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Abstract

We construct a complete set of quasi-local integrals of motion for the many-body localized phase of 
interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spec-
trum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We 
map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the 
integrals of motion can be built, under certain approximations, as a convergent series in the interaction 
strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-
body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion 
for the integrals of motion imply the presence or absence of a finite temperature transition.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The thermodynamic description of macroscopic bodies, as shown by Boltzmann in his work 
on the foundations of statistical mechanics, is based on the assumption that the underlying 

* Corresponding author at: SISSA, via Bonomea 265, 34136 Trieste, Italy. Tel.: +39 040 3787 271.
E-mail address: vros@sissa.it (V. Ros).

1 On leave from: Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste, Italy.

http://dx.doi.org/10.1016/j.nuclphysb.2014.12.014
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.014
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:vros@sissa.it
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.014
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.12.014&domain=pdf


V. Ros et al. / Nuclear Physics B 891 (2015) 420–465 421

microscopic dynamics are ergodic. More precisely, one assumes that the environment of any 
small subsystem of the macroscopic body acts as a thermal bath, with which the subsystem can 
exchange particles and energy, and which leads to the eventual thermalization of the subsystems, 
independently of its initial state. In order for thermalization to occur gradients in particle and 
energy density must be able to even out, which requires non-vanishing transport over arbitrarily 
large scales.

However, in the absence of interaction, Anderson [1] has shown that a sufficiently strong 
quenched disorder can localize quantum particles. This prevents the transport of energy and par-
ticles and therefore entails the non-ergodicity of the system. Already in Anderson’s first paper, 
and later in the context of electron–electron interactions [2], it was surmised that this localization 
might persist in the presence of interactions, despite the widespread belief that any finite inter-
actions would restore transport, ergodicity, and thus standard thermodynamic behavior, in such 
systems. Later, numerical investigations of the Hubbard model [3] hinted indeed at the possibil-
ity of such “many-body localization” (MBL), and more recently the seminal study of disordered 
electrons with weak short range interactions to all orders of perturbation theory provided impor-
tant analytical insight into this phenomenon [4], predicting that in an isolated system, decoupled 
from any external bath, a finite interaction is required to induce delocalization and enable trans-
port. Below this delocalization threshold, truly inelastic decay processes are impossible, as the 
system ceases to be a heat-bath for itself, and any d.c. transport is strictly absent. In this way 
many-body localized systems are crucially different from other situations where full ergodicity 
in phase space breaks down, such as in systems with spontaneously broken symmetries, one-
dimensional integrable systems, or spin glasses. In all these examples, the thermal conductivity 
remains finite.2 In contrast, a necessary3 condition for many-body localization is the vanishing 
of the d.c. transport coefficients at non-zero temperature.

Since the seminal work by Basko, Aleiner and Altshuler [9,4,10], the paradigm of many-
body localization has attracted a lot of interest, and the phenomenology of MBL phases and 
the localization transition have been explored, see for example [11–17]. Many-body localization 
opens the interesting possibilities of protection of topological order at finite temperature or of 
phase transitions below the equilibrium lower critical dimension [18–23]. It was even proposed 
that MBL could survive in the absence of quenched disorder [24–28]. (A different type of non-
ergodic behavior, exhibiting, however, ballistic transport, has been conjectured in disorder free 
1d systems that are close enough to integrability [29,30].)

Unambiguous experimental evidence of an MBL transition or phase is however still lacking 
at the time of writing, despite of promising developments [31,32].

An MBL phase can be seen as the prototype of a quantum glass phase, where the dynam-
ics are slowed down indefinitely and where memory of the initial condition is retained in local 
observables for arbitrarily long times. This latter phenomenon has certain similarities with in-
tegrable systems [33,34], in which an extensive number of conserved quantities (integrals of 
motion) constrain the system to evolve in a much smaller submanifold than the one determined 

2 In integrable systems, transport of some quantities is often even more efficient than in non-integrable systems, being 
ballistic as opposed to diffusive.

3 The condition is not sufficient, since even in the absence of diffusion thermalization might occur via sub-diffusive 
processes. This was found empirically in one-dimensional systems close enough to the localization transition [5,6]. 
Moreover, localization can occur also in time-dependent systems (e.g., periodically driven systems) that may have no 
conserved local densities and thus no meaningful d.c. transport [7,8]. For these systems, MBL is defined more generally 
as a phase where any local observable does not thermalize almost certainly.
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by the conservation of energy and momenta only. The long-time relaxation then only leads to a 
restricted (generalized) Gibbs ensemble.

Given this similarity, it was conjectured that, like in the non-interacting limit, an extensive 
set of (quasi-)local integrals of motion should exist in the MBL phase [33,35,34]. By definition, 
those do not evolve with time, as they commute with the Hamiltonian. They thus constrain the 
dynamics to remain very close to the initial condition in which the system was prepared. The 
existence of such local integrals of motion was recently proven for a particular spin Hamiltonian 
in [35], under reasonable assumptions bounding potential level attraction. The notion of locality 
used above refers to the set of degrees of freedom, which the conserved operator affects. Con-
served quantities in integrable systems are not local in this sense, as they are sums over all space 
of certain local terms.4 The non-locality (in our sense) of those integrals still allows for finite 
transport in integrable systems. A further important difference between MBL systems and inte-
grable ones is the fact that MBL is robust with respect to any sufficiently small perturbation of 
the Hamiltonian, while integrability in 1d systems is broken by generic perturbations.

The aim of this paper is to show that quasi-local integrals of motion exist for weakly inter-
acting disordered electrons, under the same set of assumptions that were made in the original 
work by Basko et al. [4] (henceforth referred to as BAA). We find such integrals by solving 
equations for conserved operators within perturbation theory. Our approach reduces the prob-
lem to the solution of a single-particle-like hopping problem in operator space, for which we 
present a solution in the strongly localized regime, and determine the radius of convergence of 
the construction. This furnishes an estimate of the delocalization very similar to that obtained by 
Basko et al. [4]. We hope that our technique will help to obtain analytic results on many-body 
localization in the future.

1.1. Outline and summary of this work

Here, we present a short outline of this work, summarizing the main steps, and the problems 
we address.

We are seeking integrals of motion for disordered electrons with weak short range interactions, 
as defined in Eqs. (1), (2). In Section 2 we coarse-grain the model, reducing it to an array of 
coupled quantum dots of size of the order of the single-particle localization length.

The non-interacting model has trivial integrals of motion, namely the occupation numbers of 
the single-particle eigenstates. We then look for their generalization in the presence of interac-
tions, “dressing” these integrals of motion (Section 3). This leads us to a set of linear equations 
(Section 4, Eq. (40)) in the space of number conserving operators, which we expand in the basis 
(28) of products of single particle creation and annihilation operators. For any strength λ of the 
interaction, these equations define a unique set of conserved operators. The main question to an-
alyze is whether they act locally, or whether they significantly affect a spatially unbounded set of 
degrees of freedom. We address the question of locality within the so-called forward approxima-
tion, introduced in Section 5, where we only determine the leading term in perturbation theory 
for the expansion coefficients. Since the interaction terms act locally, for the conserved quantities 
to be non-local increasingly high orders of perturbation theory must contribute to the expansion, 
i.e., the perturbative expansion diverges (Section 5.2).

4 Quantum mechanics provides quite trivially a large set of mutually commuting, conserved operators in any system, 
namely the projectors on exact many-body eigenstates. However, those are highly non-local and have minimal rank 1. 
Such trivial “integrals of motion” are of no interest in the present context.
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We represent diagrammatically the particle–hole creation processes, which dominate the for-
ward approximation, in Section 5.4. In order to study the statistics of the diagrams at high orders, 
we need to solve three main technical problems. One is the estimate of their number, due to 
the freedom in choosing the interaction vertices and their order. We solve this (Section 5.4) by 
introducing an integral representation that sums correlated diagrams sharing the same interac-
tion vertices. This reduces the factorially many (in the order N of the perturbation theory) terms 
to an only sub-exponential number of terms, which are products of N denominators. The sec-
ond problem concerns their statistical distribution. In the many-body problem the denominators 
are correlated even within the forward approximation, at variance with one-particle problems. 
Therefore determining the statistics of large deviations, which dominate the probability of cre-
ating excitations at large distance, is a challenge. We solve it using a transfer-matrix technique 
(Section 7). Finally, we have to count the number of processes leading to a given configuration in 
operator space, which is a combinatorial problem in the space of diagrams (Section 8). The last 
two ingredients allow us to determine the decay rate of the largest of these terms, which domi-
nates the expansion. Requiring a positive spatial decay rate determines the range of convergence 
of the operator expansion in the forward approximation.

After solving these technical problems, we obtain the final result in Section 9, namely the exis-
tence of quasi-local integrals of motion for disordered electrons for sufficiently small interaction 
λ < λc. We find λc in the forward approximation: in the same spirit as Anderson’s “upper bound” 
approximation, this is expected to yield a lower bound for the actual phase boundary for many-
body localized phase of the lattice system at infinite temperature. In a final section, we discuss 
possible scenarios for a localization transition or crossover at finite temperature (Section 10).

2. Model Hamiltonian and coarse-graining

We consider a Hamiltonian describing weakly interacting, spinless electrons in a disordered 
background. At variance with the work by BAA, we consider a model on a lattice Λ,

H =
∑

i∈Λ

c†
i

[
− 1

2m
#(Λ) + Vdis(i)

]
ci + 1

2

∑

i,j∈Λ

c†
i c

†
j U(i − j) cj ci, (1)

where #(Λ) is the lattice Laplacian, Vdis is a random disordered potential and U is a short range 
interaction.

We choose to work with a lattice model, because in a finite volume its Hilbert space is finite, 
and both spectrum and energy per particle are bounded. This will allow us to take a meaningful 
limit of infinite temperature, and to make statements about many-body localization in that limit.

It is convenient to write the interaction in the form

U(i − j) = λ

νad
u(i − j) (2)

where ν is the density of states, and u(i − j) is a dimensionless, normalized, short-ranged inter-
action kernel. The dimensionless parameter λ measures the interaction strength.

We consider a disorder potential such that the single particle part of the Hamiltonian pos-
sesses only fully localized wave-functions φα , α = 1, ..., |Λ|, with typical localization length ξ . 
Moreover, we are interested in the disorder regime relatively close to single particle delocaliza-
tion, where ξ is significantly bigger than the lattice spacing a. Let us denote by δξ = 1/νξd the 
average level spacing in a localization volume, and by W the band width of the single particle 
problem. The condition ξ ≫ a ensures that a large number
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Nloc = W

δξ
(3)

of single particle wave-functions overlap significantly in space. This will provide a large param-
eter for our analysis.

It is convenient to switch to the basis of single particle wave-functions φα, in which the 
Hamiltonian assumes the form

H =
∑

α

ϵαnα +
∑

α<β,γ<δ

Uαβ,γ δc
†
αc

†
βcγ cδ

=
∑

α

ϵαnα + λ

νad

∑

α<β,γ<δ

uαβ,γ δ c†
αc

†
βcγ cδ (4)

≡ H0 + U, (5)

where nα = c†
αcα , and the Greek indices label single particle eigenstates obtained in the absence 

of interaction. We also choose a certain ordering relation “<” among the indices β, γ .
Our choice of the basis φα is different from that of BAA, who worked with Hartree–Fock (HF) 

orbitals. Our choice allows us to work in full generality in the operator space, while HF orbitals 
depend on the non-interacting occupation numbers, i.e., the many body state around which one 
analyzes stability with respect to interactions. In Section 8.1 we will argue, however, that in the 
approximation in which we are working, we can neglect the interaction vertices Uαβ,γ δ with two 
or more coinciding indices, even without resorting to HF, which resums most of those terms. 
Thus, the two different choices of basis sets lead essentially to the same combinatoric analysis 
of diagrams.

To simplify the above model further, we assume the single particle energies ϵα to be random 
and uncorrelated. The interaction term U is antisymmetrized: Uαβ,γ δ = Uβα,δγ = −Uβα,γ δ . We 
further simplify it by taking its matrix elements Uαβ,γ δ to be local in space, i.e., they are assumed 
to be non-zero only if the corresponding single particle states have localization center within one 
localization volume. Hereby we define the localization center of a single particle state as

r⃗α =
∫

ddrφ2
α(r)r⃗. (6)

Moreover, it is known that the matrix elements decrease rather rapidly (as a power law) when the 
energy difference between involved levels exceeds the level spacing in the localization volume δξ . 
This motivates the use of a simplified interaction in which we take uαβ,γ δ to be non-zero only if

|ϵα − ϵδ|, |ϵβ − ϵγ |! δξ or |ϵα − ϵγ |, |ϵβ − ϵδ| ! δξ . (7)

In these cases we assume

uαβ,γ δ = ηαβ,γ δ νadδξ = ηαβ,γ δ

(
a

ξ

)d

, (8)

where ηαβ,γ δ is a random variable, box-distributed in [−1, 1].

2.1. Coarse-graining

Let us now coarse-grain the model: we assume that the interaction Uαβ,γ δ connects wave-
functions either on the same localization volume or on neighboring localization volumes. For 
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either vertices we assume the same amplitude λ, as long as the restrictions (7) on the energy 
levels are respected.

This differs from the coarse-graining by BAA, who divided the sample into d-dimensional 
regions of linear size ξ , restricted the single particle levels α to those regions, but included a 
(small) hopping term between localization volumes (elastic processes). In contrast the interaction 
term, responsible for inelastic processes, was restricted to scattering within a given localization 
cell.

3. Integrals of motion and absence of transport

In the absence of interactions (λ = 0), the occupation numbers nα of single particle levels 
are mutually commuting, conserved quantities. These operators are quasi-local in real space, as 
follows immediately from their expansion in the basis of lattice operators:

nα =
∑

i,j

φ∗
α(i)φα(j)c

†
i cj , (9)

where φα is the corresponding localized single particle eigenfunction. By quasi-locality of the 
nα we mean that an operator c†

i cj contributes in the expansion with a weight which decays 
exponentially in the distance between the localization center r⃗α of φα and the sites it acts on (its 
support – here the sites i, j ).

By truncating the sum (9) to terms with support only within a neighborhood of mξ of r⃗α
one obtains an operator, whose commutator with the Hamiltonian vanishes up to exponentially 
small terms. As m → ∞ the operator rapidly converges (in the operator norm) to the conserved 
nα . In the non-interacting case this follows directly from the spatial localization of the single 
particle wave-functions. Our goal is to find an analogue of these operators in the interacting 
case.

That such a generalization should exist was proven by Imbrie [35] under certain hypotheses 
on the spectrum in a 1d spin chain, for which he constructed a quasi-local unitary rotation U
which essentially diagonalizes the Hamiltonian H . More precisely, it brings it to the canonical 
form

U†HU = −
∑

i

hiσ
z
i −

∑

i<j

Ji,jσ
z
i σ z

j +
∑

i<j<k

Ji,j,kσ
z
i σ z

j σ z
k + ..., (10)

where the k-spin interactions Ji1,...,ik decay exponentially with the diameter of their index set. 
Applying the inverse unitary on the conserved spins σ z

i provides one with integrals of motion 
of the original Hamiltonian H , Ii = Uσ z

i U†. At the same time, Huse and Oganesyan [33], and 
independently, Serbyn et al. [34] argued for the existence of such local integrals of motion in 
general MBL systems.

Note that the set of conserved and mutually commuting quantities is by no means unique. For 
example, any set of independent polynomials of σ z

i ’s is conserved as well. A nice property of 
the set of σ z

i , however, is the binarity of their spectrum, {−1, 1}, or the property that (σ z
i )2 = 1. 

Knowing the eigenvalues of N independent integrals of motion like this allows one to unambigu-
ously label the 2N eigenstates of the Hilbert space of an N -spin system [33].

An alternative construction of conserved (but non-binary) quantities is discussed in [36] for a 
random spin chain, where infinite time averages of local operators are considered (such as ni(t) =
eiHtnie

−iH t in our case). By definition of the time average, it commutes with the Hamiltonian. In 
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an MBL phase one expects the average to remain non-zero, whereas it vanishes due to diffusion 
in an ergodic delocalized phase.

In this paper, we make a different choice, which nevertheless defines a unique set of binary 
integrals of motion. Our construction consists in two steps. We will first prove the existence of 
local integrals of motion in perturbation theory in λ, not requiring the binarity of their spectrum. 
This is the most difficult task and will take the largest part of the paper.

3.1. Construction of exact quasiparticles of the Fermi insulator

Since our procedure will leave us some freedom in the choice of integrals, in Appendix A
we will show how this freedom can be used to fix the spectrum to be binary, order by order 
in the interaction λ. Notice that the latter amounts to the construction of exact quasiparticle 
occupation numbers of the interacting Fermi insulator. In contrast to Fermi liquids where such 
exact quasiparticle operators cannot be constructed, neither in real nor in momentum space, it 
becomes possible in the MBL phase. Rewritten in terms of these occupation numbers ñα , the 
Hamiltonian

H =
∑

α

ϵαñα + 1
2

∑

α≠β

Jα,β ñαñβ + ..., (11)

can then be seen as an exact quasiparticle energy functional, which determines the energy E(qp)
α

of any quasiparticle as a function of the occupations of all others, as:

E
(qp)
α

(
{ñβ}

)
≡ ∂H

∂ñα
= ϵα +

∑

β(≠α)

Jα,β ñβ + ... (12)

3.2. Complete set of local integrals implies absence of transport

Before outlining the construction of the integrals of motion, let us first show how their exis-
tence implies the absence of any d.c. transport, and hence many-body localization.

In order to show the absence of d.c. transport, consider the Kubo formula for the conductivity 
σ associated with the local current density Jr , associated with a conserved quantity, such as 
charge or energy. Let

Jr(ω) =
∑

r ′
σ
(
r, r ′;ω

)
E(ω) (13)

be the current at frequency ω and position r arising in linear response to a spatially homogeneous 
field E, and denote by

J (ω) = 1
V

∑

r

Jr (ω) ≡ σ (ω)E(ω) (14)

the spatially averaged current density, V being the volume of the system. At finite inverse tem-
perature β , the dissipative part of the conductivity is given by:

Re
[
σ (ω)

]
= − 1

V

∑

r

Im[Π(ω, r)]
ω

, (15)
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where Π(ω, r) is the Fourier transform of the retarded correlation function of the current opera-
tor, with Lehmann representation:

Π(ω, r) = 1
Z

∑

m,m′

∑

r ′
e−βEm′ (1 − e−β(Em−Em′ )) ⟨m′|Jr ′+r |m⟩⟨m|Jr ′ |m′⟩

ω + Em′ − Em + iη
. (16)

Here Z is the partition function, and the limit η → 0 is to be taken after the thermodynamic limit. 
In the d.c. limit one finds

Re
[
σ (ω → 0)

]
= πβ

V

∑

r ′r

∑

m,m′

e−βEm′

Z

〈
m′∣∣Jr ′+r |m⟩⟨m|Jr ′

∣∣m′〉δη(Em′ − Em), (17)

where we have used

lim
ω→0

1 − e−βω

ω
= β, (18)

and δη(x) = π−1η/(x2 + η2) is a regularized δ-function.
Let us now show first that for a complete set of strictly local conserved quantities the conduc-

tivity vanishes with probability one in the thermodynamic limit. By strict locality operators we 
mean that they only act on degrees of freedom that belong to a compact spatial region with finite 
diameter ζ . We call a set of conserved quantities complete if for any two distinct eigenstates 
m ̸= m′ at least one of those integrals of motion takes a different eigenvalue.

For two eigenstates m, m′ let Ĩ be such a distinguishing integral, with corresponding eigen-
values Ĩ |m⟩ = Ĩm|m⟩ and Ĩ |m′⟩ = Ĩm′ |m′⟩, with Ĩm′ ≠ Ĩm. For a strictly local current operator 
and r sufficiently much bigger than ζ , it follows immediately that one of the two current matrix 
elements

〈
m′∣∣Jr ′ |m⟩ = ⟨m′|[Jr ′ , Ĩ ]|m⟩

(Ĩm − Ĩm′)
,

〈
m′∣∣Jr ′+r |m⟩ = ⟨m′|[Jr ′+r , Ĩ ]|m⟩

(Ĩm − Ĩm′)
, (19)

vanishes, since one of the two commutators vanishes. Thus, in Eq. (17) the sum over r can be re-
stricted to r ! ζ . Furthermore, for any fixed eigenstate m the sum over eigenstates m′ is restricted 
to a finite set, since Jr ′ |m⟩ can differ only in a finite number (≤ exp(cζ d), with c = O(1)) of in-
tegrals of motion from |m⟩. Thus, in the thermodynamic limit, where we have to send η → 0, 
the contribution to the δ-function vanishes with probability one, and thus Re[σ (ω = 0)] = 0. 
Note that the potentially singular term from m = m′ does not contribute because ⟨m|Jr |m⟩
= 0 by time reversal invariance.

This discussion is of course over-simplified since the actual integrals of motion are only quasi-
local, in the sense that there are corrections to a strict locality, which decay exponentially with 
the diameter of their support on a typical scale ζ . However, the derivation above reflects the es-
sential mechanism by which a complete set of integrals of motion suppresses transport. Consider 
the matrix elements ⟨m′|Jr ′ |m⟩ for eigenstates that differ significantly only in integrals of motion 
whose support is centered up to a distance xζ from r ′. These matrix elements are then not exactly 
zero, but exponentially small in x. There are also exponentially many states m, m′ which satisfy 
these criteria, and thus some energy differences Em − E′

m in (17) become exponentially small. 
One might worry that these exponentially small denominators can contribute to the δ-function 
in the thermodynamic limit, leading to a non-zero conductivity. However, the very construction 
of the local integrals of motion outlined in the following, and the convergence of that procedure, 
strongly suggest that with probability tending to one as η → 0 the exponential smallness of the 
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energy denominators is dominated by the decay of the matrix elements in (17), in the sense that 
at small η the contributions to the δ-function come with weights that are almost surely much 
smaller than η. If this were not the case, resonant energy denominators would systematically 
appear in the construction of the conserved quantities and prevent their locality. Therefore, the 
consistency and convergence of the following construction implies the suppression of d.c. trans-
port in systems admitting a complete set of quasi-local conserved operators.

3.3. Recipe for the construction of integrals of motion

Let us now come back to the actual construction of quasi-local conserved operators. In order to 
find a generalization of the single particle occupation numbers to the interacting case one should 
construct an extensive set of |Λ| functionally independent operators5 {Iα}, which are quasi-local 
and satisfy

[Iα,H ] = 0. (20)

Since the spectrum of the many-body system is almost surely non-degenerate, it follows that 
such conserved quantities also satisfy [Iα, Iβ ] = 0. Their mutual commutativity implies that they 
form a commutative algebra. As we discussed above, the choice of a basis spanning this algebra 
is not at all unique. It is worth mentioning that if the operators Iα commute with H and span the 
algebra of operators then we can write

H =
∑

α

ϵαIα +
∑

α,β

Jα,βIαIβ + ... (21)

as we claimed above. The couplings J ’s have similar exponential decay as those in (10).
Here we present a specific construction of conserved operators, which fixes the arbitrariness 

in their definition in a unique way. Our construction starts from the idea that at weak interactions 
the Iα should be expected to be a perturbed version of the nα . Thus, we look for a perturbative 
series in λ,

Iα = nα + #Iα = nα +
∑

n≥1

λn#I (n)
α . (22)

For the further discussion it is useful to introduce some natural operator subspaces. Iα can be 
sought as an element of the space C of particle-conserving operators on the Hilbert space, and 
without loss of generality we may require it to be Hermitian. Since we will require [H, Iα] =
[H0, Iα] + [U, Iα] = 0, with H0 and U as in (5), we consider the kernel K of the linear map 
f (X) = [H0, X] defined for X ∈ C, as well as its image, O = f (C). The latter is the orthogonal 
complement of K with respect to the inner product of operators, ⟨A, B⟩ = Tr[A†B], C = K ⊕O . 
K is spanned by all possible products of nα’s, while O is spanned by the normally ordered 
operators

OI,J =
∏

β∈I
c

†
β

∏

γ∈J
cγ , I ≠ J, (23)

where the same ordering “<” as previously is chosen for the indices β , γ .

5 Functional independence means that no Iα can be expressed as a function of all the other Iβ .
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At the nth stage of perturbation theory one has to solve the equation
[
U,#I (n−1)

α

]
+

[
H0,#I (n)

α

]
= 0. (24)

In order for this equation to have a solution one has to make sure that [U, #I
(n−1)
α ] ∈ O .6 If 

this is the case, #I
(n)
α is determined up to an element of K . In Appendix A we show how to 

use this freedom to impose binarity of the spectrum of Iα , spec(Iα) = {0, 1}, i.e., I 2
α = Iα . The 

latter allows these operators to be interpreted as generalized quasiparticle number operators of 
the interacting Fermi insulator.

Below we describe the construction of conserved Iα based on a simpler choice, however. 
In particular, we claim that if our Hamiltonian is time-reversal invariant, and thus has real ma-
trix elements in the basis of single particle eigenstates, there is a unique solution of (24) with 
#Iα ∈ O . This choice implies that the only term in the expansion of Iα that commutes with H0
will be the very first one, nα . To prove this at the perturbative level, we have to show that one 
always finds [U, #I

(n−1)
α ] ∈ O , or equivalently, that, x(Ψ0) := ⟨Ψ0|[U, #I

(n−1)
α ]|Ψ0⟩ = 0 for ev-

ery eigenstate Ψ0 of H0. One can easily check that at each stage of perturbation theory #Iα has 
real coefficients in the occupation number basis (23). Thus x(Ψ0) is real. On the other hand, from 
the anti-Hermiticity of [U, #I

(n−1)
α ] it follows that x(Ψ0) is purely imaginary, and thus vanishes 

indeed.
From the above it follows that we can express the solution of Eq. (24) formally as

#I (n)
α = i lim

η→0

∞∫

0

dte−ηt eiH0t
[
U,#I (n−1)

α

]
e−iH0t , (25)

which determines the successive terms in perturbation theory recursively.
As we show in Appendix A, the recipe to construct a binary operator consists in modifying 

order by order the terms in the perturbative expansion

#I (n)
α −→ #B(n)

α = #I (n)
α + #K(n)

α , (26)

by adding to each #I
(n)
α a diagonal operator #K

(n)
α ∈ K , which is determined by the previous 

orders in perturbation theory as:

#K(n)
α = (1 − 2nα)

[
n−1∑

m=1

#B(m)
α #B(n−m)

α +
{
nα − 1

2
,#I (n)

α

}]

. (27)

It is plausible that the convergence for binary operators is essentially the same as for the operators 
constructed below.

Based on the above perturbative argument, we make the following ansatz for the conserved 
quantities:

Iα = nα +
∑

N≥1

∑

I≠J
|I|=N=|J|

A
(α)
I,J

(
OI,J + O†

I,J

)
, (28)

6 Note that it is not obvious from the outset that this simple perturbative scheme should work and produce a local 
operator. Indeed we construct perturbation theory for an extensive set of operators which are all null eigenvectors of 
[H0, .]. In principle one should thus use degenerate perturbation theory for all these operators simultaneously, which 
could turn out to require a non-local change of basis. The further steps below show, however, that this is not the case.
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where the sets I,J run over all sets of indices {β1 < · · · < βN } of single particle states. Lin-
ear constraints on the coefficients A(α)

I,J are found by imposing the conservation condition 
[Iα, H ] = 0. The coefficients result as λ-dependent functions of the random energies ϵα and 
of the random matrix elements Uαβ,γ δ , which vanish in the limit λ = 0. Since the resulting op-
erators Iα are functionally independent for λ = 0, we expect the same to hold for any finite λ
before the delocalization transition. Indeed it is hard to see how a polynomial of Iβ≠α’s could 
contain only a single diagonal term nα.

It is important to note that the expansion (28) should not be seen as an expansion in λ, but 
rather as an expansion in the support on which the operators OI,J act. A formal expansion in 
λ must always be re-summed locally when rare, but very small denominators are encountered, 
implying that the naive perturbative series (24), (25) has vanishing radius of convergence in λ [1]. 
In Appendix B we discuss a simple example where such a re-summation is necessary.

We point out that in any finite system the above ansatz, even though motivated by a perturba-
tive consideration, uniquely determines a conserved operator even if perturbation theory does not 
converge, despite of re-summations. In that case Iα is defined as the finite (possibly exponentially 
large) sum (28) whose coefficients satisfy the linear system of Eq. (40) below. In a delocalized 
regime that operator will have support on the whole system.

3.4. Convergence criterion

We argue that for sufficiently small λ the expansion (28) converges in the operator norm. The 
convergence holds in probability, that is, for any ϵ > 0:

lim
R→∞

P
(

∑

I≠J
|I|=|J|

r(I,J)>R

∣∣A(α)
I,J

∣∣ < ϵ

)

= 1, (29)

where r(I, J) = maxβ∈I∪J |r⃗α − r⃗β | is the maximal distance between the localization center of 
the state α and any of the states β that are acted upon by the operator OI,J. P is the probabil-
ity measure over the disorder realizations. This ensures that the series defining the operator Iα

converges almost surely, since ∥OI,J∥ = 1 for all I,J.
The resulting operator Iα is quasi-local in the sense defined above. As will become clear 

below, cf. Section 5.2, one can associate a length scale to the support of these operators like for 
the non-interacting case: truncating the expansion at that length scale yields operators that are 
conserved up to exponentially small corrections. This scale is essentially the localization length 
pertaining to the interacting problem.

The many-body delocalization transition is expected to happen at a sharply defined critical 
value λ = λc of the interaction strength, at which thermalization and ergodicity are restored. It 
is natural to expect that this coincides with the delocalization of physically defined conserved 
quantities, such as the time average of local operators. There is also a sharply defined interaction 
strength λ = λ′

c at which our integrals Iα become non-local with probability one. Logically we 
cannot exclude that λ′

c is slightly smaller than λc (since it might be possible to find a prescription 
for conserved quantities that leads to more local operators than ours); however, we believe that 
within the approximations we are making, see Section 5, λc and λ′

c cannot be distinguished. We 
therefore use the notation λc indistinctly for both critical values.

To discuss the convergence (29), we map the problem of constructing conserved quantities 
into an equivalent problem of a particle hopping on a disordered lattice whose sites are labeled by 
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the Fock indices (I,J). In particular, the exponential decay of the coefficients of Iα corresponds to 
the localization of the particle on that lattice, in analogy with the non-interacting case (9). In turn, 
the delocalization of the particle corresponds to the divergence of the operator expansion (28).

4. Explicit construction of the integrals of motion

In this section we present the equations defining AI,J in (28) and discuss how to solve them. 
To illustrate the procedure, we first solve exactly a non-interacting case and then proceed with 
the interacting problem.

4.1. Non-interacting single-particle example

Consider a non-interacting one-dimensional disordered Hamiltonian:

HAnd =
∑

i

ϵini − t
∑

i

(
c

†
i ci+1 + c

†
i+1ci

)
, (30)

where ϵi are random energies and the hopping t is treated perturbatively. In this case, the ansatz

Ik = nk +
∑

i<j

A
(k)
ij

(
c

†
i cj + c

†
j ci

)
, (31)

is consistent. Imposing [H, Ik] = 0, we obtain a set of linear equations for the coefficients A(k)
ij , 

one equation for each index k. If for identical indices we define:

A
(k)
ii ≡ δk,i (32)

then the equations for A(k)
ij with i ≠ j can be compactly written as:

(ϵi − ϵj )A
(k)
ij − t

(
A

(k)
i−1j + A

(k)
i+1j − A

(k)
ij−1 − A

(k)
ij+1

)
= 0. (33)

In view of these equations, one may re-interpret A(k)
ij as the wave-function amplitudes of a 

particle on a square lattice with sites (i, j), and correlated on-site disorder Ei,j = ϵi − ϵj , subject 
to the constraint (32). An explicit expression for them can be given in terms of the eigenfunctions 
φα of the Anderson problem (30) as:

A
(k)
ij =

∑

α

ωk
αφα(i)φα(j), (34)

where the ωk
α have to be determined from the constraint

∑

α

ωk
α

[
φα(i)

]2 = δk,i . (35)

The exponential decay of the amplitudes (34) in the distance between the sites i, j follows 
from the localization in space of the eigenstates φα. It implies the convergence of the expan-
sion (31). Therefore, the operators Ik are quasi-local conserved operators, similarly to the particle 
number operators nα in (9).

However, note that these two sets of operators differ, in particular (31) does not contain any 
diagonal terms (i = j ≠ k). Using (34), (35) one can also explicitly check that the operators (31)
do not coincide with the time average of the operators nk(t).



432 V. Ros et al. / Nuclear Physics B 891 (2015) 420–465

4.2. Interacting case

We now return to the interacting case. Since the operators Iα will contain strings of c†’s and 
c’s of arbitrary length, we need a way to deal with large index sets. We introduce the following 
notation: for any index set X = (x1 · · ·xN), we define diagonal coefficients as zero, except if 
X = {α}:

A
(α)
X,X ≡ δX,{α}. (36)

Moreover, for any l, m (with l < m) and any single particle labels γ , δ (with γ < δ), define the 
index sets:

Xl ≡ (x1 · · ·/xl · · ·xN),

X
γ
lm ≡ (γ x1 · · ·/xl · · ·/xm · · ·xN),

X
γ δ
lm ≡ (γ δx1 · · ·/xl · · ·/xm · · ·xN). (37)

In general, the set X···
··· is obtained from X by eliminating the indices in the subscript and append-

ing the ones in the superscript on the left. Note that the resulting sets are thus not ordered. Let 
σ [·] denote the sign of the permutation which orders the set, and define:

s[Xl] ≡ l,

s
[
X

γ
lm

]
≡ l + m + σ

[
X

γ
lm

]
,

s
[
X

γ δ
lm

]
≡ l + m + σ

[
X

γ δ
lm

]
. (38)

Finally, for index sets with |Y| = |Z|, define the modified amplitudes:

Ã
(α)
Y,Z ≡ (−1)s[Y]+s[Z]A(α)

Y,Z. (39)

With this notation, the condition [H, Iα] = 0 is equivalent to the following set of linear equa-
tions for A(α)

I,J:

0 =
(

N∑

n=1

ϵαn − ϵβn

δξ

)

A
(α)
I,J

+ λ

N∑

l,m=1
l<m

[∑

γ<δ

(
ηαlαm,γ δÃ

(α)

I
γ δ
lm,J

− ηγ δ,βlβmÃ
(α)

I,J
γ δ
lm

)]

+ λ

N∑

l,m=1
l<m

N∑

n=1

(−1)N+1
[∑

γ

(
ηαlαm,γβnÃ

(α)

I
γ
lm,Jn

− ηγαn,βlβmÃ
(α)

In,J
γ
lm

)]
, (40)

where (I,J) = (α1 · · ·αN, β1 · · ·βN) and I ̸= J. The diagonal coefficients appearing on the right-
hand side are defined in (36).

4.2.1. Topology of the operator lattice
Similarly as in the previous single-particle example, Eq. (40) can be thought of as a hopping 

problem for a single particle on a lattice with sites given by the Fock indices (I,J) and local, 
correlated disorder EI,J = ∑N

n=1(ϵαn − ϵβn). The hopping is provided by the interaction U , see 
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Fig. 1. Structure of the operator lattice before (a) and after (b) making the forward approximation. Vertices correspond 
to Fock indices (I,J); links are drawn between index pairs, which are connected by the interaction U , that is, if the pairs 
appear simultaneously in at least one of Eq. (40).

Fig. 1(a). The non-interacting limit corresponds to the wave-function A(α) being completely 
localized on the site (I, J) = (α, α).

The lattice topology, as determined by the interactions, is rather complicated. However, 
Eq. (40) has a clear hierarchical structure: the equation for index sets I, J of length N are cou-
pled only to amplitudes with index sets of equal or shorter length. Therefore, the sites can be 
organized into generations, according to the length of their index sets. Hopping is possible only 
within the same generation (second term in Eq. (40)) or between consecutive ones (third term 
in Eq. (40)). In the latter case, the hopping is unidirectional, and thus the hopping problem is 
non-Hermitian.

The connectivity of the lattice is determined by the restrictions in energy, Eq. (7), and space 
(particles need to be in the same or in an adjacent localization volume) of the matrix elements 
Uαβ,γ δ . Hoppings from a site (I,J) in generation N to a site (I′,J′) in generation N + 1 requires 
a particle (or hole) in a state α to scatter to the closest energy level γ above or below α, while 
another particle–hole pair of adjacent levels (β, δ) is created. The particle β can be chosen in 
Nloc ways with Nloc given in (3), and there are two choices for γ and δ, respectively. Therefore, 
the number of Fock states (I′,J′) accessible from (I,J) via the decay of a given quasiparticle α
is:

K = 4
W

δξ
= 4Nloc. (41)

In contrast, hoppings from (I,J) to a site of the same generation correspond to processes where 
each member of a pair of particles (or holes) scatter to one of the two closest energy levels: there 
are 4 possible final states to which a given pair can decay.

At this point we emphasize that we are not restricting ourselves to a specific many-body 
state or energy sector. Thus no assumption about the occupation of the levels or about the po-
sition of the Fermi level EF is made. This gives the largest possible connectivity K. It will 
be reduced to an effective connectivity once we consider the restriction of the integrals Ia to 
subspaces of a definite energy by means of a projector over many-body states, Ĩa = PIaP , 
where

P =
∑

Ea∈[E−δE/2,E+δE/2]
|Ea⟩⟨Ea|. (42)

This projection will alter the connectivity K, so as to reflect the higher probability for some 
processes to be Fermi-blocked, since the involved levels might already be occupied. This 
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yields an effective connectivity Keff, whose typical value depends both on the average en-
ergy density of the states Ea and the average filling fraction of the band. It is not difficult 
to see that if we use typical values for occupation numbers as given by the Fermi distribu-
tion (without assuming the underlying states to be thermal), repeating the above consider-
ations at finite temperature T ≪ EF we obtain Keff ∼ T/δξ , in analogy to the analysis in 
[4].

5. The forward approximation

5.1. Simplifications due to large connectivity, ξ ≫ a

The requirement of convergence of the operator expansion, Eq. (29), can be interpreted as a 
localization condition for the hopping problem on the disordered lattice of Fock indices. In order 
to investigate under which conditions localization occurs, we introduce the main approximation 
of this work: we neglect the second term of Eq. (40), that accounts for the hopping between sites 
in the same generation.

This approximation is motivated by the following consideration, assuming that the number of 
single particle levels per localization volume, and thus K, is large: for operator sites with a den-
sity of Fock indices per localization volume much smaller than the maximally possible ∼ K/ξd , 
the connectivity within the same generation is much smaller than the connectivity K among sites 
in different generations (41). Note, however, that transitions from a given state (I, J) due to the 
second term of Eq. (40) can involve any pair of particles or holes in the same localization volume. 
Therefore, for operators with a high density of indices per localization volume those transitions 
are as numerous as the third class of terms in Eq. (40). Our approximation of dropping the sec-
ond term is therefore not fully controlled at sufficiently high orders in perturbation theory where 
operators with a high density of indices per localization volume appear. We postpone further 
discussions of the subtleties related to this approximation to Section 10.

Once the second term in (40) is dropped, the equations reduce to recursive equations for 
increasing generations, with the initial condition A(α)

α1,β1
= δα1,β1δα1,α . However, only some 

of the amplitudes A
(α)
I,J in (28) are determined through the recursion, while we approxi-

mate all other amplitudes to be zero: in generation N , the non-zero amplitudes correspond 
to sites (I,J) that can be reached from (α, α) via directed paths of length N − 1. Retaining 
only these sites simplifies the structure of the lattice of Fock indices very substantially, see 
Fig. 1(b).

The amplitudes on these sites (I, J) can be written as the sum over all directed paths that 
connect them to the root (α, α) in Fig. 1(b):

A
(α)
I,J =

∑

directed paths:
(α,α)→(I,J)

ωpath. (43)

The path weights ωpath are of the form:

ωpath ≡ (−1)σpath

N−1∏

i=1

ληαiβi ,γiδi δξ
∑i

k=1 Eαiβi ,γiδi

(44)

in close analogy to forward approximations in single particle problems [1,37–40].
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The factor (−1)σpath takes into account the global fermionic sign associated with the path, aris-
ing from the sign factors in Eq. (40). However, we will see below that these signs are immaterial 
at the level of our approximation.

Note that the resulting expression for A(α)
I,J is of order λN−1, that is, the lowest possible or-

der in λ for amplitudes of operators involving 2N particle–hole indices. Indeed, at least N − 1
interactions are needed to create the corresponding excitations.

5.2. Probability of resonances on the operator lattice

Let us discuss the configuration in real space of the indices (I,J) with |I| = N , which are 
retained within the forward approximation, cf. Fig. 1(b). Since the amplitudes A(α)

I,J are of order 
λN−1 and the interaction is local, the indices satisfy r(I,J) ≤ Nξ : amplitudes involving single 
particle states sufficiently far away from the localization center α must belong to sufficiently 
high generations. Within the approximations made, the convergence criterion (29) can then be 
restated in terms of the generation number N as:

lim
N∗→∞

P
( ∑

N>N∗

∑

I≠J
|I|=N=|J|

∣∣A(α)
I,J

∣∣ < ϵ

)
= 1 (45)

for arbitrary ϵ > 0.
A sufficient condition for Eq. (45) to hold is that for some z < 1 and for N∗ sufficiently big:

P
(

∀N > N∗,
∑

I≠J
|I|=N=|J|

∣∣A(α)
I,J

∣∣ < zN−1
)

= 1 − ζ
(
N∗) (46)

with

lim
N∗→∞

ζ
(
N∗) = 0. (47)

The left hand side of Eq. (46) can be interpreted as the probability that no resonance7 occurs 
at large distance from the unperturbed localization center (α, α). Whenever it holds, it implies 
the quasi-locality of the operators Iα within the forward approximation: indeed, Eq. (46) implies 
that the first appearance of operators cβ, c†

β ’s in Iα , with |r⃗β − r⃗α| ≈ Nξ and N ≫ 1 is with high 
probability exponentially small in N .

In the following we will show that Eq. (46) holds in a regime of small couplings λ; the critical 
value λc at which (46) ceases to hold gives an estimate for the radius of convergence of the 
operator series, and thus for the boundary of the many-body localized phase.

5.3. Similarities and differences with localization problems on trees

The similarity to a one-particle problem allows us to revisit analogies and differences between 
many-body localization and single particle problems on lattices which have some features of 
a Cayley tree [41] (see also [42,43] and references therein). Indeed, in the simplified lattice 

7 A resonance is said to occur at a site (I, J) if AI,J is comparable with the amplitude at the origin (α, α), i.e., if it is 
of order O(1).
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Fig. 2. Directed path in the operator lattice and associated ordered scattering graph. The sites (I,J) along the path 
correspond to the intermediate states of the graph, indicated by dashed lines. Hoppings on the lattice correspond to 
vertices Uα1α2,β1β2 in the graph. The energy EI,J of an intermediate state is the sum of the energy differences 
Eα1α2,β1β2 = ϵα1 + ϵα2 − ϵβ1 − ϵβ2 associated with all preceding scatterings. The three excitations emanating from 
a vertex are associated to the outgoing legs as follows: the excitation with energy level adjacent to the incoming one 
is associated with the central leg. The upper and lower leg correspond to the particle and the hole, respectively, of the 
additionally created pair. The condition (7) requires them to have an energy difference of the order of δξ .

of Fig. 1(b), the number of sites at distance N from the localization center (α, α) grows as 
KN with K given in (41). This exponential growth is analogous to the growth on trees and 
other hierarchical lattices, see e.g. [44]. However, we caution the reader that, despite superficial 
similarities, the calculation we will perform does not reduce to studying an equivalent single 
particle problem on a Cayley tree as in [45]. Indeed, in the latter problem there is a unique path 
leading from the root to a given site and thus there are no loops. In contrast, in the operator lattice, 
there are typically exponentially many diagrams (or effective paths) leading to a given site, and 
thus plenty of loops, similarly as in finite dimensional lattices. Nevertheless, it is usually the case 
that among those many paths only very few dominate the sum over all paths – an observation we 
will heavily rely on in the sequel.

Our present problem also differs from the study of the decay of excitations in a zero-
dimensional quantum dot, as considered in [41]. There, no genuine delocalization can take place 
due to the finite available phase space. Instead, it is essential that our operator expansion leave 
the localization volume of the initial state α, for delocalization to be possible beyond a critical 
interaction strength λc.

5.4. Connection with many-body diagrammatic perturbation theory

Insight into the meaning of the forward approximation at the level of the many-body system 
is given by a diagrammatic representation of the paths, as shown in Fig. 2.
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Fig. 3. Loops in the many-body lattice corresponding to different processes with the same final state, and the correspond-
ing ordered graphs. The graphs differ only in the order in which the interactions U1, U2, U3 act. The weights of such 
paths are strongly correlated: they are all proportional to the same product of matrix elements, U1U2U3, and have highly 
correlated denominators. The sum over all these ordered graphs constitutes a diagram.

To any path of length N in the operator lattice we uniquely associate an ordered graph with N
vertices. These graphs have two main branches representing the decay of the operators cα and c†

α

of the initial operator nα . Directed paths of length N on the lattice translate into graphs having 
the geometry of a tree, with a root and N nodes corresponding to the creation of particle–hole 
pairs. The intermediate states of the graph correspond to the sites (I,J) along the path in the 
operator lattice, their energy being EI,J. Note that the order of the sites along the path fixes the 
order of the interaction vertices in the graph.

Such graphs can be grouped into diagrams: members of the same diagram only differ in the 
ordering of vertices, while sharing the same geometry and labeling of the legs; they are obviously 
highly correlated among each other. An example is shown in Fig. 3, where all three paths connect 
the state (I,J) = (α2β2β1α3, γ2γ1δ3γ3) to the root (α, α), and involve the same interaction matrix 
elements.

Such correlated paths exist for all diagrams with branchings (i.e., vertices where more than 
one of the outgoing excitations undergo further scattering). The order of the subsequent interac-
tions on different branches can be permuted. This corresponds to different paths on the lattice 
and different ordered graphs, respectively.

Obviously we should sum over all possible vertex order permutations of branched diagrams 
with fixed geometry and labeling of legs.
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Fig. 4. (a) Branched decay of a single particle. (b) Geometry of a diagram with the maximal possible number of branch-
ings for a fixed number of interactions.

5.4.1. Singly branched diagrams
Consider the sum of the energy denominators8 of the three path weights in the example of 

Fig. 3. It is immediate to check that the following holds:

Σ ≡ 1
E1(E1 + E2)(E1 + E2 + E3)

+ 1
E1(E1 + E3)(E1 + E2 + E3)

+ 1
E3(E3 + E1)(E3 + E1 + E2)

= 1
E3

1
E1(E1 + E2)

, (48)

where Ei is the energy difference between out- and in-going states at the vertex i. Thus, the sum 
over the three paths weights in Fig. 3 can be written as a single term ω̃Γ :

ω̃Γ

(λδξ )3 ≡ η3

E3

η1η2

E1(E1 + E2)
, (49)

where ηi is the random variable associated the vertex i. More precisely, ω̃Γ is the product of two 
weights of the form (44), describing the independent decay of the particle c†

α and the hole cα , 
respectively. It can easily be checked by induction that this factorization generalizes to an arbi-
trary number of interactions in such singly branched diagrams: for any of them, a weight of the 
form (49) is obtained by summing over all the path weights. We refer to ω̃Γ as the weight of the 
effective path associated to the diagram, and denote the latter by Γ .

5.4.2. Multiply branched diagrams
Let us now discuss further branchings in the sub-diagrams describing the independent decays 

of the particle c†
α and the hole cα . Consider a multi-branched decay of the single particle c†

α, as 
shown in Fig. 4(a). There the particles γ and δ, which are produced in the first scattering, decay 
further through n vertices Ui=1,...,n, and the vertex Ũ , respectively. The possible orderings of this 
diagram correspond to n + 1 correlated paths, which differ by the relative position of the vertex 
Ũ with respect to the Ui . Their sum,

Σ ′ = 1

E0(E0 + Ẽ)(E0 + Ẽ + E1) · · · (E0 + Ẽ + · · · + En)

8 The global sign of amplitudes of tree-like diagrams without loops does not depend on the order in which the interac-
tions act. This is because the associated four-fermion interaction terms mutually commute, which implies that the signs 
arising from eventually bringing the operators into the normal order are the same for all vertex orders.
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+ 1

E0(E0 + E1)(E0 + E1 + Ẽ) · · · (E0 + E1 · · · + En)
+ · · ·

+ 1

E0(E0 + E1)(E0 + E1 + E2) · · · (E0 + E1 · · · + Ẽ)
, (50)

does not simply factorize, but it can nevertheless be written in compact form through an integral 
representation,

Σ ′ = lim
ϵ→0

∫
dω1dω2δ(ω1 + ω2 − E0)

ω−
1 (ω−

1 + Ẽ) · ω−
2 (ω−

2 + E1) · · · (ω−
2 + E1 + · · · + En)

, (51)

where ω−
i = ωi − iϵ. Indeed, the sum Σ ′ (multiplied by the matrix elements of the correspondent 

vertices) must be equal to the retarded Green function associated to the independent, parallel 
decay of the particle γ and the hole δ, computed in the forward scattering approximation and at 
energy E0. For loop-free graphs like the one of Fig. 4(a), the decay processes of the particle γ
and the hole δ are independent. In the time domain, the Green function of their joint decay is the 
product of the individual Green functions, which leads to the convolution (51) in frequency space.

The above formula is rather natural when relating with standard many-body perturbation the-
ory. Indeed, after the summation over orderings of vertices, the diagrams of a fixed geometry are 
in direct correspondence with the diagrams obtained by BAA in the perturbative expansion of 
the Keldysh self energy in the imaginary self consistent Born approximation. The latter neglects 
the renormalization of the real part of the self energy and retains only processes where at each 
vertex an additional particle–hole pair is created. In our formalism, this corresponds to the di-
rected paths jumping from generation to generation, see also the discussion in Appendix B. Not 
surprisingly, the statistical analysis of this class of diagrams will give an estimate of the radius of 
convergence for the operator expansion (28) which is similar to the criterion for the breakdown 
of stability of the localized phase found by BAA, or to its extension to infinite temperature [46]. 
Our further analysis is also very similar to the calculation in Ref. [47], but differs in some points, 
which will be indicated.

The expression (51) for a branched diagram is a random variable, whose probability distribu-
tion is hard to analyze. However, the analytic structure of the integrand can be exploited to rewrite 
Σ ′ as a sum over a much smaller number of terms than the number of orderings in Eq. (50). After 
performing the integral over ω2 in Eq. (51), we find a number of poles in the complex plane of 
ω1. Using the residue theorem, we can write (51) as the sum over residues of the poles in the 
half plane, which contains less poles. In the particular example considered, closing the contour 
on the upper half plane yields the algebraic identity:

Σ ′ = 1

Ẽ

1
E0(E0 + E1)(E0 + E1 + E2) · · · (E0 + E1 + · · · + En)

− 1

Ẽ

1

(E0 + Ẽ)(E0 + Ẽ + E1)(E0 + Ẽ + E1 + E2) · · · (E0 + Ẽ + E1 + · · · + En)
.

(52)

The two terms in (52) have a similar structure as the denominators in the original path 
weight (44). For the considered sub-diagram, the sum over all the n + 1 orderings of vertices 
could thus be reduced to the sum of only two “effective path” weights.
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5.4.3. General branched diagrams
A convolution formula analogous to Eq. (51) can be written for any branched diagram: to 

each branching one associates an integral of the form (51) with one auxiliary frequency per 
decaying branch, as well as an energy conserving δ-function for the vertex (see Appendix C for 
an example). Then one eliminates the δ-functions by integrating over the frequency variable, that 
occurs most often in the denominators. Using the residue theorem, the remaining integrals can be 
carried out, and the sum over all orderings of a diagram with fixed geometry can be expressed as 
a much smaller sum of weights of effective paths, as in the example above. The number of such 
terms is given by the product of the number of residues obtained for each auxiliary frequency.

The number of effective paths associated to a general diagram depends on its structure; to 
obtain an upper bound on this number, consider the diagram with the maximal number of branch-
ings at fixed order N , see Fig. 4(b). In Appendix C, we show that in this case the number of 
effective paths scales as exp[log 3 (logN)2 + O(logN log(logN))]. This upper bound implies 
that the number of effective paths associated to an arbitrary diagram is always sub-exponential
in N .

6. Summing diagrams

In this section we show that in the localized region, at a any given order of the expansion, 
a few terms dominate the operator sum. The term with the largest coefficient in turn is dominated 
by the maximal diagram contributing to it.

6.1. Summing over diagrams and their effective paths

Let DI,J denote the set of all diagrams with final state I, J, each diagram being characterized 
by its geometry and the labeling of its segments. For any diagram d ∈ DI,J, let P(d) be the set 
of effective path weights ω̃Γ associated to it, following the procedure described in the previous 
section. The corresponding amplitude on the operator lattice can then be written as

A
(α)
I,J =

∑

d∈DI,J

( ∑

Γ ∈P(d)

ω̃Γ

)
≡

∑

d∈DI,J

S(d). (53)

As we shall prove in the following section, the ω̃Γ are random variables with fat-tailed distri-
butions. The effective paths associated to a diagram d ∈ DI,J all involve the same set of energies 
in their denominators and are thus correlated. Nevertheless, we argue that the tail of the distribu-
tion of their sum, S(d), is still very similar to the tail distribution of a single effective path, since 
in the case of a large deviation, S(d) is very likely to be dominated by the effective path with 
the biggest weight. Indeed, consider a rare set of energies Ei , which produces an atypically large 
value of S(d). There is typically one single effective path for which all denominators become 
simultaneously small, while the combination of energies in the denominators of other effective 
paths are very likely to be suboptimal for a fraction of the denominators. Therefore, with high 
probability, S(d) will approximately be equal to the maximum over all effective paths weights: 
S(d) ≈ maxΓ ∈P(d) ω̃Γ .

The set of energies Ei that optimize distinct effective paths are typically different, and thus 
these rare events can be approximated as being independent from each other. Hence, the tail of 
the distribution of S(d) is enhanced with respect to the tail of a single path weight by a factor 
|P(d)|. We shall see, however, that due to the sub-exponential scaling of the number of effective 
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paths, this enhancement is immaterial for the estimate of the radius of convergence of the operator 
series.

Inspecting the explicit examples of Eq. (52) or Eq. (C.3), one can see that there exist en-
ergy realizations for which cancellations occur between effective paths with significant weight. 
This happens when the single path weights are individually big, but Ẽ is much smaller than all 
the other energy variables Ei , which leads to a cancellation between effective paths. However, 
such configurations require an atypically small Ẽ and do not occur with significant probability. 
Therefore the suppression of the tail distribution due to such effects is hardly relevant.

Correlations between effective path weights of different diagrams are even weaker than those 
above, since they share at most a fraction of all Ei . Therefore we may approximate rare deviations 
of S(d) and S(d ′) as independent if d ≠ d ′. Given that the S(d) are themselves fat-tailed random 
variables, the sum over diagrams is dominated by the largest term. Therefore, the full operator 
amplitude A(α)

I,J is likely to be dominated by one single effective path:

A
(α)
I,J ≈ max

d∈DI,J

(
max

Γ ∈P(d)
ω̃Γ

)
≈ max

Γ :(α,α)→(I,J)
ω̃Γ (54)

where on the right hand side the maximum is taken over all effective paths from (α, α) to (I,J). 
As a consequence, for the tail of the probability distribution we obtain the approximation

P
(
A

(α)
I,J = a

)
≈ |DI,J|P(d)P (ω̃Γ = a), (55)

where P(d) is an average number of effective paths contributing to a diagram.

6.2. Summing over amplitudes: probability of resonances

Similarly to the effective path weights of different diagrams, also the amplitudes A(α)
I,J as-

sociated to different sites I,J are weakly correlated, and we treat them as independent random 
variables. Let us now consider the probability in (46):

P
(

∀N > N∗,
∑

I≠J
|I|=N+1=|J|

∣∣A(α)
I,J

∣∣ < zN

)
≈

∏

N>N∗
P
( ∑

I≠J
|I|=N+1=|J|

∣∣A(α)
I,J

∣∣ < zN

)
. (56)

Here we approximated the probability to satisfy the condition at each generation to be indepen-
dent from the previous generations. As follows from (55) and from the fact that the effective 
paths ω̃Γ have fat tails, the amplitudes A(α)

I,J have themselves a fat-tailed distribution. Their sum 
is therefore dominated by the maximal amplitude, and each factor on the right hand side (56) can 
be computed as:

P
(

Max
I≠J

|I|=N+1=|J|

∣∣A(α)
I,J

∣∣ < zN
)

=
∏

I≠J
|I|=N+1=|J|

(
1 − P

(∣∣A(α)
I,J

∣∣ > zN
))

≈ exp
(

−
∑

I≠J
|I|=N+1=|J|

P
(∣∣A(α)

I,J

∣∣ > zN
))

. (57)

Using (55), the exponent in (57) is re-written as:
∑

I≠J
|I|=N+1=|J|

P
(∣∣A(α)

I,J

∣∣ > zN
)
=

∑

I≠J
|I|=N+1=|J|

|DI,J|P(d)P
(
|ω̃Γ | > zN

)
. (58)
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The probability in (58) is a large deviation probability: indeed, the weights ω̃Γ of effective 
paths are of order O(λN): in order for ω̃Γ to be bigger than zN (with z arbitrarily close to 1), 
this decay factor must be compensated by an atypical smallness of the energy denominators. We 
devote the following section to the computation of the probability of these large deviation events. 
The calculation will reveal that, for λ sufficiently small, the probability decays exponentially 
with N . This decay competes with the exponential growth of the total number of effective paths 
of length N :

NN ≡
∑

I≠J
|I|=N+1=|J|

|DI,J|P(d), (59)

which we estimate in Section 8 below. The competition between these two terms leads to a 
transition at a given critical value of λ, which we determine in Section 9.

7. Large deviations of paths with correlated denominators

In the previous section we argued that the large deviations of operator amplitudes are essen-
tially determined by the large deviations of effective path weights. The weight of any effective 
path is the products of two terms, describing the decay of c†

α and cα , respectively. In each of those 
terms (cf. (52) e.g.), the functional dependence on the Ei is similar to that in the original path 
weights (44). We will first discuss the latter and then show that general effective paths behave 
essentially identically.

Because of the energy restrictions (7) the energy differences Eαβ,γ δ/δξ are random variables 
of order O(1). For simplicity, we take them as independent Gaussian random variables with zero 
mean and unit variance. The denominators in (44) are partial sums of such energies, and we may 
write:

|ωpath| =
N−1∏

i=1

λ|ηαiβi ,γiδi |
|si |

, (60)

where si = (E1 + · · · + Ei )/δξ , with Ei ≡ Eαiβi ,γiδi .
In path weights of the form (60) we are mostly interested in characterizing the distribu-

tion of the product of denominators. The numerator behaves as ∼ (ληtyp)
N−1, with ηtyp =

exp[⟨log |η|⟩] = 1/e, and we neglect the Gaussian fluctuations of its logarithm.
The fact that the denominators in (60) are correlated distinguishes the many-body problem 

from single particle localization. These correlations are a feature that any perturbative treatment 
of MBL has to deal with, and it is thus important to develop a method to calculate the large 
deviations in this case.

The distribution function PN(y) of the logarithm of the product of denominators,

YN ≡ −
N∑

i=1

log |si |, (61)

can be obtained from its generating function,

GN(k) ≡ E
[
e−kYN

]
, (62)



V. Ros et al. / Nuclear Physics B 891 (2015) 420–465 443

by inverse Laplace transform,

PN(y) = 1
2π i

∫

B

eykGN(k)dk, (63)

where B is the Bromwich path in the complex k-plane.
In the present case, the relevant y scales linearly with N , and thus we define ỹ = y/N , and

PN(Nỹ) = 1
2π i

∫

B

eNφN dk, (64)

where the function

φN(ỹ, k) = ỹk + logGN(k)

N

N→∞→ φ(ỹ, k) (65)

has a well-defined limit, φ(ỹ, k), for large N . In that limit, the integral over k can be done by 
a saddle point approximation. The contour has to be deformed to pass parallel to the imaginary 
axis through k∗ = k∗(ỹ), which satisfies:

ỹ = − d

dk

[
lim

N→∞
logGN(k)

N

]

k=k∗(ỹ)

. (66)

Large deviations correspond to ỹ = O(1). In the case of parametrically small interaction strength 
λ (which is relevant in the case of large connectivity K) we will see that we can restrict our 
attention to ỹ ≫ 1, see Section 9. For large values of ỹ, we will see that the saddle point tends to 
k∗ → −1.

The computation of the generating function GN is given in Appendix D. Here it suffices to 
say that the recursive structure of the denominators si lends itself naturally to a transfer matrix 
expression for GN , which grows as the N th power of the largest eigenvalue.

The final result for the exponent at the saddle point is

φ
(
ỹ, k∗(ỹ)

)
= −ỹ + log

(
2eỹ√

2π

)
+ γ

2ỹ
+ O

(
1
ỹ2

)
, (67)

for ỹ ≫ 1. From this we obtain the large deviation probability:

PN

(

Nỹ = log

[
N∏

i=1

1
|si |

])

= C(ỹ,N)

(
2e√
2π

)N

ỹNe−NF(ỹ), (68)

where C contains only negligible logarithmic corrections to the exponent, and

F(ỹ) = ỹ − γ

2ỹ
+ O

(
1
ỹ2

)
. (69)

7.1. Comparison between correlated and uncorrelated denominators

It is interesting to compare the large deviation distribution (68) with the tails of the distribution 
of the random variable:

Y ′
N ≡ −

N∑

i=1

log |Xi | (70)
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where Xi are i.i.d. Gaussian random variables with zero mean and unit variance. As derived in 
Appendix D, at leading order in N , up to a correction F → F − log 2/(2ỹ) +O(1/ỹ2), both have 
the same form (68).

Physically, this result can be understood as follows. By restricting to ỹ ≫ 1, we are concen-
trating on very rare realizations of YN . Those are insensitive to the details in the structure of the 
denominators. Indeed, atypically big values of objects like (

∏N
i=1 si)

−1 arise from restraining the 
random walk (s1, · · · , sN) to the vicinity of the origin. This boils down to computing the proba-
bility that si is small conditioned on the fact that si−1 was small. To leading order in the typical 
smallness of such denominators, one obtains the same result as by minimizing N denominators 
independently. The leading correction with respect to the case of i.i.d. denominators consists in 
a small suppression of the tail, since it is slightly less probable to encounter small denominators, 
when they are correlated.

The above reasoning can be extended to more general weights ω̃Γ , associated with effective 
paths. Indeed, the corresponding denominators are still products of single energies or partial sums 
(see Eq. (52) or Eq. (C.3)). In the limit of very large deviations (ỹ ≫ 1) they all share the same 
tail distribution (68), the only relevant parameter being the total number N of denominators. 
Therefore, approximating the numerator in ω̃Γ with its typical value (ληtyp)

N and using (68), we 
finally obtain:

P
(

log |ω̃Γ |
N

= x̃ + logληtyp

)
≈ C(x̃,N)

(
2e√
2π

)N

x̃Ne−NF(x̃), (71)

with F given in (69).

8. Counting diagrams

8.1. Justification of neglecting interaction vertices with equal indices

We recall that we have neglected interaction terms Uαβ,γ δ where two or more indices are 
identical. This will significantly simplify the combinatorics of counting diagrams. Let us now 
give a justification a posteriori for this approximation, by showing that such terms would make 
contributions which are down by factors of 1/K. Consider the various scattering processes with 
one pair of equal indices among the four legs of a vertex, whereby we restrict to one ingoing and 
three out-going particles. Consider first the scattering α → β with the simultaneous creation of a 
pair (γ , α). The constraints |ϵα − ϵγ | < δξ , |ϵα − ϵβ | < δξ imply that all levels have to lie within 
δξ from each other. The phase space for such events is smaller by a factor of 1/K with respect to 
generic scattering processes where γ is unrestricted.

The second case is more subtle. It consists in a scattering α → β from a particle γ , which 
remains in place. If this is to be a resonant contribution one needs the energy increment #E of 
the vertex to be |#E| = |ϵα − ϵβ | ! δξ/K. In a scattering where γ switches to a neighboring 
state δ, with |ϵγ − ϵδ| ∼ δξ , one can optimize α, β among the K different choices, such as to 
make #E of order δξ/K. However, if γ remains in place, the optimum over the K choices for 
α, β will yield a parametrically bigger #E = ϵα − ϵβ , because of the repulsion between the 
neighboring levels α,β . Therefore such processes are systematically much less resonant than 
processes involving four distinct levels.9

9 BAA dropped such terms for a different reason, working directly with Hartree–Fock orbitals, which implicitly depend 
on the interaction strength and the initial state to be studied. The latter introduces a slight dependence of the localization 
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8.2. Combinatorics of diagrams

We now estimate the total number of diagrams NN at a given order N , cf. Eq. (59). For 
simplicity, we restrict here to the case of spatial dimension d = 1.

Consider any amplitude A(α)
I,J with index set (I,J) = (α1 · · ·αN, β1 · · ·βN). The localization 

centers rαi , rβi , cf. Eq. (6), of the single particle indices are distributed over a certain number 
of localization volumina of length ξ around rα , with a given number of single particle indices 
per localization length. Due to the energy restrictions imposed on the interactions, particles and 
holes belonging to the same localization volume are organized in pairs: members of a pair are 
produced in the same scattering process, and have an energy difference of order δξ .

Due to the fact that the interaction is local, only particle–hole pairs in nearby localization 
volumina can be involved in the same interaction vertex: this imposes some constraints on the 
geometry of the diagrams representing the scattering processes with (I,J) as final state. For ex-
ample, states (I,J) having only one particle–hole pair per localization length must be associated 
to diagrams with no branchings in the decays of c†

α and cα , since the particle–hole pairs must be 
created in a fixed order dictated by their spatial sequence, and thus no permutation is possible. 
In contrast, final states with several pairs per localization length can be reached by a variety of 
diagrams.

In the following, we construct the subset of diagrams corresponding to scattering processes 
with a “necklace structure”, in which the particle–hole pairs are created in a sequence of n groups 
of mi=1,...,n pairs, each group belonging to a single localization volume. This furnishes a lower 
bound on the number of all diagrams. Note that mi is bounded by the maximal number of 
particle–hole pairs per localization volume (Nloc = K/4), and 

∑n
i=1 mi = N . Due to locality, 

pairs belonging to the ith and (i + 1)th group belong to neighboring localization volumina in 
real space; pairs belonging to different groups i, j ≠ {i − 1, i + 1} might belong to the same 
localization volume.

This construction is done in two steps: first, for every group i we build all possible sub-
diagrams with final indices corresponding to the indices of the mi pairs, as illustrated in Fig. 5. 
In a second step, we connect sub-diagrams of neighboring groups by a single scattering vertex. 
We thus obtain a global necklace diagram, and count how many different diagrams with this 
structure there are. The counting is similar to Ref. [47], but here we include diagrams corre-
sponding to final states with a non-uniform density of particle and hole indices per localization 
length, since these have a larger abundance.

A central ingredient for the combinatorics is the number of all possible geometries of diagrams 
with m interactions in a given localization volume, see Fig. 5. We denote this number by Tm. It 
equals the number of trees with one root (of connectivity 2) and m nodes (of connectivity 4). As 
we derive in Appendix E:

Tm = 3
3
2 +3m

π

Γ
(
m + 2

3

)
Γ

(
m + 4

3

)

Γ (2m + 3)
∼ 3

4

√
3
π

1

m
3
2

(
27
4

)m

. (72)

length ξ , and hence of the level spacing δξ , on λ. This in turn might induce a small shift of λc . However, since their 
subsequent analysis boils down to dropping the same terms as we have argued above, this shift is expected to be a 1/K

correction.
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Fig. 5. Construction of the diagrams representing the decay of groups of mi particle–hole pairs, where members of 
the same group belong to the same localization volume. The diagrams are constructed by connecting sub-diagrams 
describing the decay of each single group of pairs. We restrict the combinatorics to only one scattering vertex connecting 
the sub-diagrams of different groups. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)
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Following the reasonings explained in Fig. 5, we find the number of necklace diagrams asso-
ciated with fixed groups of mi pairs to be

nneck =
n∏

i=1

[
mi2mi mi !Tmi

]
. (73)

The origin of the various factors is explained in detail in Fig. 5: the factor mi counts the num-
ber of pairs which are created subsequently to the first pair entering the volume associated to 
the group i. One of those mi pairs belongs to the adjacent localization volume and creates the 
subsequent cascade of pair creations there. The second factor describes the choice of two levels 
(the level closest in energy above or below) to which an incoming quasiparticle may scatter at a 
vertex. The factorial term comes from the choice of assigning the mi pairs to the final legs of a 
given tree diagram in the localization volume of group i.

Consider first the case in which only a single group i of pairs occupies a given localization 
volume. The number of choices of {mi} particle–hole pairs is then given by

ns

(
{mi},K

)
≡

n∏

i=1

2mi

(
Nloc − mi

mi

)
=

n∏

i=1

[
2mi

(
K/4 − mi

mi

)]
. (74)

Indeed, a configuration of mi pairs of (disjoint) adjacent levels, and the remaining Nloc − 2mi

untouched levels in the same localization volume form a set of Nloc − mi objects, out of which 
mi are pairs. This explains the binomial factor. For each pair, one can choose how to assign the 
two levels to particle and hole, respectively. This yields the factor 2mi .

As we will see below, the relevant mi are of order O(1) ≪ K. We therefore approximate:
(

K/4 − mi

mi

)
≈ (K/4)mi

mi !
. (75)

Note that the necklace structure will in general fold back and forth in real space, such that 
several groups will get to lie in the same volume. Nevertheless, the above approximation remains 
good as long as the total number of pairs created in a given localization volume is significantly 
smaller than K.

Combining Eqs. (73)–(75), the total number of necklace diagrams is:

NN ≈ P(d)
∑

{mi }|
∑

i mi=N

1
2

n∏

i=1

[
2Kmi miTmi

]
, (76)

where the average number of effective paths per diagram, P(d), scales sub-exponentially with N . 
The factors of 2 arise due to freedom of each group to scatter to the left or the right of the 
preceding group as long as there is still significant phase space in the corresponding local-
ization volumina. The correction due to the finiteness of K ≫ 1 is small and was thus ne-
glected.

We now determine the distribution of group sizes {mi} which dominates the sum (76), writing

NN = 1
2

∑

{mi }|
∑

i mi=N

∏

i

2Kmi miTmi = KN

2

∑

{mi }|
∑

i mi=N

∏

i

2miTmi

= KN

2

∑

{nm}| ∑m mnm=N

( ∑
m nm

n1, n2, ..., nm

)∏

m

(2mTm)nm, (77)
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Fig. 6. The plot (a) shows the distribution of the number nm/N of groups of m particle–hole pairs in necklace diagrams 
dominating NN . The plot (b) shows the probability mnm/N that a given pair belongs to a group containing m pairs.

where nm = ∑
i δm,mi is the number of groups i with m pairs. For the relevant m’s, nm ∼ N ≫ 1; 

therefore, at large N the sum (77) is dominated by the saddle point over the nm. Impos-
ing the constraint 

∑
m mnm = N with a Lagrange multiplier µ yields the saddle point equa-

tions:

µm = − log(nm) + log
(∑

m

nm

)
+ log(2mTm), (78)

and thus
nm∑
m′ nm′

= 2mTme−µm. (79)

The Lagrange multiplier µ is fixed by the constraint:

1 =
∑

m

2mTme−µm = −2
d

dµ

[
T
(
x = e−µ

)]
, (80)

with T(x) = ∑
m Tmxm. As discussed in Appendix E, T(x) = [T (x)]2, where T (x) is the gener-

ating function of 3-branched trees satisfying T (x) = 1 + xT 3(x). The solution of Eq. (80) is:

e−µ = 0.0941. (81)

The saddle point solution can thus be written as
nm

N
= AmTme−µm, (82)

where 1/A = d2/dµ2[T (x = e−µ)2] = 1/0.778, as follows from the constraint 
∑

m mnm = N . 
The resulting values for nm/N are shown in Fig. 6(a). The probability that a given pair is created 
in a scattering process involving a total of m pairs in the same localization volume is plotted 
in Fig. 6(b). We see that most pairs are created together with a few more pairs within the same 
localization volume.

Plugging (82) into the saddle point for NN , we find the number of diagrams to grow like 
(dropping pre-exponential factors)

NN ≈
(
Keµ

)N ≈ (10.6K)N . (83)

This result is based on the approximation that we only allow for diagrams with a necklace 
structure, where groups of mi pairs are connected by a single scattering between subsequent 
localization volumina. Performing the calculation without this restriction is difficult since it is 
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less easy to control the spatial constraints. However, we can easily obtain an upper bound by 
realizing that all possible diagrams consist in all geometrically possible labellings of trees of 
size N . The number of trees grows as (27/4)N . For each label one has roughly 3K possibilities, 
as the pair must lie in a localization volume adjacent to or identical with the one of the pair 
preceding it on the tree. This yields the simple upper bound

NN <

(
3 · 27

4
K

)N

≈ (20.25K)N , (84)

which yields a growth factor which is only about a factor of 2 bigger than the much more con-
servative estimate (83). Let us thus write

NN ≈ (CK)N , (85)

with

10.6 < C < 20.25. (86)

8.3. Effect of Fermi blocking

The above counting is still not entirely complete. Indeed, eventually the operators we have 
constructed should act on some many body states, and get annihilated when attempting to create 
particles on occupied states or holes on already empty states. In an infinite temperature state, and 
at a filling fraction ν each particle–hole creation operator has a chance to annihilate the state with 
probability 1 − ν(1 − ν), or, in other words, only a fraction of [ν(1 − ν)]N of all operators will 
not annihilate a typical infinite temperature state. One should thus modify the number of relevant 
diagrams to

NN → NN≃
(
Cν(1 − ν)K

)N
. (87)

In the next section we use this result to determine the radius of convergence of the operator series. 
Similar considerations apply to finite temperature as we will discuss below.

8.4. Structure of the dominant operator terms

Our result differs from the similar analysis in Ref. [47]. The main difference consists in our 
assumption that the sum of diagrams that add up to the amplitude of a given operator OI,J is 
dominated by the biggest term (provided the considered amplitude is among the largest ones 
at that order). In contrast, the authors of [47] assumed that the exponentially many diagrams 
have comparable amplitudes, but random signs, and applied the central limit theorem to the sum. 
Moreover, we allow for fluctuations of the number of pairs generated in each localization volume 
instead of imposing a homogeneous spatial density. We find that in the restricted set of necklace 
diagrams the optimal distribution of group sizes mis is peaked at values of order O(1), but still 
clearly larger than one. Upon folding of the necklace, the number of pairs per localization volume 
will become even more significantly larger than 1. Thus we see that multiple scattering processes 
within a localization volume significantly enhance the delocalization tendency. This shows that 
the many-body problem is genuinely different from an effective one-body problem, in which a 
simple excitation would propagate nearly ballistically, by shedding one particle–hole excitation 
in every localization volume.
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9. Estimate of the radius of convergence

We now have all the ingredients to estimate the probability of resonances at generation N , in 
order to prove that for λ sufficiently small there are no delocalizing resonances and (46) holds 
true.

Consider the probability in expression (58). Using (71), we estimate:

P
(
|ω̃Γ | > zN

)
≈

(
2e√
2π

)N
∞∫

log( z
ληtyp

)

C(x̃,N)x̃Ne−NF(x̃)dx̃. (88)

Note that the large deviation result applies since x̃ ≥ log( z
ληtyp

) ≫ 1. Approximating the integral 
with the value of the integrand at the extremum, setting z = 1 and neglecting sub-exponential 
terms in N we obtain:

P
(
|ω̃Γ | > 1

)
≈

(
2e√
2π

log
(

1
ληtyp

))N

e
−N

[
log

( 1
ληtyp

)+O
(
1/ log

( 1
ληtyp

))]

. (89)

Substitution of (89) and (87) into (58) yields:

∑

I≠J
|I|=N+1=|J|

P
(∣∣A(α)

I,J

∣∣ > 1
)
≃ exp

[
N logG(λ,K) + o(N)

]
, (90)

with

G(λ,K) = ν(1 − ν)
2eCηtyp√

2π
λK log

(
1

ληtyp

)
. (91)

Taking into account (56) and (57), we finally obtain:

P
(

∀N > N∗,
∑

I≠J
|I|=N+1=|J|

∣∣A(α)
I,J

∣∣ < 1
)

=
∏

N>N∗
exp

[
−eN log G(λ,K)+o(N)

]
. (92)

If G(λ, K) < 1, then, for N∗ sufficiently big, each of the factors in (92) is arbitrarily close 
to 1. Therefore, their product converges to 1 in the limit N∗ → ∞ (see also [48] for a similar 
reasoning). This allows us to conclude that, for all values of λ for which G(λ, K) < 1 holds, 
(46) holds, too, and the series in operator space (28) converges to a quasi-local operator. In this 
regime, the excitation of the single particle level α, localized at r⃗α , is very unlikely to create a 
distant disturbance at r⃗β with large L = |r⃗β − r⃗α|, its probability tending to zero exponentially 
as L → ∞: there is no diffusion at small λ.

The critical value for λ is given by G(λc, K) = 1. For large K, it equals to:

λc =
√

2π

Cν(1 − ν)2e

1
K logK

, (93)

where we used ηtyp = 1/e.
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9.1. Comparison with a single particle on the Bethe lattice

It is interesting to note that the delocalization threshold (93) looks identical to the critical 
ratio between hopping and disorder strength for a single particle problem on a Bethe lattice (see 
Eq. (5.8) in [45]) with effective connectivity Keff = ν(1 −ν)(C/

√
2π)K, which is a significantly 

bigger than the connectivity associated with each vertex, ν(1 − ν)K. This reflects the fact that in 
the many-body problem the same final state can be reached with many different decay processes. 
The results are nevertheless similar, because both problems are dominated by very few resonant 
paths, whereby the large local connectivity in the many-body problem ensures that different 
resonant paths are likely to be uncorrelated, even if they lead to the same final state.

9.2. Possible implications for delocalization in higher dimensions

According to the above calculation, in the dominating decaying processes only groups of O(1)

particle–hole pairs are created at the same time in a localization volume. This suggests that the 
necklace-type diagrams are diffusing back and forth a lot. This contrasts with the model of BAA, 
where the hopping strength between adjacent volumina was assumed to be parametrically smaller 
than λ, which favored the particle–hole creation cascade to fully explore a localization volume 
before moving on to the next volume. The latter led them to conjecture a critical exponent for the 
localization length in higher dimensions by relating the decay processes of single particle exci-
tations to self-avoiding random walks. This scenario hardly holds in our model, as the optimal 
processes are not of this kind.

10. Finite temperature

So far we have been discussing the convergence of the expansion of integrals of motion in 
the forward approximation. If the expansion converges, we have succeeded in constructing a 
complete set of quasi-local conserved quantities which entail the absence of transport in whatever 
state the system is, in particular at any temperature, including the limit T → ∞. Note again, 
that the latter limit is meaningful because we work on a lattice on which the energy density is 
bounded.

An interesting question arises when we ask about transport at finite temperature, and the pos-
sibility of a MBL transition as a function of temperature, as predicted by BAA. How would this 
reflect at the level of integrals of motion? If there is a finite temperature transition, one expects 
that the localized low T phase is still governed by local conservation laws which inhibit trans-
port, while local integrals of motion do not exist at higher temperature. Clearly the latter rules 
out the convergence of the conserved operators in the operator norm. Rather one has to invoke 
that the norm of operators OI,J, when restricted to typical low temperature states, becomes ex-
ponentially small in N = |I|, if the index sets I, J contain a finite fraction of hole excitations 
above EF + T or particle excitations below EF − T . This effect may enhance the convergence 
of the series expansion. This is certainly so at the level of the forward approximation where the 
temperature T essentially replaces the bandwidth in the analytical estimates of our expansion. 
This will lead to a larger domain of (weak) convergence of the operator expansion, suggesting 
the possibility of a delocalization transition at finite temperature.

A similar consideration shows that the transition (93) at T = ∞ takes place in a regime where 
the operator expansion is not convergent in the operator norm, but converges only weakly on 
typical high energy states. This is due to the Fermi blocking discussed in Section 8.3.
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Fig. 7. Pictorial representation of the supports of two different operators OI,J and OI′,J′ contributing to the series 
expansion (28). In the pictures, the wave-functions are the single particle states contributing to (I,J) and (I′,J′). Both 
operators involve degrees of freedom whose maximal distance to the localization center rα is the same: r(I,J) = r(I′,J′); 
however, the length of the support N of the operators (shaded in the picture) increases when N grows in the first case, 
while it remains bounded in the second case.

However, a different scenario is possible as well. The operator series in Eq. (28), or subse-
quences of it, can diverge for two reasons: (i) Either the amplitude of terms with growing N do 
not decrease sufficiently fast, and thus the diameter of the support of these terms grows indef-
initely. (ii) There can be subsequences of (28) whose terms have bounded index level N , but 
supports which wander off to infinity. These two possibilities are illustrated in Fig. 7.

Possibility (i) is what is obtained within the forward approximation. The fraction of terms 
at λc, which survive when applied on finite T states, decreases rapidly with N . However, such 
a projector would not affect the convergence properties of a subsequence of type (ii). Upon 
restricting to finite T states the norm of the relevant operators is typically reduced by a factor, 
which remains bounded from below. Therefore the series will continue to diverge despite the 
projection.

To address the question of whether or not a finite temperature transition is possible one has to 
consider the interaction strength λc at which the infinite T transition takes place, i.e., where the 
integrals of motion delocalize. If there is a subsequence of type (ii), which diverges at this point, 
the delocalization transition is a function of λ only, but independent of T . In the delocalized phase 
(λ > λc) transport would always remain finite, even though it may become very inefficient and 
strongly activated at low T . If instead there is no subsequence with bounded index cardinality, 
which diverges at λc, a transition in temperature should be expected, as predicted by BAA. Such 
a transition was recently reported by a numerical study [17].

Physically the scenario (ii) corresponds to transport and delocalization driven by rare, com-
pact, but mobile regions with a local “temperature” above the putative Tc. At first sight one is 
tempted to rule this out because one would expect such a hot bubble to diffuse and loose its extra 
energy forever to the environment. However, the environment being in the supposed MBL phase 
cannot transport the extra energy to infinity, and thus there should be a finite recurrence time until 
the hot bubble forms again. Whether such a bubble would nevertheless have to remain localized, 
or whether its internally delocalized state would allow it to move around is a difficult open ques-
tion. Recently, it was argued that big enough bubbles could undergo resonant delocalization [49]. 
At the level of integrals of motion these two scenarii translate into the above dichotomy about 
critical subsequences.

Note that a divergence of type (ii) by a set of operators with bounded support is made less 
likely by the large parameter K. We in fact invoked this large parameter to neglect these terms, 
similarly as BAA. However, it is difficult to exclude that there is no such divergent subsequence 
which contributes with a finite, but with a relative weight which is parametrically small in K. In 
that case, numerical approaches such as [17,50] would not capture this divergence.



V. Ros et al. / Nuclear Physics B 891 (2015) 420–465 453

It would be interesting to revisit the question of the finite T transition also as a function of 
density. In the low density limit, the effective connectivity Keff (resulting from projection onto 
typical states) can be reduced to Keff ≪ 1, in which propagation channels of type (ii) become 
parametrically favorable, and may be the ones to induce delocalization – if interactions can in-
duce a transition at all under such circumstances.

11. Conclusion

In this work we have constructed explicit quasi-local integrals of motion within the weakly 
interacting regime, which we argued to imply the absence of any d.c. transport. We reduced the 
problem of constructing such operators to a non-Hermitian hopping problem in operator space, 
an idea that we hope to have potential for further more rigorous studies. We have also obtained 
an explicit recipe for constructing generalized occupation numbers of a Fermi insulator order by 
order in perturbation theory.

We have used the large parameter K (proportional to the number of sites in a single particle 
localization volume) to concentrate on processes where one more particle–hole pair is created at 
every order of perturbation theory. Within this forward approximation, and based on an analysis 
of rare resonances at large distance, we found an analytical estimate of the radius of convergence 
of this perturbative construction, yielding a critical value of the reduced interaction strength λc =√

2π/(Cν(1 − ν)2eK logK) with 10.6 < C < 20.25, at infinite T and filling fraction ν, similar 
to the prediction by BAA based on the analysis of the life time of a single particle injection.

We believe that the spatial structure of our integrals of motion provides a good picture for the 
“quantum avalanche” created by injection of an extra particle. We have found that the optimal 
way of its propagation is by exciting a necklace of groups of O(1) particle–hole pairs per lo-
calization volume. Due to the meandering of the necklace structure, several groups of such pairs 
may be created in the same localization volume, an effect which is enhanced in low dimensions.

The convergence of our construction for the local integrals of motion implies the absence of 
transport and equilibration at any temperature and density. Taken as such, it appears to be blind 
to potential phase transitions upon varying those parameters. However, projecting the operator 
series onto typical states with thermal single particle occupations, one may discuss the weak con-
vergence of the operator expansion. In this vein, we have discussed the question of the existence 
of a genuine finite temperature transition, depending on the properties of the operator series at 
its critical point at T = ∞. Further investigations of this question would be interesting.
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Appendix A. Imposing binary spectrum

In this appendix we show how one can modify, order by order in λ, the previously obtained 
integrals of motion in order to fix their spectrum to be that of occupation numbers, i.e., {0, 1}. 
This is equivalent to the condition:

I 2
α = Iα. (A.1)



454 V. Ros et al. / Nuclear Physics B 891 (2015) 420–465

This procedure leads to a modified expansion for Iα:

Iα = nα +
∑

m≥1

λm#B(m)
α , (A.2)

with #B
(m)
α given explicitly in Eqs. (26), (27).

In the following, we work by induction on m. We set #B
(0)
α = nα and we omit the index α

for simplicity. We define the truncation to mth order of I :

I≤m ≡ n +
m∑

i=1

λi#B(i), (A.3)

and assume that the property (A.1) holds to order O(λm−1), namely:
(
I≤m−1)2 = I≤m−1 + o

(
λm−1). (A.4)

Note that I≤0 is naturally binary, with (I≤0)2 = I≤0.
We denote with #Î (m) the solution of the equation:

[
H0,#Î (m)

]
+

[
U,#B(m−1)

]
= 0 (A.5)

in the subspace O , cf. Eq. (25), and define

Î≤m ≡ I≤m−1 + λm#Î (m). (A.6)

The operator Î≤m is not binary to order O(λm); however, we show that it is possible to add 
to #Î (m) a suitably chosen operator #K(m) in the kernel K of the linear map f (X) = [H0, X], 
so that

I≤m = Î≤m + λm#K(m) ≡ I≤m + λm#B(m) (A.7)

is binary to order O(λm). To show this, it is sufficient to show that the difference (Î≤m)2 − Î≤m, 
truncated to order O(λm), is an element of the subspace K , i.e.:

[
H0,

(
Î≤m

)2] =
[
H0, Î

≤m
]
+ o

(
λm

)
. (A.8)

This holds, since:

(
I≤m

)2 =
[(

I≤m−1)2]
m−1 + λm

m∑

a=0

#B(a)#B(m−a) + o
(
λm

)

= I≤m−1 + λm
m∑

a=0

#B(a)#B(m−a) + o
(
λm

)
, (A.9)

where [X]m−1 denotes the restriction of the Taylor series of X(λ) to terms up to order λm−1. 
Using the inductive step m − 1 we have from (A.9)

[
H0,

(
Î≤m

)2] =
[
H0, I

≤m−1] + λm

[

H0,

m∑

a=0

#B(a)#B(m−a)

]

+ o
(
λm

)
, (A.10)

where in the terms with a = 0, m we have replaced #Î (m) with #B(m), since Eq. (A.10) does 
not depend on the choice of #K(m). Given that
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[
H0,#B(a)#B(m−a)

]
= #B(a)

[
H0,#B(m−a)

]
+

[
H0,#B(a)

]
#B(m−a)

= −#B(a)
[
U,#B(m−a−1)

]
−

[
U,#B(a−1)

]
#B(m−a),

summing over a we get
[

H0,

m∑

a=0

#B(a)#B(m−a)

]

= −
[

U,

m−1∑

a=0

#B(a)#B(m−a)

]

. (A.11)

Using that (A.1) at the inductive step m − 1 implies

m−1∑

a=0

#B(a)#B(m−a) = #B(m−1), (A.12)

and using (A.5), we find
[
H0,

(
Î≤m

)2] =
[
H0, I

≤m−1] + λm
[
H0,#Î (m)

]
+ o

(
λm

)

=
[
H0, Î

≤m
]
+ o

(
λm

)
, (A.13)

which proves (A.8).
A simple computation shows that by choosing:

I≤m ≡ Î≤m + λm
(
1 − 2#B(0)

)[(
Î≤m

)2 − Î≤m
]
m

(A.14)

the condition (A.4) is fulfilled to order O(λm). Eq. (27) follows from noticing that:

[(
Î≤m

)2 − Î≤m
]
m

=
m−1∑

i=1

#B(i)#B(m−i) +
{
#B(0) − 1

2
,#Î (m)

}
. (A.15)

Appendix B. Local re-summation in the case of small denominators

In the following we present a simple example in which the perturbative expansion in λ, 
Eq. (22), diverges. Suppose that at order n the series expansion contains the term:

Jn ≡ JnOcα, (B.1)

where O = c
†
i1

· · · c†
im

cj1 · · · cjm−1 is a string of operators with i, j ≠ {α, β, γ , δ}, and that the 
amplitude Jn = O(λn) therefore contains the energy denominator:

Jn ∝
(

m∑

k=1

ϵik −
m−1∑

k=1

ϵjk − ϵα

)−1

≡ (#E)−1. (B.2)

Suppose #E to be atypically small. One then easily finds a subsequence of the series (22), which 
contains arbitrarily high powers of the small denominator. Indeed, let us restrict the interaction 
to the term Uαβ,γ δ(c

†
αc

†
βcγ cδ + h.c.) in the interaction U ; higher order terms in the perturbative 

expansion are obtained by subsequent application of (25) to Jn; this produces:

Jn+1 ≡ Jn
Uαβ,γ δ

#E + Eαβ,γ δ
Oc

†
βcγ cδ ≡ Jn+1Oc

†
βcγ cδ,

Jn+2 ≡ −Jn+1
Uαβ,γ δ

#E
O

(
nβ(1 − nγ )(1 − nδ) + (1 − nβ)nγ nδ

)
cα,

Jn+3 ≡ Jn+1

[
Uαβ,γ δ

#E

Uαβ,γ δ

#E + Eαβ,γ δ

]
Oc†

βcγ cδ, (B.3)
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Fig. C.8. A diagram with multiple branchings. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

with Eαβ,γ δ = ϵα + ϵβ − ϵγ − ϵδ . By iteration of this procedure, a sub-sequence of operators 
containing arbitrarily high powers of (#E)−1 is generated, preventing the convergence of the 
series if the term in brackets is larger than 1.

Divergences of this kind are of the same nature as local resonances encountered in single 
particle localization [1]. They have to be properly re-summed for the series expansion to make 
sense. For example, all terms multiplying Oc

†
βcγ cδ re-sum into a self-energy correction of the 

denominator in the first line of (B.3):

J ≡ Jn

[
Uαβ,γ δ

(#E + Eαβ,γ δ) − U2
αβ,γ δ

#E

]
Oc

†
βcγ cδ ≡ JOc

†
βcγ cδ. (B.4)

The term in square brackets in (B.4) contains a very large self energy correction U2
αβ,γ δ/#E, 

which compensates the divergence in Jn when #E → 0.
Self-energy corrections like this are neglected in the forward approximation. Their main ef-

fect is to weaken the role of small denominators: As noticed by Anderson, small denominators 
essentially neutralize themselves by introducing enormous self-energies for the neighboring sites 
which then appear as very large denominators [1]. The resummation thus increases the conver-
gence as compared to the naive perturbative expansion in forward approximation in [1]. In single 
particle localization problems with large connectivity, the critical hopping is increased by a factor 
e/2 [45], and a similar effect is expected here [4].

Appendix C. Evaluating diagrams as sums over effective paths: a more involved example

As an additional example for the evaluation of diagrams as sums over effective paths, we give 
the explicit expression for effective path weights associated to diagrams with the geometry of 
Fig. C.8.

For fixed indices on all segments, there are 105 different orderings of the interactions.10 Their 
sum has the integral representation:

I0
(
{U}

)
= lim

ϵ→0

∫
dω̃1dω̃2δ(ω̃1 + ω̃2 − E0)

ω̃−
1 (ω̃−

1 + Ẽ3)ω̃
−
2 (ω̃−

2 + E1)
I1(ω = ω̃2 + E1 + E2), (C.1)

10 The interactions in the red dashed frame can be ordered in 15 different ways, for each of which the interaction Ũ3
can be placed in 7 different positions.
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Fig. C.9. Diagram with colored branches. The branches with maximal and minimal (equal to zero) number of interactions 
along them are colored in red and gray, respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

where ω−
i ≡ ωi − iϵ, and I1(ω) is the integral representation of the sum of all the weights of the 

subdiagram in the dashed frame, with incoming energy ω:

I1(ω) =
∫

dω1dω2dω3δ(ω1 + ω2 + ω3 − ω)

ω−
1 (ω−

1 + Ẽ2)ω
−
2 (ω−

2 + Ẽ1)ω
−
3 (ω−

3 + E3)(ω
−
3 + E3 + E4)

. (C.2)

By means of the residue theorem, I0 can be rewritten as the sum over only 8 effective path 
weights:

I0
(
{U }

)
= 1

Ẽ3

1
E0(E0 + E1)

I1(E0 + E1 + E1)

− 1

Ẽ3

1

(Ẽ3 + E0)(Ẽ3 + E0 + E1)
I1(Ẽ3 + E0 + E1 + E1) (C.3)

with

I1(ω) = 1

Ẽ1Ẽ2

[
f (ω) − f (ω + Ẽ1) − f (ω + Ẽ2) + f (ω + Ẽ1 + Ẽ2)

]
(C.4)

and

f (X) = 1
X(X + E3)(X + E3 + E4)

. (C.5)

Note that as a function of the Ei and Ẽi , I0 has poles only due to denominators which involve 
the incoming energy E0, while I0 remains regular as any of the Ẽi → 0, due to cancellations 
among different terms.

The minimal number of effective paths associated to a diagram equals to the product of the 
number of residua of any of the performed integrals. This number can be determined from the 
structure of the diagram using the following rules: First, one eliminates the final leaves which 
are not associated to auxiliary frequencies, since they do not contribute with poles in the inte-
gral representation (Fig. C.9 represents the diagram of Fig. C.8, with these eliminated branches 
colored in gray). Then, one determines the directed path (branch) with the maximal number of 
interactions along it (red one in Fig. C.9). The auxiliary frequencies along this path are eliminated 
integrating the corresponding δ-functions. All remaining branches contribute one more residua 
than interactions along the branch. In the example of Fig. C.9, the three branches that remain 
after eliminating the red one contribute 2 residua each. The total number of effective paths is 
obtained by multiplying these numbers, which gives 23 = 8 in the present case.
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Fig. C.10. (a) Diagram with the maximal possible number of branchings. (b) Branches with the same number of interac-
tions are drawn with the same color.

With the help of these rules, we count the minimal number of effective paths associated to the 
maximally branched diagram with N interactions, shown in Fig. C.10(a). We denote this number 
by |P|.

The maximally branched diagram consists of two regular rooted trees with L(N) ≡
log(N + 1)/log 3 generations. Since the weights of the two sub-diagrams factorize, we need 
to count only the effective paths associated to one of them, and square their number. We there-
fore consider one sub-diagram, and organize its branches according to the number of interactions 
along it (in Fig. C.10(b), branches with the same number of interactions have the same color). 
The number l of interactions along a branch ranges from 1 to L(N) − 1. There are 2 · 3L(N)−1−l

branches with l interactions; each of them contributes with (l + 1) residua, yielding a total num-
ber of

L(N)−1∏

l=1

2(l + 1)3L(N)−1−l = L(N)!3 (L(N)−1)2
2

(
2√
3

)L(N)−1

(C.6)

terms. The total number of effective paths associated to the diagram of Fig. C.10(a) is the square 
of this number, which grows as:

|P| = exp
[
(logN)2 log 3 + O

(
logN log(logN)

)]
. (C.7)

As claimed in the main text, this number is sub-exponential in N .

Appendix D. Probability of large deviations in products of correlated denominators

Here we derive the probability of large deviations of effective path weights, i.e., the product 
of correlated denominators, as they occur in perturbation theory in the forward approximation.

We denote by sk = x1 + · · ·+ xk the partial sums of i.i.d. random variables xi ≡ Ei/δξ . Let us 
assume the xi to be unit Gaussian variables with probability density

f (x) = 1√
2π

e− x2
2 . (D.1)

Consider the distribution function PN(y) of the random variable

YN ≡ log

(
N∏

i=1

1
|si |

)

= −
N∑

i=1

log |si |, (D.2)
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and its generating function GN(k)

GN(k) ≡ E
[
e−kYN

]
. (D.3)

Let us compute GN for N ≫ 1. We start by taking the expectation value over the joint distri-
bution of xi = si − si−1 (s0 ≡ 0):

GN(k) =
∫ N∏

i=1

f (si − si−1)e
k log |si |dsi =

∫
ON−1

k [f ](sN)|sN |kdsN , (D.4)

where the integral operator Ok[·] acting on a function g is given by

Ok[g](s) =
∫

f (s − x)|x|kg(x)dx. (D.5)

Consider now the basis of even functions:

gn(x) = e− x2
2 x2n

√
2π(2n)! , n = 0,1, . . . . (D.6)

In this basis the linear action of Ok is given by:

Ok[gn](x) = 1
2π

∫
e− 1

2 (x−y)2
e− y2

2 |y|k+2ndy =
∑

m≥0

Omn(k)gm(x), (D.7)

with the matrix

Omn(k) = 1√
2π

Γ
( 1+k

2 + n + m
)

√
(2m)!(2n)! . (D.8)

From (D.4) we thus readily obtain the following expression for GN(k):

GN(k) =
∞∑

m=0

(
O(k)N−1)

m0am, (D.9)

with am(k) =
∫ ∞
−∞ gm(sN)|sN |k dsN = 2

k+1
2 +m

√
2π(2m)!Γ ( k+1

2 + m).
The matrix Omn(k) can be interpreted as a k-dependent Hamiltonian describing a particle 

hopping on a semi-infinite open chain with sites labeled by integers m = 0, 1, 2, . . . .
The large N behavior of logGN is dominated by the largest eigenvalue λmax(k) of O. Since 

for any k > −1, O(k) is symmetric and positive definite, the Perron–Frobenius theorem ensures 
that λmax(k) is positive and unique, and

GN(k) ≈ c(k)
[
λmax(k)

]N−1
, (D.10)

where c(k) = φmax,0 · ∑
m≥0 amφmax,m, and φmax is the normalized eigenvector corresponding 

to λmax.
Numerical results for the maximal eigenvalue are shown in Fig. D.11. They are obtained by 

truncating O to an increasing set of basis states (or chain of sites) m ≤ L. For k close to the 
singularity k = −1 the results rapidly converge with increasing size L. In this region, we can 
extract information on the limiting curve λmax(k) from the truncated chain. In particular, we see 
from the plot that both the function logλmax(k) and its negative slope diverge at k = −1, which 
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Fig. D.11. Maximal eigenvalue logλmax(k) computed for truncated matrices O(k) with basis sets of size L = 120 (red), 
L = 200 (green), L = 300 (blue). Close to the singularity k = −1, λmax(k) converges rapidly with L. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. D.12. Comparison between logλmax(k) obtained numerically for the truncated matrix (with L = 300 basis functions) 
and the analytic expression log[Γ ( k+1

2 ) +
√

2πδλ(k)] with 
√

2πδλ(k) expanded at zeroth (red), first (brown) and second 
(orange) order in (k + 1). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

will also follow form the analysis below. Hence, k " −1 is the relevant region for the saddle 
point approximation of Eq. (65), if very large deviations ỹ ≫ 1 are considered.

Due to the proximity to a logarithmic divergence at k = −1, to order O(1 + k) the eigenstate 
φmax for k ∼ −1 is localized on the first site (n = 0) of the corresponding hopping chain:

|φmax⟩ ≃ |0⟩, (D.11)

with an eigenvalue

λmax(k) ≃ O(k)00 = 1√
2π

Γ

(
1 + k

2

)
. (D.12)

Corrections to the maximal eigenvalue (D.12) can be evaluated perturbatively in the matrix 
elements Oik≠00 (D.8), which yields

λmax(k) = 1√
2π

Γ

(
1 + k

2

)
+ λ(2)

max(k) + λ(3)
max(k) + . . .

≡ 1√
2π

Γ

(
1 + k

2

)
+ δλ(k). (D.13)
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One can show that δλ(k) is analytic around k = −1 and satisfies δλ(k → −1) → 0. This is due 
to the fact that in nth order perturbation theory λ(n)

max is proportional to denominators of the form 
1/On−1

00 ∼ (k + 1)n−1. The leading term in δλ(k) results from:

λ(2)
max(k) =

∞∑

m=1

(2π)−
1
2
[
Γ

( 1+k
2 + m

)]2

Γ
( 1+k

2

)
(2m)! − Γ

( 1+k
2 + 2m

) = 1√
2π

π2

36
(k + 1) + O(k + 1)2. (D.14)

A plot of the corrections to the maximal eigenvalue (D.12) is given in Fig. D.12.
The inverse Laplace transform of the generating function is governed by

φ(ỹ, k) := ỹk + lim
N→∞

GN(k)

N

= ỹk + log
[
Γ

(
k + 1

2

)
+

√
2πδλ(k)

]
− 1

2
log 2π. (D.15)

It has a saddle point at k = k∗(ỹ), determined by

ỹ = − d

dk

{
log

[
Γ

(
1 + k

2

)
+

√
2πδλ(k)

]}

k=k∗(ỹ)

= −
{

1
2
ψ (0)

(
1 + k

2

)[
1 +

√
2πδλ(k)

Γ
( 1+k

2

)
]−1

+
√

2πδλ′(k)

Γ
( 1+k

2

)
+

√
2πδλ(k)

}

k=k∗(ỹ)

, (D.16)

where ψ (0)(x) ≡ d log[Γ (x)]/dx.
To isolate the singularity in k = −1 we use the Laurent expansion of ψ (0)(x) around x = 0:

ψ (0)

(
1 + k

2

)
= − 2

k + 1
− γ + π2

12
(k + 1) + O

(
(k + 1)3), (D.17)

where γ is the Euler constant. This allows us to recast (D.16) in the following form:

ỹ = 1
k∗ + 1

+ Q
(
k∗ + 1

)
. (D.18)

Here, Q(·) is an analytic function with expansion:

Q(x) = γ

2
− π2

18
x + O

(
x2). (D.19)

This yields the equation

1 + k∗ = 1
ỹ

(
1 − Q(k∗ + 1)

ỹ

)−1

, (D.20)

which can be solved by iteration as an expansion in 1/ỹ:

1 + k∗(ỹ) = 1
ỹ

+ γ

2
1
ỹ2 +

(
γ 2

4
− π2

18

)
1
ỹ3 + O

(
1
ỹ4

)
. (D.21)

Expanding (D.15) in powers of k + 1 and substituting (D.21) we find:

φ
(
ỹ, k∗(ỹ)

)
= −ỹ + log ỹ − 1

2
log

(
π

2e2

)
− γ

2ỹ
+ 1

8

(
5π2

18
− γ 2

)
1
ỹ2 + O

(
1
ỹ3

)
. (D.22)
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Finally, within the saddle point approximation to Eq. (63), for ỹ ≫ 1 we find the large deviation 
probability

PN

(

− log

[
N∏

i=1

1
|si |

]

= Nỹ

)

= C(ỹ,N)

(
2e√
2π

)N

ỹNe−NF(ỹ)

[
1 + 1

N

]
, (D.23)

where

F(ỹ) = ỹ + γ

2ỹ
− 1

8

(
5π2

18
− γ 2

)
1
ỹ2 + O

(
1
ỹ3

)
. (D.24)

The prefactor

C(ỹ,N) =
(

1
2πNφ′′

N(k∗(ỹ))

) 1
2 c(k∗(ỹ))

λmax(k∗(ỹ))
(D.25)

yields only logarithmic corrections to the exponent.
As commented in the main text, when restricting to the linear term in (D.24), the large de-

viation statistics for the correlated denominators coincides with that of independent identically 
distributed energy denominators. Indeed, from Eqs. (D.10) and (D.12) it follows that to leading 
order in k + 1 the exponential growth of GN is almost equal to that of the generating function 
gN(k) = [2 k+1

2 Γ ( k+1
2 )/

√
2π ]N associated with products of N independent Gaussian denomina-

tors with unit variance. For ỹ ≫ 1, the tail of the distribution is determined by the residue of 
the pole of the generation function at k = −1, which is identical in the two cases. Repeating 
the above derivation of large deviations for independent denominators with generating function 
gN(k), one finds that it differs from (D.23) at order O( 1

ỹ
): the tails for correlated denominators 

are suppressed by a factor exp(−N
log 2

2
1
ỹ
). The correction δλ(k) in (D.13) contributes to (D.24)

only at order O(1/ỹ2).

Appendix E. Some useful combinatoric results for diagrams

Let Tn be the number of tree-like diagrams with a root of connectivity 2, and n vertices with 
connectivity 4. These trees are obtained by merging two trees of branching ratio 3 at the root, 
and therefore

Tn =
∑

n1,n2≥0
n1+n2=n

T (n1)T (n2), (E.1)

where T (m) is the number of trees with m vertices (including the root) and branching ratio 3. 
This number satisfies the recursion equations

T (0) = 1, (E.2)

T (n) =
∑

n1+n2+n3=n−1

T (n1)T (n2)T (n3). (E.3)

We can define the generating function

T (x) =
∑

n≥0

xnT (n), (E.4)
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which in virtue of (E.3) satisfies the polynomial equation

T (x) = 1 + xT (x)3. (E.5)

Notice that the first singularity of T (x) is a branch-cut at x = 4/27, which implies the large-n
behavior T (n) ∼ (27/4)n. However, we can find the nth order of the expansion for small x using 
Lagrange’s inversion theorem for the inverse function of

x(T ) = T − 1
T 3 , (E.6)

expanding around T = 1 (x = 0).
This yields

T (n) = 1
n

lim
T →1

[
1

(n − 1)!
dn−1

dT n−1

(
T − 1
x(T )

)n]
= 1

2n + 1

(
3n

n

)
. (E.7)

In general, for k-body interactions we have T (n) =
((k−1)n

n

)
/((k − 2)n + 1) diagrams. For k = 3

these are the numbers of binary trees with n vertices, or Catalan numbers.
There are two ways to solve Eq. (E.1) and find Tn. The first one is to notice that its generating 

function T(x) satisfies T(x) = T (x)2, write Eq. (E.6) in terms of T and use Lagrange’s inver-
sion theorem again. Alternatively, one can use the explicit form of T (n) and apply a summation 
formula for the ratio of four Γ -functions to obtain:

Tn = 3
3
2 +3n

π

Γ
(
n + 2

3

)
Γ

(
n + 4

3

)

Γ (2n + 3)
∼ 3

4

√
3
π

1

n
3
2

(
27
4

)n

(E.8)

which is the result quoted in the text.
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Abstract

We correct a small error in our article Integrals of motion in the many body localized phase [1]. The cor-
rection does not alter the main result regarding the convergence of the perturbative expansion for integrals 
of motion in forward approximation, but reduces the estimate of the radius of convergence by a numerical 
factor of roughly '1.79.
©Ó 2015 The Authors. Published by Elsevier B.V.

In Ref. [1] we associated to any diagram with N interaction vertices a minimal number of 
‘effective paths’ that result from the integration procedure described in Section 5. We stated that 
this minimal number grows sub-exponentially with N , which relied on computing this number 
for diagrams d with a maximally branched geometry. However, the latter was erroneously de-
termined to be sub-exponential in N in Eq. (C.6). The corrected version of Eq. (C.6) (counting 

the number of effective paths associated to either of the two rooted trees of the diagram) instead 

reads:
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L(N)¡−1Y

l=1

(l + 1)

2·3L(N)¡−1¡−l = exp

√

3L(N)

1∞X

k=1

2 logk

3k

¡− 2
3

1∞X

k=0

log(k + L(N) + 1)

3k

!

, (1)

with L(N) = log(N +1)/ log 3. Using that 2 

P1∞
k=1 3¡−k log(k) = 0.29, one finds that the minimal 

number of effective paths |P| for diagrams with this geometry, which is the square of the above, 
scales as:

|P| = exp
£
0.58N + o(N)

§
, (2)

which should replace the estimate in Eq. (C.7).
Among all the possible geometries of diagrams with a fixed number of interactions N , the 

maximally branched geometry is the one that maximizes the number of effective paths. Thus, 
Eq. (2) is an upper bound for the average |P(d)| introduced in Eq. (55), which we also expect to 

have an exponential scaling in N :

P(d) »∼ exp
£
®α N + o(N)

§
(3)

with 0 < ®α < 0.58. Accounting for this correction, the total number of effective paths of 
length N , N

N

in Eqs. (59), is modified accordingly:

N
N

!→ e

®αNN
N

. (4)

Since the additional factor is only exponential in N , the conclusion about the convergence of 
the construction of integrals of motion for small enough interactions is unaltered. The effect of 
the correction is to slightly diminish the radius of convergence of the construction.

The precise effect of this correction depends on the relative weight of the effective paths and 

their mutual interference.
If we make the simplifying assumption that the effective paths associated to the same diagram 

can be treated as independent random variables, the sum S(d) in Eq. (53) is dominated by the 

largest term, and the factor |P(d)| enhances the tail of the distribution of A(®α)

I,J as compared 

to the tail corresponding to a single path weight, see Eq. (58). The above discussed correction 

would thus modify by a factor e®α the numerical constant C in Eq. (93). (Note, however, that this 
constant C was already subject to uncertainty, see Eq. (85), due to the approximations going into 

the estimate of N
N

.) Approximating e

®α ¼≈ e

0.58 = 1.79 we find that the result of Eq. (93) holds 
with the following uncertainty on C:

18.97 < C < 36.25. (5)

The above assumption neglects, however, that the effective paths associated to a given dia-
gram are not independent. Indeed, they involve the same energy variables in the denominators, 
but in different combinations. These correlations might be relevant when computing the large de-
viations for S(d). In fact there could be disorder realizations in which all the energy variables are 

simultaneously small, in such a way that there is no dominant effective path. In an extreme case, 
all !̃ω

0

contributing to S(d) might happen to be of the same order of magnitude and atypically 

large. These contributions will come with different signs and partially cancel, which counteracts 
the enhancement of the total amplitude. To estimate an upper bound for the effect of the expo-
nential number of effective paths on the constant C we neglect those partial cancellations, and 

assume that the diagrams dominating the tails of S(d) are such that essentially all effective paths 
add up constructively with comparable weights. Under this extreme scenario, the large deviations 
of S(d) would be given in terms of those of a single path weight !̃ω by setting S(d) »∼ |P(d)|!̃ω. In 
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this approximation, Eq. (93) is recovered with the substitution ¸λ !→ ¸λe

®α . This shifts the estimated 

interval for C in Eq. (5) only by a logarithmic factor.
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