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We study the crossover from strong to weak localization of hard-core bosons on a two dimensional
honeycomb lattice in a magnetic field, as motivated by recent experiments on structured films.
Taking into account long range Coulomb interactions among the bosons, an effective mobility edge
in the excitation spectrum of the insulating Bose glass is identified as the (intensive) energy scale at
which excitations become nearly delocalized. Within the forward scattering approximation in the
bosonic hopping we find the effective mobility edge ϵc to oscillate periodically with the magnetic flux
per plaquette, φ. We find non-analytic cusps in ϵc(φ) at integer or half-integer flux. The bosonic
magneto-oscillations start with an increase of the mobility edge (and thus of resistance) with applied
flux, in contrast to the equivalent fermionic problem. The amplitude of the oscillations is much more
substantial in bosons than in fermions. Bosons exhibit a single hump per flux period, while fermion
characteristics undergo two humps. Those are identical for non-interacting fermions, but Coulomb
correlations are shown to lead to systematic deviations from this statistical period doubling. Our
theory reproduces several key features observed in the activated magneto-transport in structured
films.

PACS numbers: 72.20.Ee, 73.43.Qt, 74.78.-w, 05.30.Jp, 05.30.Fk

I. INTRODUCTION

The interplay between disorder and Coulomb interac-
tions is a crucial element affecting the phenomenology
of the superconductor-insulator quantum phase transi-
tion. If only disorder and local BCS attraction is con-
sidered, and Coulomb repulsion is neglected, numerous
theoretical studies1–8 have predicted the existence of pre-
formed pairs in the vicinity of criticality, in the sense
that the route from the insulating to the superconducting
state proceeds directly through a delocalization of attrac-
tively bound pairs of electrons. This contrasts with the
fermionic scenario first studied by Finkel’stein, in which
the transition is driven by the suppression of electron
pairing due to disorder-enhanced Coulomb interactions.9

Under certain circumstances and in specific materials,
however, it has been argued that the local Coulomb re-
pulsion can be overcompensated by specific attraction
mechanisms, resulting in systems with effective negative
Hubbard U interactions.10–13

On the experimental side, in the early nineties, trans-
port measurements on InOx by Hebard, Palaanen, and
Ruel14,15 were interpreted as signatures of Cooper pair
insulators, suggesting that the above bosonic mechanism
might be at work in that material.3 Indeed, fermionic and
bosonic insulators differ qualitatively since the exchange
statistics affect their localization properties, in particu-
lar the interference of scattering paths that determine the
decay of the wavefunction. In the presence of a magnetic
field, the wavefunctions of fermions and bosons respond
in opposite ways.16–21 For low energy bosonic excitations,
the constructive interference among all paths is sup-
pressed by a magnetic field, which leads to a strong pos-
itive magnetoresistance.16 This contrasts with the subtle

mechanism of the field-induced suppression of occasional
negative interferences, which dominates the localization
properties of localized fermions and results in a negative,
but rather weak magnetoresistance.19

More recent experiments on amorphous thin films of
Bi,22–24 PbBi,25 InOx,26–28 TiN,29 or on a single ring of
InOx

30 have strengthened the case of bosonic insulators,
and exhibited a variety of intriguing transport charac-
teristics. In particular, transport in the insulating state
was observed to have an activated characteristics, with an
Arrhenius-type resistance of the formR(T ) ∝ exp(T0/T ),
over a significant range of temperatures, T0 being the ac-
tivation energy.26,31 Patterned films with an artificially
created superlattice22,23 also exhibited activated behav-
ior, with an activation energy oscillating with the ap-
plied magnetic field. The observed oscillation period
corresponds to one superconducting flux quantum h/2e
threading the unit cell of the superlattice, suggesting that
the relevant charge carriers are pairs of electrons, which
preserve phase coherence beyond the scale of the imposed
pattern.
The observation of purely activated transport in these

systems is rather surprising in a highly disordered insu-
lator, where generically a stretched exponential depen-
dence of the resistance on temperature is expected, due
to variable range hopping transport.32 The latter, relies
however, on a sufficiently efficient bath that allows in-
elastic transitions of carriers to transport charge through
the system. If instead the coupling between phonons and
the relevant carriers (pairs or electrons) is weak, and if
the low energy sector of electronic excitations is by itself
discrete in nature, transport may be dominated by other
channels than phonon-assisted variable range hopping.
One possibility is the transport via activation to a mo-
bility edge of the relevant charge carriers,32,33 which in-
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deed yields an Arrhenius resistance down to relatively low
temperatures until eventually variable range hopping will
take over, in spite of the inefficiency of the phonon bath.
Such a phenomenology may be seen as a precursor of
the much more stringent many-body localization, which
not only requires a strong decoupling from phonons, but
also the full localization of any intensive excitations, and
in particular the absence of finite-energy mobility edges,
which we discuss here.
The above mentioned Arrhenius resistance is also ex-

pected in a wide temperature range if the mobility
of charge excitations merely exhibits a sharp crossover
around an ’effective mobility edge’ (in energy), instead
of undergoing a genuinely sharp transition from local-
ized to diffusive behavior at a precise energy.32 This will
be discussed in more detail below.
In this work we explore the phenomenology of the

crossover from weak to strong localization. In particular
we ask, how the effective mobility edge behaves in the
presence of a magnetic field. At a qualitative level, it is
clear that the effective mobility edge follow trends analo-
gous to those predicted for the localization length of low
energy excitations: As the localization length increases,
the effective mobility edge decreases, and vice versa.16

Here we investigate this effect more quantitatively and
show that a relatively simple model of strongly localized
pairs, subject to long range Coulomb interactions, is able
to reproduce the salient features reported in the experi-
ments on patterned films.
Long range Coulomb interactions are known to play

an important role in disordered insulators. In particular,
they induce a depletion of the density of states around
the chemical potential, creating a pseudo gap in the sin-
gle particle density of states.37 This in turn modifies the
localization properties of low energy excitations and pro-
motes the appearance of an effective mobility edge, as
was recently analyzed in the context of interacting elec-
trons close to the Anderson-Mott metal insulator tran-
sition.38–40 In contrast, in the presence of a flat or fea-
tureless bare density of states, with purely local repulsive
interactions, there is no clear evidence of a mobility edge
in the low energy spectrum of bosonic or fermionic insu-
lators.16,41 Rather, the available techniques suggest that
the localization length always decreases with increasing
excitation energy. However, numerical results suggest
that the addition of interactions, which are not strictly
local, induces a delocalizing tendency at higher energies,
and thus mobility edges.42 The latter tendency becomes
stronger with an increasing range of the interactions.
Here we analyze the experimentally relevant case of un-
screened, long range Coulomb interactions, and study the
effect of magnetic fields on the effective mobility edge.
Under the assumption that the effective mobility edge
takes the role of the activation energy T0 that enters an
Arrhenius law of transport, we obtain a semiquantita-
tive description of transport in the absence of an efficient
thermal bath.
It is a main goal of this work to contrast the magne-

toresistance in bosonic and fermionic systems. A particu-
larly clean case can be made by comparing tightly bound
pairs, acting as hard core bosons, with unpaired (spin-
less) fermions, which otherwise are subject to the same
potential disorder, interactions and hopping strengths.
Indeed, both carriers are hard core particles. The only
difference consists in their exchange statistics, which at
first sight might seem rather innocuous in insulators.
However, they reflect strongly in the magnetoresistance,
which probes the quantum interference in the exponen-
tial tails of localized excitations.
The remainder of this paper is organized as follows. In

Sec. II we introduce and motivate the model under study.
The magneto-oscillations of the localization length and
the effective mobility edge for bosons are presented in
detail in Sec. III. Sec. IV establishes the connection of our
theory with experimental data. In Sec. V we contrast the
phenomenology of hard core bosons with that of fermions
and explain the various effects of quantum statistics on
the effective mobility edge. A summary of the central
results is given in Sec. VI.

II. MODEL

The present study is motivated by the experiments of
Refs. 22,23 on patterned films of Bismuth, with holes
punched in a triangular array. Those leave a connected
part of Bismuth forming a honeycomb lattice (with lat-
tice constant a ≈ 50nm), see Fig. 1. As those films are
made sufficiently thin they undergo a superconductor-
to-insulator transition, whereby the transport on the in-
sulating side bears the hallmarks of a bosonic insulator.
In particular, it exhibits a strong positive magnetoresis-
tance.

FIG. 1: Sketch of barely percolating films, with a triangular
lattice of holes pinching it. These structures are modelled by
a honeycomb lattice of islands hosting preformed pairs. The
green lines connecting the two sites 0 and i enclose a diamond-
shaped region containing all the shortest paths that connect
those sites.

To model such films, we introduce a simplified model of
interacting hard-core bosons1 living on a two-dimensional
honeycomb lattice of tunnel-coupled islands, governed by
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the Hamiltonian

H =
∑

i
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1
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∑
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κrij
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(
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∫
ri
rj

Adr
b†ibj + h.c

)

, (1)

where b†i , bi are the creation and annihilation operators of

a hard-core boson of charge q = 2e on site i, and ni = b†ibi
is the local number operator. The hard core bosons rep-
resent strongly bound, preformed electron pairs. The
chemical potential µ is adjusted such as to assure half-
filling (ν = 1/2) of the lattice. The particles are subject
to disordered onsite potentials εi being uniformly dis-
tributed in εi ∈ [−W,W ]. They interact via long-range
Coulomb interactions that decay as 1/r, since the am-
bient space is 3d. κ denotes the dielectric constant of
the film, which is typically fairly large in such nearly
metallic structures.6,43 The Coulomb contribution from
a neutralizing background charge of homogeneous den-
sity ν has been subtracted. The magnetic field enters via
an Aharonov-Bohm phase factor multiplying the nearest-
neighbor hopping amplitude t. The phase acquired on
each link is the line integral of the vector potential A,
for which we choose the gauge A = Bxey. We mea-
sure the magnetic field B in terms of the fraction of flux
quanta per plaquette, f = B/B0, where B0 = hc/qS, and
S = 3

√
3a2/2 is the area of the unit cell. The depairing

Zeeman effect of the magnetic field on the electron pairs
is neglected here. Its effect will be studied in forthcoming
work.44

The above model captures a rather generic situation
in bosonic or spin-polarized fermionic insulators. Even
though a given island i will in general host a rather large
number of charges, in the insulating phase we may re-
strict ourselves to describing the two most relevant charge
states, which differ by the absence or presence of a charge
carrier (an electron pair in the case of the bosonic insula-
tor). States differing by stronger charge fluctuations are
not expected to modify the physical behavior of the insu-
lator significantly, and thus we believe the above model
to capture the gist of the experimental systems.
In the numerical studies carried out below, we study

two-dimensional lattices and employ periodic boundary
conditions. The Coulomb interaction between two sites
is taken to be proportional to the inverse of the minimum
distance on the torus. The Coulomb repulsion between
nearest neighbor charges, EC = q2/κa, is used as the
unit of energy, while the lattice constant a serves as the
unit of length.

A. Classical electron pair glass

It is impossible to solve the full Hamiltonian (1) ex-
actly. Instead we approach the problem in an approxi-
mate way, which captures the main physical effects. We

consider the hopping as a perturbation and neglect it in a
first step. That is, we first deal with a classical Hamilto-
nian describing a Coulomb glass of particles with charge
q = 2e. Such a system is well-known to possess many
metastable low-energy configurations which are stable
with respect to the rearrangement of few particles. The
Coulomb interactions with other particles strongly mod-
ify the distribution of the low-lying single-site excitation
energies ε̃i,

ε̃i =
dH

dni
= εi − µ+

∑

j ̸=i

q2

κrij
(nj − ν). (2)

In d = 2 the Coulomb interactions create a linear
Coulomb gap in the density of single particle excita-
tions at low energy, ρ(ε̃) = Cε̃/E2

C , as predicted by
Efros and Shklovskii.37 Fig. 2 shows the corresponding
single-particle density of states, ρ(ε̃) for various disorder
strengths, as obtained numerically. The coefficient C is
nearly independent of disorder (for W ! 1) and takes
roughly the value C ≈ 0.61, not far from theoretical pre-
dictions.45
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FIG. 2: Single-particle density of states for various disorder
strengths W in a two-dimensional Coulomb glass. A linear
Coulomb gap forms, which ensures stability with respect to
single particle transitions. Excitations are more strongly lo-
calized at low energies. An effective mobility edge may thus
appear at higher energies within the Coulomb gap.

B. Localization on the background of a Coulomb
gap

In the strongly insulating regime t ≪ W , the hopping
term can be treated as a perturbation. Here we study
the localization properties of a single particle excitation.
It can be read off from the spatial dependence of the am-
plitude of poles of the Green’s function. Following the
formalism introduced in Ref.16, the Green’s function (in
the T → 0 limit) can be obtained in a perturbative expan-
sion in the hopping using a locator expansion, whereby
we treat the onsite potentials ε̃i as frozen-in static disor-
der which depends on the metastable state under consid-
eration. In a given metastable state of the Coulomb glass
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(defined by a locally stable classical charge distribution),
to leading order in the hopping, the Green’s function at
large distance is obtained as

G0,i(ω, B)

G0,0(ω, B)
= tr0i

∑

Γ:0→i
|Γ|=r0i

eiΦΓ(B)
∏

k∈Γ\{0}

sgn(ε̃k)

ε̃k − ω

≡
(

t

W

)r0i

S0i(ω, B). (3)

Here the sum S0i(ω, B) runs over all paths Γ of shortest
length |Γ| = r0i ≡ dist(0, i), defined as the minimal num-
ber of nearest neighbor hops necessary to connect the
two sites. ΦΓ(B) is the flux enclosed by the loop formed
by path Γ and a fixed reference path connecting 0 and i.
The latter merely fixes the gauge of the Green’s function.
In Eq. (3), the only trace of quantum statistics is the

residue sgn(ε̃k) of the locator, which applies to hard core
bosons. For non-interacting fermions, instead, this fac-
tor is absent. This forward scattering approximation,
and especially its fermionic version, has been analyzed
extensively in the literature.16,18–20,46,47

The localization length of excitations at energy ε0 is
defined as the inverse of the typical spatial decay rate of
Green’s function residues of poles at ε = ε0,

ξ−1(ε0, B) = − lim
r0i→∞

1

r0i
ln

∣

∣

∣

∣

G0,i(ω, B)

G0,0(ω, B)

∣

∣

∣

∣

ω→ε0

. (4)

The overbar denotes the disorder average. On a regular
lattice, this definition depends on the direction in which
the point i tends to infinite distance from 0, even though
the relative variations will be very similar for different
directions. Below we analyze the direction along a lattice
base vector, as indicated in Fig. 1.
From Eq. (3) it follows that at low excitation ener-

gies, ω → 0, in the absence of a magnetic field (Φ = 0)
all paths come with positive amplitudes and thus inter-
fere constructively. A magnetic field destroys the per-
fect constructive interference by adding a phase factor
to each path. In contrast, for fermions, the path am-
plitudes always have essentially random signs, whatever
the magnetic field. However, for B = 0 the likeli-
hood of occasional, strongly destructive interferences be-
tween two bunches of paths is bigger than in finite flux.
This effect was first discovered by Nguyen, Spivak and
Shklovskii.19 It leads to a weak negative magnetoresis-
tance for fermions, which contrasts with the strong pos-
itive response of bosons.18

It is convenient to split the inverse localization length
into a simple hopping part and a geometric part captur-
ing interference,

ξ−1(ε0, B) = ln

(

W

t

)

+ ξ−1
g (ε0, B), (5)

where

ξ−1
g (ε0, B) = − lim

r0i→∞

1

r0i
ln |S0i(ω, B)|ω→ε0

. (6)

Definition of (effective) mobility edge

Due to the increase of the single particle density of
states with energy ε, based on formula (3) one expects an
increase of the localization length with increasing excita-
tion energy |ε−µ|. If the tunneling amplitude t is finite,
the localization length of zero temperature excitations, as
defined by (4), may diverge at sufficiently high energies.
This is indeed expected to happen in dimensions d > 2
close enough to the transition to a conductor. This was
analyzed in quite some detail for fermionic insulators in
Refs. 39 and 40. In such higher dimensional systems the
energy

ϵc = inf{E|ξ(E) = ∞}. (7)

sharply defines a mobility edge in the limit T → 0.
However, in dimensions d = 2 (the case of interest to

us here) at T = 0, one does not generally expect genuine
delocalization at finite excitation energies. Rather, in
close analogy with the well-known case of single particle
excitations in the absence of anti-localizing spin-orbit in-
teractions, one expects the proliferation of returns to the
origin of any finite energy excitation to induce localiza-
tion, albeit with a localization length that may become
exponentially large upon varying a control parameter. In
non-interacting fermionic problems the control parame-
ter is given by kℓ, which is to be considered as a function
of the energy E.
Nonetheless, even in d = 2 it is meaningful to iden-

tify a crossover energy ϵc at which strong localization (at
lower energies) turns into exponentially weak localization
(at higher energies). For most practical purposes, such
a crossover scale ϵc acts like an effective mobility edge,
above which the effects of localization become very weak.
They will thus not show up down to very low tempera-
tures. If the localization length is a strongly increasing
function of excitation energy the effective mobility edge
is expected to exhibit only a slow logarithmic increase
with decreasing temperature. To illustrate this idea, let
us briefly discuss the case of two-dimensional disordered
insulators, where one expects that any finite energy ex-
citation remains localized at strictly zero temperature.
In other words, eigenstates with excitation energy O(1)
above the ground state are expected to differ only locally
from the latter. One may in principle construct oper-
ators that create such ”elementary” T = 0 excitations
from the ground state. However, in general two such
operators do not (anti-)commute with each other. As
a consequence, eigenstates at finite energy density will
not simply consist in a finite density of such localized
excitations above the ground state, but hybridize vari-
ous configurations with excitations in different locations.
In particular the sufficiently weakly localized excitations
at high energy will not commute (and thus collide) with
many other elementary excitations. If the correspond-
ing collision rate is bigger than the inverse of the level
spacing in the localization volume of the high energy ex-
citation, the localization of the latter should be irrelevant
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at that temperature, and one expects those excitations
to be diffusive. This phenomenology leads to a weakly
temperature dependent effective mobility edge, as was
discussed in Ref. 32. At sufficiently low temperature,
the collision rate with other elementary excitations will
eventually become so infrequent that the finite system
size becomes a more efficient cut-off for localization. In
that case the effective mobility edge will become (weakly)
size dependent.36

A practical definition for an effective mobility edge can
be obtained by identifying the energy ϵc where the per-
turbative locator expansion (4) ceases to decay with dis-
tance (while higher order loop corrections would most
likely reinstate a weak exponential decay), i.e.,

ϵc = min{E|ξFSA(E) = ∞}. (8)

Here, the superscript FSA indicates the restriction to the
leading order forward scattering approximation. For non-
interacting fermions in d ≥ 3 this criterion correctly se-
lects an energy for which kℓ(ϵc) = O(1), a qualitative
criterion which is also satisfied by the rigorously defined,
sharp mobility edge (7). We stress that we are not so
much interested in the absolute value of ϵc at a given set
of parameters, but rather in its variations with magnetic
field. We expect the qualitative features of such vari-
ations to be much less sensitive to the approximations
involved in the restriction to forward scattering, than ϵc
itself.
As mentioned before, in the absence of an efficient

phonon or electron bath, the above defined ϵc will act
like a mobility edge and may dominate transport in an
intermediate temperature regime where activation to ϵc
is less costly than weakly assisted variable range hop-
ping passing through lower lying energy states. Under
such circumstances one may expect ϵc to appear as the
activation energy in an Arrhenius-type resistance.6,16

III. BOSONIC LOCALIZATION:
OSCILLATIONS OF LOCALIZATION LENGTH

AND MOBILITY EDGE

A. Energy and field dependence of the localization
length

Fig. 3 shows the numerically evaluated interference
part of the inverse localization length as a function of ex-
citation energy. At ω = 0 all paths contribute positively
to a maximally constructive interference sum, while at
finite energy occasional negative locators occur. In the
absence of interactions, i.e. without Coulomb gap in the
density of states (data plotted in black), this leads to a
slight increase of ξ−1

g with increasing ω.16,41 A magnetic
field frustrates the predominantly positive interference
and leads to a shrinkage of the localization length (posi-
tive magnetoresistance). This effect is strongest for small
ω where the field-free interference is maximal.

Adding Coulomb interactions has quite a dramatic ef-
fect on the localization. The presence of the Coulomb
gap suppresses the low energy density of states and thus
strongly enhances the localization tendency there. The
localization length qualitatively traces the variation of
the density of states. Hence, the enhancement of localiza-
tion is the stronger the lower the energy. This overcom-
pensates the effect of rarer and rarer negative locators as
ω → 0. Within the forward approximation, the Coulomb
gap indeed turns ξ(ω) into an increasing function of ω,
even at B = 0, unlike in the limit of purely local hard
core repulsions.
If the hopping is sufficiently strong, high energy excita-

tions are essentially delocalized and there is an effective
mobility edge, as defined in (7). A magnetic field frus-
trates the predominantly constructive interference. This
makes the localization length at a given energy shrink
and thus pushes up the effective mobility edge.

0 0.2 0.4 0.6 0.8 1

−1.8

−1.4

−1

−0.6

ω/EC

ξ
−
1

g

 

 

no interaction, B = 0
no interaction, B = 0.5B0
interaction B = 0
interaction B = 0.5B0

FIG. 3: Geometric part of the inverse localization length of
hard core bosons as a function of excitation energy ω. With-
out interactions and in the absence of a field, the localization
length slightly decreases with increasing ω. The interaction-
induced Coulomb gap enhances localization and reverses this
trend, as localization becomes strongly enhanced at low ener-
gies. In either case the localization length shrinks with mag-
netic field (i.e., ξ−1

g increases). The effect is strongest at low
energies, where the zero field interference is maximally con-
structive.

Fig. 4 presents the full flux dependence of the inverse
localization length. Its geometric part ξ−1

g oscillates with
the period of one flux quantum per plaquette, B0. At
ω = 0 and for small fields, B ≪ B0, the localization
length shrinks monotonically with increasing flux. How-
ever, at finite excitation energies the localization length is
slightly non-monotonic very close to B = 0, even though
this is hard to see in Fig. 4 except at larger ω ! 0.2.
Indeed, at non-zero energies locators occasionally have
negative signs. At large scales the interference sum thus
behaves like a fermionic problem, having a negative mag-
netoresistance at the smallest fields. This argument as-
sumes the absence of the so-called sign transition, as dis-
cussed, e.g., in Refs. 46 or 48. A small B-field then first
reduces the destructive interference of paths with oppo-
site signs, like in fermions, resulting in a very weak in-
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FIG. 4: Geometric part of the inverse localization length of
bosonic excitations as a function of magnetic field, at various
excitation energies. ξ−1

g tends toward a local minimum as the
flux approaches integer values, or fractions with small denomi-
nators. There, for low energies, large subsets of paths interfere
maximally positively. At finite energies, a tiny, non-analytic
upward cusp of ξ−1

g sits on top of this main feature. It reflects
the destruction of negative interference at large scales, akin
to the dominant mechanism of magnetoresistance in fermions.
Similar cusps of the same origin appear at half integer fluxes,
cf. the inset (for ω = 0).

crease of ξ. A larger flux, however, has the main effect of
suppressing the predominantly positive interference be-
tween shorter path segments. This then turns the mag-
netoresistance positive. This non-monotonicity in ξ(B),
which occurs for a small enough abundance of negative
locators (i.e., not too large ω), was already observed and
explained in Ref.20 (cf. especially Fig. 3.2).

At half integer flux, B = B0/2, further features appear
in ξ(B). At that flux all path amplitudes are real, but
they fluctuate in sign. At exactly half-integer flux, the
localization length is a local minimum of ξ(B). This is
reflected in a tiny upward cusp in ξ−1

g , as illustrated by
the inset of Fig. 4. It originates again from the elimina-
tion of occasional destructive interferences once the flux
per plaquette deviates slightly from half integer. How-
ever, at larger deviations the dominant effect of B is the
destruction of maximal interference between paths that
differ by two unit cells; at least for sufficiently low ener-
gies ω where negative locators are rare. This results in
an increase of ξ−1

g . Similar local minima can be seen at
the lowest ω for fluxes that are multiples of B0/3.

The cusps at integer and half-integer flux are all non-
analytic. This can be understood from a mapping to di-
rected polymers. The mapping is truly faithful at ω = 0,
where all path weights are positive.18 However, also neg-
ative weight problems exhibit the same type of scaling
for the spatial roughness of paths (with wandering expo-
nent ζ = 2/3 in d = 2), and amplitude fluctuations gov-
erned by a Tracy-Widom distribution.21,49 From those,
one predicts a change of the localization length which
scales as δξ−1

g ∼ |δB|ψ with the deviation δB from inte-
ger or half-integer flux, where the exponent has the value
ψ = 2ζ/(1 + ζ) = 4/5. 18

B. Magneto-oscillation of the effective mobility
edge

For energies well inside the Coulomb gap, the local-
ization length ξ(ω) is a monotonically growing function
of ω. For sufficiently large hopping amplitude t, ξ di-
verges at the finite effective mobility edge ϵc, which is
a periodic function of the flux. In Fig. 5 we plot ϵc(B)
for a fixed value of the hopping amplitude, t = 0.368EC,
and disorder strength W = EC . With these parameters,
we find the amplitude of oscillations of ϵc to be about
∆ϵc ≈ 0.1EC . The qualitative features of the field de-
pendence ϵc(B) are the same as those of ξ−1

g (B,ω) (cf.
Fig. 4) for an energy ω ≈ 0.3EC corresponding to the
flux-averaged average mobility edge. Upon approaching
criticality, as the average mobility edge decreases, we ex-
pect the function ϵc(B) to become non-monotonic in the
range B ∈ [0, B0/2], exhibiting maxima slightly before
and after B0/2, in analogy to the field dependence of
ξ−1
g at low energies, cf. Fig. 4. However, we do not show
corresponding results of the forward scattering analysis,
since so close to criticality our approximation is for sure
not reliable quantitatively; even though the discussed
qualitative features presumably survive.

0 1 2 3 4
0.28

0.32

0.36

0.4

B/B0

ϵ c
(4
e2
/κ

a)

FIG. 5: Flux dependence of the effective mobility edge of
bosonic excitations. The upward cusps ∼ |δB|4/5 at half in-
teger fluxes, and similar (but tiny) cusps at integer fluxes
originate from the destruction of occasional negative interfer-
ence among certain close pairs of paths with real amplitudes
but opposite signs. The overall dome shape of the oscillation
reflects the destruction of the predominantly positive inter-
ference by the Aharonov-Bohm phases introduced by incom-
mensurate fluxes.

Qualitatively, ϵc(B) shows the same features as those
of ξ(B,ω > 0). After a tiny, non-analytical decrease at
B ≪ B0, the effective mobility edge increases as a conse-
quence of the suppressed constructive interference in low
energy bosonic excitations. At half flux per plaquette,
ϵc(B) exhibits an upward cusp |δB|4/5, like ξ−1

g (B). Its
origin lies in the destruction of occasional, nearly com-
plete negative interferences.
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C. Increased relative oscillations upon approach to
criticality

Note that as long as the effective mobility edge lies well
within the Coulomb gap ϵc " Egap = E2

C/(2CW ) the dis-
order strengthW plays a minor role, since the smallest lo-
cators have an abundance dictated by the pseudo-gapped
part of the density of states, which is nearly disorder in-
dependent.
In contrast, the hopping amplitude t affects the loca-

tion of the effective mobility edge directly, as illustrated
in Fig. 6. That figure shows that, upon tuning the hop-
ping between islands, the oscillation amplitude increases
as the effective mobility edge decreases, i.e., as the tran-
sition to the superconductor is approached. The location
of the transition can roughly be estimated from the cri-
terion ϵc(B = 0) ≈ 0, but in its vicinity the forward
scattering approximation should not be trusted quanti-
tatively. For some range beyond the zero-field transition,
the magnetic field is expected to be able to drive an SI
transition.
It is interesting to compare these qualitative predic-

tions with experimental data. To do so we interpret ϵc
as the activation energy entering the Arrhenius-type re-
sistance, and ∆ϵc its field-induced variation. The exper-
iments of Refs. 22 (Fig. 3) and 25 (Fig. 3(b)) show the
same trends as we find from our theory: the further the
system is from criticality, the smaller is the variation of
the activation energy.

0.35 0.4 0.450

0.1

0.2

0.3

0.4

t/EC

 

 

ϵc(B = 0)/EC

∆ϵc/EC

FIG. 6: The zero-field effective mobility edge ϵc(B = 0) and
the magneto-oscillation amplitude ∆ϵc, plotted as a function
of the hopping amplitude t. The mobility edge ϵc can be tuned
by the hopping t. It serves as a measure for the distance to
criticality. As the mobility edge ϵc decreases and the transi-
tion is approached (approximately where ϵc(B = 0) ≈ 0, as
marked by the arrow), the oscillation amplitude increases.

IV. RELATING THEORY TO EXPERIMENTS

The experimental structured films22,23,27 bear signa-
tures of bosonic insulators, the small field magnetoresis-
tance being positive, while the flux periodicity is that
expected for charges q = 2e. We note that unpaired,

non-interacting electrons of charge q = 1e would exhibit
the same flux periodicity as we recall in the next section;
however, as we will discuss there, in the presence of in-
teractions the period of single electrons is doubled and
thus faithfully reflects the carrier’s charge.

To relate our theoretical study to experimental sys-
tems, we need to discuss the relevant scale of Coulomb
interactions, EC . For an insulator of bosonic carriers
of charge q = 2e, with a lattice spacing between is-
lands a ≈ 50nm and dielectric constant κ one obtains
the Coulomb scale EC = q2/κa ≈ 1334/κK. The essen-
tial difficulty resides in determining the effective dielec-
tric constant κ which governs the Coulomb interaction at
and above the lattice scale a. This is nearly impossible to
predict from first principles as the islands possess a large
polarizability and have to be considered as nearly touch-
ing each other. Therefore they renormalize the dielectric
constant of the medium surrounding the patterned film,
such that values of κ ∼ 102 − 103 are not unrealistic.

However, another consideration allows us to argue for
an upper bound on EC , simply on empirical grounds.
The system essentially realizes an array of Josephson
junctions. The proximity to the superconductor suggests
that the charging energy (∼ EC) is of the order of the
Josephson energy, whose role is played by the hopping t
here. Deeply in the superconducting phase, the Joseph-
son coupling determines the scale of the transition tem-
perature Tc. These considerations imply that not too far
from criticality EC is of the order of typical Tc in well
superconducting samples. Empirically, the latter never
exceeds a few Kelvin, suggesting that EC ∼ 2K, and
effectively κ ∼ 500.

Our results in Fig. 6 show that typical magneto-
oscillation amplitudes are of the order of one magnitude
smaller than EC . This is compatible with experimental
oscillation amplitudes of activation energies of the order
of 0.2K, as extracted from resistance data that were fit-
ted to an Arrhenius law.23

Our theory predicts a non-analytic cusp of the effective
mobility edge at half integer fluxes, and another cusp
of much smaller size at integer flux. Interestingly, such
cuspy features have been observed in measurements of
the resistance as a function of B, cf. Ref. 22, Fig. 2A.

As we discussed in the previous section, we further ex-
pect that upon approaching criticality, when ϵc " 0.1EC ,
the resistance develops a double-hump within an oscilla-
tion period, akin to the low energy behavior of ξ−1

g (ω).
Unfortunately, in the experimental systems of Refs. 22
and 23 this corresponds to a rather small energy scale.
Therefore very low temperatures will be requireed to reli-
ably observe an activated behavior over a sufficient range
of resistances and extract activation energies from it that
would exhibit this double-hump feature.
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V. ROLE OF QUANTUM STATISTICS -
BOSONIC VS FERMIONIC MOBILITY EDGES

Apart from studying bosonic insulators per se, a cen-
tral goal of this study is to investigate the role of quan-
tum statistics in insulators. To this end we repeated the
same type of analysis as above for a system of spinless
fermions, subject to the same Coulomb interactions. The
only difference with respect to the previously considered
hard core bosons consists in the exchange statistics of the
particles, while the Hilbert space and the terms in the
Hamiltonian were left essentially identical. Data for the
inverse localization lengths and effective mobility edges
of fermions are shown in Figs. 7 and 8. The effective
mobility edge of fermions oscillates with magnetic flux
similarly as ξ−1 at finite ω.

0 0.5 1 1.5 2

−0.02

0

0.02

B/B(F )
0

[ξ
−
1

g(
F
)(
B
)
−

ξ−
1

g(
F
)(
0)
]|
ω
=
0

 

 

no interaction
interaction

FIG. 7: Variations of the inverse localization length ξ−1
g,(F ) of

fermionic excitations at ω = 0 as a function of magnetic field
- with and without interactions. In the non-interacting case,
the symmetry in the distribution of the uncorrelated disorder
potential leads to a doubling of the oscillation period. In the
presence of interactions, the effective disorder is correlated,
which re-instates the flux periodicity expected for fermions,
B(F )

0 = hc/e. The correlations due to Coulomb repulsion en-
hance the localization at half a flux per plaquette as compared
to commensurate flux, as explained in the main text.
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FIG. 8: Magnetic field dependence of the fermionic effective
mobility edge ϵ(F )

C . The qualitative features are similar to the
variation of the inverse localization length in Fig. 7.

The comparison between Figs. 4 and 7 show three main
effects of the opposite exchange statistics, some of which
have been discussed previously in the literature18,20,21:

(i) the magnetoresistance of fermions in small fields is op-
posite to that of bosons at low energies; (ii) the amplitude
of the field-induced variations are significantly smaller
in fermions; (iii) the structure within an oscillation pe-
riod is very different: bosons show one dome shaped os-
cillation, whereas fermions exhibit a pronounced double
hump with a second local maximum in the localization
length at half flux. As we discuss below the details of the
latter reflect the nature of Coulomb correlations. Let us
now explain these features in turn.

A. Negative magnetoresistance of fermions

The increase of the fermion’s localization length at
small fields, as opposed to the stronger decrease in low
energy bosons, is due to the fact that at B = 0 fermionic
paths already come with random signs, so that there is no
dominant positive interference to be destroyed by an ex-
tra B-field. Instead it is the B-induced lifting of acciden-
tal negative interference between two bunches of paths of
nearly equal amplitude, which dominates the magnetore-
sistance by occasionally enhancing the tunneling further
away. Such negative interferences are not that abundant,
however. Therefore the resulting negative magnetoresis-
tance is significantly less strong than the suppression of
maximally positive interference of all bosonic paths. This
explains the smaller amplitude of the field-induced vari-
ations in fermions.18

Fermionic path sums also obey the scaling of the
Kardar-Parisi-Zhang universality class.49 Probabilistic
arguments on the occurrence of large, strongly interfering
pairs of path bundles18,21 thus lead again to the predic-
tion that ξ−1, as well as the effective mobility edge, vary
in a non-analytical fashion close to integer and half inte-
ger fluxes as δξ−1 ∼ −|δB|4/5.

B. Approximate period doubling and traces of
interaction correlations in fermionic

magneto-oscillations

An interesting, hitherto little explored feature is the
structure of the magneto-oscillation within a flux period.
For fermions there are two local maxima of ξ−1 within
one period. They occur at integer and half integer flux,
where all path amplitudes are real (albeit random in
sign). This maximally favors negative interference. In
fact, it has been known for a long time (cf., for example,
Ref.20, Fig. 3.2) that in non-interacting models, for an
energy at the center of a symmetric impurity band, the
magneto-oscillations of ξ have a shorter period, reduced
from B0 to B0/2, with identical peaks at integer and half
integer flux, as we reconfirm in Fig. 7. For complete-
ness, the proof of this fact is given in App. A. It relies
on the symmetry of the distribution of onsite-potentials,
ρ(ω+ δ) = ρ(ω− δ), and, most importantly, on the inde-
pendence of potentials from site to site.
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The first assumption on the density of states is not
that crucial. Indeed the deviations from perfect period
doubling are not very significant as long as ω remains
close to the band center of a featureless density of states.
The assumption of independence of onsite potentials is
much more important. Crucially, it breaks down in the
presence of interactions that induce correlations between
local energies of spatially close sites. Indeed, around a
soft site with a low local potential, non-local repulsive
interactions suppress other sites with small potentials of
opposite sign. That is, low energy sites in the vicinity
of an occupied low energy site will predominantly be oc-
cupied themselves, rather than empty. Otherwise the
considered configuration would be unstable with respect
to the transfer from the occupied to the nearby empty
sites.
This bunching effect of low energy sites of the same

kind has been described long ago in the literature of
Coulomb glasses.50,51 For the locator expansion in the
insulating phase, it has the following interesting implica-
tion. Consider a small loop of interfering paths. Paths
with significant weight contain a lot of small denomina-
tors, that is, they tend to pass through low energy sites.
The correlation effect implies that two small denomina-
tors occuring in the two branches of a small loop are more
likely to be of the same sign, and thus to interfere posi-
tively in the absence of flux. At the level of such a loop,
adding half a flux through the plaquette is equivalent to
flipping the sign of one of the energies. This induces a
bias towards negatively interfering path pairs and thus
enhances the localization tendency. The bias introduced
by correlations among nearby sites thus destroys the ex-
act period doubling and induces maximal localization of
fermions at half-integer flux, as confirmed by Fig. 7.
Since this interaction effect is usually significantly

stronger than the effect of a non-symmetric density of
states, the deviation from period doubling in fermionic
insulators can be used, qualitatively, as a measure and
witness of Coulomb correlation effects.

VI. SUMMARY AND CONCLUSION

In Fig. 9 we provide a direct comparison of the oscilla-
tions of the effective mobility edge as a function of mag-
netic field for fermions of charge e and those of hard core
bosons (tightly bound electron pairs) of charge 2e. Since
these two systems share the same flux interval between
peaks of enhanced localization, the latter cannot be used
to determine the nature of the charge carriers. However,
bosons and fermions are clearly distinguished by their op-
posite magnetoresistance close to integer fluxes: Bosons
(at ω = 0) have a minimum of localization tendency at
those points, whereas fermions exhibit a (weaker) maxi-
mum; a cousin of that fermionic maximum also appears
at half integer flux. Note that the oscillation amplitude
of the fermionic effective mobility edge is nearly one order
of magnitude smaller than that of the bosons.

As we explained in the last section, the correlations in-
duced by repulsive interactions render the two fermionic
maxima within a flux period inequivalent and enhance
localization at half integer fluxes. We hope that future
experiments on patterned films of non-superconducting
metals will reveal these qualitative features reflecting
both fermionic statistics and correlations in the Coulomb
glass.
Many aspects of our simple theoretical modelling are in

reasonable semi-quantitative agreement with experimen-
tal data reported by J. Valles’ group22,23,25: The overall
sign and shape of the magneto-oscillations, their cuspy
nature at half flux as well as the evolution of their rela-
tive size as one tunes the distance to criticality. It would
be interesting to test further predictions of our model,
such as the appearance of a double hump in the oscilla-
tion period, as one approaches criticality more closely.
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FIG. 9: Oscillations of the effective mobility edge of hard-
core bosons of charge 2e versus that of fermions of charge e.
Each set of data is shown in units of the relevant Coulomb
interaction between nearest neighbors. Due to the approxi-
mate period doubling for fermions, the flux interval between
maxima is the same as for bosons, but the structure within
the oscillation period is very different: Fermions start with
negative magnetoresistance at small fields, exhibit a smaller
oscillation amplitude and alternating peak heights.
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Appendix A: Period doubling in the
magnetoresistance of non-interacting fermions

This appendix recalls the period-doubling in the mag-
netoresistance of non-interacting fermions on regular lat-
tices, as evaluated within the forward scattering approxi-
mation. If the disordered onsite energies are uncorrelated
and symmetrically distributed around ω = 0, one can
prove that the localization length as a function of flux,
ξ(B), is a periodic function of B with the reduced period
B0/2, B0 corresponding to one flux quantum threading
a unit cell of the lattice. We show this for the cases of
square and honeycomb lattices, see Fig. 10. In both lat-
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tices we marked a fraction of the sites with blue spots.

0 1 2 3 4 5
0

1

2

3

4

5

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

7

8

0

i i

0

FIG. 10: Analyzing fermionic localization on two different
lattices. For localization at energy ω = 0, adding half a flux
quantum per unit cell is equivalent to having no flux and
changing the sign of onsite disorder on the subset of sites
marked by circles, which yields a statistically equiprobable
disorder configuration. For a symmetric disorder distribution,
this property implies a period doubling of the magnetoresis-
tance for non-interacting fermions, when evaluated in forward
scattering approximation.

Consider the sum over shortest paths Γ connecting site
0 to site i, in the presence of a magnetic field B. Adding
half a flux quantum per plaquette, one easily checks that

the extra Aharonov-Bohm phase between two paths Γ
and Γ′ is given by (−1)Ns , where Ns is the number of
marked sites that are not shared by both paths. One
can verify that the same relative phase is obtained if the
signs of all locators on the marked sites is reversed. This
implies that up to a global sign the sum over paths at
ω = 0 is equivalent to a sum in a field B + B0/2, but
with reversed sign of the onsite energy on marked sites.
This change of sign leaves the measure of uncorrelated
random energies invariant, provided the disorder distri-
bution is symmetric around ω = 0, ρ(ϵ) = ρ(−ϵ). From
this, one concludes that ξ(B) = ξ(B + B0/2) is periodic
with period B0/2 for a symmetric disorder distribution
and for ω = 0.

For featureless densities of states and energies in the
bulk of the spectrum the doubling of the periodicity is
not exact, but nevertheless holds to a very good approx-
imation.

Note that time reversal symmetry further implies the
symmetry ξ(B) = ξ(−B).

As we discuss in the main text, the above proof breaks
down when the onsite energies are correlated, even if the
density of states remains symmetric.
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