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Marginal pinning of vortices at high temperature
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We analyze the competition between thermal fluctuations and pinning of vortices in bulk type-II supercon-
ductors subject to pointlike disorder and derive an expression for the temperature dependence of the pinning
length Lc(T) which separates different types of single vortex wandering. Given a disorder potential with a
basic scalej and a correlatorK0(u);K0(u/j)2blna(u/j) we determine the dependence ofLc(T) on the
correlator range: correlators withb.2 ~short range! andb,2 ~long range! lead to the known resultsLc(T)
;Lc(0)exp@CT3# andLc(T);Lc(0)(CT)(41b)/(22b), respectively. Using functional renormalization group we
show that forb52 the result takes the interpolating formLc(T);Lc(0)exp@CT3/(21a)#. Pinning of vortices in
bulk type-II superconductors involves a long-range correlator withb52, a51 on intermediate scalesj,u
,l, with j andl the coherence length and London penetration depth, henceLc(T);Lc(0)exp@CT#; at large
distancesLc(T) crosses over to the usual short-range behavior.

DOI: 10.1103/PhysRevB.64.134523 PACS number~s!: 74.60.Ge, 64.60.Cn, 05.20.2y
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Many properties of type-II superconductors derive fro
the interaction between vortices and pinning centers.1,2 Im-
purities are particularly important in situations where a tra
port current is applied as they provide the necessary pinn
force compensating the Lorentz force acting on vortices3 and
thus enable a dissipation-free current flow. In this paper
address specific aspects of the high-temperature pinning
havior of vortices subject to weak pointlike disorder. T
results are of particular relevance for the copper-oxide hi
Tc superconductors which can be operated at high temp
tures and where such a pinning landscape naturally der
from oxygen vacancies.

A single flux line in a disorder potential is described
the partition function4

Z~u,L !5E
(0,0)

(u,L)

D@u8~z!#expH 2
1

TE0

L

dzF c

2 S du8

dz D 2

1V@u8~z!,z#G J , ~1!

with (c/2)(]zu)2 the elastic energy andV(u,z) the disorder
potential which might take negative values. The disorde
chosen to be a Gaussian random variable with zero mean
a correlator

^V~u,z!V~0,0!&5K0~u!d~z!, ~2!

where^•••& denotes the average over disorder realizatio
The correlatorK0(u) decays on a lengthj; in most applica-
tions the functionK0(u) is assumed to be rapidly decayin
and at sufficiently high temperatures the physical behavio
determined by the integralD[*dnu K0(u) alone. In this pa-
per we draw attention to the situation in disordered type
superconductors where the correlatorK0(u) describing the
potential landscape of vortices is long ranged,

K0~u!;K0

j2

u2
ln

u

j
, ~3!
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in the intermediate asymptotic regimej,u,l ~here,j and
l denote the coherence length and the London penetra
depth of the superconductor!. The long-range tail~3! renders
the correlator nonintegrable and modifies the pinning ch
acteristics as compared to a short-range correlated diso
landscape. This effect is particularly pronounced for vortic
in bulk high-Tc superconductors where the disorder becom
marginal at high temperatures and the ratiol/j is large~be-
low we describe the situation in an isotropic material; effe
of anisotropy can be accounted for within the scali
approach5!.

The following discussion is not restricted to single vort
pinning; rather we consider the latter as a specific realiza
of the directed elastic string~or polymer! problem4 which
describes such diverse physical systems as domain wal
magnetic films,6,7 wetting ~in the plane!,8 vortices,2 or ran-
dom polymers.9 The numerous nontrivial features that the
systems have in common derive from an intricate interp
of elasticity, disorder, and thermal fluctuations. While t
elastic forces tend to stretch the string, the disorder poten
favors configurations deviating from a straight line in ord
to take advantage of the potential valleys. Within the we
collective pinning scenario10 the elasticity dominates on
scales smaller than the crossover scaleLc and forces the
string to stay in the same valley, whereas on larger scales
string effectively divides up into segments of sizeLc which
adjust independently to the disorder landscape. Increa
the disorder strength decreasesLc , while thermal fluctua-
tions tend to smooth the disorder landscape implying an
crease ofLc(T) with temperature. Also, the typical barrier
separating adjacent valleys are reduced by thermal fluc
tions leading to a peculiar form of the creep-type dynam
under a small external force.11 Below we first discuss some
general properties of vortex pinning in disordered type-II s
perconductors and derive the asymptotic form~3! of the cor-
relator. Second, we calculate the pinning lengthLc(T) using
the functional renormalization-group~FRG! approach.12

The behavior of random directed polymers strongly d
pends on the numbern of transverse motional degrees
©2001 The American Physical Society23-1
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freedom. E.g., the~low-temperature! roughness as characte
ized by the wandering exponentzn5 lim

L→`
] ln^u2(L)&/

] ln L2 decreases withn ~here,L denotes the length of th
polymer segment andu(L) is the relative transverse dis
placement of its end points!. Upon increasing the tempera
ture a phase transition~roughening transition! is known to
occur forn>3, see Ref. 13, the high-temperature phase
ing dominated by thermal fluctuations on all length sca
with a thermal roughness exponentz th51/2. On the other
hand, forn51,2 the large scale behavior remains domina
by disorder with the same exponentzn as at low tempera-
tures, however, going beyond the so-called depinning t
peratureTdp, the crossover scaleLc(T) increases rapidly
with temperature. In the physically important casen52 the
crossover length Lc(T) grows exponentially, Lc(T)
;Lc(0)exp@C(T/Tdp)

n#, reflecting the fact thatn52 is the
lower critical dimension of the roughening transition. Wh
n53 is a well established result describing the situation fo
short-range disorder potential,14 the exponent is modified by
the long-range tail of the potential correlator as it appear
the vortex problem: we will show below thatn51 ~a similar
effect is found in the context of individual vortices pinne
onto columnar tracks2!. We emphasize that the asymptot
behavior~3! does not influence the roughness of the polym
on large scales, that is, the value of the wandering expo
zn remains unchanged. While forn52 the nonintegrability
of the functionK0(u) with an asymptotic decay slower tha
1/@u2ln(u)#, is sufficient to change the value of the expone
n, the criterion on the asymptoticsK0(u);K0(j/u)b to
change the value ofz2 has been argued15,16 to beb,3/z2,sr
24. Inserting the numerically known valuez2,sr'5/8 for the
short-range wandering exponent, we see that thez25z2,sr is
unaffected by the weak nonintegrability (b52) in the vortex
pinning problem.

We briefly derive the form of the long-range correlatio
occurring in the problem of single vortex pinning in type-
superconductors.2 The Ginzburg-Landau equation for th
macroscopic wave functionC5Ar(R)exp(iw) takes the
form

j2S ¹1
2p i

F0
AD 2

C1~12uCu2!C50, ~4!

whereA denotes the vector potential,F05hc/2e is the flux
unit, and we have normalizeduCu to unity in the asymptotic
regime. We concentrate on the vortex solution where
phase turn inw by 2p drives a circular vortex current. O
scalesR,l we can ignore transverse screening and us
(¹w)251/R2, the real part of Eq.~4! simplifies to
(2j2/R2112uCu2)C50, hence

uCu2~j!R,l!'12j2/R2; ~5!

the circular vortex current produces an order parameter
pression decaying only slowly at small distancesR,l
~transverse screening quenches the current flow beyond
screening lengthl and the suppression of the order para
eter is exponentially small!. The same result follows from a
variational ansatz,17,18 C5R/(R212j2)1/2exp(iw). In high-
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temperature superconductorsl is much larger thanj and the
slow decay of the order parameter extends over a wide
gion.

To fix ideas, we consider disorder in the critical tempe
ture~so calleddTc disorder2! described through spatial varia
tions da(r ) in the Ginzburg-Landau parametera with cor-
relationŝ da(r )da(r 8)&5gd3(r2r ). The pinning energy of
a vortex aligned along thez axis and with coordinates
„u(z),z… is given by

Epin~u,z!5E d2Rp~ uu2Ru!da~R,z!, ~6!

with the vortex form factorp(R)512uC(R)u252j2/(R2

12j2). Within the rangej!u,l the pinning energy cor-
relator assumes the form

K0~u![^Epin~u,z!Epin~0,0!&5gd~z!E d2R p~ uu2Ru!p~R!

;K0d~z!
j2

u2
ln

u

j
, ~7!

with K052puC0u4gj2 ~we have assumeduC0u51 in the
derivation above!. The integral over this correlator diverge
logarithmically and is cut off only at the large scalel. This
long-range feature will have an important effect on the cro
over scaleLc(T) at high temperatures which we are no
going to calculate.

We analyze the system described by the partition funct
~1! with the help of the functional renormalization grou
~FRG! approach.12 Applying momentum shell renormaliza
tion to the replicated Hamiltonian leads to the following sy
tem of one-loop equations~see Ref. 19! for the renormalized
correlatorKl and temperatureTl ,

] lKl~ uuu!5@32~41n!z#Kl~ uuu!1z“•@uKl~ uuu!#

1T̃lKl
mm~ uuu!1I @Kl

mn~ uuu!Kl
mn~ uuu!/2

2Kl
mn~ uuu!Kl

mn~0!#, ~8!

] l T̃l5~122z!T̃l , ~9!

whereI 51/(pc2L3), T̃l5Tl /(pcL), andL21 denotes the
short-scale cutoff of the theory. In Eq.~8! we limited our-
selves to the two replica correlatorKl , neglecting higher
replica terms generated at high temperatures during mom
tum shell integration, see Ref. 19; an analysis including th
terms reveals that their feedback to the flow ofKl is of the
same order as the nonlinear terms in Eq.~8! and hence the
qualitative results obtained below remain valid.

At zero temperature the fourth derivative of the correla
Kl

(4)(0) diverges at the finite scalel c(T50)' ln$9/@(n
18)IK 0

(4)(0)#%, signalling the emergence of a nonanalytici
in the correlator at the origin and indicating that perturbat
theory in the disorder breaks down beyond this scale. S
the FRG flow remains well defined, and for the case of sh
range disorder the correlator can be shown to flow rapi
towards a nonanalytic disorder-dominated fixed point beyo
3-2
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MARGINAL PINNING OF VORTICES AT HIGH TEMPERATURE PHYSICAL REVIEW B64 134523
l c(0). The crossover scale2 Lc(0)5L21el c(0)

'@c2/K0
(4)(0)#1/3 is naturally interpreted as the typica

length of independently pinned vortex segments within
weak collective pinning theory; the same result is obtain
from a simple scaling argument equating the elastic and
order energies.

At finite temperatures the correlator remains analytic d
to the thermal smearing introduced via the termT̃Kl

mm .

However, we can still identify the crossover scalel c(T̃) as
the value ofl where the nonlinear terms in Eq.~8! become of
the same order as the linear terms, indicating that the di
der cannot any longer be dealt with perturbatively; beyo
this scaleKl is again driven towards the (T50) strong-
coupling fixed point.

At small scales, the nonlinear terms in the flow Eq.~8! for
the correlatorKl can be neglected. Furthermore, since
want to study high temperatures, we choose the rough
exponent to take the thermal valuez5z th51/2 which is con-
venient since the physics appears more transparently in
sequel, in particular, the temperature does not renorma
when z5z th and T̃l5T̃ ~however, note that from a math
ematical point of view the physical results below are ind
pendent of this particular choice ofz). The linearized flow
equation can be solved explicitly11 with the result

Kl~u!5e(12n/2)lS 1

4pT̃~12e2 l !
D n/2E dnu8

3expF2
~u2u8e2 l /2!2

4T̃~12e2 l !
GK0~u8!. ~10!

Let us analyze the situation for short- and long-range c
related disorder separately. If the disorder correlator is s
ranged, the total weightD[*dnu8K0(u8) is finite and the
expression~10! can be simplified at high temperaturesT̃

@T̃dp[j2e2 l c(0),

Kl~u!5e(12n/2)lDT̃2n/2exp@2u2/4T̃#, ~11!

for max@1,ln(j2/T̃)#!l,lc(0). Note that forn51 the cor-
relator grows exponentially, reflecting the relevance of
disorder, whereas in the marginal casen52 the correlator
flows to a fixed point. In this case we can interpret the l
earized flow equation as the Fokker-Planck equation for
probability distributionKl(u) of a particle in a harmonic
potentialV(u)5u2/4, wherel plays the role of time andT̃ is
the temperature. The above fixed point corresponds to
stationary Gibbs-Boltzmann distribution which is rapidly a
proached at high temperatures.

In the case of long-range correlations the integration k
nel in Eq.~10! cuts the nonintegrable tails of the correlator
u8;(elT̃)1/2 and we may estimate the renormalized c
relator at the origin as

Kl~0!;e(12n/2)l~4T̃!2n/2E
0

(el T̃)1/2

K0~u!un21du. ~12!
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In the casen52 this expression can be understood
terms of the diffusive motion of ‘‘particles’’ that are initially
distributed with a density proportional toK0(u). Their total
number is infinite due to the nonintegrable tails ofK0(u)
@see Eq.~7!#, and a growing number of particles from furthe
and further away will eventually accumulate at the orig
continuously increasingKl(0) ~see Fig. 1!. Thermal equilib-
rium is never reached in this situation.

In the following we first discuss the situation where t
linearized flow gives rise to an exponential growth of t
renormalized correlator at the origin. This is the case fon
51, or for n52 if the initial correlator decays asymptot
cally as K0(u);K0(j/u)b with an exponentb,2. Under
these conditions, the contribution of the nonlinear terms
the growth ofKl can be neglected, and the crossover sc
l c(T̃) is found from comparing linear and quadratic terms
the flow equation, i.e.,

IK l c(T̃)
9 ~0!;T̃. ~13!

The second derivative ofKl can be estimated from Eq
~10!, Kl9(0)'Kl(0)/T̃. Using expression~12! in the above
crossover condition we find

Lc~T.Tdp!;Lc~0!S T

Tdp
D (41b)/(22b)

~14!

with the depinning temperature

FIG. 1. The high-temperature (T̃5j2) diffusive flow of the cor-
relator Kl(u) evolving under the linearized FRG forn52. We
choose a bare correlatorK0(u)5$11 ln@11(u/j)2#/2%/@11(u/j)2#
with nonintegrable logarithmic tails as in the vortex problem. Aft
a crossover aroundl 51 the correlatorKl(0) increases quadratically
with l as expected from Eq.~13!. The inset schematically illustrate
the interplay of the diffusive inflow of particles~horizontal arrows!
and the particle sources originating from the quadratic one-l
terms ~solid dots!. In the short-range case the first mechanism
absent andKl grows due to the nonlinear terms only, while in th
strongly long-range case (b,2), the nonlinear terms can be ne
glected andKl grows due to the inflow from the tails. The vorte

pinning problem is intermediate with a crossover at a scalel cr(T̃)

, l c(T̃) from diffusion driven growth to source driven growth.
3-3
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Tdp'c
j2

Lc~0!
. ~15!

A short-range correlator withn51 requiresb51 and one
recovers20 the well-known dependenceLc(T);Lc(0)(T/
Tdp).

5 The result~14! can also be derived from simple sca
ing arguments, cf. Refs. 2 and 11.

The marginal casen52 is more subtle if the correlator i
short ranged or only weakly nonintegrable with
asymptotic behaviorK0(u);K0 (j/u)2lna(u/j), where a
.21. In the short-range case the ‘‘Boltzmannian’’ fixe
point ~11! is unstable only due to the quadratic loop corre
tions in the FRG. They can be considered as sources of
ticles in the picture introduced above~see Fig. 1!. Well be-
low the crossoverl c(T̃), these new particles will quickly
thermalize, and the shape of the distribution will rema
Boltzmannian, whereas its total weight will grow. Qualit
tively, we obtainl c(T̃) as follows: From Eqs.~10! and ~11!

Kl is seen to vary on a typical scaleT̃1/2 thus the quadratic
terms on the right-hand side of Eq.~8! can be estimated by
AI@Kl(0)/T̃#2 for u<T̃1/2 with A a numerical prefactor. The
amplitude of the correlator is determined from the flow eq
tion

] lKl~0!.A
I

T̃2
Kl

2~0!. ~16!

Integrating over the interval max@1,ln(j2/T̃)#,l,lc(T̃) and us-
ing the crossover condition~13! as well as the initial shape
Eq. ~11! one recovers the well-known resultLc(T)
;Lc(0)exp@C(T/Tdp)

3#. Here and in the following we make
use of the fact that the details of the initial conditionK0(u)
are quickly washed out, giving way to a correlator of Bolt
mannian shape~11!; the latter serves as our new initial co
dition. For the short-range case an exact flow equation
the total weight can be written down under the assump
that the Boltzmannian shape of the correlator is preserv
This allows us to determine the constantC532/p exactly,
see Ref. 19.

Let us then discuss the case of a weakly long-range
relator with a tailK0(u);K0(j/u)2lna(u/j). Note that now
the total weight of the correlator diverges and the lineariz
flow does not approach a fixed point. However, the flow
the central part of the correlator is still governed by the lin
terms in the flow Eq.~8! which force the correlator to main
tain an almost Boltzmannian shape of width (4T̃)1/2. We will
therefore assume that the flow in the regionu<T̃1/2 is cap-
tured by the growth of the amplitudeKl(0), andthat second
derivatives may be replaced up to numerical factors by 1T̃.
In the first stage of the FRG flow, the growth ofKl(0) is
dominated by the diffusive flow of particles to the origin
described by Eq.~12!. However, at an intermediate sca
l cr(T̃), l c(T̃) the quadratic source terms become no
negligible and finally dominate, the subsequent flow be
analogous to the short-range case. In order to determine
13452
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scalel cr(T̃) we compare the rate of growth due to diffusio
Eq. ~12!, with the magnitude of the quadratic terms in E
~8!,

] lKl
diff~0! ;

~12! @K0~u!u2#u5(el crT̃)1/2

8T̃
;I S Kl cr

~0!

T̃
D 2

.

~17!

Assuming the bare correlator to decay asymptotically
K0(u);K0 (j/u)2lna(u/j) and evaluating the right-hand sid
of Eq. ~17! with the help of Eq.~12! we find that

l cr~ T̃!;S T̃

T̃dp
D 3/(21a)

. ~18!

Note that we have to require thata.21, otherwise the in-
flow of particles will saturate already at small scales and
crossover condition~17! cannot be applied.

The further flow will be dominated by the nonlinear term
while the linear terms still make sure that the overall sha
of Kl resembles a Boltzmannian of width (4T̃)1/2. Only be-
yond the crossover scalel c(T̃) will the nonlinear terms be
large enough to drive the correlator to a disorder domina
fixed point. As in the short-range case,Kl(0) satisfies the
approximate Eq.~16! in the regionl cr(T̃), l , l c(T̃). Inte-
grating the latter beyondl cr(T̃) and using the condition~13!
we find

l c~ T̃!2 l cr~ T̃!;S T̃

T̃dp
D 3/(21a)

, ~19!

and, recallingl 5 ln(LL),

Lc~T!;Lc~0!expFCS T

Tdp
D 3/(21a)G ~20!

with an unknown numerical factorC; its determination as
well as the precise value of the prefactor is beyond the
curacy of the present analysis. The short-range result with
exponent proportional toT3 is recovered fora521 which
corresponds to the limiting case of an integrable correla
(a,21). Equation~20! shows that at a given~high! tem-
perature the crossover scaleLc(T) is the smaller the larger is
the range of the potential correlations, turning finally to
power law ~14! for strongly long-range correlators withb
,2. Note that while both the long- and short-range resu
derive from cutting the flow through the condition~13!, the
discussion of the intermediate range correlator withb52
and a.21 involves the additional crossover lengthl cr(T̃)
which derives from the condition~17!. The latter condition
then determines the exponent 3/(21a) providing the smooth
interpolation between the long- and short-range results.

Single vortex pinning is described bya51 which leads to
an exponent}T. However, in the above derivation we hav
not taken into account that the logarithmic tails~7! only ex-
tend up tol. The result~20! only applies if atl cr(T̃) the
integral~10! is still cut by the Boltzmann kernel such that th
estimate~12! remains valid. We may obtain an upper bou
T̃u on T̃ by requiring that (el cr(T̃u)T̃u)1/25l in the crossover
3-4
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~17!. At temperatures higher thanT̃u a crossover to the short
range case will take place. Finally, the range of validity
Eq. ~20! is found to be

Tdp,T,Tu;Tdpln
(21a)/3~k!5Tdpln~k!. ~21!

Apart from the restriction on the temperature the magn
field B has to be weak such that effects due to vortex-vor
interactions can be ignored; the corresponding condi
Lc(T)2,F0 /B derives from comparing tilt and shea
energies.2
d

tt

P.

.
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In conclusion, we have determined the temperature
pendence of the collective pinning lengthLc(T) for a di-
rected elastic string subject to a long-range correlated di
der potential. In the physically important case of sing
vortex pinning in three-dimensional bulk materialLc(T) ex-
hibits an exponential sensitivity to temperature: in the int
mediate temperature rangeTdp,T,(ln k)Tdp the logarithmic
tails of the correlator produce a simple exponential l
Lc(T);Lc(0)exp@C(T/Tdp)#, while for T.(ln k)Tdp the
usual short-range resultLc(T);Lc(0)exp@C(T/Tdp)
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