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Marginal pinning of vortices at high temperature
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We analyze the competition between thermal fluctuations and pinning of vortices in bulk type-Il supercon-
ductors subject to pointlike disorder and derive an expression for the temperature dependence of the pinning
length L.(T) which separates different types of single vortex wandering. Given a disorder potential with a
basic scale¢ and a correlatoi o(u) ~Kq(u/€) “PInYu/é) we determine the dependence lof(T) on the
correlator range: correlators wig>2 (short ranggand <2 (long range lead to the known resultis;(T)
~L(0)exgCT®] andL (T)~L(0)(CT)“4TA/2=A) respectively. Using functional renormalization group we
show that for8=2 the result takes the interpolating fotm(T) ~ L(0)exg CT¥* 9. Pinning of vortices in
bulk type-1l superconductors involves a long-range correlator With2, «=1 on intermediate scales<u
<\, with £ and\ the coherence length and London penetration depth, hef{d® ~L.(0)exdCT]; at large
distanced .(T) crosses over to the usual short-range behavior.
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Many properties of type-ll superconductors derive fromin the intermediate asymptotic regindecu<\ (here,¢ and
the interaction between vortices and pinning centérsn- \ denote the coherence length and the London penetration
purities are particularly important in situations where a transdepth of the superconducioiThe long-range tail3) renders
port current is applied as they provide the necessary pinninghe correlator nonintegrable and modifies the pinning char-
force compensating the Lorentz force acting on vorfieesl  acteristics as compared to a short-range correlated disorder
thus enable a dissipation-free current flow. In this paper weandscape. This effect is particularly pronounced for vortices
address specific aspects of the high-temperature pinning by bulk high-T, superconductors where the disorder becomes
havior of vortices subject to weak pointlike disorder. Themarginal at high temperatures and the ratig is large(be-
results are of particular relevance for the copper-oxide hightow we describe the situation in an isotropic material; effects

T. superconductors which can be operated at high tempergf anisotropy can be accounted for within the scaling
tures and where such a pinning landscape naturally derivegpproach).

from oxygen vacancies. The following discussion is not restricted to single vortex
A single flux line in a disorder potential is described by pinning; rather we consider the latter as a specific realization
the partition functiofl of the directed elastic strinpr polymej problenf which
) ) o describes such diverse physical systems as domain walls in
Z(uL)= f(u' )D[u'(z)]exp{ _ lf dz E(di) magnetic film<:” wetting (in the plane? vortices? or ran-
' (0,0) TJo 2\ dz dom polymers. The numerous nontrivial features that these

systems have in common derive from an intricate interplay
} (1) of elasticity, disorder, and thermal fluctuations. While the
' elastic forces tend to stretch the string, the disorder potential
favors configurations deviating from a straight line in order
with (c/2)(d,u)? the elastic energy and(u,z) the disorder to take advantage of the potential valleys. Within the weak
potential which mlght take negative values. The disorder i%o”ective pinning Scenar}a the e|astici'[y dominates on
chosen to be a Gaussian random variable with zero mean argales smaller than the crossover sdaleand forces the
a correlator string to stay in the same valley, whereas on larger scales the
string effectively divides up into segments of sizgwhich
(V(u,2)V(0,0))=Ko(u) 8(2), (2 adjust independently to the disorder landscape. Increasing

where(- - -) denotes the average over disorder realizationsth® disorder strength decreases, while thermal fluctua-

The correlatoiKo(u) decays on a length: in most applica- tions tend to smqoth the disorder landscape implying an in-
tions the functiorko(u) is assumed to be rapidly decaying, crease pﬂ_C(T)_ with temperature. Also, the typical barriers
and at sufficiently high temperatures the physical behavior iS€Parating adjacent valleys are reduced by thermal fluctua-
determined by the integral= [ d"u K,(u) alone. In this pa- tions leading to a peculiar form of the creep-type dynamics
per we draw attention to the situation in disordered type-IIunder a small external forcé Below we first discuss some

superconductors where the correlatog(u) describing the general properties of vortex pinning in d_isordered type-Il su-
potential landscape of vortices is long ranged perconductors and derive the asymptotic fd@nof the cor-
’ relator. Second, we calculate the pinning lengiT) using

+V[u'(2),z]

2 u the functional renormalization-groufRG) approach:?
Ko(U)~Ko=—=In-, (3) The behavior of random directed polymers strongly de-
TS pends on the numbean of transverse motional degrees of
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freedom. E.g., thélow-temperaturgroughness as character- temperature superconductorss much larger thag and the
ized by the wandering exponergtnzlimbxaIn(uZ(L)>/ slow decay of the order parameter extends over a wide re-
gion.

To fix ideas, we consider disorder in the critical tempera-
ture(so calleddT, disordef) described through spatial varia-

dInL? decreases witm (here,L denotes the length of the
polymer segment and(L) is the relative transverse dis-
placement of its end pointsUpon increasing the tempera- . i . .
ture a phase transitiofroughening transitionis known to ~ t0Nns da(r) in the Ginzburg-Landau parameterwith cor-
occur forn=3, see Ref. 13, the high-temperature phase belelations(da(r)da(r’))= y&%(r ). The pinning energy of
ing dominated by thermal fluctuations on all length scale vortex_ ah_gned along the axis and with coordinates
with a thermal roughness exponefit=1/2. On the other (U(2).2) is given by

hand, forn=1,2 the large scale behavior remains dominated

by disorder with the same exponef)f as at low tempera- Epin(uvz):J d’Rp(|Ju—R]|)da(R,2), (6)
tures, however, going beyond the so-called depinning tem-

peratureTy,, the crossover scale(T) increases rapidly with the vortex form factorp(R)=1—|¥(R)|?=2£%/(R?
with temperature. In the physically important case2 the 4+ 2¢2). Within the range¢<u<\ the pinning energy cor-
crossover length L,(T) grows exponentially, L.(T) relator assumes the form

~Lc(0)exdC(T/Tyy) "], reflecting the fact thah=2 is the

lower critical dimension of the roughening transition. While _ 5

»=3 is a well established result describing the situation for a<o(4)=(Epin(U,2)Epin(0,0)) = 75(Z)f d’R p(|lu—R[)p(R)
short-range disorder potentidithe exponent is modified by

the long-range tail of the potential correlator as it appears in £ u
the vortex problem: we will show below that=1 (a similar ~Kod(2) FI”E'
effect is found in the context of individual vortices pinned

onto columnar tracks. We emphasize that the asymptotic with Ko=2|W¥,|*y£% (we have assumefi¥o|=1 in the
behavior(3) does not influence the roughness of the polymererivation above The integral over this correlator diverges
on large scales, that is, the value of the wandering exponetdgarithmically and is cut off only at the large scale This

£, remains unchanged. While for=2 the nonintegrability long-range feature will have an important effect on the cross-
of the functionKy(u) with an asymptotic decay slower than over scaleL.(T) at high temperatures which we are now
1 u?In(u)], is sufficient to change the value of the exponentgoing to calculate.

v, the criterion on the asymptoticky(u)~Kq(&/u)? to We analyze the system described by the partition function
change the value of, has been arguéd*®to be 8<3/{,, (1) with the help of the functional renormalization group
—4. Inserting the numerically known valuyg ;~5/8 for the  (FRG) approacht? Applying momentum shell renormaliza-
short-range wandering exponent, we see that/fi¥el, s is  tion to the replicated Hamiltonian leads to the following sys-
unaffected by the weak nonintegrabilitg € 2) in the vortex  tem of one-loop equationsee Ref. 19for the renormalized

@)

pinning problem. correlatorK, and temperatur@ ,
We briefly derive the form of the long-range correlations
occurring in the problem of single vortex pinning in type-Ii aK (Ju)=[3=(4+n){IK(|u])+ ¢V -[uK(|u])]

superconductor$.The Ginzburg-Landau equation for the = ) )
macroscopic wave functionV =p(R)exp(¢) takes the +TKE(uD) + IR (uDKE(up/2
form ~KE (DK (0], ®

2
& V+(1-|P[A)¥=0, (4) aT=(1-20T,, 9

v 2i A
@y

wherel = 1/(wc?A%), T,=T,/(wcA), andA~! denotes the
short-scale cutoff of the theory. In E¢B) we limited our-
gelves to the two replica correlatét;, neglecting higher
replica terms generated at high temperatures during momen-
tum shell integration, see Ref. 19; an analysis including these
%erms reveals that their feedback to the flowKgfis of the

whereA denotes the vector potentiah,=hc/2e is the flux
unit, and we have normalizd®| to unity in the asymptotic
regime. We concentrate on the vortex solution where th
phase turn inp by 27 drives a circular vortex current. On
scalesR<\ we can ignore transverse screening and usin

2 _ 2 H i
(VQD% —21/R ' thez reil part of Eq.(4) simplifies to same order as the nonlinear terms in E). and hence the
(—&/R°+1—|¥|9)W¥ =0, hence e . . )
qualitative results obtained below remain valid.
2 ez 1 £2/D2. At zero temperature the fourth derivative of the correlator
[WIA(E<R<M)~1-¢9R © K{*(0) diverges at the finite scalé,(T=0)~In{9[(n

the circular vortex current produces an order parameter supt 8)l KB‘”(O)]}, signalling the emergence of a nonanalyticity
pression decaying only slowly at small distancBs<A in the correlator at the origin and indicating that perturbation
(transverse screening quenches the current flow beyond thieory in the disorder breaks down beyond this scale. Still,
screening lengtih and the suppression of the order param-the FRG flow remains well defined, and for the case of short-
eter is exponentially smallThe same result follows from a range disorder the correlator can be shown to flow rapidly
variational ansatz’'® ¥ =R/(R?+2£?)Y%exp(¢). In high-  towards a nonanalytic disorder-dominated fixed point beyond
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I.(0). The crossover scafe L (0)=A le'<® Ku)
~[c¥K{P(0)]*® is naturally interpreted as the typical K
length of independently pinned vortex segments within the o0)
weak collective pinning theory; the same result is obtained 8
from a simple scaling argument equating the elastic and dis-
order energies.

At finite temperatures the correlator remains analytic due

to the thermal smearing introduced via the tefi({**.

However, we can still identify the crossover schl€T) as
the value of where the nonlinear terms in E@) become of 2 |
the same order as the linear terms, indicating that the disor-
der cannot any longer be dealt with perturbatively; beyond
this scaleK, is again driven towards theTE0) strong- g
coupling fixed point. 8 4 0 4 8 uk
At small scales, the nonlinear terms in the flow E).for

the correlatorK; can be neglected. Furthermore, since we [iG. 1. The high-temperaturd & £2) diffusive flow of the cor-
want to study high temperatures, we choose the roughnesgiator K,(u) evolving under the linearized FRG far=2. We
exponent to take the thermal valfie: {;,= 1/2 which is con-  choose a bare correlatisty(u) = {1+ In[1+(W&?}/2}/[1+ (u/&)?]
venient since the physics appears more transparently in thgith nonintegrable logarithmic tails as in the vortex problem. After
sequel, in particular, the temperature does not renormalize crossover around=1 the correlatoK,(0) increases quadratically
when /=¢, and '”rlz"-[' (however, note that from a math- With I as expected from E¢13). The inset schematically illustrates
ematical point of view the physical results below are inde-the interplay of the diffusive inflow of particle$iorizontal arrows

pendent of this particular choice @). The linearized flow and the particle sources originating from the quadratic one-loop
equation can be solved explici’tﬁ/with the result terms (solid dotg. In the short-range case the first mechanism is
absent an; grows due to the nonlinear terms only, while in the

n/2 strongly long-range caseB2), the nonlinear terms can be ne-
K, (u)= e(1-n2)l _ 1 J du’ glected andK; grows due to the inflow from the tails. The v~ortex
47T(1—e™) pinning problem is intermediate with a crossover at a sta(é)
<IC('~I') from diffusion driven growth to source driven growth.
(u_ u/e—|/2)2
ex _m In the casen=2 this expression can be understood in
terms of the diffusive motion of “particles” that are initially
Let us analyze the situation for short- and long-range cordistributed with a density proportional #,(u). Their total

related disorder separately. If the disorder correlator is shoffumber is infinite due to the nonintegrable tails Kf(u)
ranged, the total weighh=[d"u’K(u’) is finite and the [see Eq(7)], and a growing number of particles from further

: P . = and further away will eventually accumulate at the origin,
ixl_?refsgg:(ll%) can be simplified at high temperaturgs continuously increasing(0) (see Fig. 1L Thermal equilib-
= dp= C y

rium is never reached in this situation.
In the following we first discuss the situation where the

Ko(u'). (10)

Ki(u)=e "AIAT"2ex — u?/4T], (11)  linearized flow gives rise to an exponential growth of the
. renormalized correlator at the origin. This is the caserfor
for max1,In(§/T)]<I<I,(0). Note that forn=1 the cor- =1, or forn=2 if the initial correlator decays asymptoti-

relator grows exponentially, reflecting the relevance of thecally as Ko(u)~Ko(&/u)? with an exponent3<2. Under

disorder, whereas in the marginal case 2 the correlator these conditions, the contribution of the nonlinear terms to

flows to a fixed point. In this case we can interpret the lin-the growth ofK, can be neglected, and the crossover scale

earlzed_ .ﬂOW equation as the Fokker-P_IancI_< equation fo_r thﬂ(ﬁ') is found from comparing linear and quadratic terms in

probability distributionK,(u) of a particle in a harmonic 14 flow equation, i.e.

potentialV(u) = u/4, wherel plays the role of time and is

the temperature. The above fixed point corresponds to the IK" = (0)~T. (13

stationary Gibbs-Boltzmann distribution which is rapidly ap- 'e(

proached at high temperatures. R .
In the case of long-range correlations the integration ker- The”second denl/atlve_ o, can be_ eSt'm?tEd from Eq.

nel in Eq.(10) cuts the nonintegrable tails of the correlator at(10), Ki(0)=~K(0)/T. Using expressiori12) in the above

= . : crossover condition we find
u’~(e'T)¥? and we may estimate the renormalized cor-
relator at the origin as

T\ @+B)(2-p)
| "

Tap

Lc(T>po)~Lc(0)(
p

_ 1Fy1/2
K,(O)~e(l’”’z)'(4T)’”’2f(e TKouurdu. 12 -
0 with the depinning temperature
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T~ & (15) scalel ,(T) we compare the rate of growth due to diffusion,
0|p~CLC(O)' Eg. (12), with the magnitude of the quadratic terms in Eg.
8,
A short-range correlator witin=1 requires=1 and one 1 5 K. (0))2
recover®’ the well-known dependencé (T)~L.(0)(T/ 2KS(0) 12 [Ko(u)u ]u=(e'cﬁ)1/2~| 1,(0)
Tgp).” The result(14) can also be derived from simple scal- o 8T T

ing arguments, cf. Refs. 2 and 11. 17
The marginal casa=2 is more subtle if the correlator is
short ranged or only weakly nonintegrable with an
asymptotic behaviork o(u) ~Kg (&/u)?In*(u/é), where a
>—1. In the short-range case the “Boltzmannian” fixed

Assuming the bare correlator to decay asymptotically as
Ko(u)~ Ko (£/u)2In®(u/€) and evaluating the right-hand side
of Eq. (17) with the help of Eq(12) we find that

point (11) is unstable only due to the quadratic loop correc- F | 32ra)
tions in the FRG. They can be considered as sources of par- |Cr(ﬁ-)~(~_) (18)
ticles in the picture introduced abovsee Fig. 1 Well be- Tap

low the crossovel (T), these new particles will quickly Note that we have to require that>— 1, otherwise the in-

thermalize, and the shape of the distribution will remaingqy of particles will saturate already at small scales and the
Boltzmannian, whereas its total weight will grow. Qualita- ¢rossover conditiori17) cannot be applied.

tively, we obtainl,(T) as follows: From Eqs(10) and (11) The further flow will be dominated by the nonlinear terms
K, is seen to vary on a typical scalé’? thus the quadratic while the linear terms still make sure that the overall shape
terms on the right-hand side of E() can be estimated by of K, resembles a Boltzmannian of width T2 Only be-

AI[K,(0)/T]? for u<T*2 with A a numerical prefactor. The yond the crossover scalg(T) will the nonlinear terms be
amplitude of the correlator is determined from the flow equadarge enough to drive the correlator to a disorder dominated
tion fixed point. As in the short-range cad¢,(0) satisfies the

approximate Eq(16) in the regionl(T)<I<I(T). Inte-
grating the latter beyonti,(T) and using the conditiofiL3)

a|K,(0):A~I—2K|2(0). (16)  we find
T T\ 32 a)

B [(T)=le(T)~| =— , (19
Integrating over the interval mgk In(£%/T)]1<I<I(T) and us- Tap
ing the crossover conditiofl3) as well as the initial shape and, recalling =In(AL),
Eg. (11) one recovers the well-known result (T) T \3@+a)
~L¢(0)exdC(T/T4,)%]. Here and in the following we make LC(T)~LC(0)exp{C T—) (20
use of the fact that the details of the initial conditig(u) dp

are quickly washed out, giving way to a correlator of Boltz- with an unknown numerical facto€; its determination as
mannian shapé€ll); the latter serves as our new initial con- well as the precise value of the prefactor is beyond the ac-
dition. For the short-range case an exact flow equation foeuracy of the present analysis. The short-range result with an
the total weight can be written down under the assumptiorxponent proportional td° is recovered fore=—1 which
that the Boltzmannian shape of the correlator is preservegorresponds to the limiting case of an integrable correlator
This allows us to determine the constait=32/m exactly, (o< —1). Equation(20) shows that at a givethigh) tem-

see Ref. 19. _ perature the crossover scalg(T) is the smaller the larger is

Let us then discuss the case gf a weakly long-range Cofthe range of the potential correlations, turning finally to a

relator with a tailKo(u) ~Ko(&/u)“In“(u/é). Note that now  power law (14) for strongly long-range correlators with

the total weight of the correlator diverges and the linearized<2 . Note that while both the long- and short-range results
flow does not approach a fixed point. However, the flow ofderive from cutting the flow through the conditi¢h3), the

the central part of the correlator is still governed by the lineargiscussion of the intermediate range correlator with 2
terms in the flow Eq(8) which force the corrflator to main- and a> —1 involves the additional crossover Iengtjﬁ')

tain an almost Boltzmannian shape of WidthTOélz- We will  which derives from the conditiofil7). The latter condition
therefore assume that the flow in the regios T¥? is cap-  then determines the exponent 3#2) providing the smooth
tured by the growth of the amplitudg (0), andthat second interpolation between the long- and short-range results.

derivatives may be replaced up to numerical factors Ay 1/ ~ Single vortex pinning is described lay=1 which leads to
In the first Stage of the FRG flow, the growth K“(O) is an eXponent’CT. However, in the above derivation we have

dominated by the diffusive flow of particles to the origin as ot taken into account that the logarithmic t&i only ex-
described by Eq(12). However, at an intermediate scale tend up to\. The result(20) only applies if atl.(T) the

l(T)<I(T) the quadratic source terms become non-integral(10) is still cut by the Boltzmann kernel such that the
negligible and finally dominate, the subsequent flow beingestimate(12) remains valid. We may obtain an upper bound
analogous to the short-range case. In order to determine tig, on T by requiring that €'c{TWT )=\ in the crossover
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(17). At temperatures higher thﬁhJ a crossover to the short-

PHYSICAL REVIEW B34 134523

In conclusion, we have determined the temperature de-

range case will take place. Finally, the range of validity ofpendence of the collective pinning length(T) for a di-

Eq. (20) is found to be

Tap<T<T,~Tgdn®*3(x) =Ty (k). (22)

rected elastic string subject to a long-range correlated disor-
der potential. In the physically important case of single
vortex pinning in three-dimensional bulk materig)(T) ex-

Apart from the restriction on the temperature the magnetidiPitS an exponential sensitivity to temperature: in the inter-
field B has to be weak such that effects due to vortex-vortexnediate temperature rangig,<T < (In «)Tqp the logarithmic
interactions can be ignored; the corresponding conditioriails of the correlator produce a simple exponential law

L,(T)?<®,/B derives from comparing tilt and shear
energies.

Lo(T)~Lc(0)exdC(T/Tyy) ], while for T>(In )Ty, the
usual short-range resultc(T)~LC(O)exp[C(T/po)3] holds.
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