entropy density
�see Eq. �3.14��, valid for small � and �, to identify the
factor in the second brackets as approximately the entropy
per particle in Eq. �1.23a� and as the entropy per vortex in
Eq. �1.23b�. The combination of Eqs. �1.1�, �1.8�, �1.11�,
�1.23a�, and �1.23b� now implies an interesting and non-
trivial dependence of the Nernst signal on B and T. Those
should be observable in experimental regimes where the
entire thermoelectric response is dominated by critical
superconducting fluctuations, as will be discussed further in
Sec. II.

E. Other thermoelectric transport coefficients

We conclude this introductory section by mentioning two
other results for transport coefficients whose limiting forms
can be compared with earlier computations. For the trans-
verse thermoelectric conductivity, we obtain

�xy = 
2ekB

h
�
 s/kB

B/�0
���2 + �c

2 + �/�imp�1 − ��/�Ts��
�� + 1/�imp�2 + �c

2 � .

�1.25�

While in most recent experiments, the electric conductivity �̂
receives the largest contribution from noncritical carriers, the
thermoelectric conductivity is dominated by superconducting
fluctuations, even far above Tc. It is thus the main quantity to
be compared with recent experimental observations in Sec.
II. As with earlier results, �xy has been written in terms of the
quantum unit of the thermoelectric coefficient,5,10 2ekB /h
=6.7 nA/K, times dimensionless ratios. In the absence of
impurity scattering, 1 /�imp→0, the factor in the square

brackets is unity, and we have �xy =sc /B, a result obtained
long ago for noninteracting fermions35–37 and later derived
by Cooper et al.38 for interacting fermions and by Bhaseen et
al.12 for the superfluid-insulator transition.

For the longitudinal thermal conductivity, we obtain


xx =��
 kB
2T

h
�
� + P

kBT�
�2� ��c

2/����c
2/� + 1/�imp�

��c
2/� + 1/�imp�2 + �c

2 �
�1.26a�

=
1

��

 kB

2T

h
�
 � + P

kBTB/�0
�2� ���c

2/� + 1/�imp�
��c

2/� + 1/�imp�2 + �c
2� ,

�1.26b�

where now kB
2T /h is the quantum unit of thermal conduc-

tance. In the limit 1 /�imp→0 and B→0, the factor within the
square brackets in Eq. �1.26a� reduces to unity. The resulting
expression for 
xx relates it to �Q in a Wiedemann-Franz-like
relation, as has been noted by Landau and Lifshitz39 �and
elaborated on recently in Ref. 40�. This relation suggests a
physical picture of transport due to particles and/or antipar-
ticles carrying charges ±2e and entropy per particle s /�.

In the complementary limit of 1 /�imp→0 and �→0, the
factor within the square brackets in Eq. �1.26b� reduces to
unity. Now, 
xx is proportional to the resistivity 1 /�Q, indi-
cating a picture of transport due to vortices of net density
B /�0. The value of 
xx has the same dependence on all pa-
rameters as that obtained by Bhaseen et al.12 We can also
compare the value of the numerical prefactor. For ��, we use
the value 1.037/�2 obtained in Ref. 17, in the � expansion
��=3−d, where d is the spatial dimension�, which is the
same expansion by Bhaseen et al.12 It is also easy to compute
the value of ��+�P in the same expansion: to the leading
order needed, these are just given by the values for free,
massless, relativistic bosons in d=3, which yields ��+�P
=4�2 /45+O�3−d�. Using these values, we obtain the same
result for 
xx as in Eq. �24� of Ref. 12, with their dimension-
less parameter g=4.66 �not to be confused with our coupling
g�. This is to be compared with their value g=5.55. The
origin of this numerical discrepancy is not clear to us. We
believe that Eq. �1.26b� is an exact identity in d=2, but it is
possible that it is modified when d is close to 3.

The outline of the paper is as follows. Section II will
compare the result for the Nernst effect and the thermoelec-
tric response �Eq. �1.25�� with experiments on the cuprate
superconductors and on Nb0.15Si0.85 films. Section III will
present the derivation of these results using a hydrodynamic
analysis of transport near a generic, 2+1 dimensional, rela-
tivistic quantum critical point perturbed by a chemical poten-
tial, a magnetic field, and weak impurity scattering. An esti-
mation of the impurity scattering rate appears in Sec. IV.
Section V will describe the exact solution for transport near a
supersymmetric quantum critical point, perturbed by a
chemical potential and a magnetic field, which is solvable by
the AdS/CFT mapping to the physics of a dyonic black hole
in 3+1 space-time dimensions. Some technical details ap-
pear in the Appendices.
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II. COMPARISON WITH EXPERIMENTS

Our main results for the Nernst signal have already been
stated in Sec. I D. In the following sections, we will compare
these results with recent observations in the cuprate
superconductors1–4 and also briefly discuss experiments in
Nb0.15Si0.85 films.5,6 As mentioned before, in most of these
experiments, the electrical conductivity is dominated by non-
critical fermionic contributions which are not captured by
our relativistic hydrodynamic description, as indicated by a
relatively high value of conductivity per layer �of the order
of ten times the quantum conductance e2 /h�. On the other
hand, the transverse thermoelectric response �xy is expected
to be predominantly due to superconducting fluctuations and
the vortex liquid. This is expected because normal carriers
associated with a Fermi liquid lead to an anomalously small
transverse thermoelectric response and Nernst effect.7 In
practice, �xy is conveniently measured via the Nernst signal
using the relation �xy ��xx�yx. The latter holds if the non-
critical Hall conductivity is small, �xy��xx, as is usually the
case.

It is convenient to perform the experimental comparisons
by rescaling B and � so that they are both measured in units
of �energy�,2

B = B̄�0/��v�2, � = �̄/��v�2. �2.1�

Further, we observe that in typical experiments, the flux per

�excess� particle is very small, B /�0�= B̄ / �̄�1 and therefore
� /�c�1. In this regime, Eq. �1.25� simplifies to


 h

2ekB
��xy �

s/kB

B/�0
��imp�c�21 + �/��imp�c

2��1 − ��/sT�
1 + ��imp�c�2

�2.2a�

��sB̄�kBT�2
2��imp

�
�2 �̄2 +����+P�kBT�3�/2��imp

��+P
2 �kBT�6 + B̄2�̄2�2��imp/��2

,

�2.2b�

where in the second line we have assumed a fully relativistic
regime with s�T2 and �+ P�T3, and ���sT. We recall
that ��+P and �� are universal functions of � /T and have an
additional dependence on �g−gc� /T1/	.

A. Cuprates

Given the relative simplicity of our model of the cuprate
superconductors, detailed quantitative comparisons with the
observations of Ref. 4 are probably premature. In particular,
we have omitted the influence of long-range Coulomb inter-
actions, which modifies the spectrum of boson density fluc-
tuations and likely leads to a superfluid-insulator quantum
critical point which is not Lorentz invariant.41,42 Also, al-
though Dirac fermion excitations are included in some of the
CFTs mentioned above �corresponding to the nodal points of
the d-wave superconductor�, other Fermi excitations associ-
ated with a Fermi surface may also be important, especially
in the case of NbSi. Keeping these caveats in mind, it is
nevertheless useful to examine the extent to which the

present model can describe the observations. As we will now
show, using physically reasonable values of the parameters
in the theory, our results describe the overall absolute mag-
nitude of the observations and numerous qualitative trends4

remarkably well.
We work here with a simple caricature of our predictions:

We ignore the T and � dependence of the universal functions
and simply treat them as constants. Their particular values
will depend on the specific low energy theory describing the
quantum critical point, which will, however, not affect the
qualitative behavior of physical quantities in its vicinity. For
definiteness, in the following we will use ���1.037 �cf.
Ref. 17� and ��+P

�2d� ��s
�2d��3��3� /��1.148, corresponding

to free relativistic bosons. Taking these values to be constant
is equivalent to assuming in Figs. 1 and 2 that g=gc and �
=�=0 for the purpose of evaluating these functions. It is not
difficult to extend our theory to include the influence of these
corrections to the leading quantum critical behavior, but such
a detailed analysis would not be commensurate with the
other simplifications noted above.

We notice that for small B, Eqs. �2.2a� and �2.2b� predict
a Nernst signal linear in B. At not too large temperatures, the
second term in the numerator of Eq. �2.2b� can be neglected
and the ratio �xy /B is seen to increase with decreasing tem-
perature as 1/T4,

�xy

B
�B → 0� � 
2ekB

h�0
� �s

��+P
2 
2��imp

�
�2�2��v�6

�kBT�4 . �2.3�

Such a power law with exponent 4 was indeed observed over
2 orders of magnitude in signal strength in underdoped
La2−�Sr�CuO4 �LSCO� ���0.12� �see Fig. 4 in Ref. 10�.
Assuming a typical doping �−�I=−0.025 for underdoped
LSCO with a lattice constant a=3.78 Å, we obtain a con-
straint for �impv3 from fitting Eq. �2.3� to the experimental
value �xy /B=0.48/ �T /30 K�4 nA/K T per layer.10 We may
estimate the order of magnitude of the impurity scattering
time by comparing typical experimental values for the con-
ductivity per layer with a Drude formula. This leads to typi-
cal scattering times �imp�10−12 s. With this estimate, we ob-
tain the value �v�47 meV Å for the velocity. These are
reasonable parameter values, with the velocity v being of the
order of the characteristic velocity found in Ref. 43.

The result of Eq. �2.2a� is plotted as function of both T
and B in Fig. 3. This contour plot should be compared, e.g.,
with Fig. 13 in Ref. 4 in the underdoped regime, above the
superconducting transition Tc.

Using the above parameter estimates, we predict the cy-
clotron resonance

�c = 6.2 GHz
B

1 T

35 K

T
�3

, �2.4�

which, at T=35 K, is by a factor �c /�c
�el�=2m�el�v2�� / ��

+ P���0.035 smaller than the cyclotron frequency of free
electrons. However, as mentioned before, this resonance can
only be observed in ultrapure samples where 1/�imp��c,
which is clearly not the case in LSCO.

Having estimated the velocity v and the scattering rate
�imp, we can make a quantitative prediction for the Nernst

THEORY OF THE NERNST EFFECT NEAR QUANTUM… PHYSICAL REVIEW B 76, 144502 �2007�

144502-7



signal in the vicinity of a quantum critical point where the
entire thermoelectric response is expected to be dominated
by critical fluctuations. In this case, Eq. �1.23a� can be cast
into the form

�yx

= 
 kB

2e
� ��� +�P�2��

2B̄�kBT�5��/�2��imp��

��̄2 +����� +�P��kBT�3��/�2��imp���2 +��
2 �̄2B̄2

,

�2.5�

which is plotted in Fig. 4.

1. Hall resistance

Very recently, measurements of the Hall resistance in the
high field normal state of YBa2Cu3O6.5 have been reported.44

The focus of the authors was on magnetoresistance oscilla-
tions; these oscillations are quantum interference effects
which cannot be reproduced by the effective classical hydro-
dynamic models employed here �under the condition in Eq.
�1.7��, and so are beyond the scope of the present paper.
However, the authors also reported a background Hall resis-
tance which, surprisingly, was negative. The sample has hole
density �=0.1. As argued in Sec. I, the density of mobile
carriers � which appears in the hydrodynamic theory19 �and
which contributes a Magnus force on vortices20� is given by
the difference in density between the superconductor and the
proximate Mott insulator. Using an insulator at �I=0.125, we
have �=−0.025/ �2a2�. This negative value of � provides a
very natural explanation of the observed negative Hall resis-
tance. Also, we can predict that the Hall resistance should
change sign as � is increased beyond �I.

We can make a more quantitative comparison with experi-
ments. In Eq. �3.37� in Sec. III A, we report the value of the
Hall resistivity, �xy, and the zero frequency limit of that re-
sult is

�xy =
B

2e�c
�1 −

�1/�imp�2

�1/�imp + �c
2/��2 + �c

2�; �2.6�

in the absence of impurity scattering ��imp→��, this result
was noted in Ref. 30. Using the value of � noted above, at
B=60 T, we determine that the prefactor of the square brack-
ets in Eq. �2.6� is −2.2 k�. For the factor within the square
brackets, we assume the same parameters as found above for
LSCO and conclude that it is close to unity. This result is
compared with the observed resistance per layer44 at this
field of −3.9 k�, which is quite in reasonable agreement for
this simple model.

2. Thermoelectric response and magnetization

It has been noticed experimentally in underdoped cuprates
that there the onset of a noticeable diamagnetic response and
of the Nernst signal are strongly correlated. Theories based
on Gaussian fluctuations8 or phase fluctuations10 both sug-
gested a close relationship between the two responses as
well, with an apparently universal ratio M /�xy =2 at high
temperatures. Here, we will examine the same ratio in the
quantum critical regime: we will find that it is, in general, a
nontrivial universal function of B /T2.

The close relationship between diamagnetism and Nernst
effect is also rather naturally encoded in our formalism.
Close to a relativistic quantum critical point, the free energy
density assumes a scaling form12

F = T1+d/z�
 B

T2/z� = T3�
 B

T2� , �2.7�

since the dynamic exponent is z=1. At small argument
�small B�, the scaling function � will assume the form
��x�=c0+c1x2+¯. One thus finds the magnetization
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FIG. 3. Contour plot �with logarithmic spacing� of the thermo-
electric conductivity �xy �Eq. �2.2b�� as a function of temperature T
and magnetic field B for parameters �v=47 meV Å, �−�I=0.025,
and �imp=10−12 s estimated for LSCO. In the ordered low tempera-
ture regime T�Tc�30 K, Eq. �2.2b� will receive modifications.

0 20 40 60 80
T(K)

0

5

10

15

20

25

30

B
(T

)

FIG. 4. Contour plot �linear scale� of the Nernst signal eN

=�yx �Eq. �2.5�� close to a quantum critical point as a function of
temperature T and magnetic field B. The parameters are the same as
for Fig. 3. The signal strength in the plot ranges up to 10 �V/K.
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M = −
dF

dB
= − 2c1

B

T
. �2.8�

As mentioned above, for clean samples, the transverse ther-
moelectric response is simply given by entropy drift, and one
finds

�xy =
s

B
= −

1

B

dF

dT
= − 3c0

T2

B
+ c1

B

T2 � −
M

2T
. �2.9�

Note, however, that the last approximation holds a priori
only in the linear response regime B /T2�1, under the addi-
tional assumption that the B-dependent contribution to the
free energy �e.g., due to vortices� dominates over an anoma-
lously small B-independent term �c0�1�. Interestingly, un-
der such conditions, one obtains the same relation between
magnetization and Peltier coefficient as the one found in the
theories of Refs. 8 and 10.

However, without making any ad hoc assumption on the
linear response in B and the smallness of c0�1, we can
analyze the same issue for a supersymmetric CFT via the
AdS-CFT correspondence as done in Sec. V. The results ob-
tained there similarly lead to the relation

�xy =
s

B
= −

M

T

1

3/��t� − 4
, �2.10�

where t is a scaling function of B /T2, being the solution of
4�t=3− �B /T2�2t4, �cf. Eq. �5.7��. Note that in this case, the
simple relation T�xy =−M /2 does not hold.

B. NbSi

We also note the experiments on amorphous films of
Nb0.15Si0.85 reported in Refs. 5 and 6. The normal phase, T
�Tc, of these films exhibits a number of features that are
consistent with our hydrodynamic results, when taken to
their nonrelativistic limit. In particular, �xy as given in Eq.
�2.2a� displays a functional dependence on magnetic field
akin to that reported in Ref. 6:

�xy �
B

�−4 + �B
−4 �

B

1 + �B/B0�2 , �2.11�

with B0=�c /e�2, which was interpreted as the physics being
controlled by the shorter of the superconducting coherence
length � and the magnetic length �B= ��c /eB�1/2.6 We men-
tion that the low B data, i.e., the Nernst coefficient 	
=limB→0�xy /B�xx measured in Ref. 5, were very success-
fully described by the theory of Gaussian fluctuations.8 How-
ever, the crossover �2.11� and the high field behavior �xy
�1/B remained unexplained in earlier theories. Our magne-
tohydrodynamic approach may give a hint to the origin of
the latter. We believe that the similarity of Eqs. �2.2a� and
�2.11� is not a mere coincidence. Rather, it leads us to specu-
late that the scattering time �imp should be identified with

�imp =
B

B0�c
=

m�2

�
� �kF��

�2

vF�
� �GL, �2.12�

the Ginzburg-Landau lifetime of fluctuating Cooper pairs.45

Here, we have used the free electron value �nonrelativistic

limit� for the cyclotron frequency �c
�el�=eB /m�el�c. Further,

vF=�kF /m is the Fermi velocity, and we have used that
kF��O�1� in the studied amorphous NbSi.5 The estimate
�imp��GL suggests that the suppression of the Nernst signal
at high fields is due to the Cooper pairs starting to perform
entire orbits over their lifetime.

We may use the above guess of �imp to express the low
field limit of �xy as

�xy�B� B0� =
kBe

�

�2

�B
2

s�2

kB
, �2.13�

where we have invoked a small value of � to approximate
the last numerator in Eq. �2.2a� to 1. It is interesting to note
that apart from the last factor which describes the entropy per
coherence volume, this expression has the same parameter
dependence as the one derived from Gaussian fluctuations in
Ref. 8.

III. MAGNETOHYDRODYNAMICS

The remainder of this paper will revert to natural dimen-
sionless units with �=kB=2e=v=1 and absorb a factor of
1 /c in the definition of B.

Here, we will focus on the nature of quantum critical
transport in the hydrodynamic region14,17 where ���kBT.
The condition in Eq. �1.7� ensures ��c�kBT, and a relativ-
istic formulation is appropriate if also m0 kBT is satisfied.
We will use the method described by Landau and Lifshitz,39

which was recently reviewed in the context of a string theory
computation.40 These previous analyses were carried out for
B=0 and 1/�imp=0 and only considered the longitudinal
electrical and thermal conductivities. Here, we will show
how the hydrodynamic analysis can be extended to include
nonzero values of these parameters. Further, we will obtain
results for the frequency dependence of the full set of trans-
port coefficients in Eq. �1.13�. These results are consistent
with the exact results obtained via AdS/CFT for a particular
SCFT which are presented in Sec. V and Ref. 31—the latter
results, however, extend over a wider regime of parameters.

The fundamental ingredients of a hydrodynamic analysis
are the conserved quantities and their equations of motion.
Unlike in the theory of dynamics near classical, finite tem-
perature critical points,46 here we do not need to explicitly
consider the order parameter dynamics for the effective
equations of motion of the low frequency theory. The key
difference is that kBT /� constitutes an intrinsic relaxation
time for the order parameter fluctuations, and we are only
interested in much lower frequency scales. In contrast, at a
classical critical point, the relaxation time diverges. The fre-
quency scales larger than kBT /� cannot be addressed by the
methods below and require a full quantum treatment of the
dynamics of the CFT.

The conserved quantities of interest are the electrical
charge, the energy, and the momentum. For the relativistic
theories under consideration, these can be assembled into the
electrical current 3-vector47 J�= �� ,Jx ,Jy� and the stress-
energy tensor T�	. We will use standard relativistic notation
with the metric tensor g�	=diag�−1,1 ,1� and coordinates
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x�= �vt ,x ,y�. For the moment, we will ignore the momentum
relaxation due to the weak impurity potential in Eq. �1.9� and
include its effects shortly below. With total momentum con-
served, the equations of motion obeyed by the total electri-
cal, momentum, and energy currents are

��J�tot�� = 0, �3.1�

�	T
�tot��	 = F�	J	

�tot�. �3.2�

The first equation represents the conservation of charge and
requires no further comment. The second equation describes
the evolution of the stress-energy tensor, and the term on the
right hand side represents the effects of the external B field.
Here, F�	 is the applied magnetic field which takes the fixed
value48

F�	 = �0 0 0

0 0 B

0 − B 0
� , �3.3�

and the right hand side of Eq. �3.2� describes the Lorentz
force exerted by this field, as discussed, e.g., in Ref. 49. In
equilibrium, we have J�tot��= �� ,0 ,0� and then the term pro-
portional to F�	 vanishes, as expected.

To use Eqs. �3.1� and �3.2�, we need to relate J�tot�� and
T�tot��	 to parameters which define the local thermodynamic
equilibrium and a three-velocity u� which represents the ve-
locity of the system in local equilibrium with respect to the
laboratory frame. As usual,39 the three-velocity u��dx� /d�
satisfies u�u�=−1 and u�= �1,0 ,0� in the equilibrium frame
where there is no energy flow.50 For the thermodynamic pa-
rameters, we will use the charge density �, the energy density
�, the pressure P, and the magnetization density M; we de-
fine the pressure P as the negative of the grand potential per
unit volume, and M as the derivative of the latter with re-
spect to B.

Using these parameters, the stress-energy tensor of a fluid
is given by

T�tot��	 = T�	 − M��F	� + TE�	,

T�	 = �� + P�u�u	 + Pg�	 + ��	, �3.4�

where

M�	 = �0 0 0

0 0 M

0 − M 0
� �3.5�

is the polarization tensor.51 �The electric polarizations M0i

=−Mi0 vanish in the absence of electric fields in the labora-
tory frame.�

The electrical current is given by

J�tot�� = J� + �	M
�	, �3.6�

J� = �u� + 	�. �3.7�

The “dissipative current” 	� accounts for the fact that the
charge current and the energy current are not simply propor-
tional to each other. This is because there is a heat flow even

in the absence of matter convection, which is a consequence
of particle-antiparticle creation and annihilation.

We have introduced the transport currents38 J� and T�	,
which represent observable quantities which can couple to
probes external to the system. The remaining contribution to
J�tot�� is the magnetization current,8,10,37,38 which is induced
due to spatial variations in the local magnetization density.
The coupling of the magnetization to the magnetic field con-
tributes an extra contribution −M��F�	 to the stress-energy
tensor, reducing its spatial diagonal to Pint= P−MB �see also
Appendix B�. The origin and the physics of this term have
also been discussed by Cooper et al.38 Finally, TE�	 repre-
sents the “energy magnetization current.” We will not need
an explicit expression for this quantity here, apart from the
fact that it obeys �	T

E�	=0. Expressions will be given later
in the paper when we consider specific CFTs: for the super-
Yang-Mills theory in Sec. V and for the Wilson-Fisher fixed
point in Appendix B. With these magnetization currents sub-
tracted out, the residual transport currents continue to obey
the equations of motion as in Eqs. �3.1� and �3.2�:

��J� = 0,

�	T
�	 = F�	J	. �3.8�

In the expressions for the transport currents in Eqs. �3.4�
and �3.7�, we assume that �, P, �, and M are thermodynamic
functions of the local chemical potential �, the temperature
T, and the magnetic field B. We will treat u�, �, and T as the
“independent” degrees of freedom which respond to external
perturbations, and assume that the remaining thermodynamic
variables will follow according to the equation of state. In
equilibrium, the nonzero components of J� and T�	 are

Jt = �, Ttt = �, Txx = Tyy = P − MB . �3.9�

Equations �3.4� and �3.7� also contain the dissipative compo-
nents of the stress-energy tensor and the current, as intro-
duced in Ref. 39; these are orthogonal to u�

u��
�	 = u�	

� = 0, �3.10�

and will be determined below by imposing the requirement
that the total entropy increases under time evolution.

We are now in a position to introduce the scattering due to
a dilute concentration of impurities. We assume that their
dominant effect is to introduce a relaxation in the local trans-
port momentum density: impurity scattering conserves
charge and energy, and we do not expect the magnetization
currents to relax by impurity scattering. Thus, we modify
Eqs. �3.8� to

��J� = 0,

�	T
�	 = F�	J	 +

1

�imp
��	
� + u�u	�T	�u�. �3.11�

The new term in the second equation in Eq. �3.11� represents
the impurity scattering. The impurities, as described by the
random potential in Eq. �1.9�, are assumed to be at rest in the
laboratory frame. The projection operators built out of the u�

in the second term in Eq. �3.2� ensure that in the laboratory
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frame, only the total momentum, i.e., Ti0, is relaxed. We will
discuss a computation of the value of �imp later in Sec. IV.

Following Landau and Lifshitz,39 we now use the positiv-
ity of the entropy production to constrain the expression for
the dissipative components 	� and ��	. First, we notice from
Eq. �3.4� that

u	��T�	 = − �� + P���u� − u���� + u	���
�	, �3.12�

and from Eq. �3.11� that

u	��T�	 = F�	u�		. �3.13�

Using the thermodynamic relations

� + P = Ts + ��, d� = Tds + �d� , �3.14�

Eq. �3.10�, and current conservation, Eqs. �3.12� and �3.13�
can be transformed into

���su�� =
�

T
��	

� −
1

T
F�	u�		 −

��	

T
��u	 �3.15�

or

��
su� −
�

T
	�� = 	�� 1

T
�− ��� + F�	u	� + �

��T

T2 �
−
��	

T
��u	. �3.16�

It is natural to interpret the left hand side as the divergence of
the entropy current. Accordingly, we can interpret the
3-vector

Q� = sTud
� − �	� = �� + P�u� − �J� � JE� − �J�

�3.17�

as the heat current. We have also introduced the energy cur-
rent JE�= ��+ P�u�.

Since the entropy can only increase, the right hand side of
Eq. �3.16� must be positive. Generalizing the arguments of
Landau and Lifshitz, we deduce the most general expressions
for the dissipative currents which are linear in spatial gradi-
ents and the velocity,

	� = �Q�g�	 + u�u	���− �	� + F	!u
!� + �

��T

T
� ,

�3.18�

��	 = − �g�! + u�u!��"��!u	 + �	u!� + �� − "��!
	��u

�� .

�3.19�

Here, " and � are the shear and bulk viscosities and �Q is a
conductivity. Notice that there are only three independent
transport coefficients. We will neglect velocity gradients for
the most part in this paper, and so the viscosities do not
appear in our main results. Consequently, we have the re-
markable feature that all transport response functions depend
only on a single dissipative transport coefficient, �Q. Notice
that in the dissipative current, the gradient of the chemical
potential appears in combination with the electromagnetic
forces F�	u	, which is natural since it is equivalent to an
electric field.

A. Linear response

We will now follow the strategy of Kadanoff and
Martin:53 Use the equations of hydrodynamics to solve the
initial value problem in linear response, and compare the
results to those obtained from the Kubo formula in order to
extract transport coefficients and their frequency depen-
dence.

First, we address the solution of the initial value problem
in hydrodynamics. We begin by choosing our independent
variables: from the structure of the above equations, it ap-
pears convenient to choose the four variables T, �, ux, and
uy. So, we write

��r,t� = � + ���r,t� ,

T�r,t� = T + �T�r,t� , �3.20�

while F�	 is fixed at the value in Eq. �3.3�. We also write u�

as

u� = � 1

vx�r,t�
vy�r,t�

� , �3.21�

where vx and vy are of the same order as �� and �T.
The other variables, �, P, and �, are constrained by local

thermodynamic equilibrium to have the form

��r,t� = � + ��� � + 	 ��

��
	

T
�� + 	 ��

�T
	
�

�T ,

��r,t� = � + ��� � + 	 ��

��
	

T
�� + 	 ��

�T
	
�

�T ,

P�r,t� = P + �P � P + ��� + s�T . �3.22�

The various components of the stress-energy tensor and the
current vector are perturbed accordingly. To linear order, we
have

�T tt = �� ,

�T ti = T ti = �� + P�vi,

�T ij = �P�ij − "��iv j + � jvi − �ij�kvk� − ��ij�kvk,

�Jt = �� ,

�J� = J� = �v� + 	� ,

	� = �Q
− ��� + v� � B� + �
�� T

T
� . �3.23�

For small perturbations, the conservation laws take the
form

�t� + �� J� = 0, �3.24�

�t� + �� J�E = 0, �3.25�
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�tJ�
E = − �� P − "�� 2v� − ��� ��� · v�� + J�� B� , �3.26�

with the energy and heat currents

J�E = �� + P�v� , �3.27�

Q� = J�E − �J� = �� + P�v� − ��v� − �	� = sTv� − �	� .

�3.28�

The crucial remnant of the relativistic theory in the linearized
hydrodynamics is the fact that the energy and particle cur-
rents are in general not parallel,

J�E =
� + P

�
�J� − �Q
− ��� + v� � B� + �

�� T

T
��

=
� + P

�
J� +

�� + P�2

T�2 �Q�� T +
� + P

�2 �Q�− �� P + J�� B� � ,

�3.29�

where we have used Eq. �3.14� to rewrite the dissipative
current. The energy current consists of three parts: the first
two are familiar from nonrelativistic theory as the convection
of matter and heat flow due to a thermal gradient, with a
thermal conductivity39 
̄=�Q��+ P�2 / �T�2�. The last term in
Eq. �3.29� is proportional to the acceleration vector and is a
purely relativistic phenomenon.54 One can easily see that this
term is responsible for the damping � of the cyclotron mode

�cf. Eq. �1.19�� by using the above relation to substitute for J�

in the momentum conservation law �Eq. �3.26��.
To complete the hydrodynamic analysis, we solve Eqs.

�3.24�–�3.26� for arbitrary initial values �T0, ��0, and vx
0

=vy
0=0, and obtain the response in the electrical current J�

and the heat current Q� . The “heat density” associated with
the latter, q�r�=��r�−���r�, is canonically conjugate to the
temperature at fixed chemical potential.53

After a Fourier transform in space and a Laplace trans-
form in time, the linear response of any quantity A obeys

A�k�,�� =
GA;�−���k�,�� − GA;�−���k�,0�

i�

�T0�k��
T

+
GA;��k�,�� − GA;��k�,0�

i�
��0�k��

+
GA;T0i�k�,�� − GA;T0i�k�,0�

i�
�

i=x,y
vi�k�� , �3.30�

where the coefficients are related to retarded equilibrium cor-
relation functions, as can be shown from analyzing an adia-
batic perturbation53 of the form

�H�t� = −� dr����r,t�n�r,t� −
�T�r,t�

T
���r,t� − �n�r,t��

− �
i

vi�r,t�T0i�r,t�� . �3.31�

Finally, using the conservation laws in the form

i���k�� = ik�J��k�� ,

i����k�� − ���k��� = ik��J�E�k�� − �J��k��� = ik�Q� �k�� ,

�3.32�

we obtain

A�k�,�� = −
1

i�
�GA;Q� �k�,�� − GA;Q� �k�,0�

i�

−

�� T0�k��
T

�
+

GA;J��k�,�� − GA;J��k�,0�

i�
E� �k���

+
GA;T0i�k�,�� − GA;T0i�k�,0�

i�
�

i=x,y
vi�k�� . �3.33�

For A=J� and A=Q� , one recognizes the coefficients of E�

�−���0 and �−�� T0 /T� as �−1/ i�� times the Kubo formulas
for the thermoelectric coefficients �̂, �̂, and 
̂. The response
to an initial velocity perturbation could be used to extract
frequency-dependent viscous response functions.

After a Laplace transform in time, Eqs. �3.24� and �3.25�
take the form

i
	 ��

��
	

T
��0 + 	 ��

�T
	
�

�T0� = �
	 ��

��
	

T
�� + 	 ��

�T
	
�

�T�
+ i�� ��v� + B�Q�̂v��

− i�QT�2
�
T
� ,

i
	 ��

��
	

T
��0 + 	 ��

�T
	
�

�T0� = �
	 ��

��
	

T
�� + 	 ��

�T
	
�

�T�
+ i�� + P��� · v� , �3.34�

for charge and energy conservation, and Eq. �3.26�

i�� + P�v�0 = �� + i/�imp��� + P�v� + i����� + s�� T� − iB��̂v�

+ iB�Q�̂
��� −
�

T
�� T� + iB2�Qv� + i"�2v�

+ i��� ��� · v�� , �3.35�

for momentum conservation.
In the case of weak enough momentum relaxation, the

response functions will exhibit peaks associated with the nor-
mal modes of these linearized equations. Apart from the
damped cyclotron mode discussed above, one finds two dif-
fusive modes, as analyzed in Appendix A. However, those
will not be of importance below since we are restricting to
long wavelengths in the sequel.

In the limit k→0, the current and energy conservations
impose ��= i��0 /� and �T= i�T0 /�, expressing that the
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decay of initial perturbations can be neglected. Further, the
contributions from viscosity can be neglected in this limit.
Upon injection into the momentum conservation equations
�3.35�, we easily obtain the retarded Green’s functions and,
via the mapping �3.33� and Kubo formulas, the transport
coefficients defined in Eq. �1.13�:

�xx = �Q

�� + i/�imp��� + i� + i/�imp + i�c
2/��

�� + i� + i/�imp�2 − �c
2 ,

�xy = −
�

B

�2 + �c
2 − 2i�� + 2�/�imp

�� + i� + i/�imp�2 − �c
2 ,

�xx =
s

B

�c�i� − 1/�imp��1 − ����/��c
2Ts���� + 1/�imp − i���

�� + i� + i/�imp�2 − �c
2 ,

�xy = −
s

B

�2 + �c
2 + ��− i� + 1/�imp��1 − ��/�Ts��

�� + i� + i/�imp�2 − �c
2 ,


̄xx = − 
 �� + P�2

TB�
� �c�

�� + i� + i/�imp�2 − �c
2�1 + �1/�imp − i��

�
�s2T2�c

2 + �2�2�2�
��c

2�� + P�2 + �1/�imp − i��2 �2�2

�c
2�� + P�2� ,


̄xy = − 
Ts2

B�
� �c

2

�� + i� + i/�imp�2 − �c
2

��1 −
2��QB

Ts

�� + 1/�imp − i��
�c

− 
��QB

Ts
�2� .

�3.36�

We also computed the thermoelectric coefficients �xx and
�xy by examining the heat current induced by an applied
electric field, and precisely the same result as above was
obtained. This confirms the Onsager reciprocity which has to
hold since the densities associated with the electric and heat
currents are conjugate to �� and �T /T, respectively. The
validity of the Onsager reciprocity is a strong check of the
consistency of our hydrodynamic description.

From expressions in Eq. �3.36�, we can also derive the
resistivities �̂= �̂−1, the Nernst responses defined in Eq.
�1.16�, and the thermal conductivities defined in Eq. �1.15�.

�xx =
1

�Q

�� + i/�imp��� + i� + i/�imp + i�c
2/��

�� + i�c
2/� + i/�imp�2 − �c

2 ,

�xy = −
B

�

��c
2/��2 + �c

2 − 2i��c
2/��� + 2��c

2/��/�imp

�� + i�c
2/� + i/�imp�2 − �c

2 ,

�xx =
s

�

��c
2/��2 + �c

2 + ��c
2/���− i� + 1/�imp��1 − ��/�Ts�� − ���/�Ts���− i� + 1/�imp�2

�� + i� + i/�imp�2 − �c
2 ,

�xy = −
B

T

i� − 1/�imp

�� + i�c
2/� + i/�imp�2 − �c

2 ,


xx =
� + P

T

i� − 1/�imp − �c
2/�

�� + i�c
2/� + i/�imp�2 − �c

2 ,


xy =
� + P

T

�c

�� + i�c
2/� + i/�imp�2 − �c

2 . �3.37�

These expressions contain the main results that were quoted in Sec. I. Although they appear rather complicated, most of the
structure is tightly constrained and the predicted dependences on � are robust consequences of hydrodynamics.

Significant simplifications do appear if in addition to the small B assumption in Eq. �1.7�, we also assume that � is small.
In particular, let us take B�T2, ��T2, and ��B�T3/2��. Note that in this limit, we may simplify Eq. �3.14� to Ts=�+ P.
Then, the results in Eqs. �3.36� and �3.37� take the following more compact form �we have set 1 /�imp=0 because, as noted in
Sec. I, the dependence on impurity scattering is easily restored below by �→�+ i /�imp�:

�xx = �Q

��� + i� + i�c
2/��

�� + i��2 − �c
2 , �xy = −

�

B

�2 + �c
2 − 2i��

�� + i��2 − �c
2 ,
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�xx =
1

�Q

��� + i�c
2/� + i��

�� + i�c
2/��2 − �c

2 , �xy =
B

�

��c
2/��2 + �c

2 − 2i��c
2/����

�� + i�c
2/��2 − �c

2 ,

�xx =
�

T

i�

�� + i��2 − �c
2 , �xy = −

s

B

�2 + �c
2 − i��

�� + i��2 − �c
2 ,

�xx =
s

�

��c
2/��2 + �c

2 − i��c
2/���

�� + i�c
2/��2 − �c

2 , �xy = −
B

T

i�

�� + i�c
2/��2 − �c

2 ,


̄xx = s
i� − �

�� + i��2 − �c
2 , 
̄xy = − s

�c

�� + i��2 − �c
2 ,


xx = s
i� − �c

2/�

�� + i�c
2/��2 − �c

2 , 
xy = s
�c

�� + i�c
2/��2 − �c

2 . �3.38�

The above expressions are now easily observed to obey a
remarkable “self-duality” symmetry. Under the interchanges

�↔ B and �Q ↔ 1/�Q, �3.39�

the cyclotron frequency �c in Eq. �1.18� remains invariant,
while the damping frequencies in Eqs. �1.19� and �1.22� in-
terchange,

�↔ �v = �c
2/�; �3.40�

then, note that the expressions for the transport coefficients
interchange as follows:

�xx, �xy, �xx, �xy, 
̄xx, 
̄xy

�

�xx, − �xy, − �xy, − �xx, 
xx, − 
xy . �3.41�

These relations are consequences of the particle-vortex dual-
ity discussed in Ref. 14, and the mapping of the transport
coefficients in Eq. �3.41� can be deduced from the mapping
Ei↔�ijJj in Eq. �1.13�. These duality relations will be dis-
cussed further in the context of SCFTs solvable by AdS/CFT
in Sec. V and in Ref. 31: in this case, the duality relations
will be found to hold exactly for all � and B.

IV. ESTIMATING THE MOMENTUM RELAXATION RATE

As discussed in Sec. I, we assume that momentum relax-
ation is caused by an external perturbation of the form

Simp =� d�� ddxV�x�O�x,�� , �4.1�

where V�x� is an external potential which is a random func-
tion of spatial position x, but independent of �, with the
averages in Eq. �1.10�. The operator O is the “thermal op-
erator” of the CFT, i.e., the most relevant perturbation which

drives the CFT massive �despite the name, it has nothing to
do with temperature in the present context�.

We are interested in the modification of the equation of
motion of the momentum density Ti0 by the impurity because
this is the only quantity whose conservation law is spoiled by
the presence of impurities. In the absence of other perturba-
tions from equilibrium, we observe from Eq. �3.11� that the
momentum density obeys

�Tit

�t
= −

1

�imp
Tit + ¯ , �4.2�

where the ellipsis indicates terms which have an explicit spa-
tial gradient and so their spatial integral vanishes. We will
describe here an estimate of �imp to order Vimp

2 .
For definiteness, consider the Wilson-Fisher fixed point of

a complex scalar 
 in Eq. �1.3�, although the argument easily
generalizes to other CFTs. We will also ignore the influence
of B and � as these are secondary perturbations. Then, O
= �
�2 and

Tit =#*�i
 + c.c., �4.3�

where # is canonical momentum conjugate to 
. For the
following, we need the commutator

$ j = i�Tjt,O� = � j��
�2� . �4.4�

We now compute 1/�imp using the memory function
method.55,56 From this approach, the estimate of the momen-
tum relaxation rate is

1

�imp
=

Vimp
2

%T
lim
�→0

1

�
� ddk

�2��d Im�$i�− k,− ��$i�k,���ret,

�4.5�

where we are working in general d dimensions and %T is the
momentum density susceptibility, i.e.,
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%T =� ddxd��T it�x,��T it�0,0�� . �4.6�

Using the scaling dimensions

dim�Ti0� = d + 1,

dim��
�2� = d + 1 − 1/	 �4.7�

�where 1/	 is the scaling dimension of the coupling conju-
gate to O= �
�2�, we obtain

dim�%T� = − d − 1 + 2 dim�Ti0� = d + 1,

dim��$i�− k,− ��$i�k,���ret� = − d − 1 + 2 dim�$ j�

= d + 3 − 2/	 . �4.8�

Thus, %T�Td+1 and

1

�imp
� Vimp

2 Td+1−2/	, �4.9�

which is the result quoted in Eq. �1.11� for d=2. As noted
there, 	�2/3, and so 1/�imp is roughly temperature indepen-
dent.

An alternative but less constructive argument proceeds
along the lines of the discussion in Ref. 57. From Eq. �4.1�,
we have dim�V�=1/	, and so from Eq. �1.10�, we have
dim�Vimp

2 �=−d+2/	. This is indeed familiar from Harris’ cri-
terion which states that disorder is relevant if 	�2/d. Then,
knowing dim�1/�imp�=1, result �4.9� follows.

V. DYONIC BLACK HOLES

A. AdS4/CFT3 and the black hole solution

From the point of view of studying quantum critical phe-
nomena, the AdS/CFT correspondence58 provides a wealth of
new solvable strongly correlated CFTs in 2+1 dimensions.
The key feature of these CFTs is that they admit a large N
limit in which they can be described classically as a gravita-
tional theory in 3+1 dimensions that asymptotes to anti–de
Sitter space �AdS4�. The CFT is thought of as living on the
“boundary” of the higher dimensional, or “bulk,” space-time.

The correspondence furthermore allows us to consider de-
partures from criticality due to finite temperature. This is
precisely the type of systems we are studying in this paper.
Finite temperature in field theory corresponds to allowing the
bulk space-time to contain a black hole.59 The temperature of
the field theory is just the Hawking temperature of the black
hole. Finite temperature dissipation in field theory is dual to
bulk matter fields falling into the black hole.

We wish to consider a CFT with a global U�1� symmetry
and a corresponding charge density � and a background mag-
netic field B. It was explained recently that this is dual to
taking a dyonic black hole, carrying both electric and mag-
netic charges.30 These black holes are solutions to Einstein-
Maxwell theory in 3+1 dimensions. In this section, and also
in a separate paper,31 we will see how thermoelectric trans-
port properties of the dyonic black hole precisely agree with
our general analysis in the hydrodynamic limit. The black

hole, via the AdS/CFT correspondence, provides a solvable
example of the physics we are studying throughout this pa-
per. Furthermore, the various particle-vortex dualities we
have discussed above are seen to acquire a very transparent
interpretation in the AdS/CFT correspondence.

The canonical example of the AdS4/CFT3 correspon-
dence describes the infrared fixed point of maximally super-
symmetric Yang-Mills theory with SU�N� gauge group. The
dual gravitational theory58 in this case is M theory on
AdS4�S7. However, in the large N limit and for the subset
of field theory questions we are asking, this theory may be
consistently truncated to Einstein-Maxwell theory with a
negative cosmological constant in 3+1 dimensions. The di-
mensional reduction is performed, for instance, in Ref. 14.

The action for Einstein-Maxwell theory with a negative
cosmological constant may be taken to be

I =
�2N3/2

6�
� d4x�− g�−

1

4
R +

1

4
F�	F

�	 −
3

2
� , �5.1�

which implies the equations of motion

R�	 = 2F��F	
� −

1

2
g�	F��F

�� − 3g�	, �5.2a�

��F�	 = 0. �5.2b�

We have expressed the normalization of the action in terms
of the field theory quantity N.

A black hole in AdS4 with planar horizon has metric

ds2 =
�2

z2 �− f�z�dt2 + dx2 + dy2� +
1

z2

dz2

f�z�
. �5.3�

The dyonic black hole carries both electric and magnetic
charges,

F = h�2dx ∧ dy + q�dz ∧ dt , �5.4�

where h, q, and � are constants that will be related to field
theory quantities shortly. The function appearing in the met-
ric is then

f�z� = 1 + �h2 + q2�z4 − �1 + h2 + q2�z3. �5.5�

In these coordinates, the conformal boundary of the space-
time is at z→0, whereas the black hole event horizon is at
z=1.

In the following section, we summarize the thermody-
namic properties of this black hole space-time that were de-
rived in Ref. 30, which are also the thermodynamics of the
CFT. We will express thermodynamic quantities in terms of
the dual field theory background magnetic field and chemical
potential. These are related to the constants q and h that
appeared in the black hole solution as follows30:

B = h�2, � = − q� . �5.6�

In the above expressions, we have set the AdS radius to
unity. The coordinates t, x, and y have unit of length,
whereas the radial coordinate z is dimensionless. It follows
that the constant � has mass dimension 1 whereas the con-
stants h and q are dimensionless.
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B. Grand canonical ensemble

We give the thermodynamics of the CFT in terms of the
temperature T, the chemical potential �, and the background
magnetic field B. Many variables are most simply expressed
in terms of an auxiliary quantity ��T ,� ,B� which is deter-
mined from

4�T

�
= 3 −

�2

�2 −
B2

�4 . �5.7�

The thermodynamic potential is

� =
�2N3/2

6�

V�3

4

− 1 −

�2

�2 + 3
B2

�4� . �5.8�

Here, V=�dxdy is the spatial volume. The energy density is

� =
�2N3/2

6�

�3

2

1 +

�2

�2 +
B2

�4� . �5.9�

The entropy density is

s =
�2N3/2

6
�2. �5.10�

The charge density is

� =
�2N3/2

6�
�2�

�
. �5.11�

The magnetization is

M = −
1

V
��

�B
= −

�2N3/2

6�
�

B

�2 . �5.12�

The pressure is

P = MB +
�

2
. �5.13�

These formulas satisfy the thermodynamic relation

� + P = Ts + �� . �5.14�

Note that the above implies the relation

� =
2

3
�sT + �� − MB� . �5.15�

Finally, it is useful to define

% =
�2N3/2

6�
T , �5.16�

which gives the relation

�MT2 = − �B%2. �5.17�

C. Magnetization densities and currents

We will shortly be using Kubo formulas to obtain trans-
port coefficients of the SCFT from retarded Green’s func-
tions. When applying the Kubo formula to systems with a
background magnetic field, it is necessary to subtract effects

due to magnetization currents, as explained by Cooper et
al.38 The magnetization currents are

Ji
mag = �ij� jM �5.18�

and

Tti
mag = �ij� jM

E. �5.19�

Here and below, the indices i and j run over the two spatial
coordinates x and y. The equilibrium magnetization density
M and energy magnetization density ME for the dyonic black
hole are obtained by differentiating the free energy with re-
spect to a constant magnetic field for either the charge or
momentum currents,

M = −
��

�Fxy
, �5.20�

ME = −
��

�Fxy
E . �5.21�

Here, we define �Fxy
E =�x�gty

0 −�y�gtx
0 and �Fxy =�x�Ay

0

−�y�Ax
0, where �gta

0 is a background gauge field sourcing Tta
and �Aa

0 sources Ja. Further comments on these magnetiza-
tion densities and their computation for the scalar field
theory in Eq. �1.3� appear in Appendix B.

In the AdS/CFT correspondence, the free energy � is just
the action of the dual gravitational background. To compute
the derivatives in Eqs. �5.20� and �5.12�, we must consider
on shell fluctuations of the bulk metric and gauge field that
tend toward �gta

0 and �Aa
0, respectively, near the conformal

boundary z→0. We then differentiate the action with respect
to the boundary values of these fields.

More concretely, the boundary condition may be taken to
be

�Ay → xB as z → 0, �5.22�

�gtyz
2/�� �Gy → xBE as z → 0, �5.23�

with B and BE constants and all other fields having normal-
izable behavior near the boundary. It turns out that the lin-
earized fluctuation equations about the dyonic black hole
background with these boundary conditions may be consis-
tently truncated to the fields �Ay, �At, and �gty. The solution
is

�Ay = x�B − qBEz� , �5.24�

�Gy = xf�z�BE, �5.25�

�At =
hBE

2�
�z2 − 1� −

hB

q�
�z − 1� . �5.26�

Note that At vanishes at the horizon, z=1, as required.
Because we are fluctuating about a solution, the linear

variation of the bulk action will vanish. However, there will
be a boundary term that arises due to integration by parts
when evaluating the action on the solution. There is also a
boundary term that must be included to renormalize the
gravitational action
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Ibdy = −
�2N3/2

6�
�1

2
� d3x�− �& +� d3x�− �� ,

�5.27�

where � is the boundary metric and &=��	&�	 is the trace of
the extrinsic curvature &�	=− 1

2 ���n	+�	n��, with n an out-
ward directed unit normal vector to the boundary.

For fluctuations about a solution, we have

�I =
�2N3/2

6�
� d3x�− �

��− F�	n
	�A� +

1

4
�&�	 − &��	 − 2��	��g�	� .

�5.28�

Evaluated on the background �5.3� and �5.4� and considering
only �Ay, �At, and �gty, this expression becomes

�I =
�2N3/2

6�
q�2� d3x�At. �5.29�

Note that only the first term in the variation of action �5.28�
contributes. Using solution �5.26� for �At, we obtain the
magnetization

M = −
�S

�B
= −

�2N3/2

6�
�h = −

�2N3/2

6�

B

�
, �5.30�

in complete agreement with our previous expression �5.12�.
For the energy magnetization, we obtain

ME = − �
�S

�BE = −
q�

2
M =

�M

2
. �5.31�

D. Transport coefficients in the dc limit

We will obtain the transport coefficients using Kubo for-
mulas for the retarded Green’s functions. The Green’s func-
tions are obtained by considering fluctuations about the dy-
onic black hole background. In Ref. 30, these functions were
obtained at k=0 and to leading order as �→0 with B and �
held fixed. Unlike in our general magnetohydrodynamic
�MHD� analysis in Sec. III, no assumptions are made here
requiring B to be small. The current-current correlator is

GJiJj
R ��� = −

�

B
i��ij , �5.32�

the current-momentum correlator is

GJiTtj
R ��� = −

3�

2B
i��ij , �5.33�

and the momentum-momentum correlator is

GTtiTtj
R ��� = −

%T3s2

%2B2 + �2T2 i��ij −
9��2T2

4B�%2B2 + �2T2�
i��ij .

�5.34�

To relate these results to our general MHD study, we need an
expression for the heat current Qi. This is defined in Eq.

�3.17�; using the expression for the stress-energy tensor in
Eq. �3.23�, we see that in linear response �small velocities
with respect to the laboratory frame� we can work with

Qi = T ti − �Ji, �5.35�

leading to the correlators

GQiJj
R ��� = 
− sT

B
+ M�i��ij �5.36�

and

GQiQj
R ��� = −

%T3s2

%2B2 + �2T2 i��ij

+
− �s2T4 + B2�2�%2 + �T2M2B2

B�%2B2 + �2T2�
i��ij .

�5.37�

In obtaining these expressions, we used Eqs. �5.15� and
�5.17�.

The electrical conductivity is given by the Kubo formula

�ij = − lim
�→0

Im GJiJj
R ���

�
=
�

B
�ij . �5.38�

The other thermoelectric tensors are also given by a Kubo
formula. However, we should use the transport currents
which are obtained from the supergravity currents by sub-
tracting the magnetization currents.38 The correct Kubo for-
mula is

�ij = −
1

T
lim
�→0

Im GJiQj
R ���

�
+

M

T
�ij . �5.39�

Thus, we obtain

�ij =
s

B
�ij . �5.40�

Similarly, the heat conductivity is given by the Kubo formula


̄ij = −
1

T
lim
�→0

Im GQiQj
R ���

�
+

2�ME − �M�
T

�ij �5.41�

or


̄ij =
%T2s2

%2B2 + �2T2�ij +
�s2T4

TB�%2B2 + �2T2�
�ij . �5.42�

We can now compare these results with those of our gen-
eral MHD computations by taking the �→0 limit of the
MHD transport coefficients �3.36�. We see immediately that
the expressions for �ij and �ij agree exactly. In order to
match 
̄ij, we need to recall that the MHD results are only
valid for small magnetic fields B�T2 �see Eq. �1.7��. Fur-
thermore, we need to know the conductivity �Q for the dy-
onic black hole. It is shown in Ref. 31 that for the black hole,
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��Q�B=0 = 
 Ts

� + P
�2%

T
. �5.43�

Using this formula and taking the small magnetic field limit,
we obtain

�
̄ij�B�T2 =
�Q�� + P�2

�2T
�ij +

s2T

B�
�ij . �5.44�

This expression now agrees exactly with the corresponding
limit of the MHD result �3.36�. Thus, we see that the dyonic
black hole fits into the general class of finite temperature
deformations of quantum critical points that we have studied
via hydrodynamics. The black hole gives specific values for
�Q and the other thermodynamic quantities and furthermore
allows the results to be extended to arbitrary magnetic field.

E. Bulk electromagnetic duality and conformal field theory
particle-vortex duality

A consequence of the bulk description is that it gives a
very transparent rationale behind the dualities in the trans-
port coefficients that we commented upon earlier. The study
of electromagnetic duality in the dyonic black hole is pur-
sued in depth in Ref. 31, which furthermore obtains expres-
sions for the black hole transport coefficients away from the
dc limit. Here, we shall summarize some results from that
paper and show how they precisely match our expectations
from MHD.

The bulk Maxwell theory enjoys an electromagnetic du-
ality. This interchanges the bulk electric and magnetic fields
E→B and B→−E. Acting on the dyonic black hole solu-
tions �5.3�, this corresponds to q→h and h→−q. Using Eqs.
�5.6� and �5.11� and the fact that the bulk coupling is inverted
under electromagnetic duality, this implies that

B →
T�

%
, �→ −

TB

%
,
%

T
→

T

%
. �5.45�

Thus, we see that the bulk electromagnetic duality maps the
CFT into the same CFT with the values of the background
magnetic field and charge density interchanged. This is the
origin of the particle-vortex duality that we noted in our
MHD computations. Indeed, it is immediately seen that un-
der transformation �5.45�, our expressions for �, �, and 
̄ in
Eqs. �5.38�, �5.40�, and �5.42� transform according to Eq.
�3.41�. There are some overall factors of % /T different from
Eq. �3.41� due to the fact that transformation �5.45� is nor-
malized differently from Eq. �3.39�. The normalization in Eq.
�5.45� is natural from the string perspective.

It remains to see how the thermoelectric transport coeffi-
cients of the black hole transform under this map. This is
shown in detail in Ref. 31. The central point is the following.
The bulk Maxwell potential A determines the bulk electric
and magnetic fields through E��tA and B��zA. As we tend
toward the boundary z→0, the electric piece is non-
normalizable and results in a boundary electric field E. The
magnetic piece, however, is normalizable and therefore re-
sults in a boundary current J. The bulk electromagnetic du-
ality is thus seen to exchange the electric field in the CFT
with the current. More precisely, one finds

Ei ↔ �ijJj . �5.46�

As we commented below Eq. �3.41�, this map together with
the definition of the transport coefficients in Eq. �1.13� is
enough to obtain all the duality transformations in Eq. �3.41�.

The results for the transport coefficients presented in the
previous section were only obtained in the dc limit �→0
with B and � fixed, following Ref. 30. However, using the
AdS/CFT dictionary, it is possible to study thermoelectric
transport at all frequencies. This is done in Ref. 31. In par-
ticular, taking the limit �→0 with ��B�T3/2��, one ob-
tains precisely the same expressions as those that followed
from the MHD analysis �Eq. �3.38��, thus providing a con-
sistency check for our picture. One can go further with the
dyonic black hole and study transport at all �, B, and �
numerically. For all values, the particle-vortex duality holds
automatically because of the bulk electromagnetic duality.
This is the power of the AdS/CFT correspondence: all trans-
port phenomena of the strongly correlated CFT at large N are
reduced to solving the equations for classical perturbations
of the dual black hole in Einstein-Maxwell theory.

VI. CONCLUSIONS

This paper has presented a general theory for hydrody-
namic thermal and electric transport in the vicinity of quan-
tum critical points described by “relativistic” quantum field
theories. We have also shown that the results constitute a
valuable starting point to understand experimental observa-
tions in a regime where no previous description was avail-
able.

It is perhaps useful to describe the results here from the
vantage point of the Galilean-invariant hydrodynamic ap-
proaches which are traditionally used in condensed matter
physics.53,60 In such theories, charge �or number� currents are
proportional to the momentum current, and consequently, the
conductivity is infinite in the absence of impurities �in the
presence of a magnetic field, this implies Kohn’s theorem34�.
The natural transport coefficient is the thermal conductivity,
and this determines various diffusivities and damping con-
stants.

In contrast, in the present paper, we have used a very
different starting point. We considered a theory with both
particle and antiparticle �hole� excitations, in which there is
no proportionality between momentum and charge currents.
For the case with particle-hole symmetry ��=0� and B=0,
the momentum and charge currents are decoupled from each
other, and it is possible to have a charge current with no
momentum current: the electrical current can decay to zero
from such a state, and this decay is associated with the uni-
versal electrical conductivity �Q.17 There is no analog to �Q
in the Galilean-invariant case. Also, because of the symmetry
of the stress-energy tensor, we could identify the energy cur-
rent with the momentum density; the conservation of mo-
mentum then implied that the thermal conductivity was
infinite.61 Upon relaxing the requirement of particle-hole
symmetry �i.e., allowing ��0�, we found the appearance of
some characteristics of the Galilean-invariant systems. In Eq.
�1.2�, we found that the excess particles �or holes� contrib-
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uted a Drude-like conductivity above the quantum critical
�Q. The thermal conductivity became finite, but with a value
related to �Q by a Wiedemann-Franz-like relation. Finally,
we also turned on a B�0 and showed how all of the longi-
tudinal and transverse transport coefficients could be related
to �Q in relationships that were summarized in Sec. I.

While our analysis was specialized to relativistic quantum
critical points, we expect that many aspects will generalize to
other strongly interacting quantum critical points. Only a dis-
crete particle-hole symmetry is required to decouple the
charge and momentum currents, and this should be sufficient
to obtain a finite �Q.

We also discussed applications of this general hydrody-
namic structure to measurements of the Nernst coefficient in
the cuprates and NbSi films. For reasonable values of the
parameters, we were able to reproduce several key aspects of
the B and T dependence of the observations. Our results also
make a significant prediction, characteristic of such relativ-
istic theories of the superfluid-insulator transition: the pres-
ence of a hydrodynamic cyclotron mode. For the simplest
case of a superfluid-insulator transition of Cooper pairs at
integer filling as described by Eq. �1.3�, this cyclotron mode
can be considered due to the motion of Cooper pairs �or their
dual vortices�. However, for the more complicated examples
at fractional filling noted in Sec. I A, such a simple interpre-
tation is not possible, and the cyclotron mode is due to mo-
tion of all charge carriers, including those carrying fractional
charges. From our fits to the data in the cuprates in Sec. II,
we found that in presently studied samples, this cyclotron
mode was strongly overdamped by impurity scattering.
However, this raises the possibility that the cyclotron reso-
nance might be observable in ultrapure samples. We esti-
mated that the hydrodynamic cyclotron frequency in the cu-
prates was smaller than the cyclotron frequency of free
electrons by a factor of order 10−2. Observation of this reso-
nance would constitute a strong test of the theoretical ideas
presented here, and we hope such experiments will be under-
taken.

Another class of results in this paper described the re-
markable holographic connection between this intricate hy-
drodynamic behavior in 2+1 dimensions and the quantum
theory of dyonic black holes in 3+1 dimensions. Using the
AdS/CFT connection, we presented in Sec. V exact results
for the hydrodynamic response functions of the vicinity of a
2+1 dimensional supersymmetric conformal field theory. In
the appropriate limiting regime, these results, and those in
Ref. 31, were in complete agreement with those obtained
from the magnetohydrodynamic analysis in Sec. III. This
agreement lends strong support to the validity of our MHD
analysis. Indeed, the analysis of the dual gravity theory
helped guide our determination of the MHD equations.
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APPENDIX A: NORMAL MODES OF THE
HYDRODYNAMIC EQUATIONS

It is interesting to analyze the normal modes of the linear-
ized magnetohydrodynamic equations in the absence of im-
purity scattering. Assuming a space and time dependence
e−i�t+ik�·x� of ��, �T and v�ªv� ·k� /k, v�ª �k� /k� · ��̂v��, we find
four independent modes satisfying the equations

�
	 ��

��
	

T
�� + 	 ��

�T
	
�

�T� − k�� + P�v� = 0,

�
	 ��

��
	

T
�� + 	 ��

�T
	
�

�T� − k��v� + B�Qv��

+ ik2�Q
�� −
�

T
�T� = 0,

��� + P�v� − k���� + s�T� − i�Bv�

+ iB2�Qv� − ik2�" + ��v� = 0,

��� + P�v� + kB�Q
�� −
�

T
�T� + i�Bv�

+ iB2�Qv� − ik2"v� = 0. �A1�

In the long wavelength limit k�1, one finds two modes cor-
responding to damped cyclotron oscillations of the plasma,

�± = ± �c − i� . �A2�

These modes have a velocity field with v� = ± iv�, while ��
and �T are smaller than v� and v� by a factor of order O�k�.

Further, there is a diffusive mode with frequency propor-
tional to the conductivity �Q and a quadratic dispersion re-
lation

�diff = − i
k2�Q�� + P�2

T
	 ��

��
	

T
	 ��

�T
	
�

− 	 ��

�T
	
�
	 ��

��
	

T
���2 + B2�Q

2 �

.

�A3�

This mode has no fluctuations in energy density, ��
= ���� /����T��+ ���� /�T����T=0. The velocity field v� is of
order O�k� relative to ��, �T.

Finally, there is a subdiffusive, transverse shear mode
with strongly suppressed fluctuations in temperature and lon-
gitudinal velocity component �T=O�k2�, v� =O�k3�. It exhib-
its an unusual dispersion relation
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�subdiff =
ik4"

B2	 ��

��
	

T

, �A4�

and we have the relation

ik��� Bv�. �A5�

The origin of the k4 dispersion �A4� can be seen as fol-
lows: A strongly suppressed ��k� implies that momentum
density is nearly conserved. Hence, the total force density
vanishes to lowest order, i.e., the Lorentz force is balanced
by a longitudinal pressure gradient and a transverse friction
force,

�J�� B� �� � �� P + O�",�,�� , �A6�

"�2v�� � �J�� B� �� = − BJ� . �A7�

The first equation yields relation �A5�. The second can be
injected into the equation for charge conservation

�t� = − �� · J� � �� · �"
B

�2�v��� � �� · �"
B

�2
���

B
�� ,

�A8�

from which the dispersion follows upon using �t�
=−i����� /����T��.

APPENDIX B: MAGNETIZATION AND ENERGY
MAGNETIZATION

In our computation of the transport coefficients using the
Kubo formula in Sec. V, we had to face the issue of the
subtraction of magnetization currents, as discussed earlier in
Refs. 37 and 38. These subtractions were computed in Sec. V
using the AdS/CFT mapping. This appendix describes the
nature of these magnetization subtractions in the context of
the scalar field theory in Eq. �1.3�. Actually, most of the basic
issues are already clarified in free field theory, and so we will
limit our discussion here to this simple case. The generaliza-
tion of the free field results to the interacting Wilson-Fisher
fixed points can be straightforwardly carried out along the
lines of Refs. 32 and 33, and so we will not discuss it here.

So, we consider here the free field version of Eq. �1.3�
with the Lagrangian

L = ���� + iA��
*����� − iA��
� + m0
2�
�2. �B1�

The stress-energy tensor is62

T�	 = ���� + iA��
*����	 − iA	�
�

+ ���	 + iA	�
*����� − iA��
� − g�	L , �B2�

while the U�1� current is

J� = i
*��� − iA��
 − i
��� + iA��
*. �B3�

The equation of motion is

��� − iA����� − iA��
 = m0
2
 . �B4�

It is now a straightforward, but tedious, exercise to verify
that the above expressions do indeed imply the MHD equa-
tion of motion in Eqs. �3.1� and �3.2�.

For the thermodynamics, we need the particle and hole
eigenenergies. These are organized in Landau levels, with
energy

��
2 = 2B�� + 1/2� + m0

2 �B5�

��=0,1 , . . . ,�� and degeneracy per unit area of B / �2��.
From this, we can easily obtain expressions for the grand
potential �for all thermodynamic quantities, we subtract an
infinite T=0 value, and �n is a Matsubara frequency which is
an integer multiple of 2��:

�

V
= − P =

BT

2��
�n

�
�

ln���n − i��2 + ��
2�

=
BT

2��
�

�ln�1 − e−���−��/T� + ln�1 − e−���+��/T�� . �B6�

We also obtain the entropy s, the density �, and the magne-
tization density M by

s = −
1

V
��

�T
, � = −

1

V
��

��
, M = −

1

V
��

�B
. �B7�

Following Cooper et al.,38 it is useful to define an internal
pressure Pint which equals

Pint = P − MB =
B2

2��
�

� + 1/2

��
� 1

e���−��/T − 1
+

1

e���+��/T − 1
� .

�B8�

We define the energy density � by �Ttt�. Evaluating this
from Eq. �B2� in Euclidean Matsubara space, we obtain

� = �Ttt� =
B

2��
�

T�
�n

− ��n − i��2 + ��
2

��n − i��2 + ��
2

=
B

2��
�

��� 1

e���−��/T − 1
+

1

e���+��/T − 1
� . �B9�

It is now easily verified that the relations in Eq. �3.14� are
obeyed.

In a similar manner, we can compute �Txx� and find

�Txx� =
B

2��
�

T�
�n

− ��n − i��2 − m0
2

��n − i��2 + ��
2

=
B2

2��
�

� + 1/2

��
� 1

e���−��/T − 1
+

1

e���+��/T − 1
� = Pint,

�B10�

and so Eqs. �3.9� are also obeyed.
Let us now write down the explicit result for M from Eq.

�B7�:
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M = −
T

2��
�

�ln�1 − e−���−��/T� + ln�1 − e−���+��/T��

−
B

2��
�

� + 1/2

��
� 1

e���−��/T − 1
+

1

e���+��/T − 1
� .

�B11�

A direct evaluation of �r��J�� in an infinite system yields only
the second term but not the first. We now argue that the first
term is the contribution of edge states. Notice that this first
term can be rewritten in the form

M =
1

2�
�

0

�

dEge�E�� 1

e�E−��/T − 1
+

1

e�E+��/T − 1
�

−
B

2��
�

� + 1/2

��
� 1

e���−��/T − 1
+

1

e���+��/T − 1
� ,

�B12�

where we can interpret ge�E� as the magnetization of edge
states:

ge�E� = �0 for E� �0

� for ��−1� E� ��.
� �B13�

Note that ge�E� is a piecewise constant function, and there is
one additional edge state as each Landau level is crossed, as
expected. We can write the expression for the magnetization
as a sum of a bulk and edge contributions as

M =
1

2�
�

0

�

dEg�E�� 1

e�E−��/T − 1
+

1

e�E+��/T − 1
� ,

�B14�

where

g�E� = ge�E� − �
�=0

�
B�� + 1/2�

��

��E − ��� . �B15�

With the above form for M, we can now immediately use
the results of Ref. 37 �compare their Eqs. �31� and �34�� to
obtain the value of ME:

ME =
1

2�
�

0

�

dEEg�E�� 1

e�E−��/T − 1
−

1

e�E+��/T − 1
� .

�B16�

The subtraction for 
̄xy is, by Eq. �69� of Cooper et al.,38

2MQ where

MQ = ME − �M =
1

2��
�
��

��−�

��+� EdE

eE/T − 1

−
B�� + 1/2�

��

 �� − �

e���−��/T − 1
−

�� + �

e���+��/T − 1
�� .

�B17�

An alternative evaluation of MQ, which is generalizable to
interacting theories, follows from the representation of the
heat current discussed in Ref. 63. As noted in Sec. V C, we
need the response to a “magnetic field” associated with the
energy �or heat� current, just as the ordinary magnetization is
a response to a magnetic field associated with the charge

current. So, we introduce a vector potential A� Q which

couples to heat current: this is done by the replacement63 A�

→A� + iA� Q�n. Consequently, the free energy density in the
presence of this additional magnetic field BQ is obtained
from Eq. �B6� simply by the replacement B→B+ iBQ�n,
which yields

�

V
=

T

2��
�

�
�n

�B + iBQ�n�ln���n − i��2 + 2�B + iBQ�n��� + 1/2� + m0
2� . �B18�

Taking the derivative with respect to BQ, we obtain

MQ = −
1

V
��

�BQ

=
T

2��
�

�
�n

�− i�n ln���n − i��2 + ��
2� +

− 2i�nB�� + 1/2�
��n − i��2 + ��

2 �
=

T

2��
�

�
�n

�− i�n ln�− i�n + �� − �� − i�n ln�i�n + �� + ��� +
1

2��
�
�−

B�� + 1/2�
��


 �� − �

e���−��/T − 1
−

�� + �

e���+��/T − 1
��

=
1

2��
�
��

��−�

��+� EdE

eE/T − 1
−

B�� + 1/2�
��


 �� − �

e���−��/T − 1
−

�� + �

e���+��/T − 1
�� , �B19�

which agrees with Eq. �B17�.
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