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We compute the functional renormalization group �FRG� disorder-correlator function R�v� for d-dimensional
elastic manifolds pinned by a random potential in the limit of infinite embedding space dimension N. It
measures the equilibrium response of the manifold in a quadratic potential well as the center of the well is
varied from 0 to v. We find two distinct scaling regimes: �i� a “single shock” regime, v2 �L−d, where Ld is the
system volume, and �ii� a “thermodynamic” regime, v2 �N. In regime �i�, all the equivalent replica symmetry
breaking �RSB� saddle points within the Gaussian variational approximation contribute, while in regime �ii�,
the effect of RSB enters only through a single anomaly. When the RSB is continuous �e.g., for short-range
disorder, in dimension 2�d�4�, we prove that regime �ii� yields the large-N FRG function obtained previ-
ously. In that case, the disorder correlator exhibits a cusp in both regimes, though with different amplitudes and
of different physical origin. When the RSB solution is one step and nonmarginal �e.g., d�2 for short-range
disorder�, the correlator R�v� in regime �ii� is considerably reduced and exhibits no cusp. Solutions of the FRG
flow corresponding to nonequilibrium states are discussed as well. In all cases, regime �i� exhibits a cusp
nonanalyticity at T=0, whose form and thermal rounding at finite T are obtained exactly and interpreted in
terms of shocks. The results are compared with previous work, and consequences for manifolds at finite N as
well as extensions to spin glasses and related models are discussed.
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I. INTRODUCTION

A major difficulty in devising analytical methods to
handle glassy systems, such as systems with quenched disor-
der, is to describe accurately the many metastable states
which play a role both in the statics �equilibrium� and in the
dynamics, as well as the barriers separating these states. Two
main general methods have been developed. The first is a
mean-field theory, based on the Gaussian variational method
�GVM�, which, in the statics, captures the many states by a
multitude of saddle points exhibiting spontaneous replica
symmetry breaking �RSB�.1 Being highly versatile, the GVM
has been applied to numerous problems, notably in spin
glasses, and has later been extended to the dynamics.2,3 The
second method is the functional renormalization group
�FRG� which has been applied successfully to disordered
elastic systems and random-field spin models, both in the
statics4–28 and for the driven dynamics.29–36 Although its
range of applications is at present smaller, it is a powerful
and promising method which allows to compute fluctuations
not captured by mean-field theory. The �relevant� coupling
constant in FRG is the disorder correlator R�u�. In contrast to
standard field theories, it is not a number but a function of
the field u, defined for the microscopic model in Eq. �6�.
Since the two methods GVM and FRG are rather different in
spirit, and historically have developed along separate tracks,
it is important to compare them whenever possible. A further
goal is to understand whether and how they may be extended
to a broader range of models.

In this paper, we focus on disordered elastic systems,
where both methods have been applied. As we discuss, some
of the conclusions and ideas may extend to other models
with quenched disorder. Besides being of direct interest for

experiments, including vortex lattices, magnetic systems, and
density waves,5,37–42 models of manifolds in a random poten-
tial provide the simplest example of a glass phase where
numerous metastable states occur beyond the so-called Lar-
kin scale. As for random-field systems, the so-called dimen-
sional reduction phenomenon occurs, which renders conven-
tional zero-temperature perturbation theory trivial,43–45

indicating the failure of the latter to capture the complexity
of the energy landscape. A big success of both methods,
GVM and FRG, has been to circumvent this problem. How-
ever, they achieve this in seemingly rather different ways:
The GVM approximates the Gibbs measure by a hierarchical
superposition of Gaussians, encoded in the Mézard-Parisi
ansatz.1,46 In the FRG, the existence of a cusp �in the cou-
pling function R��u�� beyond the Larkin scale is related to
the existence of many metastable states. This was nicely il-
lustrated in an early paper by Balents et al.47 The idea that
coarse graining leads to shocks in the force landscape, and
the similarity of the pinning problem to the Burgers equation,
was introduced using a toy renormalization group �RG�
model with two degrees of freedom. However, the function
R�u� defined in that work does not coincide with the one
usually studied in field theory, making a precise comparison
difficult.

In this paper, we want to make this comparison quantita-
tive. Let us denote u�x�, x�Rd, the N-component displace-
ment �or “height”� field which parametrizes the position of a
manifold of internal dimension d in the N-dimensional em-
bedding space. The GVM was applied to the problem by
Mézard and Parisi �MP�,46 introducing replicated fields
ua�x�. For long-range disorder, or for short-range disorder
and internal dimensions above d=2, they found a solution
with continuous replica symmetry breaking �RSB� with a

PHYSICAL REVIEW B 77, 064203 �2008�

1098-0121/2008/77�6�/064203�39� ©2008 The American Physical Society064203-1

http://dx.doi.org/10.1103/PhysRevB.77.064203


roughness exponent for the manifold u�x��x� given by the
Flory estimate. �The FRG allows one to go beyond this result
and to compute deviations from Flory for N��.� For short-
range disorder, with d�2, they found a one-step RSB solu-
tion, analogous to the one in infinite range p-spin models.2,3

In the infinite-N limit, the GVM becomes formally exact
and, hence, can be compared with the FRG. Two of us11,13

obtained a self-consistent equation for the coupling function
of the FRG, R�u�. It was defined from the effective action of
the replicated field theory �for a uniform mode u�x�=u�, a
standard field theory definition, and computed in the large-N

limit, performing the usual rescaling R�u�=NB̃�u2 /N�. Al-

though the resulting self-consistent equation for B̃�x� is for-
mally valid only below the Larkin scale, the corresponding
FRG equation could be continued “naturally” to scales be-
yond the Larkin scale �with a cusp present at u=0�, extend-
ing the flow all the way to the RG fixed point. For 2�d
�4, where the RSB is continuous, this FRG flow
recovered11,13 the MP result for small overlap, i.e., it yielded
only, even though exactly, the �nontrivial� contribution of the
most distant states to the correlation function. However,
quite surprisingly, varying the IR cutoff m in the confining
potential well finally allows for the reconstruction of the
complete self-energy function obtained in the GVM, without
ever referring to ultrametric matrices.11,13

Despite this quantitative progress in understanding the
connection between FRG and GVM, several questions re-
mained. It is natural that the FRG recovers the contribution
of distant states, since it introduces an external field which
explicitly breaks replica symmetry and, hence, splits all the
replicas: ua−ub�0. However, one would hope FRG to de-
scribe all states, not just the ones with smallest overlap. Fur-
ther, no thermal rounding of the cusp was found, which is
physically surprising in view of results relating finite-
temperature droplets and FRG.22,48,49 Finally, one would like
to describe better the situation where the GVM yields a non-
marginal one-step RSB solution, namely, the case d�2 with
short-range disorder, which includes, in particular, the
Kardar-Parisi-Zhang �KPZ� problem with d=1.50–54

The first aim of this paper is to compute the FRG func-
tions from first principles in the large-N limit. We take ad-
vantage of the recently obtained direct relation between the
field theoretic definition of the FRG function R�u� and di-
rectly observable quantities.48,49 This has allowed for a nu-
merical determination of R�u� or the force correlator

��u� = − R��u� �1�

for N=1 interfaces at T=0 in dimensions d=0, 1, 2, and 3 in
Ref. 55 as well as for the depinning problem in Refs. 56 and
57. It was found that the numerics compares remarkably well
with the �=4−d expansion, to one loop, and even better to
two-loop order. The idea, also implemented here, is to sub-
ject the manifold, in addition to the random potential, to an
external quadratic potential well m2

2 �ddx�u�x�−v�2, centered
at v. The “mass” m acts as an infrared cutoff limiting the

interface fluctuations. By measuring the free energy V̂�v� of
the system as a function of v, one obtains a random land-

scape whose second cumulant is the function R�v�. More
generally, if v→v�x�, the whole second cumulant functional
R�v� is retrieved.

Here, we compute this functional exactly. We find two
distinct scaling regimes with nontrivial infinite-N limits, the
first one where v2 �N0L−d, the second for v2 �N. The reason
for this peculiar property is that at v=0 there is spontaneous
RSB, which implies the contribution of many saddle points
which are equivalent under replica permutations. If the “ap-
plied field” v remains “small” �first regime�, the spontaneous
RSB saddle point is not significantly modified and all saddle
points contribute to a given observable �though, now, not all
of them equivalently�. This can be handled by a method in-
troduced in Ref. 47, and will be applied here with some
improvements. In the second regime, which corresponds to
the more conventional scaling at large N, the applied field is
stronger and the saddle point is modified. We explicitly com-
pute the v dependence, and show how, for large v, a non-
trivial FRG function emerges. Specifically, in the case of a
uniform field v�x�=v, we obtain

R�v� − R�0� = �L−dr̃�v2Ld� for v2 � L−d �2a�
Nr�v2/N� for v2 � N , �2a�

with two different scaling functions which we compute. We
check that the two regimes match, i.e., r̃�z��Az at large z
and r�z��Az at small z. In the case where the RSB is con-
tinuous �e.g., for 2�d�4�, we prove that regime �2b� yields
the large-N FRG function obtained in our previous study.11,13

Hence, the natural continuation �using the FRG flow equa-
tion� performed there is correct, and one of the main results
of the present paper is to show this rigorously. Remarkably,
RSB enters in this regime only through a single number, an
anomaly. In the case of continuous RSB �including the mar-
ginal one-step solution in d=2�, we find that both regimes
�2a� and �2b� exhibit a cusp in R��v� at the origin, though of

different nature. Specifically, one finds r̃�z�=Bz+ C̃z3/2 at
small z �at T=0� and r�z��Az+Cz3/2 at small z �for all T in
the glass phase�. These cusps are caused by jump disconti-

nuities in V�ˆ �v�, called shocks, as the center of the well v is
moved. In regime �2a�, the scaling function describes a fluc-
tuation of the energy, as measured by the connected cor-
relator

�V̂�v� − V̂�0��2 = 2Ld�R�v� − R�0�� �3�

of order unity as v is moved by a very small amount �L−d/2.
Hence, we call this regime “single shock regime.” By con-
trast, in regime �2b�, the variance of the energy fluctuations
scales with volume and N. Hence, we call this regime “ther-
modynamic,” since the scaling function r�z� encodes the av-
erage properties of many shocks. The two regimes also ex-
hibit different properties with respect to temperature. In
regime �2b�, as was found in Refs. 11 and 13, the tempera-
ture dependence is weak and the cusp survives even for T
�0. Regime �2a� exhibits a thermal rounding of the cusp,
whose form is obtained in an exact closed form. We compare
its form with the predictions for the thermal boundary layer
of the FRG obtained previously48,49 in cases where it can be
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obtained using droplet arguments �i.e., at finite N�. For suf-
ficiently short-ranged disorder in d�2, the equilibrium one-
step RSB solution yields a considerably reduced regime �2b�
with no nonanalyticity. A nonanalyticity in this regime would
indicate the criticality of the system toward clustering of the
states into an ultrametric superstructure �higher-step RSB�.
This kind of criticality is not present in typical samples in
d�2, and only arise in exponentially rare disorder realiza-
tions, as we confirm by studying the configurational entropy
of nonequilibrium states. Possible consequences of our re-
sults for manifolds at finite N are discussed, as well as ex-
tensions to spin glasses and related models.

The outline of the paper is as follows. In Sec. II, we
define the model and the observable to be studied. In Sec. III,
we analyze regime �2a� for both continuous and one-step
RSB, discussing various subtleties of the phase diagram in
the one-step case. We study, in particular, the nonanalytic
cusp arising in the force correlator at T=0 and its thermal
rounding. Taking the limit of large v�1, we establish the
matching with the regime v2 �N, which is analyzed in detail
in Sec. IV. We rigorously show how to compute the FRG
function R�v� exactly by introducing two replica groups and
derive from it the correct FRG flow equations in all cases,
including the anomaly arising from RSB. The physical sig-
nificance of the presence or absence of a cusp in this regime
is discussed. The results are summarized in Sec. V, and pos-
sible applications are discussed.

II. MODEL, OBSERVABLES, AND PREVIOUS RESULTS

A. Model

We consider an elastic manifold parametrized by an
N-component displacement field u�x�, also denoted ux, where
x belongs to the internal d-dimensional space. The manifold
is exposed to a random potential, V�x ,u�, which lives in a
�D=d+N�-dimensional space. Indices of the field ux

i , i
=1, . . . ,N, are shown only when strictly needed, and we use
the notation u ·v=�i=1

N uivi. We study the �classical� equilib-
rium statistical mechanics defined by the canonical partition
sum ZV=Tr e−	HV at temperature T, and denote thermal av-
erages by 	F�u�
V �or, sometimes, simply 	F�u�
� in a given
realization of the random potential. The model is defined by
the total energy:

HV�u� =
1

2
�

k

gk
−1uk · u−k + �

x

V�x,ux� , �4�

where uk=�xuxe
ikx, �x=�ddx and ux=�kuke

−ikx, �k=� ddk
�2
�d . To

fix the average center-of-mass position ucmªuk=0 /Ld, we
choose a nonzero value for gk=0

−1 =cm2, which takes the role of
a mass, c being the elastic constant. The mass provides a
quadratic well for the manifold and, thus, serves as an IR
cutoff to limit the displacement fluctuations. One is often
interested in the scale invariant limit, m→0. A UV cutoff
��−1 in x space �e.g., due to a lattice� is implicit every-
where. For specific applications, we consider58

gk =
1

c�k2 + m2�
, �5�

even though most results apply to more general forms of gk.
The quenched disorder is chosen to possess statistical trans-
lational invariance, with second cumulant

V�x,u�V�x�,u�� = ��d��x − x��R0�u − u�� . �6�

This property entails a useful symmetry �see below�, usually
referred to as statistical tilt symmetry �STS�. We always as-
sume O�N� symmetry of the disorder, choosing the bare cor-
relator to be59

R0�u� = NB�u2/N� . �7�

This scaling with N yields a nontrivial large-N limit. Among
the variety of models parametrized by the function B�z�, one
distinguishes short-range �SR� disorder; one often studied
example being

B�z� = B0e−z/rf
2
, �8�

and long-range �LR� disorder, often represented by the fam-
ily of power law force correlator:60

B��z� = −
B0

rf
2�1 +

z


rf
2

 . �9�

Here, the parametrization of model �9� is chosen61 such that
the limit 
→� corresponds to model �8�, and that the limits

→1 and 
→0 are meaningful. These two models possess a
special scale-invariance property at infinite N: As discussed
below in Sec. IV, they arrive at their FRG fixed point after a
finite renormalization time.62

It is well known37 that the effect of disorder in model �4�
for any N becomes nonlinear, and metastability appears
when the mass is decreased beyond some characteristic
scale. As easily seen from dimensional analysis, the natural
unit is the so-called Larkin scale:63

�c �
1

Lc
ª � B0

c2rf
4
1/�

, �10�

where �=4−d. In finite dimensions d�0, Lc=1 /�c has the
loose interpretation of the smallest typical size of domains
which may be trapped in different metastable states and,
thus, exhibit glassiness at low temperature. The energy of
such domains is naturally expressed in the unit of energy

Ec ª c�c
−d�rf�c�2, �11�

while rf and Lc=1 /�c are the natural scales for embedding
space and internal space �i.e., inverse mass� lengths in the
problem. We are free to choose units in which Ec=Lc=rf
=1, or, equivalently, c=B0=rf =1, which we adopt through-
out the paper. For completeness, we give the dimensions of
all observables used in the present paper in Appendix A,
which allows us to restore the full dependence on these pa-
rameters.

In order to study model �4�, one introduces replicated
fields ua�x�, a=1, . . . ,n. Using standard methods, all
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disorder-averaged correlation functions of the u�x� field can
be expressed as correlation functions of the replicated fields
ua�x� in the theory with partition sum ZV

n =Tr e−S�u� and ac-
tion S�u�:

S�u� =
1

T
�

a
�

k

gk
−1uk

a · u−k
a −

1

2T2 �
ab
�

x

R0�ux
a − ux

b� . �12�

B. Summary of previous studies

1. Gaussian variational method

Before defining the observable computed in the present
work, let us briefly review the quantities studied in previous
publications,11,13,46 and the main results obtained there �de-
tails are skipped and can be found in these original publica-
tions�. Model �12� was studied in Ref. 46 using the GVM,
which becomes exact in the limit N=�. The central observ-
able calculated there is the two point correlation function of
the replicated field:

	uk
aiuk�

bj
S = Gab�k��ij�2
�d��d��k + k�� . �13�

Here, we denote by 	.
S averages over the replicated action
�we later drop the subscript S when not strictly needed�.
Correlation �13� encodes64 the averages 	uk

i uk�
j 


=Gaa�k��ij�2
�d��d��k+k�� �diagonal part� and 	uk
i uk�

j 
c

=�bGab�k��ij�2
�d��d��k+k�� �connected thermal average�.
The large distance behavior of the first one defines the rough-
ness exponent � of the manifold, i.e., 	�ux−ux��2
��x−x��2�,
equivalently Gaa�k��k−�d+2�� at small k. These hold at fixed
scale in the limit m→0, or at small but fixed m for scales
smaller than the IR cutoff, k�1 /m. Another important expo-
nent characterizes how the fluctuations of the ground state
energy �or of the free energy� scale with system size,
�E�L�. Here, thanks to the statistical tilt symmetry, one has
the relation �=d−2+2�.

Quite generally, Eq. �13� takes the form

TGab
−1�k� = �abgk

−1 − �ab�k� , �14�

and, within the GVM, the self-energy is taken to be k inde-
pendent, �ab�k���ab. It obeys a self-consistent equation
which arises as a large-N saddle-point equation, reading

�ab = −
2

T
B��2�

k

�Gaa�k� − Gab�k��
 . �15�

There are two types of saddle points: Either they respect the
replica symmetry of action �12�, �a�b=�, which happens in
the high-temperature phase �where the roughness exponent
assumes its thermal value, �=�th=max(0, �2−d� /2)�, or the
saddle points spontaneously break the symmetry �RSB�,
�ab→��u�, where u� �0,1� labels the distance of replicas in
an ultrametric Parisi scheme describing the glassy, pinned
phase.

Let us summarize the results for N=� and gk
−1=k2+m2,

for which the dependence on the mass is worked out in Ref.
13. We start with the case where the glass phase is described

by continuous RSB �also called infinite-step or full RSB�.
Within such a RSB scheme, it is found that the roughness
exponent equals its “Flory” value:

� = �F = � 0 �16a�
�4 − d�/�2�1 + 
�� �16b�

and the continuous RSB solution is self-consistent if the cor-
responding energy exponent is positive, �=�F=d−2+2�F
�0. This occurs in dimensions 4�d�2 for both models and
any 
, as well as in dimensions d�2 for sufficiently long-
ranged disorder in model �16b� �
�
c�d�=2 / �2−d��, in-
cluding model �16a� in d=2.

The replica symmetry is broken for small IR cutoff m
�mc, where mc=mc�T� is the temperature dependent Larkin
mass, which is determined by the instability of the replica-
symmetric �RS� solution:

1 = 4B��2TI1�mc��I2�mc� , �17�

In�m� = �
k

1

�k2 + m2�n , �18�

and decreases as a function of T from mc�T=0�=O�1� to zero
as T→�. Hence, in that case, an unconstrained system �m
=0� is always glassy, while a strong confinement m�mc�T�
leads to an ergodic �replica symmetric� high-temperature
phase. This is illustrated in Fig. 1 where we plot the phase
diagram for model �16a� in d=3. Since the temperature al-
ways enters in the combination 2TI1, where I1 is dominated
by the UV cutoff for d�2, we have introduced the rescaled
temperature:

T̂ = 2TI1�m = 0� =
4T�d−2

�4
�d/2�d − 2���d/2�
�19�

for a circular UV cutoff in k space.

0.05 0.1 0.15

m (0)
m

c

1

2

3

4

T^

Liquid

Glass

FIG. 1. �Color online� Phase diagram for model �16a� in d=3
for � /mc�1. The phase transition as given by Eq. �17� is every-
where continuous, and the glass phase exhibits continuous RSB.

The transition temperature T̂c diverges as m→0. An unconstrained
system �m=0� is, therefore, always glassy. A similar phase diagram
applies to d�2 for both models �16a� and �16b�, and to d�2 for
model �16b� with sufficiently long-ranged correlators, 
�
c �the
temperature scale being set, for d�2, by I1(mc�T=0�)�.
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The self-energy function ��u� of a continuous RSB solu-
tion generally interpolates continuously between two pla-
teaux at small and large u. For both models �16a� and �16b�
�with 
�
c in d�2�, ��u� takes the form65

��u� =
2

2 − �

mc
2

uc
� ��m/mc�2−� u� um

�u/uc��2/��−1, um � u� uc

1, uc � u� 1.
� �20�

Here, mc=mc�T� and66

uc = ATmc
�, �21�

um = ATm�, �22�

where, with In defined in Eq. �18�,

A =
I2�mc�2

mc
d−2I3�mc�

=
4Ad

�2 , �23�

A =
4Ad

�2 �1 +
1




� �

4Ad

1/�1+
�

, �24�

and Adª��k�1+k2�−2=2��3−d /2� / �4
�d/2.
In the sequel, the value of ��0� will play a central role,

and we give an explicit expression for later reference:

��0� = ��um� =
2

2 − �

m2−�

AT
. �25�

In the case of sufficiently short-ranged disorder in d�2
�model �23� or model �24� with 
�
c�d��, the glass phase is
described by a one-step RSB solution which is fully charac-
terized by three numbers: the breakpoint uc and the self-
energy parameters

�0 � ��u� uc� = ��0� ,

�1 � ��u� uc� = ��1� . �26�

The borderline between one-step and full RSB is charac-
terized by �=�F=0: 
=
c for model �24� in d�2, or model
�23� in d=2. In this case, the one-step solution can equiva-
lently be obtained as the limit of a continuous RSB solution,
which entails that the one-step scheme is only marginally
stable. In this limiting case of continuous RSB, mc�T� re-
mains a decreasing function of T, however, it vanishes at a
finite T=Tc, signalling a continuous glass transition for the
unconstrained system �m=0� at Tc. The phase diagram for
the marginal case of SR disorder in d=2 is shown in Fig. 2.

Away from the borderline in the �d ,
� plane, the one-step
solution is genuinely stable. This includes, in particular, the
case of the directed polymer and the KPZ problem �d=1�.
The phase diagram in the �T ,m� plane is more complicated
�cf. Fig. 4� and will be discussed together with the one-step
solution within the GVM in Sec. III D 3. The essential dif-
ference with the cases discussed above is the nature of the
temperature-driven glass transition at small mass, which be-
comes a discontinuous random first-order transition. Similar
to ordinary first-order transitions, two locally stable solutions
coexist at least close enough to the transition: Here, these are

the RS solution and the one-step solution. The roughness
exponent of all one-step solutions equals the thermal expo-
nent, �=�th= �2−d� /2.

2. Effective action and functional renormalization group

In an effort to connect the results described above to the
functional RG approach, two of us performed a calculation
of the effective action ��u� for model �4� �cf. Refs. 11 and
13�. One starts by defining the standard generating functional
W�j� for connected correlations in the replica theory with, in
general, j= (j1�x� , . . . , jn�x�):

eW�j� = Z�j� = �
a=1

n

ZV�ja� , �27�

ZV�ja� =� D�u�exp�− 	HV�u� + �
x

jx
a · ux
 , �28�

and the effective action functional is defined via the Leg-
endre transform:

��u� + W�j� = �
a
�

x

jx
a · ux

a,
�W

�jx
a �j� = ux

a. �29�

In Refs. 11 and 13, the effective action for a uniform con-
figuration ��u�= 1

Ld���ux
a=ua�� was studied in the large-N

limit. It has a nontrivial limit in the regime

u2 � N, �� N . �30�

It was further computed in an expansion in the “number of
replica sums” �which is effectively a cumulant expansion� as
follows:

��u� = �
a

m2�ua�2

2T
−

1

2T2 �
ab

R�uab� −
1

6T3 �
abc

S�3��uabc� + ¯

�31�

up to a constant. Here and below, uab=ua−ub and uabc

=ua ,ub ,uc. This defines unambiguously �for any N� the sec-

0.2 0.4 0.6 0.8 1
m π

0.2

0.4

0.6

0.8

1

T
2 π

1/2

FIG. 2. �Color online� Phase diagram for model �23� in d=2
�with a UV cutoff �=10�. The phase transition is everywhere con-
tinuous, and the glass phase exhibits continuous one-step RSB. The
transition temperature has a finite limit Tc→2
 as m→0. A similar
phase diagram applies to model �24� with critical long-range disor-
der 
=
c in d�2. The transition line has a cusplike behavior as
m→0, �Tc�0�−Tc�m�� /Tc�0��m2−d �and �1 / log�1 /m� in d=2�.
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ond cumulant of the renormalized disorder potential R�u�
=Rm�u�, where we will usually keep the m dependence im-
plicit. At large N, it obeys the scaling form

R�u� = NB̃�u2/N� . �32�

Remarkably, the scaling function B̃�z� satisfies a closed equa-
tion:

B̃�z� = B��z + 2TI1 + 4I2�B̃�z� − B̃�0��� , �33�

where z=u2 /N, and In= In�m� was given in Eq. �18�. As we
will show later, this equation is only valid in the nonglassy
regime since it was derived under the implicit assumption
that the replica symmetry is not spontaneously broken as u
→0. Taking a derivative with respect to the mass m and

introducing a scaled function b̃�x�=4Adm4�−�B̃�xm−2��, a
FRG equation was derived for the renormalized and scaled

potential correlator b̃�x� �denoted b�x� in Refs. 11 and 13�.
Remarkably, this FRG equation admits a natural continuation
to the glassy regime. In that continuation a linear cusp exists
for all m�mc. The resulting large-N equation, valid to all
orders in �=4−d, exactly matches the equation previously
derived to first order in � �one loop�, but for arbitrary N, by
Balents and Fisher,6 by a quite different method. In addition,
for all universality classes characterized by �d ,
�, such that
��0 �ensuring continuous RSB in the GVM�, the fixed

points b̃*�x� could be related to the solution of the GVM. All
the above strongly suggested that the derived flow equation
was the correct large-N limit of the FRG.

3. Relation between Gaussian variational method and functional
renormalization group in the case of continuous replica

symmetry breaking

However, establishing a link between the GVM results
and the FRG is rather subtle. To a considerable extent, this
has been achieved for the case of continuous RSB in Refs. 11
and 13, while the same task for situations exhibiting one-step
RSB has remained an open problem, which is addressed in
the present paper. In order to review the results for the con-
tinuous case, we recall the multiplication formulas for two
ultrametric matrices AB=C:

AcBc = Cc, �34�

„Ac − �A��u�…„Bc − �B��u�… = Cc − �C��u� , �35�

A�0�Bc + B�0�Ac = C�0� , �36�

where

Ac
ª Aaa − �

0

1

A�u��du�, �37�

�A��u� ª uA�u� − �
0

u

A�u��du�. �38�

We also introduce the notation for the diagonal element Ã
ªAaa.

From Eq. �20� above, one finds

m2 + ����u� = mc
2 � ��m/mc�2, u� um

�u/uc�2/�, um � u� uc

1, uc � u� 1,
� �39�

and from Eq. �14�, we obtain

Gc�k� = Tgk, �40�

Gc�k� − �G��k,u� =
T

gk
−1 + ����u�

, �41�

G�k,0� = G�k,um� = T��um�gk
2. �42�

Further, using d
du ����u�=u d

du��u�, we find

G�k,u� = T��um�gk
2 + T�

um

u �̇�u�du

�gk
−1 + ����u��2 �43�

�we often denote �̇� d
du� here and below�, which relates

G�k ,u� to the self-energy ��u� �Fig. 3�, which for gk
−1=k2

+m2 is given by Eqs. �20� and �39�.
In the GVM, the two-point correlation function is, thus,

given by contributions from states at all distances u as

G̃�k�
T

= gk + ��um�gk
2 + gk�

um

1 du

u2

����u�
gk

−1 + ����u�
. �44�

Using Eq. �39� and integrating over u yield the final result:

G̃�k� � Cm−�d+2��f�k/m� , �45�

in the limit m→0, with f�0�=1 and f�z��z−�d+2�� with �
=�F, exhibiting the anticipated scaling.

On the other hand, the FRG allows one to compute the
two-point function using Eq. �31� through the exact relation:

�2
�d��d��k + k��Gab
−1�k� = � �2��u�

�uk
a�uk�

b �
u=0

, �46�

which, upon matrix inversion, yields the zero-momentum
correlation function:

FIG. 3. The MP function ����u�+m2 for m�0. By changing m2,
only the lower plateau will move, while the remainder of the func-
tion �for u�um� remains unchanged.
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G̃�k = 0� = −
2B̃��0�

m4 +
T

m2 . �47�

It turns out that this does not yield the full MP result �Eqs.
�44� and �45��. Indeed, the contribution from the integral
over u in Eq. �44� is missing. However, Eq. �47� exactly
reproduces the first two terms in Eq. �44�, i.e., the contribu-
tion from the most distant states corresponding to 0�u
�um, as well as the trivial term T /m2 describing the con-
nected correlations Gc�k=0�. Using the natural continuation
to the glassy regime of the RG flow associated with the so-
lution of Eq. �33�, it was, indeed, inferred that

− 2B̃��0� = T��um� , �48�

as will be derived rigorously in Sec. IV. This is already a
nontrivial result: obtaining it within the GVM does require
the RSB ansatz, while the FRG considered in Refs. 11 and 13
does not make reference to ultrametric matrices and their
properties.

The fact that the FRG calculation of Refs. 11 and 13
reproduced only the contribution of the most distant states
within the Parisi hierarchy was argued to arise because � and
W were computed by introducing sources which split all rep-
licas, i.e., uab�0 �and of order �N� for all a�b. However, it
remained to be understood how the full result �45� can be
recovered and how the crossover to spontaneous RSB takes
place as uab→0.

This is the aim of the present paper. We will show the
existence of a regime whose large-N limit is different from
Eq. �30�:

u2 � N0L−d, �� N0, �49�

and where RSB cannot be neglected. This will allow us to
recover the complete GVM result, i.e., to correctly perform
the �nontrivial� zero-field limit uk

a→0 in Eq. �46�. We first
show, in the following section, that it is equivalent, but
physically more transparent, to studying the generating func-
tional W rather than �. Further, we will revisit the attempt by
Balents et al.47 to connect RSB and FRG. Although we
choose a different observable than those authors �so as to
connect more directly to the FRG�, we employ techniques
similar to theirs, at least in the regime v2=O�1�.

C. Observable studied here

The observable studied here is the free energy V̂�v� of the
elastic manifold in a quadratic potential well centered at po-
sition vx and defined by67

e−V̂�v�/T =� D�u�e−HV�u;v�/T,

HV�u;v� =
1

2
�

k

gk
−1�uk − vk�2 + �

x

V�x,ux� , �50�

with gk=k2+m2. For a uniform vx=v and vk=v�2
�d��d��k�,
one has68

HV�u;v� = HV�u� − m2v�
x

ux +
1

2
Ldm2v2. �51�

It is then clear from the definitions �27� and �50� that the

statistics of V̂�v� can be obtained from the functional W�j�
with

jk =
gk

−1vk

T
. �52�

Hence, we denote Ŵ�v�=W�j= �g−1v� /T�, such that

eŴ�v� = exp� 1

2T
�

k

gk
−1�

a
vk

av−k
a 
�

a

e−V̂�va�/T. �53�

It is, thus, clear that the functional can be expanded in a
cumulant expansion, i.e., in the number of replica sums:

Ŵ�v� =
1

2T
�

a
�

k

gk
−1vk

av−k
a +

1

2T2 �
ab

R̂�vab�

+
1

6T3 �
abc

Ŝ�3��vabc� + ¯ , �54�

up to a constant, where again vx
ab=vx

a−vx
b. Each term in the

expansion is a functional, R̂�vab�� R̂��vx
ab�� with fixed a ,b,

etc., and represents the free-energy cumulants:

V̂�v�V̂�v��c = R̂�v − v�� , �55�

and similarly for higher cumulants �the overbar denoting the
disorder average over the random potential V�. For a uniform
configuration vx=v, one has

R̂�v� = LdR̂�v� , �56�

which defines R̂�v�. Note that with arguments in brackets
�…� we denote functionals, while �…� is reserved for func-
tions. When discussing uniform v, we usually switch to the
function R�v�, separating out the volume factor.

As shown in Refs. 48 and 49 by performing the Legendre
transform �29�, this observable is directly related to the func-
tion R�u� of the FRG:

R̂�v� = R�v� , �57�

i.e., the two functions are the same, and this holds for the

functionals, too. Therefore, by computing R̂�v�, which we do
here for large N, we simultaneously compute R�u� as defined
from the effective action �31�. The fact that Eq. �55� defines
an observable which is easy to measure has allowed for a
numerical determination55 of R�u� or, more precisely, of the
force correlator ��u�=−R��u�, for N=1 interfaces at T=0.

The derivative of R�u� at T=0 contains information about
the shocks. Indeed, if one computes the ground state u�x ;v�
for a fixed well position and defines the center-of-mass dis-
placement ū�v�ªL−d �u�x ;v�, one finds that the latter exhib-
its jumps as v is varied. The statistics of these jumps is

encoded in the functions R̂, Ŝ, etc., for instance, one has
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�ūi�v� − vi��ūj�v�� − v�j� = m−4L−d�ij�v − v�� , �58�

and the cusp of �ij�v�=−�i� jR̂�v�, i.e., the derivative of � at
argument 0, is proportional to the second cumulant of the
jump sizes.

We now turn to the calculation of this observable in the
large-N limit. We will perform separate calculations for the
two scaling regimes vx

2 �O�1� and vx
2 �O�N� in the next

sections and check that they match.

III. REGIME OF SMALL v, vx
2=O„1…

We want to compute the generating functional �27� in the
form

eŴ�v� = �
a

ZV�ja�, jk
a =

gk
−1vk

a

T
. �59�

This can be carried out at large N through the saddle-point
method as in Ref. 46, introducing the term i�ab�N�ab

−uaub� and integrating over the field u. This is detailed in the
next section, where we study the case where vab

2 �O�N�,
which distorts the saddle point away from Eqs. �14� and �15�.
In this section, we study vab

2 =O�1� and the above saddle
points are unchanged �more precisely, they are shifted only
by terms at most of order O�1 /N�, which are discarded�.
Since there is spontaneous RSB, there are, in fact, many
saddle points equivalent under replica permutations. Hence,
the above average must be written as a sum over all equiva-
lent saddle points:

�
a

ZV�ja� = Cn�


�exp��

a
�

x

jx
aux
�




, �60�

where 
�Sn belongs to the group of permutation of n rep-
lica which is used to label the saddle points. Around each
saddle point, the measure is Gaussian with correlator
	ux

auy
b

=Gab


 �x−y�ªG
�a�
�b��x−y�, where Gab�x� is the ul-
trametric matrix given by Eq. �14�. Hence, we obtain

eŴ�v�−Ŵ�0� = �˜



exp� 1

2T2 �
ab
�

k

gk
−2Gab


 �k�v−k
a · vk

b� , �61�

where �˜ 
 denotes a normalized average over permutations,

i.e., �̃
1=1. The remainder of this section is devoted to the
analysis of this formula.

In principle, by expanding this formula in powers of v to
all orders, and regrouping terms, one could check that it is,
indeed, possible to put it into the form �54� and to compute

all the cumulants �we denote by Ŝ�n� the nth cumulant�. This
is a formidable task, however, and we will focus here only on

the second cumulant function R̂. Before computing it di-
rectly, let us give a flavor of the direct expansion in powers
of v.

A. Direct expansion in powers of v

The expansion of Eq. �61� in powers of v starts as

Ŵ�v� − Ŵ�0� = �˜



1

2T2 �
ab
�

k

gk
−2Gab


 �k�v−k
a · vk

b + O�v4� .

�62�

Let us recall the structure and parametrization of a hierarchi-
cal Parisi matrix. Dropping temporarily the k dependence,
one has69,70

Gab = �G̃ − G�n���ab + G�n��1n�ab �RS� , �63�

Gab = �G̃ − G�1���ab + �G�1� − G�n���1uc

�n��ab + G�n�

��1n�ab �one-step RSB� , �64�

Gab = �G̃ − G�1���ab + �
n

1

du
dG�u�

du
�1u

�n��ab

+ G�n��1n�ab �continuous RSB� . �65�

We have defined 1m
�n� as the matrix made of n /m identical

blocks along the diagonal, each block being the m�m ma-
trix with all entries equal to one, and 1n

�n� =1n. As an example,

13
�12� =�

1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1

� .

�66�

With these formulas, one easily checks that

Gc
ª �

b

Gab = G̃ − �
n

1

G�u�du + nG�n� =
n→0

G̃ − �
0

1

G�u�du .

�67�

For symmetry reasons, the permutation average must yield a
replica-symmetric matrix

�˜



Gab

 = ��ab + 	 . �68�

Setting a�b, one finds 	= �n−1�−1�b�1G1b= �Gc− G̃� / �n
−1�, while multiplying with �ab shows that �+	= G̃. Thus,
one finds
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�˜



Gab

 =

1

1 − n
��Gc − nG̃��ab + G̃ − Gc�

→
n→0

�Gc + n�G̃ − Gc���ab + G̃ − Gc, �69�

which is a replica-symmetric matrix by construction, but
with nontrivial entries in the case of RSB. Terms of higher
order in n have been neglected, except for the linear term in
the replica diagonal part which we retain for later use.

Inserting in Eq. �62�, we finally have

Ŵ�v� − Ŵ�0� =
1

2T2 �
a
�

k

gk
−2�Gc�k� + n„G̃�k� − Gc�k�…��vk

a�2

+
1

2T2 �
ab
�

k

gk
−2�G̃�k� − Gc�k��vk

a · v−k
b

+ O�v4� . �70�

On the other hand, expanding Eq. �54�, we obtain, for n=0,

Ŵ�v� − Ŵ�0� =
1

2�
ab
�

k
� �ab

Tgk
−

1

T2 R̂k��0�
vk
a · v−k

b + O�v4� ,

�71�

since the fourth cumulant must start as v4 and the third as v6

�as one cannot construct STS invariant combinations of
smaller degree; see Appendix B of Ref. 22 for an argument
in the case N=1�. Here and below, we adopt the notation

R̂xx�
� �v� =

�2R̂�v�
�vx

i�vx�
i , �72�

�
xx�

eikx+ik�x�R̂xx�
� �v� = �2
�d��k + k��R̂k��v� , �73�

where the last line uses translational invariance and one has
set vx=v after taking the derivatives. Further, we have as-
sumed O�N� symmetry so that the second derivative of R is
diagonal and independent of the O�N� index i in Eq. �72�
�where no index summation is assumed�.

Identifying Eqs. �70� and �71� shows that for n=0:

G̃�k� = Tgk − gk
2R̂k��0�, Gc�k� = Tgk, �74�

the second identity being a simple consequence of the STS

symmetry. Hence, once the functional R̂=R of the FRG is
known, the correlation function computed via the GVM can
be retrieved as

�˜



	u−k
a uk

b

 = �˜



Gab

 �k� = Tgk�ab − gk

2Rk��0� . �75�

This property of R, here guaranteed by its definition �61� via
the effective action, does not hold for the observable defined
in Ref. 47 �having a similar form but with G→G−1�. This
made the comparison of their results with the FRG problem-
atic.

To evaluate the identity �74� at k=0, we use that for a
uniform v, d /dv=�dx �

�vx
and, thus,

R̂k=0� �v� =
1

Ld�
xx�

R̂xx�
� �v� = R̂��v� , �76�

which yields

G̃�k = 0� =
T

m2 −
R̂�0�
m4 . �77�

This relation is exact, and the task is, hence, to evaluate

R̂��0�. There is, however, a crucial subtlety in evaluating this

derivative at v→0. If one uses that R̂�v�=R�v�, together with
the result of Refs. 11 and 13,

R̂�v� = NB̃�v2/N�, v2 � N , �78�

a relation also obtained directly in Sec. IV B, one finds that
Eq. �77� coincides with formula �47�. However, this result is
valid only in the region v2 �N and, as pointed out above, it

does not reproduce the full MP result for G̃. To obtain the
latter, as we show below, one needs to be more careful in the

v→0 limit and compute R̂��0� in the region where v2

�L−d�N. One could say that the v→0 and N→� limits do
not commute or, more accurately, that to obtain contributions
of all ultrametric states �and not just the most distant ones�,
one must take the limit v→0 with great care.

The next order O�v4� is obtained in Appendix B by the
direct expansion method and in the next section by a more
powerful method which can handle all orders, and to which
we now turn.

B. Second cumulant from a two-group analysis

While the results of the previous section were completely
general and independent of the RSB scheme, we now focus
on a specific choice of external sources. In order to compute
the second cumulant function, one best uses two sets of rep-
lica, which we denote by vx

a=vx
1 for a=1, . . . ,n /2 and vx

a

=vx
2 for a=1+n /2, . . . ,n. Inserting into Eq. �54�, we find

Ŵ�v� − Ŵ�0� =
1

2T

n

2
�

k

gk
−1�vk

1 · v−k
1 + vk

2 · v−k
2 �

+
1

2T2

n2

2
�R̂�v21� − R̂�0�� + O�n3� , �79�

where

v21
ª v2 − v1, �80�

since all higher cumulants yield higher powers of n. We
compare this with expression �61�, slightly rewritten as

eŴ�v�−Ŵ�0� = �˜



exp� 1

2T2 �
ab
�

k

gk
−2Gab�k�v−k


�a� · vk

�b�� .

�81�

In order to perform the sum over permutations, we introduce
Ising spins �a as in Ref. 47:
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va =
v1 + v2

2
+ �av21

2
, �82�

where �a=−1 if 
�a�� �1,n /2�; �a= +1, otherwise. Each
configuration ��a� is left invariant by ��n /2�!�2 permutations,
the number of distinct spin configurations being Cn

n/2

=n! / ��n /2�!�2. They all correspond to vanishing total mag-
netization, i.e., �a=1

n �a=0. Inserting Eq. �82� into Eq. �81�,
the term linear in � vanishes, and one finds

eŴ�v�−Ŵ�0� = exp� n

4T2�
k

gk
−2Gc�k���vk

1�2 + �vk
2�2�� 1

Cn
n/2

��
���

� exp� 1

2T2�
k

gk
−2 �vk

21�2

4 �
ab

Ĝab�k��a�b� ,

Ĝab ª Gab − Gc�ab. �83�

The first factor equals the term proportional to n in Eq. �79�,
as seen upon using Eq. �74�. The prime on the sum indicates
that the sum extends over all Ising spin configurations sub-
ject to the global constraint �a=1

n �a=0. Identifying the above
expression with Eq. �79�, we arrive at the formula

R̂�v� − R̂�0� = lim
n→0

4T2

n2

1

Cn
n/2

��
���

��exp��
k

gk
−2

8T2 �vk�2�
ab

Ĝab�k��a�b
 − 1� .

�84�

Note that we have simplified notations by renaming v21→v.
At this stage, we can check the small-v expansion again:

1

2
�

k

R̂k��0��vk�2 = lim
n→0

T2

2n2�
q

gk
−2

2T2 �vk�2�
���

�Ĝab�k��a�b.

�85�

If we denote the normalized average Aabª �̃���� �a�b

= 1
Cn

n/2 ����� �a�b, then one has Aaa=1. Further, the identity 0
=�bAab=Aaa+ �n−1�Aa�b implies Aa�b=1 / �1−n� and one

can, thus, write Aab= �1−n�ab� / �1−n� and �abĜabAab

=−n2 / �1−n��G̃�k�−Gc�k��. Using this in Eq. �85�, we re-
cover the result �74� of the previous section. Note that the
same result is obtained from the piece �n2 in the replica-
diagonal part of Eq. �70�, while the two-replica sum van-
ishes.

To evaluate the restricted spin sum in Eq. �84�, we use the
same method as in Ref. 71, leading to Parisi’s nonlinear dif-
fusion equation in the form discussed by Duplantier.72 We
first eliminate the constraint of zero magnetization and re-
write Eq. �84� as

R̂�v� − R̂�0� = lim
n→0

4T2

n2

2n+1��− n�
���− n/2��2

��
−�

�

dy�
���
�exp��

k

gk
−2�vk�2

8T2

��
ab=1

n

Ĝab�k��a�b + y�
a=1

n

�a
 − exp�y�
a=1

n

�a
� ,

�86�

which makes use of an identity derived in Ref. 71, valid for
n�0 only.

The evaluation of a spin sum such as it appears in Eq.
�86� is standard in the mean-field theory of spin glasses.
Here, we summarize the main steps following Duplantier.72

We write the matrix which couples the spins as

qab =
1

4T2�
k

gk
−2�vk�2Ĝab�k� ,

q�u� =
1

4T2�
k

gk
−2�vk�2G�k,u� , �87�

with qc=�bqab=0. Using Eq. �43�, this becomes

q�u� =
1

4T
�

k

�vk�2���um� + �
um

u �̇�u�du

�gk
−1 + ����u��2� . �88�

Let us now assume that qab has a K-step ultrametric structure
with breakpoints at

n � u0 � u1 � ¯ � uK � uK+1 � 1, �89�

and entries parametrized by q�u� with

q�u� = q� for u� � u � u�+1. �90�

Further, we define q−1 �0. Let us introduce the “partial par-
tition sums”:

g��y� � eu����y�
ª �

��a�,a=1,..,u�

exp�1

2 �
a,b=1

u�

�a�qab − q�−1��b

+ �
a=1

u�

�ay� , �91�

which defines g��y� and ���y� for �=0, . . . ,K+1. Obviously,
gK+1�y�=2 cosh�y�exp�q̃−q�1��.

Expression �86� can then be rewritten as

R̂�v� − R̂�0� = lim
n→0

− 2T2

n
�

−�

�

dy�g0�y� − �2 cosh y�n�

= − 2T2�
−�

�

dy��0�y� − ln�2 cosh y�� , �92�

where we used that ���−n /2��2 /��−n�=−4 /n+O�n0�.
As shown in Ref. 72, the functions g��y� satisfy a recur-

sion relation, the idea being as follows. Consider one of the
n /u� equivalent groups of size u�, for instance, the first one
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a=1, . . . ,u�. It contains
u�

u�+1
subgroups of size u�+1.70 The

only coupling between the subgroups is through the matrix
�q�1u�

n with �q�=q�−q�−1,73 which couples uniformly all
spins in the group. They can be decoupled by a Hubbard-
Stratonovich transformation, adding a term z��q��a=1

u� �a,
where z is a Gaussian random field of variance �q�, acting
on all spins in the group. This allows us to perform configu-
rational sums independently within each subgroup, and
yields the recursion relation

g��y� = 	g�+1�y + z��q��u�/�u�+1�
z, �93�

where here and below 	. . .
zª�−�
� dz

2
 . . .e−z2/2 denotes the av-
erage over a unit Gaussian.

C. Continuous replica symmetry breaking: Second cumulant
from an evolution equation

In the case of continuous RSB, we have to take the con-
tinuum limit K→� in the above: �u�=u�+1−u�→0, q�u��
�q�→q�u�, and �q�→0, while �q� /�u�→dq�u� /du. For
the function ��u� ,y�����y�→��u ,y�, Eq. �93� yields a dif-
ferential equation:

�u� = −
1

2

dq�u�
du

��y
2� + u��y��2� , �94�

with initial condition:

��uc,y� = ��1,y� =
q̃ − q�1�

2
+ ln�2 cosh�y�� , �95�

where we assume q�u� to be constant for uc�u�1, as is
generally the case �cf. Eq. �20��.

Equation �94� must be integrated from uc to um, where
q�u� reaches its lower plateau q0=q�um�. If q0�0, the recur-
sion �93� for �=0 shows that we have to perform a last
convolution to obtain

��0,y� = 	�„um,y + z�q�0�…
z. �96�

The solution of Eq. �94� with initial condition �95� behaves
at large �y� like

��u,y� �
�y�→�

�y� +
1

2�q̃ − ��
u

1

du�q�u��� − uq�u�
 , �97�

as can be seen by substituting Eq. �97� into Eq. �94�. This is
also confirmed by noting that for �y��1, the sum in Eq. �86�
is dominated by the configuration with all �a=sign�y�, which
leads to the simple approximation �97� for ��u ,y�. This be-
havior implies ��um ,y���y�+qc= �y�, since qc=0 from the

condition Ĝc=0. Hence, the integral �92� converges, the sub-
leading terms of � decaying exponentially at large �y�.

We can now state the main result of this section. In the
regime v2=O�1�, the second cumulant functional can be ob-
tained from the saddle point of the GVM as follows:

R̂�v� − R̂�0� = 2T2�
−�

�

dy y�M�0,y� − tanh�y�� , �98�

where the function M�u ,y�=�y��u ,y� is the solution of

�uM = −
1

2

dq�u�
du

��y
2M + 2uM�yM� , �99�

M�uc,y� = tanh�y� , �100�

in the interval u� �um ,uc�, and

M�0,y� = 	M„um,y + z�q�0�…
z. �101�

Equation �98� follows from Eq. �92� by integration by parts,
using that limy→�� y���0,y�−ln�2 cosh�y���=0 as discussed
above.

From the above and Eq. �87�, we see that the dependence

of the functional R̂�v� on the field vx occurs only through the
combination q�u�= 1

4T2 �xyh�x−y ,u�v�x� ·v�y�, where h�k ,u�
=gk

−2G�k ,u�. Hence, for a uniform vx=v, one easily sees that
q�u��Ldv2 and we can expect that Eq. �98� will assume a
scaling form with scaling variable vLd/2. This dependence on
the system size is very different from the one in the regime
v2=O�N� and will be commented on further below.

The convolution �101� only results in an additive contri-
bution to the potential correlator. This can be seen using the
identity:

�
−�

�

dy y�	��y + �Qz�
z −��y�� = −
Q

2
����� −��− ��� ,

�102�

proven in Appendix C for functions � whose derivative de-
creases faster than 1 / �y� at infinity. Applying Eq. �102� to
��y�=M�um ,y�, we can rewrite Eq. �98� as

R̂�v� − R̂�0� = −
1

2
�

k

gk
−2G�k,um��vk�2

+ 2T2�
−�

�

dy y�M�um,y� − tanh�y�� .

�103�

This result can also be derived via an alternative route, pro-
viding a useful check of the above formalism: In Eq. �86�,
we can directly separate out the contribution from the most

distant states by writing Ĝab�k�= Ḡab�k�+ Ĝ�k ,0��1−n�ab�,
with Ḡc�k�=0 and Ḡ�k ,0�=0. One can easily check that the

piece Ĝ�k ,0��1−n�ab� produces the first term in Eq. �103�.
The remaining part leads to the same expression as Eq. �86�,
with the replacement Ĝ→ Ḡ. The only difference in the sub-
sequent evaluation is that there is no need for a convolution

in the end, since Ḡc�k�=0. This establishes Eq. �103�.
Note that the first term in Eq. �103� has the expected form

for the contribution from the plateau 0�u�um �cf. Eqs.
�44� and �48��, with a coefficient of �vk�2

−
1

2
gk

−2G�k,um� = −
1

2
T��um� = B̃��0� , �104�

independent of k. Clearly, this term is the only contribution
in the case of a replica-symmetric solution. We now show
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that it also gives the dominant contribution at large v2 of
order O�N0�, but v2�L−d.

1. Limit of Ldv2š1

In this case, Eq. �99� can be rewritten as

−
1

2
�M� + 2uM�M� =

dM

dq
→ 0 �105�

since q is large �from now on, we denote �y by a prime�. One
can integrate this equation to M�+u�M2−1�=0, where the
integration constant �with respect to y� is fixed by the fact
that M�uc ,y�→1 for large y, which cannot be changed by
the evolution �99�. The solution of Eq. �105� is then
M�u ,y�=tanh�uy�. One can check that the flow of M is at-
tracted to this simple “fixed point” as u→um, if v�v*, with
v* defined below. In that case, the second term in Eq. �103�
becomes

2T2�
−�

�

dyy�tanh�umy� − tanh�y��

= 4T2� 1

um
2 − 1
�

0

�

dyy�tanh�y� − 1� , �106�

and the large-v behavior of the second cumulant in this v2

=O�1� regime is, thus,

R̂�0� − R̂�v� �
v→�T��um�

2
�

x
vx

2 +

2

6
T2� 1

um
2 − 1
 . �107�

The leading behavior is quadratic in v and corresponds to the
contribution of the most distant states to the full �inverse�
correlation. Hence, it should match the result obtained in the
FRG for the regime v2 �N �cf. Eqs. �47� and �48� or, equiva-
lently, Eqs. �77� and �78��. Indeed, it does.

For a uniform vx=v and in the limit T→0, one finds for
both models �8� and �9�, using Eqs. �20� and �22�,

R̂�0� − R̂�v� �
v→�m2−�v2Ld

A�2 − ��
+

2

6A2m−2�. �108�

This suggests a crossover around v�v* defined as

m2Ldv*
2 = m−� ↔ v* = �mL�−d/2m−�. �109�

The physical meaning of this crossover scale will be dis-
cussed in more detail in the context of the models with one-
step RSB below �cf. Sec. III E�.

2. Perturbation expansion for Ldv2™1

Since for q�u�=0, one has M�u ,y�=tanh�y�ªm0�y�,
there is a uniquely defined expansion in powers of q, which,
since q�v2, is equivalent to the direct expansion in powers
of v2 of Sec. III A:

M�u,y� = m0�y� + m1�u,y� + m2�u,y� + ¯ . �110�

Each mn�u ,y� contains only terms of degree qn. They satisfy
the recursion

ṁn = −
1

2
q̇�u��mn−1� + u��

p=0

n−1

mpmn−p−1
�� , �111�

where here and below dots denote �u. The initial conditions

are mn�uc ,y�=0. The final result for R̂�v� is

R̂�v� − R̂�0� = − 2T2q�0� + 2T2 �
n�1

�
−�

�

dy ymn�um,y�

¬ �
n�1

Rn�v� , �112�

where we recall that 4T2q�u�=�kgk
−2�vk�2G�k ,u�. Hence, Rn

contains all terms of degree qn �v2n, and we are, thus, effec-

tively computing the derivatives at the origin, R̂�2n��v=0�.
This calculation is performed in Appendix D, and the re-

sults are, indeed, consistent with the direct expansion of Sec.
III A although the method is quite different. The lowest order
term reads

R1�v� = − 2T2�
0

1

q�u�du = −
1

2
�

k

gk
−2�G̃�k� − Gc�k���vk�2,

�113�

using that �0
1G�u�= G̃−Gc, recovering the results �62� and

�69� which yield, at small v, the full result of Mézard-Parisi
for the correlation function.

The next-order term is

R2�v� =
2

3
T2��

0

1

du q2�u� − ��
0

1

duq�u��2
 . �114�

As discussed in Refs. 8, 22, 38, 48, and 49, the fourth
derivative at zero of the FRG function R�4��0� is a direct
measure of susceptibility fluctuations. Indeed, we find that
our present result has the general form of susceptibility fluc-
tuations within a Parisi ansatz, defined and derived in Ref.
46.

3. Thermal boundary layer: General formula

It is possible to resum the derivatives, order by order in
temperature, and derive the thermal boundary layer �TBL�
form:

R̂�v� − R̂�0� = −
1

2
�

k

gk
−2G̃T=0�k��vk�2 + T3r̂1�v̂� + T4r̂2�v̂�

+ ¯ , �115�

where the first term is the “zero-temperature limit” of the
leading small-v quadratic term,74 and the higher-order terms
in the expansion in T are scaling functions of the boundary-
layer variable:

v̂k = vk/T , �116�
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q�u� =
1

4
�

k

gk
−2�v̂k�2G�k,u� . �117�

This structure, which appears already in the one-loop FRG,
can be computed exactly in the large-N limit here.

This structure appears already in the one-loop FRG,
where one finds that, at T�0, the nonanalyticity of R�v� is
thermally rounded.22,31,32 Since temperature is irrelevant in
the RG sense when ��0, this rounding occurs only in a
layer determined by vm��Tm�, which becomes smaller and
smaller as T→0, hence the name thermal boundary layer.
Here, we compute its exact expression in the large-N limit.

We now perform an expansion �slightly more formal�
which allows us to obtain Eq. �115�. The idea, looking at Eq.
�99�, is that the nonlinear term contains an extra factor of u
and that for um�u�uc one has u�T. Hence, it is natural to
expand in the nonlinearity to generate a low-temperature ex-
pansion. Of course, this must be checked a posteriori. Fur-
ther, we find it more convenient to use q�u� instead of u to
parametrize the ultrametric distance. Thus, rewriting Eq. �99�
as �qM =− 1

2 �M�+u�M2���, and expanding M =M0+M1+¯,
formally in powers of u, we have to solve the hierarchy:

�qM0 = −
1

2
M0�, �118�

�qM1 = −
1

2
�M1� + 2uM0M0�� , �119�

�qMn = −
1

2
�Mn� + 2u�

p=0

n−1

MpMn−1−p� 
 . �120�

Note that this hierarchy is formally similar to Eq. �111�, apart
from a shift in the index of the linear term on the right hand
side �RHS�, which indicates that we actually perform a dif-
ferent resummation.

The initial condition is M0�uc ,y�=tanh�y�, Mn�1�uc ,y�
=0. Again, primes stand for �y. We define

R̂�v� − R̂�0� = R0�v� + R1�v� + ¯ , �121�

R0�v� = − 2T2q�0� + 2T2�
−�

�

dy y�M0„q�um�,y… − tanh�y�� ,

�122�

Rn�1�v� = 2T2�
−�

�

dy yMn„q�um�,y… , �123�

where we use the notation Rn to distinguish from the expan-
sion in powers of q discussed in the previous section, and
different from the r̂i�v� defined in Eq. �115�.

The equation for M0 is a simple diffusion equation with
solution

M0�q�u�,y� = 	tanh„y + �q�uc,u�z…
z, �124�

q�uc,u� ª q�uc� − q�u� . �125�

Thanks to the identity �102�, when M0(q�um� ,y) from Eq.
�124� is substituted into Eq. �122�, we obtain

R0�v� = − 2T2q�uc� , �126�

whereby the terms proportional to q�0�=q�um� cancel. In the
limit T→0, Eq. �126� becomes the same as the first term in
Eq. �115�, since

G̃�k� = Gc�k� + �1 − uc�G�k,uc� + �
0

uc

du G�k,u� �
T→0

G�k,uc� .

�127�

Here, we used Gc, uc �T, and the fact that G�k ,u� has a
finite limit as T→0.

To obtain the next-order term, R1�v�, we solve Eq. �119�:

M1�q,y� = − �
q

q�uc�

dq� dy�D�q,y ;q�,y��u�q��

���M0M0���q�,y��� , �128�

where

D�q,y ;q�,y�� = −
��q� − q�

�2
�q� − q�
exp�−

�y − y��2

2�q� − q��
�129�

is the �reverse� diffusion kernel satisfying ��q+ 1
2�y

2�D=��q
−q����y−y��, and u�q� is the inverse function of q�u� for
um�u�uc. Equation �128� can be rewritten as

M1�q,y� = �
q

q�uc�

dq� u�q��	�M0M0���q�,y + z�q� − q�
z,

�130�

which when inserted into Eq. �123� gives

R1�v� = 2T2�
q�0�

q�uc�

dq� u�q��

��
−�

�

dy y	�M0M0��„q�,y + z�q� − q�0�…
z.

�131�

We can now use the identity �102� for �=M0M0�, which has
rapidly decreasing derivatives and satisfies �����=0. This
yields

R1�v� = 2T2�
q�0�

q�uc�

dq u�q��
−�

�

dy y�M0M0���q,y� .

Integrating by parts over y and using the solution �124� for
M0, one finally obtains
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R1�v� = T2�
q�0�

q�uc�

dq u�q��
−�

�

dy�1 − 	tanh„y

+ z1
�q�uc� − q…tanh„y + z2

�q�uc� − q…
z1,z2
� .

�132�

Note that we have used �M0
2−1� as primitive of 2M0M0�,

since we need it to vanish for large argument. Using

��a − b� ª �
−�

�

dy�1 − tanh�y + b�tanh�y + a��

= 2�a − b�coth�a − b� , �133�

we obtain the exact scaling functional for the thermal bound-
ary layer:75

R1�v� = T3r1�v̂� , �134�

r1�v̂� = 2�
qm

qc

dq û�q�	z�2�qc − q� coth„z�2�qc − q�…
z,

�135�

where

û�q� ª
u�q�

T
�136�

has a finite limit as T→0, where we introduced the defini-
tions

qc ª q�uc� = q�1� =
1

4
�

k

gk
−2�v̂k�2G�k,uc� , �137�

qm ª q�um� = q�0� =
T��0�

4
�

k

�v̂k�2, �138�

q̃ =
1

4
�

k

gk
−2�v̂k�2G̃�k� . �139�

4. Thermal boundary layer: Uniform v and scaling
function

for m\0

Let us consider here a uniform vx=v for which one has

q�u� =
m4v̂2Ld

4
G�k = 0,u� . �140�

Here and below, we define

G�û� = G�k = 0,u = Tû� . �141�

One can rewrite r1�v̂��Ldr1�v̂� with

r1�v̂� =
m4v̂2Ld

2
�

Gm

Gc

dG û�G��z
m2�v̂�Ld/2

2
�2�Gc − G�

�coth�z
m2�v̂�Ld/2

2
�2�Gc − G���

z
, �142�

where here we denote GmªG�um� and GcªG�uc� �not to be
confused with the connected correlator Gc�. Let us now
specify to models �23� and �24�. One finds

G�û� =
8

A�4 − �2�
1

m2+� −
2

2 + �

A2/�

û1+2/� , �143�

where A was given in Eq. �23�. Hence,

û�G� =
Am��4 − 2���/�2+��

�8 − �4 − �2�Am2+�G��/�2+�� , �144�

with ûc=Amc
�, Am2+�Gm= 2

2−� , and Am2+�Gc= 8
4−�2

− 2
2+� � m

mc
�2+�. Using Eq. �144�, we obtain the TBL function as

a double integral in Eq. �142�. In the limit m�mc, this sim-
plifies to

r1�v̂� = m2v̂2LdH�� 1
�2A

v̂
v*m�
 ,

H��x� =
1

2
� 2

2 + �

�/�2+���

0

2/�2+�� dt

t�/�2+�� 	zx�t coth�zx�t�
z,

�145�

where v*=L−d/2m−1−��
2

� is the scale obtained in Eq. �109�.
Further, from Eq. �23�, A depends only on d and 
. The
scaling function H� depends only on �, while the argument is
scaled by the characteristic displacement v* multiplied by
the scaled temperature Tm�. This indicates that the scaling
function of the thermal boundary layer exhibits universality
for ��0 since only scales of order 1 /m contribute to the
final scaling function, all features of q�u� with u�um being
subdominant.

5. Nonanalytic cusp from the T\0 limit of the thermal
boundary layer

The TBL functional �134� exhibits a non-trivial large-
argument limit, v̂=v /T→� �or, equivalently, qc→��:

r1�v̂� �
4

�
�qm

qc

dq û�q��qc − q , �146�

using that 	�z�
z=�2 /
. This limit must match the T=0 limit
of the functional R�v�, denoted RT=0�v�. More precisely, as
we will show in the next section, r1 must match the cubic
term �v3 of RT=0�v�, i.e., the cusp nonanalyticity.

We now perform an explicit calculation for a uniform vx
=v. From Eq. �142�, one finds in the limit of large v̂Ld/2:

LdR1�v� = R1�v� � ��m4v2Ld/4�3/2, �147�
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� =
4

�
�Gm

Gc

dG û�G��G�uc� − G , �148�

which produces a cusp nonanalyticity at zero temperature.
The coefficient � can be computed explicitly for models �23�
and �24� using Eqs. �143� and �144�, and one finds

� =
16

3
� 2


A
mc
��m−2−� − mc

−2−�

2 + �

3/2

2F1�3

2
,
�

2 + �
,
5

2
,1

− �mc

m

2+�� . �149�

One can check that in the limit m�mc, one has �
�m−�3+�/2� and that the prefactor agrees, using Eq. �147�,
with the one obtained from the large-v̂ limit of Eq. �145�. We
have, thus, obtained the exact leading nonanalyticity at zero
temperature: it consists in a linear cusp in the force cor-
relator, −N−1�i�vi

2 R�v���v�. This nonanalyticity is of the
same kind �i.e., proportional to �v�� as the one found in the
standard FRG �e.g., to one loop for any N� and in the large-
N FRG in the regime v2 �N, which will be discussed in
detail in the next section. However, there are differences in
the dependence of the amplitude of the cusp on m, L, and N.
Anticipating the results of Sec. IV, they can be summarized
as follows. In the regime m�mc, one finds

R̂T=0�v� − R̂T=0�0� = Ld�R̂T=0�v� − R̂T=0�v��

=
C1

m2�� v
v*


2�1 − b
�v�
v*

+ O� v2

v*
2 
� ,

v2 = O� N0

Ld/2
 ,

=
CN

m2�� v
v*


2�1 − a
�v�
vc

+ O�v2

vc
2
� ,

v2 = O�NL0� , �150�

where a, b, as well as C1, CN are numerical prefactors �with
C1 /CN=Gc /Gm�1�. Note that the two scales v*
= �mL�−d/2m−� and vc=�Nm−� are very different. The nonana-
lytic corrections in the regime v2=O�L−d/2N0� are related to
the occurrence of shocks in the system, as the quadratic well
is moved. Their contribution starts dominating once v�v*.

From Eq. �149�, one finds that the amplitude of the cusp is
zero at the Larkin mass mc, and then grows linearly as a
function of mc−m. This is in contrast to the large-v regime,
where the amplitude jumps to a finite value at mc �cf. Eq.
�265� below�.

Let us finally point out that a cusp nonanalyticity propor-
tional to �v� in the regime v2=O�L−d/2N0� was found in Ref.
47, but with an amplitude scaling differently with m. This
resulted from a calculation of a rather different observable
which is reviewed in Appendix E. A closely related cusp
singularity was also found in the study of shocks in Burger’s
turbulence.71 �For a recent discussion of their relation to
FRG, see Ref. 48.�

It is important to note that the nonanalyticity found here at
T=0 in the regime v=O�1� is a robust feature that occurs
irrespective of the type of the ultrametric RSB scheme
�whether continuous or one-step, marginally or fully stable�.
As will be discussed below, it reflects the switches in the
minimum energy, and shocklike jumps in position, which
occur as the energies of two states cross upon moving the
harmonic well. It is, not surprisingly, rounded by tempera-
ture. In that sense, it has some similarities with shocks dis-
cussed for interfaces N=1 and for Burger’s turbulence. In
contrast, in Sec. IV, the cusp in the regime v2=O�N� will be
seen to rely on the marginality of the RSB scheme with
respect to clustering fluctuations on the largest scales. That
type of marginality only occurs naturally for systems exhib-
iting continuous RSB. As we will see, in that case, a cusp
occurs even at finite T, in contrast to the above discussed
nonanalyticity which forms only in the limit T=0. As we will
discuss later, it is related to a more global transformation of
the set of states as v is varied.

6. T\0 limit of R†v‡

The above described perturbation expansion is also per-
fectly suited to analyze the limit T=0, where it turns into a
rigorous expansion in �v�. A similar expansion was pointed
out in Ref. 47. To exhibit the dependence on T and v, we
define q=v2Ld
 /T2 by introducing the reduced coupling
function:


�û� =
1

4
�

k

gk
−2� �vk�2

v2LdG�k,u = Tû�� , �151�

where in this section we denote by v2 a suitable average of
vk, such as v2Ld=�xvx

2=�kvk
2, such that vk / �v�Ld/2 is just a

form factor. As mentioned before, 
�û� and its inverse û�
�
have finite T=0 limits, taking values between 
�ûc,m�=
c,m

and ûc,m, respectively. After rescaling y ��v�Ld/2ŷ /T, the evo-

lution equation �99� for M�q ,y�� M̂�
 , ŷ� becomes

�
M̂ = −
1

2
��ŷ

2M̂ + �v�Ld/2û�
��ŷ�M̂2�� , �152�

M̂�ûc, ŷ� = tanh�Ld/2�v�ŷ
T


 →
T→0

sign�ŷ� , �153�

and the second cumulant takes the form

R̂�v� − R̂�0� =
T=0

−
1

2
�

k

gk
−2GT=0�k,ûm��vk�2

+ 2v2Ld�
−�

�

dŷ ŷ�M̂�ûm, ŷ� − sign�ŷ�� .

�154�

From Eq. �152�, it is easy to see that the above described
procedure corresponds to a power series expansion in �v�, the
term corresponding to Rn

T=0�v� being proportional to �v�2+n.
We will show below that in the case of a one-step RSB, the
zero-temperature correlator can be obtained in closed form.
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7. Comparison with the thermal boundary layer from droplet
arguments

It is interesting to note certain analogies with formulas
obtained from droplet arguments, where one assumes rare
quasidegeneracies of the ground state. In d=0, it was found
in Refs. 48 and 49 that

R̂ij� �v� ª �vivj
2 R̂�v� = R̂ij� �0� + m4T�yiyjF�m2y ·

v
T

�

y

+ O�T2� , �155�

F�z� =
z

4
coth� z

2

 −

1

2
=

1

4
��� z

2

 − 2� , �156�

where y �u21=u2−u1 is the difference between the center-
of-mass displacement of the ground state �u1� and of the
excitation �u2�. They are characterized by a �unnormalized�
distribution D�y�= P�y ,E=0�, where P�y ,E�dydE is the
�normalized� joint distribution of position and energy differ-
ences between the two states. Here, we denote 	. . .
y

ª�dy . . .D�y�, which can be normalized using the STS iden-
tity 	yiyj
y =2�ij /m2. In some simple cases �e.g., the Sinai
model, corresponding to N=1 with random-field disorder�,
D�y� is known analytically. The above formula can be
generalized48,49 to any d:

R̂�v� =
1

2
�

xy

� �R̂�v�
�vx

i�vy
j �

v=0

vx
i vy

j

+ T3�F��
xx�

gxx�
−1 vx · ux�

12/T
�
u12

, �157�

with F��z�=F�z�, and a formula for all cumulants was also
obtained.

Given the similarities between the formulas �155� and
�134�, it is tempting to interpret the latter in terms of a drop-
let size density, summed over all ultrametric distances u. To
this end, we rewrite Eq. �134� for uniform v̂=v /T as

LdR1�v� = v̂2T3�
q̂m

q̂c

dq̂ û�q̂�	�„�v̂��2�q̂c − q̂�z…
z,

�158�

where we note that q̂�û�ªq�û� / v̂2 and its inverse function
are independent of v̂.

As shown in Appendix F, the force correlator splits into a
longitudinal and a transverse part, describing forces parallel
and orthogonal to the displacement vector v� . Note that due to
the O�N� symmetry, the correlator is only a function of �v�.
The TBL contribution to the force correlators is Ld�L

�1��v�
=−LdR1���v�� and Ld�T

�1��v�=−LdR1���v�� / �v�, respectively.
They can be cast in the form �for details, see Appendix F�

− Ld�L,T
�1� �v� = T�

0

�

db �L,T
RSB�b���b�v̂�� , �159�

with the densities

�L
RSB�b� = �

q̂m

q̂c

dq̂ û�q̂�	�z4 − z2��„b − z�2�q̂c − q̂�…
z,

�160�

�T
RSB�b� = �

q̂m

q̂c

dq̂ û�q̂�	�1 + z2��„b − z�2�q̂c − q̂�…
z.

�161�

This has precisely the same form as the droplet expressions
for the force correlators, which from Eq. �155� are found as

− �L,T
drop�v� = R̂��0� − m2T + T�

0

�

db �L,T
drop�b���b�v̂�� + O�T2� ,

�162�

where R��0���vi

2 R�v=0� �for any fixed i�, and the densities
�L,T

drop�b� are given in Eq. �F5�. Note also that formulas �132�
and �133�, and the appearance of the function �, bear simi-
larities to expressions obtained in the case N=1 for averages
over a uniform density of shocks rounded by
temperature.48,49

In order to go further in the comparison and extract ob-
servables such as shock and droplet density and their size
distribution, a more detailed description of higher moments
is needed for the present model. Work in this direction is in
progress.

D. Case of one-step replica symmetry breaking (dÏ2, �Ð�c)

As mentioned before, the GVM saddle point for a one-
step situation is characterized by the “breakpoint” uc ��u1 in
the notation of Eq. �89�� and the two self-energy parameters
�0,1 �26�. Similarly, the correlation function G�k ,u� and the
coupling q�u� assume only two off-diagonal values G0,1 and
q0,1. The former has the following interpretation: The mea-
sure on configuration space describing fluctuations both due
to disorder and thermal noise can be constructed indepen-
dently for each mode k, following Ref. 46.

For the displacement in each environment, one picks a set
of “state centers” uk

� as76

uk
� = uk

0 + �G1�k� − G0�k��k
�, �163�

uk
0 = �G0�k��k

0, �164�

where the �k
0 and �k

� are chosen from independent univariate
Gaussian distributions. Note that in a given environment, the
�infinite� set of uk

� is globally displaced by the same �ran-
dom� uk

0. Each state corresponds to a partial Gibbs measure
which is assigned a weight W� �with ��W�=1�, such that the
total Gibbs measure in this environment is the weighted su-
perposition of the partial Gibbs measures, i.e., in one thermal
realization, one picks a state � with probability W� and the
mode uk takes the value

uk = uk
� + �G̃�k� − G1�k��k

�, �165�

where �k
� are chosen from independent univariate Gaussian

distributions and account for thermal noise inside a given
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state. In each environment, the weights W� are independent
random variables chosen from the distribution P�W�
�W→�W−�1+uc�, the glass transition corresponding to the di-
vergence of its first moment at large W, which implies that
only a few states dominate the total Gibbs measure.77 An
analogous construction applies in the case of continuous
RSB, where the obvious generalization of the above to
K-step RSB has to be taken to the limit K→�.

With a general one-step ansatz of the form �14�, we obtain
the correlation functions:

G0�k� = T�0gk
2, �166�

G1�k� = T�0gk
2 +

T

uc
�gk −

1

gk
−1 + �1


 , �167�

where �1ª ����uc�=uc��1−�0�. As always, on the saddle
point, STS implies Gc�k�=Tgk, and we note

G̃�k� = Gc�k� + ucG0�k� + �1 − uc�G1�k� . �168�

With such a one-step ansatz, the GVM free-energy density
takes the form46

 �uc� �
F�uc�
NLd

= f0 −
1

2T
�

b

B�2�
k

G̃�k� − Gab�k�

+

1

2
�

k
�gk

−1G̃�k� −
T

n
Tr log G�k�� �169a�

= f̃0 +
1

2T
�ucB��0� + �1 − uc�B��1��

+
T

2

1 − uc

uc
�

k
� �1

k2 + m2 + �1
− ln� k2 + m2 + �1

k2 + m2 
� ,

�169b�

where we denote the square of transverse intra- or interstate
fluctuations as

�0,1 = 2�
k

�G̃�k� − G0,1�k�� , �170�

and we have absorbed quantities that depend only on T and

m, but not on uc and �1, into the constants f0 and f̃0. The
free-energy density �169a� is minimized with respect to G by
the saddle point satisfying �F /�Gab=0 �Eq. �15��, taking the
one-step form

�0,1 = −
2

T
B���0,1� . �171�

In order to describe equilibrium thermodynamics, the break-
point uc has to be chosen so as to extremize �maximize� F, as
usual in replica treatments. However, other choices of uc are
of physical interest as well, as discussed in detail below.

1. Instability of the replica-symmetric solution

Let us derive the phase diagram in the one-step case. For
simplicity, we restrict to d�2 and � /mc=�. We recall that
we use the natural units introduced in Sec. II. Performing the
integrals, the free-energy density reads �dropping the con-

stant f̃�

 �uc� �
F�uc�
NLd =

1

2T
�ucB��0� + �1 − uc�B��1��

+
AdT

��2 − d�
1 − uc

uc
� �1

�m2 + �1��2−d�/2

−
2

d
��m2 + �1�d/2 − md�� , �172�

where we have used

�
q

1

1 + q2 =
��1 − d/2�

�4
�d/2 =
2Ad

��2 − d�
. �173�

In d=0 �a particle�, the last line of Eq. �172� becomes
−2 ln�1+�1 /m2�. In  �uc� above, �1 and uc can be consid-
ered as two independent variational parameters. The varia-
tion with respect to �1 �at fixed uc� yields back the saddle-
point equation:

�1 = −
2uc

T
�B���1� − B���0�� , �174�

where from Eq. �170� one has

�0 =
4Ad

��2 − d�
T

uc
� 1

m2−d −
1 − uc

�m2 + �1�1−d/2� ,

�1 =
4Ad

��2 − d�
T

�m2 + �1�1−d/2 . �175�

The replica-symmetric solution �uc=1, �1=�0=�RS, and �1
=0� is valid at high temperature and/or large mass, but be-
comes unstable when the condition

4Ad

�m�B���RS�m,Tc�� = 1 �176�

is met, with �RS=
4Ad

��2−d� Tmd−2. This defines a unique function

Tc�m� for masses m�mc smaller than the zero-temperature
critical mass:78

mc = mc�T = 0� = �4Ad

�
B��0��1/�

. �177�

The function Tc�m� describes the location of a continuous
glass transition toward a one-step RSB phase for mc�m
�m*. Here, m* denotes the mass where Tc�m� attains its
maximum. For m�m*, the line Tc�m� has little physical sig-
nificance, since in that regime the glass transition occurs in a
discontinuous manner at T�Tc�m�, as will be discussed be-
low.

It is interesting to note46 from Eqs. �163�–�165�, using
Eqs. �166�–�168�, that as m→0 the thermal fluctuations of
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the displacement field u within a state, G̃−G1=T / �k2+m2

+�1�, remain bounded and massive, and occur only at the
Larkin scale.

By contrast, the rms difference in displacement between
two states in a given sample, u�−u��, scales as G1−G0

= T
uc

� 1
k2+m2 − 1

k2+m2+�1
�. Hence, the thermal fluctuations be-

tween states, which are active at any T�0 in a given sample,
occur at all scales up to 1 /m. Note that these rms differences
in displacement have a finite T=0+ limit if T /uc goes to a
constant in that limit �which is generally the case as shown
below�. These fluctuations are responsible for the roughness
of the manifold �= �2−d� /2 with a nonzero amplitude even
as T→0.

Finally, sample-to-sample fluctuations include, in addi-
tion, the term G0 �T�0 / �k2+m2�2, whose mass dependence
is controlled by �0. These fluctuations also occur at all scales
smaller than 1 /m.

2. Metastable states and configurational entropy

The breakpoint 0�uc�1 is a priori a free parameter of
the one-step ansatz. In order to describe the thermodynamic
equilibrium, one should choose uc=uc

eq, which extremizes
the free energy:

d 

duc
�uc

eq� = 0 �equilibrium� �178�

�at fixed �1� as was done in Ref. 46. As in most glassy
problems with a one-step structure, at low temperatures T
�Tc the equilibrium breakpoint is proportional to the
temperature79 uc

eq�T!eq. This is shown in Appendix G,
where !eq is computed as well.

However, the function  �uc� encodes much more infor-
mation than just the equilibrium physics. It can be
interpreted80 as the quenched “replicated free energy,” i.e.,
the free-energy density per replica of a set of uc clones �rep-
lica� which are bound to remain in the same metastable state
of the energy landscape. With this interpretation, one can
alternatively write the total free energy as a sum over states.
Their number N�f� at fixed free-energy density f increases
exponentially with the volume and N. One, thus, introduces
the configurational entropy, or complexity, ��f�
=log�N�f�� /NLd. The total Boltzmann weight of uc clones
can then be written as

exp�− NLd	uc �uc�� � � df exp�− NLd�	ucf − ��f��� ,

�179�

where 	=1 /T. In the large-N limit, the configurational en-
tropy becomes the Legendre transform of the replicated free
energy:

	uc �uc� = 	ucf − ��f�, ���f� = 	uc. �180�

Knowing  �uc�, one easily obtains an implicit parametriza-
tion of the configurational entropy as a function of the free-
energy density:

f =
d�uc �uc��

duc
=  �uc� + uc ��uc� , �181�

� = 	uc
2 ��uc� . �182�

We see, in particular, that the equilibrium prescription �178�
corresponds to choosing the states with vanishing configura-
tional entropy. Since the configurational entropy is an in-
creasing function of f , the so selected states have the lowest
free-energy density in typical samples and, thus, describe
indeed the quenched equilibrium free energy.

However, the equilibrium may not be possible to reach
dynamically, which suggests a different choice for uc. The
choice is constrained by the requirement that the one-step
solution be stable �as was the case for uc=uc

eq�.
Metastable states of the free-energy density above the

equilibrium value feq are described by breakpoints in the
range uc

th�uc�uc
eq, where the lower boundary is determined

by the so-called replicon instability of the one-step scheme,
i.e., the condition81

4Ad

��m2 + �1��/2
B���1� = 1 �threshold� . �183�

A comparison with Eq. �178� shows that at fixed temperature
T�Tc�m*�, this implies m2+�1=mc

2�T�, where mc�T��m* is
uniquely defined as the solution of Tc(mc�T�)=T. One can
prove that solutions of the one-step saddle-point equations
with condition �183� exist for all T�Tc�m*� and m�mc�T�
�but nowhere outside this parameter regime�.82 The states
described by uc

th are merely marginally stable and are often
referred to as “threshold states.” Since they are usually the
most abundant metastable states of the system, they are most
likely to trap the dynamics after a fast temperature quench
for m�m*.

Another choice for uc of interest is the value uc=uc
cp

�uc
eq, where the one-step scheme becomes unstable with re-

spect to a clustering fluctuation among the existing states.81

The latter is equivalent to the condition

4Ad

�m�B���0� = 1 �cusp for FRG at large v� . �184�

This condition ensures that the second cumulant in the re-
gime v2 �N is nonanalytic at v=0, as we will discuss in Sec.
IV B 4.

We emphasize that the kind of marginal stability imposed
by Eq. �184� is clearly distinct from the marginality �183�
due to the replicon mode, which is usually imposed to select
dynamical threshold states in one-step systems.83 The latter
is also the marginality property of continuous RSB systems
that ensures the presence of collective soft modes in
classical84 and quantum mean-field spin, elastic, or electron
glasses,85–88 and leads to a universal, saturated pseudogap in
the local field distribution of spin and electron glasses.89–91

While the replicon instability �183� indicates the fragility
toward fragmentation of existing states into substates, the
condition �184� signals the instability toward the formation
of clusters among previously equivalent states. When m
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�mc, these two instabilities involve rather different length
scales. This can be seen as follows: The replicon instability
corresponds to each state uk

� in Eq. �163�, giving birth to a
new cluster of substates labeled by 	, uk

�→uk
�,	=uk

�+�uk
	,

where each �uk
	 occurs with a probability W	� �with

�	W	� =1�. This rearrangment implied by the additional
substructure involves scales of order 1 /mc since dG�u�
=T d��u� / �gk

−1+ ����u��2 with ����u�uc�=�1 �mc
2. On the

contrary, Eq. �184� signals the instability toward uk
0 splitting

into several clusters uk
0→uk

0+�uk
	, generating substates uk

	,�.
This rearranges the original uk

� into clusters labeled by 	, and
obviously involves scales up to 1 /m.

The above two kinds of instabilities have been analyzed
in detail in the context of the spherical p-spin model in Ref.
92. More recently, they have been discussed in the context of
lattice-glass models93 and optimization problems,94–96 where
they are sometimes referred to as instabilities of the first
�clustering� and second �fragmentation� kind.97 They also ap-
pear as the instabilities driving the transitions between the
two types of one-step phases adjacent to an intermediate
two-step RSB phase in certain mixed spherical spin
models.98

For model �23� in d=1, i.e., the directed polymer prob-
lem, we have checked explicitly that uc

th�uc
eq�uc

cp, and we
expect this to be generally true for one-step solutions. This is
illustrated in Fig. 5. For the associated configurational entro-
pies, this implies �th��eq=0��cp, and thus, the states se-
lected by the clustering instability �184� have negative con-
figurational entropy. Anticipating the analysis of Sec. IV B 4,
we conclude that samples exhibiting nonanalytic shocklike
behavior in the regime v2 �N where a FRG equation was
previously derived, correspond to exponentially rare realiza-
tions of the disorder occurring with probability P�exp�
−NLd ���uc

cp� � �, as derived explicitly in Appendix G.
Note that upon approaching the limit of a marginal one-

step solution, i.e., for d�2 and 
↓
c, the three values uc
th

�uc
eq�uc

cp merge and the one-step saddle point becomes si-
multaneously marginal with respect to both instabilities dis-
cussed above.

3. Phase diagram

In this section, we establish the phase diagram and discuss
some of the subtleties associated with the choice of uc. The
situation is closely analogous to a particle in a random envi-
ronment �d=0� analyzed in Ref. 99. The phase diagram of a
typical case, model �23� in d=1, is shown in Fig. 4, and
explicit values given in the analysis below refer to this spe-
cific case.

The glass phase exhibits everywhere one-step RSB. Right
on the instability line Tc�m� where Eq. �176� is obeyed, there
is only one admissible value for uc:

uc
crit�m� = −

Tc�m�I2
2�m�

I3�m�
B���RS�
B���RS�

= −
4Ad

�2

Tc�m�
m2−d

B���RS�
B���RS�

,

�185�

which yields the fluctuation-dissipation ratio relating re-
sponse and correlations at the glass transition.99 It increases
monotonously with decreasing m, and reaches uc

crit=1 at m
=m* �=1 /e=0.3678, with Tc

max=Tc�m*�=3 /e=1.1036 in d

=1 for model �23� where A1=3 /4�. For states to be dynami-
cally or thermodynamically of significance, u must always
be smaller than 1, and thus, the line Tc�m� loses its signifi-
cance below m*.

For m�m*, the glass transition is continuous in the sense
that G1−G0 smoothly goes to 0 as T↑Tc�m�. For m�m*, the
temperature-driven transition is discontinuous with a sudden
jump between intervalley and intravalley correlations occur-
ring at some T� �Tc�m� ,Tc

max�. The location of the transition
depends on the point of view. From a thermodynamic �static�
standpoint, the glass transition takes place at the line given
by uc

eq�m ,T�=1, indicating that the replica symmetry must be
broken spontaneously to extremize the free energy, which
gives rise to a nonanalyticity in the free energy. For model
�23�, one finds the explicit result
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d

Tc

m

T

cm

T

0.2

0.4

0.6
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1

Glass

*
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FIG. 4. �Color online� The breakpoint uc as a function of m at
constant temperature T=0.8 in the glass phase �m�mc�T�=0.673�
for model �23� in d=1. The labels cp, eq, and th indicate threshold,
equilibrium, and cusp states. Notice that ucp exceeds 1 at small
enough m. The same would be true for ueq and uth for Tmax�T
�Tc�0� and Tmax�T�Td�0�, respectively.
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FIG. 5. �Color online� Phase diagram for model �23� in d=1.
The solid line for m�m* indicates a continuous glass transition,

where the renormalized force correlator B̃��x� displays a cusp at the
origin. For smaller mass, m�m*, the glass transition toward the
one-step RSB phase �as a function of T� is discontinuous and takes
place dynamically as a freezing transition at Td, or, if equilibrium
can be attained, as a genuine thermodynamic transition at the lower
temperature Tc. A similar phase diagram applies in d�2 for model
�23� and model �24� with 
�
c.
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Tc�m = 0� = �2Ad

d�
�2e�d/2
−2/�

=
d=1

0.9028. �186�

However, metastable states exist already at higher tempera-
ture. In the mean-field limit N→�, they induce a dynamical
freezing transition at the line Td�m� defined by uc

th�m ,Td�
=1. For model �23�, one finds

Td�m = 0� = � e2d/2Ad

�

−2/�

=
d=1

1.0268. �187�

The resulting phase diagram is naturally very similar to the
one for a particle in a random environment �the limit d=0 of
a random manifold�,99 and it also strongly resembles that of
the spherical p-spin model, whereby the mass m takes the
role of the external field h.92 In the latter the glass, phase is
known to be everywhere of one-step nature, the transition �at
fixed h� being continuous for �h��h* and discontinuous for
�h��h*.

4. Second cumulant

To evaluate the second cumulant of the renormalized dis-

order potential V̂, we introduce as before the coupling q0,1,
connected to G0,1 via

q0,1 =
1

4T2�
k

gk
−2G0,1�k��vk�2. �188�

We need to apply the recursion relations �93� only once
�since here K=1� to calculate

g1�y� � exp�uc�1�y�� = e�q̃−q�1��/2uc	�2 cosh�y

+ z�q1 − q0��uc
z, �189�

and using similar steps as in the derivation of Eqs. �86� and
�103�, we obtain

R̂�v� − R̂�0� = − 2T2q0 − 2T2�
−�

�

dy��1�y� − ln�2 cosh�y��� .

�190�

Recalling that qc= q̃− �ucq0+ �1−uc�q1�=0, one can see that
�1�y�−ln�2 cosh�y���qc /2=0 at large �y�, and thus, the in-
tegral in Eq. �190� indeed converges. In the following, we
examine various limits of this formula.

5. Large Ldv2

Let us introduce the notation Q=q1−q0. At large v �large
Q�, one can use that

	�2 cosh„y + z�Q�…uc
z �
Q→�

2 cosh�ucy�euc
2Q/2,

as can be shown using a saddle-point method. This yields the
large-v limit:

R̂�v� − R̂�0� �
v→�

− 2T2q0 − 2T2 1

uc
�

−�

�

dy�ln�2 cosh�yuc��

− uc ln�2 cosh�y��� . �191�

Evaluating the integral, we find the final result:

R̂�0� − R̂�v� �
v→�T

2
��0��

x
vx

2 +

2T2

6
� 1

uc
2 − 1
 , �192�

which matches the full RSB result �107� if we formally re-
place um by uc. These two expressions are, indeed, identical
in the case of a marginal one-step solution, as it occurs in
d=2. In that case, �=0, and the analysis of the crossover to
large v in Sec. III C 1 remains unchanged.

6. Small Ldv2

For small Ldv2, one can expand in Q as follows:

�1�y� − ln�2 cosh�y�� =
1

uc
ln 	euc�ln cosh�y+z�Q�−ln cosh�y��
z

+
q̃ − q�1�

2

=
1

2
�1 − uc��1 − tanh2�y��Q + ¯ ,

�193�

where qc=0 was used. Performing the y integrals, one even-
tually finds

R̂�v� − R̂�0� = − 2T2q0 − 2T2�1 − uc��Q −
uc

3
Q2 +

4uc

45
Q3

+
4uc

315
�3uc − 5�Q4 + O�Q5�� . �194�

As it must be, the leading term is

R̂�v� − R̂�0� = − 2T2�
0

1

q�u�du , �195�

which yields the GVM result for two-point correlations. In-
deed, Eq. �195� matches expression �113�, which should not
depend on the RSB scheme. Similarly, inserting the one-step
form for q�u� in Eq. �114�, one checks that it reproduces the
second-order term from Eq. �194�. In fact, one can check that
Eqs. �194� and �114� agree with

R̂�v� − R̂�0� = − 2T2�tr�q� +
1

3
tr�q2� +

4

45��b

qab
3 + 2 tr�q3�

− 3 tr�q2�tr�q�
 +
4

315�− 3 tr�q4� − 12�tr�q2��2

+ 30 tr�q2��tr�q��2 + 5�
b

qab
4 − 20 tr�q��

b

qab
3

+ O�q5�
� , �196�

where we have used qc=0 and defined tr�A�
=limn→0

1
nTr�A�. Note that �bqab

3 =tr(�q ·q�q), where the dot
is the Hadamard product.

7. Low-T expansion

Let us now consider the low-T expansion, i.e., the thermal
boundary layer, using similar notations as in Sec. III C 3. In
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the T→0 limit, uc→0, but ûc �uc /T→!eq has a nonzero
limit, and so do q0 and q1 when expressed in terms of fixed
v̂=v /T, as in Eq. �116�. Hence, it is convenient to define, for
the present one-step case, an expansion in uc �Ref. 100�
analogous to Eq. �121�:

R̂�v� − R̂�0� = �
p=0

�

Rp�v� , �197�

obtained by expanding Eq. �193� in powers of uc at fixed Q.
This yields

R0�v� = − 2T2q1, �198�

R1�v� = − T2uc�
−�

�

dy�	�ln cosh�y + z�Q��2
z

− 	ln cosh�y + z�Q�
z
2 − Q� , �199�

Rp�2�v� = − 2T2 uc
p

�p + 1�!�−�

�

dy	�ln cosh�y + z�Q�

− ln cosh�y��p+1
z
c. �200�

The expression for R0 has been simplified using an integra-
tion by parts and the identity �102�, and is found to match the
result �126� for the continuous case. The term q̃−q1=−ucQ
has been included in R1. The term multiplied by uc

p in Eq.
�200� is the �p+1�th connected average �cumulant�, as indi-
cated by the superscript c. After a calculation summarized in
Appendix H, we finally obtain the thermal boundary layer:

R1�v� = 2T2uc�
0

Q

dq	z�2q coth�z�2q�
z, �201�

which agrees with the result for continuous RSB �134� as
expected, since both formulas should apply for the borderline
case of a marginal one-step solution.

8. Cusp and full correlator at T=0

The case of one-step RSB is sufficiently simple to allow
for a complete calculation of the nonanalytic T=0 limit of

the full functional R̂�v� in the regime v2 �1. Let us define
the variable:

w ª uc
�Q =

ûc

2 ��k

gk
−2�G1�k� − G0�k���vk�2�1/2

,

�202�

which will be shown to be of order O�1� when the crossover
to the shock-dominated regime occurs �see Eq. �211� below�.
It tends to a finite limit as T→0. For a uniform vx=v, this
becomes

w =
1

2
�Ldûc

2v2m4�G1 − G0��1/2 =
v

2v*
� ûc

m�� �1

m2 + �1

�1/2

,

�203�

with G0,1 �G0,1�k=0� as given by Eqs. �166� and �167�.
Note that the characteristic scale for v �determined by w

�1� is not exactly the scale v*=L−d/2m−1−��/2� for shocks
found for continuous RSB in Eq. �109�, but rather �for m
��1� �v*

1step=v*m�/2 �L−d/2m−1. However, the two scales
become the same in the case of marginal one-step RSB since
there �=0.

Let us first obtain the T=0 cusp for a uniform vx=v by
taking the limit of large v /T of the thermal boundary layer.
In that limit, expression �201� tends to101

LdR1
T=0�v� = 2ûc�

0

�w/ûc�2

dq�	�z��2q�
z

=
1

ûc
2

8w3

3�


=
�mLd/2�v��3

3�
ûc�1/2 � �1

m2 + �1

3/2

, �204�

using 	�z�
z=�2 /
. This finite nonzero limit as T→0 �cf.
Appendix G� is, thus the exact expression for the leading

nonanalyticity of R̂�v�− R̂�0� at T=0, which is again cubic
��v�3 �corresponding to a “linear cusp” of the force cor-

relator −R̂��v��. Note that in this regime, v2 �L−d, the cusp
exists irrespective of the choice of uc, including the equilib-
rium solution. This is to be contrasted to the regime v2 �N,
where, in the case of a nonmarginal one-step solution, a cusp
exists only for the choice uc=ucp �see the discussion in Sec.
IV B 4�.

We now obtain the full functional R̂T=0�v� for arbitrary vx,
using the variable w defined in Eq. �202�. By using Eq. �189�
in Eq. �190� and taking the limit of small uc, we find at T
=0:

�R̂�v� − R̂�0��T=0 = −
1

2
�

k

gk
−2G0

T=0�k��vk�2 + RT=0�w� ,

�205�

where

RT=0�w� = −
2

ûc
2�

−�

�

dŷ�−
w2

2
+ ln	e�ŷ+zw�
z − �ŷ��

= −
w2

ûc
2�

0

� 8ŷ dŷ

1 +
exp�2wŷ��1 + erf��w + ŷ�/�2��

1 + erf��w − ŷ�/�2�

= �−
w2

ûc
2�2 −

8�w�

3�

+ O�w2�� , w� 1

−

2

6ûc
2 , w� 1.� �206�

From the expansion for w�1, we again recover Eq. �204�
with, in the uniform-v case, RT=0�w�→LdR1

T=0�v�. The as-
ymptotics for w�1 is in agreement with the result �192� for
continuous RSB �with ûm→ ûc�.

From this expression, one can compute the force cor-
relator, which, from O�N� symmetry, splits in transverse and
longitudinal parts as defined in Appendix F.
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The nonanalytic parts of the longitudinal and transverse
force correlators in the regime v2 �L−d/2 are proportional to

−RT=0� �w� and −
RT=0� �w�

w , respectively. They are plotted in Fig.
6, both exhibiting a linear cusp at the origin. Note that the
full correlator of the force, in addition, contains a constant
which derives from the v2 term in Eq. �205�. Further decay
from this constant to zero at infinity occurs �for any 
�0� in
the regime v2 �N.

E. Interpretation of v* and the thermal boundary layer

What happens to the manifold as the center of the har-
monic well is moved? Let us first focus on the case of a
one-step RSB for which the construction of the statistical
measure is significantly simpler and was recalled in Eqs.
�163� and �164�. From this construction, we know that at low
temperatures a certain state center �k

� dominates, but there is
at least one excited state which differs in energy by a typical
amount T /uc. Changing the position of the harmonic well by
an amount v shifts the relative energies of these two low
lying configurations �states�, noted u1,2, by an amount

�E = �
k

gk
−1vk · �u1�k� − u2�k�� . �207�

One can expect a switch from one state to the other, and thus
a macroscopic jump, as the energies of two states cross. This
occurs typically when ��E��T /uc= ûc

−1. Recalling that
�u1�k�−u2�k��2 is of the order of G1�k�−G0�k�, one finds

�E2 = 2�
k

gk
−2�vk�2�G1�k� − G0�k�� . �208�

Hence, comparing with Eq. �202�, the jump occurs typically
when

w � O�1� . �209�

We, thus, understand the scale of variation of the functional

R̂�u� given by Eqs. �205� and �206�. The argument is even

simpler for a uniform center v �vk=Ld/2v�k,0� which couples
only to the k=0 mode of the excitation, the energy shift
being m2Ld/2v�u1�0�−u2�0��. Since �u1�0�−u2�0��2=2�G1

−G0�, we see that the energy shift �207� competes with the
typical excitation energy ûc

−1 when v is of the order of v*
1step

as defined below Eq. �203�. Since the energy difference is
finite, the jump is thermally smoothed at finite temperature,
but turns into a sharp shock for T→0, which is at the root of
the nonanalyticity in Eq. �206�.

We can obtain better insight into the physics for shifts of
order v�v*

1step by examining the force correlator. We con-
sider uniform v for simplicity. To be specific, we define

−R̂��v�ª−��v�
2 R�v�, which corresponds to the longitudinal

force correlator. From Eq. �205�, we see that for v�v*
1step,

the correlator is simply constant and equal to

− R̂��v� v*
1step� = m4G0�k = 0� . �210�

This has a simple interpretation in terms of the hierarchical
construction �163� and �164�: One can imagine the states
�characterized by ��� as parabolic potential valleys within a
big parabolic potential valley as determined by the global
center uk

0, and accordingly write schematically V�u�=V0�u0�
+V����� for the total potential. For v�v*

1step, the manifold
has jumped to a different state center, and, therefore, the part
of the force arising from V������ does not contribute to the
correlator. However, u0 is very robust under shifts of v
�N1/2, and jumps only once v2 �N, as we will see in the
next section. The force corresponding to the big valley,
V0��u0�, thus remains constant. Since the disorder potential
competes against the quadratic well Ldm2�u0�2 /2, that part of
the force is of order V0��u��Ld/2m2uk=0

0 , which leads to Eq.
�210�.

For v�v*
1step, we see from Eq. �204� that the force cor-

relator behaves as

− R̂��v� v*
1 step� = m2�m2G1�k = 0�

−
�v�

v*
1 step

2

�
ûc�1/2� �1

m2 + �1

3/2� .

�211�

The first term can be understood as m4 times the intrastate
correlator 	u2
���. The force correlations rapidly decrease
with growing v. Indeed, we can understand the nonanalytic
piece ��v� as being due to shocks which occur with a finite
density along the v axis. Note the large prefactor �Ld/2 of
�v�: It indicates that the product of the density and size of
shocks scales as �Ld/2, that is, in such a way that the system
size rather than 1 /m acts as a cutoff. Further work is in
progress to clarify the properties and the distribution of these
shocks.

Let us close the discussion of shocks by sketching the
analysis in the case of continuous RSB. The typical scale in
that case, v*=v*

1stepm−�/2, can be retrieved by the same argu-
ment as above for the one-step RSB. However, now the en-

1 2 3 4
w

�1

1

2

3

4

u� c
2 �L�T�w�

u� c
2 �L�w�

u� c
2 �T�w�

FIG. 6. Nonanalytic contribution to the force correlator in lon-
gitudinal �L�w� and transversal �T�w� directions, at T=0 in the case
of one-step RSB. The rescaled displacement w is defined in Eq.
�203�.
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ergy difference between two states at ultrametric distance u
is typically of order T /u. This competes with the energy shift
induced by the displacement of the well:

�E2 = 2�
k

gk
−2�vk�2�G�uc,k� − G�u,k�� �

Ldv2m4

û1+2/� .

�212�

The largest response is due to transitions between states dif-
fering at the largest scales, i.e., u�um �m�. The above en-
ergy comparison at this scale immediately yields v*. How-
ever, there is no sharp selection of shocks that involves the
highest hierarchy scale. Smaller shocks contribute as well,
even though their weight decreases with increasing u char-
acterizing the shock. Note that from the construction of the
measure of pure states, it is clear that when a shock occurs at
scale u=ur �in a finite K-step RSB scheme�, the whole subhi-
erarchy of state centers uk

s with K�s�r changes. Note that,
in general, shocks characterized by a larger u correspond to
smaller spatial rearrangements.

IV. REGIME v2ÈN

We now compute the functional Ŵ�v�=W�j= �g−1v� /T�
defined in Sec. II C and, more explicitly, its second cumulant

part R̂�v�, in the regime v2 �N. This is the standard regime
for the large-N analysis, and in Refs. 11 and 13, the associ-
ated saddle-point equation was obtained. There the focus was
on the calculation of the effective action ��u�, and, in par-
ticular, its two-replica component R�u�, part of which will be

of use here, too, to obtain Ŵ�v� and R̂�v�. We find, as an-

nounced in Sec. II C, that the functionals R̂ and R are iden-
tical. The calculations carried out here are, however, rather
different in spirit from the one in Refs. 11 and 13. We obtain

R̂�v� from imposing external fields va=�v to two groups of
replicas, whereas in Refs. 11 and 13, the case of uab�0 for
all a�b was considered. It is reassuring that the two ap-
proaches yield consistent results. The advantage of the
present approach is that it includes RSB effects, and hence, it
provides a complete derivation of the FRG equation on all
length scales �below and above the Larkin scale�.

A. General saddle point

To analyze the saddle point in the regime v2 �N, it is
convenient to introduce the rescaled variables:

ũ =
u

�N
, ṽ =

v
�N

. �213�

We can now rewrite the definition �59� and decouple the
partition sum with the help of two auxiliary fields as

eŴ�v� = �
a

ZV� ja =
g−1va

T
� =� D�ũ�D���D���e−NS,

S =
1

T
�

a
�

k

gk
−1�1

2
ũ−k

a · ũk
a − ṽ−k

a · ũk
a


+ �
x
�U��x� +

1

2�
ab

�x
ab��x

ab − ũx
a · ũx

b�� , �214�

where the replica matrix field �x
ab has been introduced

through a purely imaginary Lagrange multiplier matrix �x
ab.

A standard choice, as in previous sections, is gk
−1=k2+m2,

but our analysis is more general. We have also included the
source term shifting the center of mass. U is a function of an
n�n replica matrix102 ũũ� ũa · ũb:

U�ũũ� = −
1

2T2 �
ab

B„�ũa − ũb�2
… −

1

3!T3 �
abc

S�3��. . .� + ¯ ,

�215�

containing the information about the bare disorder via its
cumulants, e.g., its second cumulant being �as in Eq. �7��

R0�u� = NB�ũ2� . �216�

Note that the rescaling �213� was performed in order to
make explicit the appearance of a factor of N in front of the
action S, which allows for a saddle-point analysis. One now
explicitly performs the functional integration over the field
ux to obtain

eŴ�v� =� D���D���e−NS��,�,ṽ�, �217�

S��,�, ṽ� =
1

2
Tr ln� 1

T
�g−1 − ���

+ �
x
�U��x� + �

ab

1

2T
�x

ab�x
ab�

−
1

2T
�
ab
�

x,x�
ṽx

a��g − g�g�−1�xx�
ab ṽx�

b , �218�

where the inversions and the trace are performed in both
replica and spatial-coordinate space. We use the shorthand
g−1 ��g−1�xy

ab=gxx�
−1 �ab, which is diagonal in replica space.

Equation �217� has now the standard form for a saddle-

point evaluation of the functional Ŵ�v�¬NW̃�ṽ� except that
the saddle point is not, in general, uniform in space. At domi-
nant order in 1 /N, we obtain

W̃�ṽ� =
1

N
ln �

sp
�e−NS��ṽ,�ṽ,ṽ�� . �219�

We have allowed for different saddle points �“sp”� to con-
tribute. To alleviate notations, we did not add an index indi-
cating the different saddle points to �ṽ and �ṽ. They depend
on ṽx and are the solutions of the saddle-point equations
obtained, respectively, by setting to zero the functional de-
rivatives �at fixed ṽx�:

� �S��ṽ,�ṽ, ṽ�

��x
ab �

�=�ṽ, �=�ṽ

= 0, �220�
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� �S��,�, ṽ�
��x

ab �
�=�ṽ, �=�ṽ

= 0. �221�

Solving these equations, one can obtain R̂�v� from its defi-
nition �54�.

The explicit form of the saddle-point equations is

��ṽ�x
ab = �Gṽ�xx

ab +
1

T2 �Gṽ:g−1:ṽ�x
a · �Gṽ:g−1:ṽ�x

b

� �Gṽ�xx
ab + ũx

aũx
b, �222�

��ṽ�x
ab = − 2T

�

��abU„��ṽ�x… , �223�

TGṽ
−1 = g−1 − �ṽ, �224�

where Gṽ is a matrix with both replica indices and spatial
coordinates; thus, inversion is carried out for both. The no-
tation for the N-component vector �G : j̃�x

b
ª�c�yGxy

bc j̃y
c is a

shorthand for a matrix product, but consistent with our above
conventions, we do not write the vector indices of j explic-
itly. We have defined the average displacement induced by
the source:

ũx
a � ũx

a�v� ª
1

T
�Gṽ:g−1:ṽ�x

a. �225�

It is a function of v and of the chosen sp, and to simplify
notations, we drop, in what follows, the dependence on v
except when an ambiguity arises. As detailed in Refs. 11 and
13, ũ�v� arises in performing the Legendre transform to ob-
tain ��u� from W�v�, as one may see from Eq. �29� and �52�,
i.e.,

��u� + W�v� =
1

T
u:g−1:v , �226�

u = Tg:
�W�v�
�v

, �227�

and using that for a given saddle point:

W̃sp�ṽ� = − S��ṽ,�ṽ, ṽ� . �228�

Taking the total derivative with respect to ṽ, which is equiva-
lent to differentiating only the explicit ṽ dependence in Eq.
�220�, one recovers Eq. �225�. While in Refs. 11 and 13 we
had chosen sources ṽa− ṽb�0 such that ũa− ũb�0 and,
therefore, assumed a unique saddle point, here we allow for
spontaneous RSB and, hence, for many saddle points. In
general, the set of saddle points will include the set of all
permutations 
 which leave ṽ invariant,103 i.e., ṽ
�a� = ṽa for
all a=1, . . . ,n. Hence, the ũx

a�v� in Eq. �225� is identical to a
partial average 	ux

a

 �corresponding to a single saddle point
labeled by 
�, while the thermodynamic average corresponds
to the full average over all equivalent saddle points, 	ux

a

=�
	ux

a

. In the limit ṽ→0, the saddle-point equations
�222� become identical to the saddle-point equations of the

GVM, with Gv→G and �v→� taking the values of the so-
lution given by Mézard-Parisi �see also below�. Performing
the sum over equivalent saddle points sp in Eq. �219�, one
recovers the results of Sec. III.

B. Analysis for a uniform v

According to the general strategy to compute R̂�v�, as
described in Sec. III C, we now solve the saddle-point equa-
tions �220� and �221�, specifying the source ṽx

a

= ṽx�1,1 , . . . ,−1 , . . . ,−1� with n /2 entries +1, and n /2 en-
tries −1. For simplicity, we restrict here to a uniform vx=v,

for which R̂��vx=v��=LdR̂�v�. From the definition �54� and
the replica-sum expansion �79�, one has

L−dW̃�v� =
m2

2T
nṽ2 +

1

2T2

n2

2
B̂�4ṽ2� + O�n3� ,

R̂�v� = NB̂�ṽ2� , �229�

up to a �v-independent� constant. The matrices �ṽ and � are
now independent of x, and Gṽ is translationally invariant. We
parametrize the n�n replica matrix �ṽ by

�ṽ = � �1 �2ṽ

�2ṽ �1

 , �230�

where we anticipate that the diagonal blocks will turn out to
be independent of ṽ. We use similar notations for � and G:

�ṽ = � �1 �2ṽ

�2ṽ �1

, Gṽ�k� = � G1�k� G2ṽ�k�

G2ṽ�k� G1�k�

 .

�231�

Note that �1 and G1 should not be confused with the vari-
ables used for the one-step solution. The saddle-point equa-
tions �222�–�224� now become

�1 = ũ2J + �
k

G1�k� , �232�

�2ṽ = − ũ2J + �
k

G2ṽ�k� , �233�

TGṽ
−1�k� = �gk

−11 − �1 − �2ṽ

− �2ṽ gk
−11 − �1


 , �234�

�ṽ
ab = − 2T

�

��abU��ṽ� , �235�

and must be solved for a given value of ṽ. We have intro-
duced the notation J�1n/2 and 1 for the n

2�
n
2 matrices:

Jab = 1, 1ab = �ab. �236�

In general, we expect that �1
ab is an ultrametric matrix while

�2ṽ
ab =�2ṽJab, and similarly, for �1

ab and �2ṽ
ab. This ansatz for

the solution is motivated by the expectation that states in
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different groups will be very distant in phase space �at least,
as distant as the farthest equilibrium states, as described by
u=0�, and thus, their mutual overlap will not depend on the
specific replica in either of the groups. Further, we have ũx

a

= ũ�1,1 , . . . ,−1 , . . . ,−1�, and one can show that our ansatz
implies

ũx
a = ṽx

a, �237�

which means that the average displacement is tied to the
center of the harmonic well. This holds because Eq. �225�
implies Tgkũk= �G1

c�k�−G2ṽ
c �k��ṽk, where G1

c�k�=�bG1,ab�k�
�the sum being restricted to the n /2 replica in the same group
as a� and G2ṽ

c �k�=�bG2ṽ,ab�k� �the sum being restricted to the
n /2 replica in the group not containing a�. Within our ansatz,
as n→0, G1

c�k�=Tgk and G2ṽ
c �k� vanish �see Eq. �242� be-

low�, which establishes Eq. �237�.
To evaluate Eq. �235�, let us split the set of indices a into

two groups: a+ for the first n /2 replicas, i.e., those for which
ṽa= ṽ, and a− for the remaining n /2 replicas, and consider
for simplicity a bare model with Gaussian disorder:104

U��ṽ� = −
1

2T2 �
a+,b+

B��1
aa + �1

bb − �1
ab − �1

ba�

−
1

2T2 �
a−,b−

B��1
aa + �1

bb − �1
ab − �1

ba�

−
1

T2 �
a−,b+

B��1
aa + �1

bb − �2ṽ
ab − �2ṽ

ba� . �238�

One can easily see that Eqs. �235� and �238� imply the STS
property �c=�a�ṽ

ab=0. Applying the inversion formulas
�34�–�36� to Eq. �234�, we find the exact relation �to all or-
ders of n� Gc=G1

c +G2ṽ
c =Tgk from the connected part �234�.

Further, to lowest order in n, one finds �cf. Eq. �40� and �41��

�G1��k,u� = Tgk −
T

gk
−1 + ��1��u�

, �239�

G1�k,0� = gk
2T�1�0� , �240�

G2ṽ = gk
2T�2ṽ, �241�

and to precision O�n�:

G1
c�k� = Tgk − �n/2�gk

2T�2ṽ,

G2ṽ
c �k� = �n/2�gk

2T�2ṽ. �242�

Up to negligible corrections of order O�n�, the saddle-point
equations for the diagonal blocks are the same as those in the
regime v=O�1� �cf. Eq. �14� and �15��, independent of the
external field ṽ:

�1
ab = −

2

T�B���1
aa + �1

bb − 2�1
ab�

− �ab�
c+

B���1
aa + �1

cc − 2�1
ac�� ,

for a and b in the " group. An analogous equation holds for
the # diagonal block. This is not surprising since the exter-
nal field v does not separate the replica within a group. Since
these saddle-point equations have a unique physical solution,
we will identify �1 �� henceforth, and also drop the sub-
scripts 1 on G1 and �1. In Parisi’s parametrization of ultra-
metric matrices, the saddle-point equation is conveniently
rewritten as

��u� = −
2

T
B��2�

k

�G̃�k� − G�k,u��
 , �243�

�̃ = �
0

1

��u�du . �244�

The saddle-point equation for the off-diagonal part is

�2ṽ
ab = −

2

T
B���aa + �bb − 2�2ṽ

ab� , �245�

which within our ansatz �2ṽ
ab =�2ṽJab reduces to a single

equation

�2ṽ = −
2

T
B��4ṽ2 + 2�

k

�G̃�k� − G2ṽ�k��
 . �246�

Before analyzing these equations, let us indicate how to ex-

tract R̂�v� from its solution. Let us first rewrite the part of the
action at the saddle point which depends explicitly on v �in
fact, on v ·v�:

S���ṽ,�ṽ, ṽ��expl

Ld = −
m4

2T2 ṽaGṽ
ab�k = 0�ṽb

= −
m4

2T2nṽ2�Gc�k = 0� − G2ṽ
c �k = 0��

= ṽ2�−
m2

2T
n +

�2ṽ

2T
n2
 . �247�

Since the derivative of W̃sp�ṽ�=−S��ṽ ,�ṽ , ṽ�, with respect to
ṽ �in fact, with respect to ṽ · ṽ� only involves the explicit part,
we find, and comparing with Eq. �229�,

−
2

T
B̂��4ṽ2� = �2ṽ. �248�

We now discuss various cases according to whether or not
the replica symmetry is broken in the diagonal block �the
saddle point of the GVM�, indicating whether or not the
system is in a glass phase.
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1. Replica-symmetric region

Assuming replica symmetry, ��u�=�RS, we have

G�k� = Tgk1 + T�RSgk
2J , �249�

G2ṽ�k� = T�2ṽ
RSgk

2J . �250�

This reduces the saddle-point equation �243� to

�RS = −
2

T
B��2TI1� , �251�

independent of ṽ, and Eq. �246� becomes

�2ṽ
RS = −

2

T
B��4ṽ2 + 2T�I1 + ��RS − �2ṽ

RS�I2�� , �252�

where In=�kgk
n. Comparing with Eq. �251�, we see that

�2,ṽ=0
RS =�RS, as is expected in the absence of external fields.

2. Identification with functional renormalization group below
the Larkin scale

It is convenient to introduce the function B̃� via the
change of variables:

−
2

T
B̃��4ṽ2� � �2ṽ

RS. �253�

Plugging it into Eq. �246�, we see that it satisfies exactly the
self-consistency equation �33�:

B̃��x� = B�„x + 2TI1 + 4�B̃��x� − B̃��0��I2… �254�

as derived in Ref. 13 for the second cumulant function of

B̃�x�, which occurs in the effective action �defined there via

R�u�=NB̃�ũ2��. Since Eq. �254� uniquely specifies B̃ up to a
constant, a comparison of Eqs. �253� and �248� shows that

B̃��x� = B̂��x� , �255�

i.e., we have recovered, in the glassy regime, the general

identity R̂=R announced in Eqs. �57� and �78�.
From the self-consistency equation �254�, a FRG equation

for B̂�x� can be derived �following, cf. Eqs. �6.1�–�6.8� in
Ref. 13�

− m�mB̂��x� = B̂��x��4�m�mI2��B̂��0� − B̂��x��

−
2m�mTI1

1 + 4I2B̂��0�
� , �256�

with initial condition B̂�x�=B�x� for m= +�.
At this stage, we only know that the FRG equation �256�

is valid in the replica-symmetric region, i.e., for m�mc�T�
�see discussion in Sec. II B�. At the Larkin mass, B̂��0� di-
verges, signaling a cusp in the force correlator, as can be
seen from the conditions �17� and �254�. Hence, at m=mc

+,
Eq. �256� is still valid, but the second term �involving the
temperature explicitly� is negligibly small there and can be

dropped. It is now crucial to establish how to continue this
equation below the Larkin mass. To this end, we compute

B̂�x� explicitly beyond the Larkin mass, i.e., in the glassy
region, where RSB occurs within the replica groups, and
derive the correct FRG equation for m�mc.

3. Self-consistency equation for the second cumulant below
the Larkin mass

The saddle-point equation �246� together with Eq. �248�
yields the correct continuation of the self-consistency equa-
tion �254� below the Larkin mass:

B̂��x� = B��x + 2�
k

G̃�k� + 4B̂��x�I2
 . �257�

We expect that

B̂��0� = −
T

2
��u = 0� �258�

remains valid when replica symmetry is broken �with, of
course, a different and nontrivial value for ��0�� since it
expresses the equality ��u=0�=�2,ṽ=0 between the self-
energy associated with distant equilibrium states and that as-
sociated with the coupling among the two replica groups in
the limit of zero forcing, ṽ→0. Indeed, one can check using
Eq. �240� that Eq. �258� is a solution of Eq. �257�, given that
Eq. �243� holds. Note that Eq. �258� ensures that the function

B̂�ṽ2� perfectly matches the large v2 limit of the v2=O�1�
results �107� and �192�, irrespective of the scheme of RSB,
as it should.

Equation �257� can be rewritten in a form similar to Eq.
�254�:

B̂��x� = B��x + 2TI1 + 4I2�B̂��x� − B̂��0�� + 2�
k

Ak

= B���0 + x + 4I2�B̂��x� − B̂��0��� , �259�

where

�0 ª 2�
k

�G̃�k� − G�k,0�� �260�

and

Ak = G̃�k� − Tgk − T��0�gk
2 = �

0

1

du�G�k,u� − G�k,0��

�261�

is an anomaly which is nonzero if and only if the replica
symmetry is broken. �To get the second line in Eq. �261�, we
used the generally valid inversion formula G�k ,0�
=T��0�gk

2.�

4. Correlator and functional renormalization group equation
below the Larkin mass

From Eq. �259�, we easily obtain the behavior of the force

correlator, −B̂��x�, at small argument. If the RSB solution is
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marginally stable with respect to a clustering instability at
the largest scales, i.e., if the condition

1 = 4I2B���0� , �262�

holds, with �0 defined in Eq. �260�, one finds a nonanalytic
cusp in the correlator:

− B̂��x� =
T��0�

2
− � − 2x

�4I2�3B���0��1/2

+ O�x� . �263�

This type of marginality is automatically ensured in the case
of continuous RSB, which is marginal with respect to fluc-
tuations on all scales �see Appendix I� including those corre-
sponding to um, which entails Eq. �262�. For a one-step so-
lution, however, it occurs naturally only on the transition line
Tc�m� for m�m*, while in the glass phase, it requires the
specific choice uc=ucp �cf. Eq. �184��. In the case of a non-
marginal one-step solution, the latter choice differs from the
value of uc corresponding to thermodynamic equilibrium,
and was shown to describe rare disorder configurations in
Sec. III D 2. On the other hand, for a fully stable saddle point
with 1�4I2B���0�, one finds the regular correlator:

− B̂��x� =
T��0�

2
−

xB���0�
1 − 4I2B���0�

+ O�x2� . �264�

We emphasize the difference between these results and the
generic nonanalyticity �147� and �204� found in the regime
v=O�1� at T=0, occurring irrespective of the RSB scheme.
The cusp in the regime v=O��N� analyzed here is present
even at finite temperature, provided the RSB scheme is mar-
ginally stable in the sense of condition �262�. The nonanaly-
ticity, thus, reflects the criticality of the system being at the
brink of an instability toward an additional clustering of the
topmost level of an ultrametric structure. In the one-step
case, the instability is toward a two-step RSB with an addi-
tional step in the lower plateau.92,98

Taking a derivative of Eq. �257� with respect to x and
using it to simplify Eq. �256�, one finds13 repeating the steps
of Eqs. �6.4�–�6.6� in Ref. 13:

− m�mB̂��x� = B̂��x��4m�mI2�B̂��0� − B̂��x�� + A�m�� ,

�265�

where

A�m� = − 2m�m�TI1 + �
k

Ak� + 4I2m�mB̂��0�

= − 2m�m�
k

G̃�k� + 2T��0�m�mI2. �266�

This equation is the general FRG equation valid in all re-
gimes. In the nonglassy RS regime, Ak=0 and the amplitude
A�m� is identical to the last term in Eq. �256�. In the glassy
region, Eq. �265� is certainly valid for all x�0, and it is also

valid at x=0 if B̂��0���, i.e., if the RSB solution is not
marginal in the sense of Eq. �262�. However, even if the

solution is marginal, and hence B̂��0� is infinite �i.e., B̂��x�
exhibits a cusp�, both sides of the equation have a nontrivial

limit at x=0+, which yields another valid equation as can be
checked using Eq. �263�. Another useful expression for A�m�
is obtained by rewriting the second equation in formula �266�
as

A�m� = − m�m�0 − 2TI2m�m��0� , �267�

where we used definitions �260� and �261�. The second term
in Eq. �267� can be rewritten using the saddle-point equation
�243� at u=0, and taking a derivative with respect to m, one
obtains

A�m� = − �1 − 4I2B���0��m�m�0, �268�

a formula valid in all cases and regimes. We already point
out and will discuss further below that the amplitude A�m�
vanishes if the marginality condition �262� is met.

Let us now analyze in more detail the case of continuous
RSB which includes as a limiting case the marginal one-step
case occurring in d�2 with 
=
c�d�. In Ref. 13, it was
found that the consistent FRG equation105 for m�mc�T� was
Eq. �265� without the last term, i.e., A�m�=0. As we dis-
cussed above, this matches the established equation �33� at
m=mc

+. The validity of Eq. �265� for m�mc was inferred
from the study of the FRG equation in inverted variables x

=x�B̂��, noting that for models �23� and �24� the FRG flow
completely stops at m=mc

+ �the beta function is identically
zero; hence, its natural continuation is to remain zero below
mc�. In Sec. VIII D of Ref. 13, the analysis of the FRG flow
was extended to an arbitrary bare model �i.e., an arbitrary
B�x��. It was found that the natural continuation is such that

the function B̃� retains a cusp for all m�mc. This was found
to coincide with the marginality condition at um, and hence,
lead to Eqs. �262� and �263�.

From the above general expression �268�, we see that the
vanishing of the amplitude A�m�=0 is a direct consequence
of the marginality of the continuous RSB at u=um, i.e., con-
dition �262�, and, thus, confirms the correctness of the as-
sumption made in Ref. 13. In addition, we discover here that
the cusp can be avoided if there is a nonzero amplitude A�m�.
This possibility was naturally not considered in Ref. 13,
where the analysis was based on the self-consistency equa-
tion without anomaly and the ensuing FRG equation. While
the amplitude A�m� always vanishes in the case of continu-
ous RSB, a zero amplitude requires a specific choice of the
breakpoint uc=ucp in the case of one-step RSB, as discussed
in the next section.

C. Discussion of the functional renormalization group flow

1. General considerations

Let us analyze the generalized self-consistency Eq. �259�
for the renormalized correlator function B̂��x�. It depends
only on the �given� bare disorder function B��x� and a num-
ber �0=�0�m ,T�, defined in Eq. �260�. This is the only input
from the saddle-point solution in the regime v�O�1�, which
introduces an anomaly in the glass phase. We emphasize
again that in the case of one-step RSB, �0 does not only
depend on T and m, but also on the choice of the breakpoint
uc.
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Since the force correlator �the derivative of the potential

correlator� scales like B̂��m−2�+d+2�, with typical values of
the argument scaling as m−2�, it is natural to define the res-
caled force correlator �as in Refs. 11 and 13�

b̃��x̂� ª
4Ad

m−2�+d+2� B̂��m−2�x̂� . �269�

At this stage, if we ignore all other information from the v
�O�1� regime, the two exponents � and � are undetermined.
Let us assume for now that they can be fixed by requiring

that b̃��x̂� reaches a nontrivial fixed point. From Eq. �259�,
one deduces that b̃� satisfies the equation

b̃��x̂� =
4Ad

m2−�B���0 + m−2��x̂ +
b̃��x̂� − b̃��0�

�


 ,

�270�

where we have used I2=Ad / ��m�� in the limit of infinite cut-
off, and consequently set �=d−2+2�, as expected, so that
the last two terms in the argument of B� �the bare disorder�
scale the same way. The only information needed from the
v�O�1� regime is the value of �0, given by the saddle-point

solution. It fixes the value of b̃� at the origin:

b̃0��m,T� ª b̃��0� =
4Ad

m2−�B���0� = −
4Ad

m2−�

T��0�
2

.

�271�

The above two equations then completely determine the

FRG flow of b̃�, describing the evolution of the force cor-
relator as the mass m is decreased. The corresponding flow
equation was given in Eq. �265�. Here, we directly solve Eq.
�270� focusing on models �23� and �24�, which admit simple
solutions. We distinguish the case of continuous RSB �full or
marginal one step�, which we only briefly recall since it was
discussed in detail in Ref. 13, and nonmarginal one-step RSB
which requires a different and thorough analysis. The differ-
ence between the two cases can be grasped immediately. For
continuous RSB, comparing Eqs. �271� and �25�, valid in
that case for models �23� and �24�, we immediately see that

b̃��0� reaches a fixed-point value with the same choice of
exponents as in the v�O�1� regime. By contrast, Eqs. �170�
and �174� suggest a rapid decrease of b̃��0� as m→0 as
discussed below.

Some features are independent of the RSB scheme and
worth mentioning. Consider model �23�, B�x�=e−x. If one

makes the choice �=0, then b̃��x̂� is the solution of

b̃��x̂� = b̃0� exp�− x̂ −
b̃��x̂� − b̃0�

�
� , �272�

which has clearly a fixed-point form provided b̃0�, given by

b̃0� = −
4Ad

m� exp�− �0�m,T�� , �273�

reaches a fixed point as m→0. Similarly for model �24�,
B��x�=�1+ x



�−
, and Eq. �271� together with the choice �

=��
�=� / �2�1+
�� leads to the equation

b̃0� = −
4Ad

m��
/�1+
���1 +
�0�m,T�



�−


. �274�

Upon inversion, this allows us to simplify Eq. �270� for the
rescaled force correlator as

b̃��x̂� = b̃0��1 + � �b̃0��
4Ad


1/

1



�x̂ +

b̃��x̂� − b̃0�

�

�−


,

�275�

which reaches a fixed point if b̃0� does. Note that these ex-
pressions, as well as Eq. �270�, are valid for all m, both
above and below the Larkin mass.

2. Functional renormalization group flow for continuous replica
symmetry breaking

As discussed in Ref. 13 for models �23� and �24�, the flow
is particularly simple. The structure of Eqs. �272� and �275�
implies that b̃��x̂�=��x̂+ x̂0� is always given by the same
master function �, shifted by an amount x̂0 which depends

on m only through b̃0�. For model �23�, the master function is
the solution of ��x�=−� exp�−x−1−��x� /��. The shift x̂0

must be positive, and x̂0=0 leads to a cusp �infinite slope� at
the origin. In the case of continuous RSB, x̂0 freezes to zero

as m decreases below mc�T�. One checks that b̃0� reaches its
fixed point value at m=mc�T�:

− b̃0� = � , �276a�

− b̃0� = ��4Ad

�
�1/�1+
�

, �276b�

and remains constant everywhere in the glass phase. This

implies, in particular, that b̃� reaches its fixed point already at
the phase transition mc�T� and sticks to it for all smaller m, a
result inferred in Refs. 11 and 13 from the vanishing of the
beta function at mc�T�. The FRG flow for models with con-
tinuous RSB is illustrated in Fig. 7.

As shown in Ref. 13 for models different from Eqs.
�276a� and �276b�, and such that there is continuous RSB for
all m�mc�T�, such as linear combinations of Eqs. �276a� and
�276b� with various powers, the flow is slightly more in-
volved. For m�mc�T�, the flow is not a simple translation in

x, but the shape also changes as irrelevant parts of B̂��x�
decay. At m=mc�T�, a cusp appears and remains for all m

�mc�T� as b̃0� �and the shape of the function� converges
slowly toward one of the above fixed-point values �276�.

In the continuous RSB case, the existence of this family
of nonanalytic fixed points is related to the vanishing of the
amplitude A�m� in the FRG equation. In Ref. 13, they were
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derived directly from Eq. �265� assuming A�m�=0. For d
�2 and d�2, 
�
c, they lead to the same exponents �
=��
� and �=��
� as the study of the v2=O�1� GVM regime
�cf. Ref. 46�. Hence, all parts of the effective action scale
consistently. Note that in the limit case d�2 and 
=
c
=2 / �2−d�, the glass phase is described by a marginal one-
step RSB solution. As discussed in details in Ref. 13 �Sec.
VI D and Appendix F�, the high-temperature phase T�Tc is
described by a line of analytic fixed points which solve Eq.
�270� with �= �2−d� /2=��
c� and �=��
c�=0. In that phase,

b̃��x� converges to one of these fixed points. This line of
fixed points terminates on a cuspy fixed point, toward which

b̃��x� converge for T�Tc, and which has the forms �275� and
�276� with 
=
c.

By contrast, in the non-marginal one-step case, both for
models �276a� and �276b�, the shift x̂0 generically vanishes
only at mc�T� and becomes positive again in the glass phase,
unless the choice u=ucp is made for the breakpoint, as we
now discuss �see also Fig. 8�.

D. Functional renormalization group flow: Physics
for one-step replica symmetry breaking

1. Main analysis of functional renormalization group flow
for one-step replica symmetry breaking

The situation is radically different in the case where the
saddle point is solved by a nonmarginal one-step RSB
scheme. This happens for d�2 and 
�
c�d�=2 / �2−d�. As
discussed in Sec. III D 2, one may consider several possible
choices for the breakpoint uc. To interpret what is actually
computed in each case, one should go back to the definition

�50� of the observable V̂�v�, whose second cumulant is com-
puted here in the regime v2 �N.

Let us first discuss the choice uc=uc
eq, where one com-

putes the cumulant of the observable V̂�v�= V̂eq�v� defined as
the equilibrium free energy of a manifold �i.e., a directed
polymer, d=1, or a particle, d=0�, in an external quadratic
well at position v and nonzero temperature T, in the limit of
infinite N. More precisely, for every m, this prescription se-
lects the metastable states of the lowest free-energy density
in typical disorder. This condition is by definition equivalent
to requiring the configurational entropy to remain fixed to
�=0 as m varies, and thus, closely resembles the “isocom-
plexity” condition often used to describe the rapid quench in
systems undergoing one-step RSB.106,107

The first observation is that for m�mc�T�, A�m��0 and
this “anomalous” term acts as an “effective temperature” in
the FRG equation �265� which avoids the occurrence of a
cusp, similarly as a finite temperature does in the case of
finite N. Let us evaluate this amplitude at low temperature
�i.e., away from the glass phase boundary, T�Tc� and m
→0. One has

�0 �
4Ad

��2 − d�
T

uc
md−2, �277�

and as shown in Appendix G, T /uc
th=1 / ûc

eq has a finite limit
as T→0. Hence, �0 diverges as m→0 and, for model �276a�,
B���0�=−B���0�=e−�0 decays exponentially fast to zero. For
model �276b�, 4I2B���0��m−2+�2−d�
; hence, in all cases
where 
�
c, one finds

A�m� � − m�m�0 �
4Ad

�

T

uc
md−2. �278�

This term in the FRG equation �265� has precisely the same
form and scaling as a standard �one loop� temperature
term108 with T→T /uc, avoiding the occurrence of a cusp.
Remarkably, this temperature takes, in the limit m→0, the
same value as the effective temperature Teff which arises in
the modified fluctuation-dissipation relation in such
systems.2,99

Let us now discuss in more detail the solution of the self-
consistent equation �270�. We start with model �276b�. If in
Eq. �269� we choose the exponent values from the region
v2 �O�1�, i.e., �= �2−d� /2 and �=d−2+2�=0, we find that
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FIG. 7. FRG flow of the renormalized and rescaled correlator

b̃��x̂� for model �276a� in d=3. The reduced temperature was cho-

sen to be T̂=0.5 and the curves correspond to 1�m /mc�T̂��5.5 in

steps of 0.5, from top to bottom. For m�mc�T̂�, the force correlator

sticks to its fixed point b̃*� �thick line� as given by Eq. �272� with

b̃*��0�=�=1. Due to the specific form of B�x� in models �276a� and
�276b�, the flow reduces to an m-dependent horizontal shift of an
otherwise constant master function ��x�.
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x
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^
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FIG. 8. �Color online� The shifts x̂0 as a function of m at con-
stant temperature T=0.8 for model �276a� in d=1. The minimal
shift x̂0=0 is attained at the glass transition m=mc�T�=0.673 and
signals a cuspy correlator. In the glass phase, only the cusp condi-
tion u=ucp maintains x̂0=0 and, hence, a cusp. Equilibrium and
threshold states have regular correlators �x̂0�0� in the glass phase.
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b̃0� � m−2�̃, �̃ = 1 −
2 − d

2

 , �279�

where �̃�0 for 
�
c. Hence, with this scaling, the second
cumulant in the region v2 �O�N� tends to zero. To study this

flow for m→0, one can instead use the choice �→ �̃ in Eq.
�269� and find a fixed point for the scaled function defined in
that way. Indeed, one can check easily that with the same �
= �2−d� /2, as m→0,

B̂��x� = m2−2�̃b̃*��xm2�� , �280�

b*��x̂� = 

� 4Ad

��2 − d�
T

uc
+ x̂�−


, �281�

which indicates that the force fluctuations are reduced by a

factor m−2�̃ in the region v2 �O�N� as compared to the re-
gion v2 �O�1�. For model �276a�, also obtained by taking

→�, the effect is even stronger, the decay of correlations
being exponential of the form

B̂��x� � exp�−
1

m2�

4Ad

��2 − d�
T

uc

e−x, �282�

which cannot be put in the form of a scaling function as in
Eq. �269�. The equilibrium flow for that case in d=1 is
shown in Fig. 9. It simply amounts to the horizontal shifting
of the master function ��x� by x̂0

eq, which is plotted in Fig. 8.
While the correlator first grows with decreasing mass in the
high-temperature phase �like in d�2�, it decreases again
within the glassy phase. The reason is that as m decreases
below mc, the stability of the one-step energy landscape in-
creases and suppresses sample-to-sample fluctuations of the
global shift uk

0 of the states, which, in turn, sets the scale for
force fluctuations.

2. Forces correlator, shocks, and the cusp

In the limit 
→
c, one has �̃→0, as one recovers the

marginal one-step solution,109 and B̂��0� then scales in the
same way in the two regimes v2 �1 and v2 �N. As noted

previously, the value of B̂��0� from the v2 �N regime de-
scribed by FRG is proportional to the contribution of the
lower plateau to the two-point correlation at k=0. It also
gives the sample-to-sample fluctuations of the global shift of
states, uk

0, in a given sample �163�. While in the case of
continuous RSB they scale as the relative fluctuations of the
states, this is not the case for the nonmarginal one step, since
there G0�k� �and �0� is much smaller than G1�k�−G0�k�. In
the nonmarginal one-step case, it is the upper plateau which
dominates the two-point correlation �for any k�1 /mc�.
Upon moving the potential well by v�N1/2, the global shift
of states becomes a function of v, uk

0=uk
0�v�, the connected

correlator of uk
0�0� and uk

0�v� being described by G2v�k�. In
this regime, the free energies are of order N, and one may
expect that configurations centered around uk

0�0� or uk
0�v� dif-

fer typically by quantities of order E�N�, which diverge as
N→� �at least, as N1/2�. In that case, when two levels cross
as a function of v, the switching of the equilibrium position
takes place as a function of the scaling variable E�N� /T.
Hence, it turns into sharp jumps as N→� even at finite T.

If these jumps are of order N1/2 in the displacement v,
they show up as a nonanalyticity in the force correlator. This
is what is observed in the case of marginal one-step and
continuous RSB. On the other hand, stable �i.e., nonmar-
ginal� one-step systems seem to have a much smoother land-
scape, leading to an analytic response of the system to a
displacement of the well. This indicates that if there are
shocks, their size does not scale with N1/2, i.e., the system
proceeds in small and effectively rounded jumps in contrast
to the marginal cases.

The nonanalytic response of systems with continuous
RSB is tightly bound to their marginal stability with respect
to clustering. This criticality of the system implies an anoma-
lous response to a field �v� pulling apart two replica groups,
whereby the above argument suggests that this proceeds via
the occurrence of shocks of size N1/2. Notice that the pres-
ence of the nonanalyticity only relies on the marginality at
um, whereas it is insensitive to the marginality of the RSB
scheme at larger u �deeper down in the ultrametric hierar-
chy�. This indicates that the shocks are really associated with
jumps on the largest scales involving uk

0�v�. That is, the
whole hierarchy of states is affected, and not only part of it,
as it can happen in the regime v2 �1.

3. Some subtleties of the functional renormalization group flow
for one-step replica symmetry breaking

Although we have focused on the flow at small m, inter-
esting features also happen around the Larkin mass. At mc, a
cusp appears and A�m� first vanishes at m=mc, but then be-
comes positive again. This behavior indicates that a bifurca-
tion in the lowest free-energy state occurs at mc, where meta-
stable states appear and the system is critical. However, the
further evolution of the system for m�mc is smooth in the
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FIG. 9. �Color online� FRG flow of the equilibrium correlator

b̃��x̂� for model �276a� in d=1, at the reduced temperature T
=Tmax /2. The dashed lines �light blue� correspond to m /mc�T�
= �2,1.5,1.25�, from bottom to top, and the dotted lines �purple� to
m /mc�T�= �0.4,0.3,0.2� from top to bottom. Note that the correlator
only exhibits a cusp exactly at the continuous transition, m=mc�T�,
with b̃0�(mc�T�)=�=3 �thick line�. Due to the specific properties of
model �276a�, the correlator always equals the same master func-
tion, displaced by an m-dependent horizontal shift x̂0.
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sense that the system becomes uncritical again, with no fur-
ther bifurcations occurring. This is seen to translate into a
response which is regular when the harmonic well is dis-
placed by v with v2 �N.

To complete the discussion of the equilibrium FRG flow,
we mention a subtlety �corresponding to the choice uc=uc

eq�
which arises for temperatures in the range T� �Tc�0� ,Tc

max�.
An inspection of the phase diagram in Fig. 4 shows that as
m→0, the thermodynamic equilibrium is given by a replica-
symmetric saddle point in the GVM, which is reached from
the glassy phase by a discontinuous transition upon decreas-
ing T. In that temperature regime, one natural continuation of
the FRG flow from large to small mass is to maintain the
condition d /duc=0, defining uc

“eq” even though it corre-
sponds to uc

“eq”�1 in the region where the genuine equilib-
rium is described by a RS solution. This reflects the fact that
the selected states are thermodynamically irrelevant, in the
sense that their Gibbs weight is negligible. Nevertheless,
there are small corners of phase space where metastable
states exist even when the mass is small, and among those
states, the ones selected by uc

“eq” still correspond to those
with the lowest available free-energy density in typical dis-
order. We have verified that this branch of one-step solutions,
indeed, exists down to m=0 for all temperatures T�Tmax.

We now turn to the discussion of other possible choices
for the breakpoint. If one chooses uc=uc

th, one presumably

computes the cumulant of an observable, V̂�v�= V̂�v�th, de-
fined as the free energy of the threshold states for the mani-
fold in an external quadratic well at position v. These thresh-
old states being known to be relevant for the dynamics, we
may conjecture that the quantity computed using this crite-
rion will find an interpretation as a part of the dynamical
effective action. Note that under this prescription, the con-
figurational entropy of the selected states, �th�m�, grows with
decreasing mass, reflecting either the bifurcation or birth of
threshold states.

Another choice of breakpoint, and the only one which
leads to a cusp, is uc=ucp. Then the amplitude A�m�=0.
Hence, it leads to similar fixed points as for the continuous

RSB case. In particular, it yields a fixed point of b̃0� and
freezes the renormalized correlator to the cuspy shape it at-
tains at mc�T�. The exponents are then the same, i.e., �
=��
�. Note then that �=��
��0, which means that the tem-
perature is relevant. That such a choice can be made was
conjectured in Refs. 11 and 13 for T=0. Here, we show it to
be possible at any temperature. It is not difficult to prove that
one-step solutions satisfying the cusp condition �184� exist
for all T�Tmax and m�mc�T�. Note, however, that one finds

ucp�1 for m�m* and T� T̃c�m�, where T̃c�m� is the �un-
physical� branch of the instability line defined by Eq. �176�
�see Fig. 4�.

A natural question is then as follows: What observable
would be selected by this process? As discussed in Sec.
III D 2, the choice ucp appears to select metastable states that
only exist in rare disorder configurations �the smaller m, the
rarer�. It remains to be understood whether such an observ-
able could be constructed by imposing some constraint on
the metastable states.

E. Nonuniform v

The above analysis is easily generalized to a nonuniform

vx, and allows us to compute the functional R̂�v� for a non-
uniform vx in the regime v2 �N, where it takes the form

R̂�v�=NB̂�v2� where B̂�v2�ª B̂��ṽx
2�x�, i.e., it is a functional

of the field ṽx
2. We just give the final saddle-point equations

and the resulting self-consistent equation for B̂, which gen-
eralize the one obtained in Ref. 13 �for R�v�� in the replica-
symmetric region �see Eq. �3.31� there with the correspon-

dence in notations
�Ũ0�v·v�

�(va�x�·vb�x�) →�ṽ�x��. One easily sees that

the diagonal blocks �in the space of two replica groups� are
again independent of ṽx and, therefore, independent of x, and
thus, simply correspond to the MP solution. Generalizing Eq.
�246�, the saddle-point equation in the off-diagonal sector
yields a single equation, which now involves space indices:

�2,ṽ�x� = −
2

T
B��4ṽx

2 + 2��
k

G̃�k�� − 2G2,ṽ
xx 
 , �283�

where

G2,ṽ
xx = T�

y

g2�x − y��2,ṽ�y� , �284�

which generalizes Eq. �241�. As in the uniform case,
�2,ṽ=0�x�=��0�. Solving for the function �2,ṽ�x� yields the
desired functional since

which is the analog of Eq. �248�. These equations generalize
Eq. �259� to a nonuniform field ṽx. It would be interesting to
see whether FRG equations can be derived also for the non-

local parts of the functional B̂, but this is left for future
investigation.

V. DISCUSSION AND CONCLUSION

We have computed the renormalized disorder correlator
R�v� in the large-N limit for an elastic manifold in a O�N�
symmetric random potential in the presence of an external
quadratic well. It was obtained as a physical observable de-
scribing the correlation in free energy when the center of the
quadratic well is varied by v. It contains direct information
about shocks, i.e., abrupt switches between two competing
equilibrium positions that occur as v is varied. We have dem-
onstrated the existence of two large-N scaling regimes v2

�1 and v2 �N, and obtain closed expressions in each re-
gime, and their zero- and low-temperature limits. Our results
provide a direct connection between the GVM approach �v
=0� using replica symmetry breaking saddle points and pre-
vious large-N FRG approaches.

We found that as v is increased, shocks start to occur at a
uniform displacement of the well of order v�v*�L−d/2,
which decreases with system size or, equivalently, for a non-
uniform displacement vx of order 1, but confined to a
bounded region of volume 1 in space.110 These shocks are
rounded by temperature, but turn into a nonanalytic cusp of
the force correlator at T=0. Our results bear some similari-
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ties to shocks found in Burger’s turbulence in large dimen-
sion. The shocks can be interpreted within the RSB picture
of an ultrametric phase space, which predicts that in a given
disorder environment there exist several states, all centered
within a single big valley whose position itself fluctuates
from sample to sample. The shock regime v$v* then de-
scribes the energy crossing between states as the harmonic
well is shifted, and, accordingly, it is sensitive to the replica
symmetry breaking structure of the GVM approach. In par-
ticular, one finds that all GVM saddle points related by rep-
lica permutations contribute to the computation of observ-
ables. Beyond this regime, the force correlator remains
constant in a large interval N1/2�v�v*, which reflects the
sample-to sample fluctuations of the force density associated
with the big valley, itself related to the sample-to-sample
fluctuations of the global displacement u0 of the valley.

This value of the force correlator matches perfectly with
the value obtained from FRG calculations in the regime v2

�N. In that regime, it was found that FRG recovers only the
fluctuations among most distant states, which is governed by
the �nontrivial� lower plateau of the self-energy function, �0.
It is now clear that the FRG in this regime captures the shock
structure of the big valley position u0�v�. Indeed, imposing a
position of the well on the scale v2 �N affects the global
shift u0 itself, which may lead to shocks. We have computed
the decaying correlations between u0�0� and u0�v�, as well as
the force correlator. In the case of systems with continuous
or marginal one-step RSB, such as manifolds in 2�d�4 or
directed polymers in long-range correlated disorder, we have
found that their marginality toward a clustering instability
implies a cusp also in this second scaling regime v2 �N. This
reflects the fact that the shift of the center of the well pro-
vokes shocks which are abrupt even at finite T because they
involve the crossing of energies which scale with N. By es-
tablishing the persistence of the nonanalytic force correlator
throughout the regime of small m and T, we have proved that
the previously obtained FRG flow had been correctly ex-
tended into the glassy regime.

A major step forward has been achieved in the case where
the regime v2 �1 displays a nonmarginal one-step RSB, a
problem which was left open in the previous FRG study. In
particular, we have found that in the regime v2 �N, the force
correlator is nonanalytic only at the glass transition, but not
within the glassy regime. We interpret the latter in terms of a
smooth energy landscape, where the manifold evolves
smoothly �on the scale N1/2� as the center of the harmonic
well is varied. In the glassy regime, the disorder correlator
becomes strongly suppressed with decreasing mass, which is
a consequence of the increasing stability of the one-step
landscape and the associated smallness of sample-to-sample
fluctuations of u0. Further, we have shown how the exact
FRG equations in the regime v2 �N can be extended into the
glassy regime, and how replica symmetry breaking translates
into an anomaly in the FRG flow equation. Moreover, the
possibility of studying nonequilibrium branches of meta-
stable states in a one-step system by tuning the breakpoint
parameter uc was found to be equivalent to tuning the
anomaly in the FRG equation.

The present study raises many questions. First, at finite N,
the two scaling regimes in v are not clearly distinct. The

main task is then to determine which aspect of either regime
will persist at finite N. Until now, the FRG flow equation in
the loop expansion seemed to connect more directly to the
regime v2 �N. In particular, one then expects that the shocks
of the regime v2 �N should become rounded by temperature
at finite N, as was found in FRG calculations in the loop
expansion and for N=1. However, the present study raises
the possibility of a different regime in the FRG accessible
only at smaller v. The interpretation of the cusp at T=0 in
terms of shocks remains valid, and offers an interesting
venue for future studies going beyond the mean-field picture
of switching between states. These concepts also generalize
to other disordered systems, e.g., to spin glasses, where the
statistics and properties of shocks can be studied by similar
methods. Work is in progress in this direction. This should
yield valuable new insight into the structure of the phase
space and elementary excitations, such as droplets.

Note added in proof. Recently, we became aware of the
work of Yoshino and Rizzo115 which studies related spin
models and obtains results on shocks and cusps similar to
those discussed in the present work for the regime v2 �1.
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APPENDIX A: RESTORING DIMENSIONS

In the main body of the text, we used the natural units rf
for transverse lengths, �c for the mass �and 1 /�c for longi-
tudinal lengths in d�0�, and Ec for energies. In order to
recover the full dependence on the parameters B0, rf, and c,
one simply has to restore the dimensionful units so as to
render all quantities dimensionless:

masses and longitudinal length scales:

m,k,�→
1

�c
�m,k,�� ,

L → L�c,

temperature and energy densities:

T → T/Ec,

 , f →
1

Ec�c
d � , f� ,

transverse fluctuations:

u,v →
1

rf
�u,v� ,
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G�k = 0� →
�c

d

rf
2 G�k = 0� ,

�
k

G�k�,�→
1

rf
2��

k

G�k�,�� ,

self-energy and other auxiliary functions:

�,�1,g−1�k� →
rf

2

�c
dEc

��,�1,g−1� k

�c

� ,

In →
Ec

rf
2 �Ec�c

d

rf
2 
n−1

In,

B̂�n��z� →
rf

2n

�c
dEc

2 B̂�n�� z

rf
2
 ,

R̂�v� →
1

�c
dEc

2 R̂� v
rf

 ,

R̂�v�,Rn,Rn →
1

Ec
2�R̂� v

rf
�,Rn,Rn� ,

Ŵ,q,Q,u, b̃ → Ŵ,q,Q,u, b̃ . �A1�

With these substitutions, all equations turn into dimension-
less identities, whereby in some cases additional factors of
c=�c

d−2Ecrf
2 need to be restored. Note that amplitudes such

as A being dimensionless are unchanged.

APPENDIX B: DIRECT EXPANSION OF Ŵ TO ORDER v4

The perturbative expansion of Eq. �61� to second order
requires

Pabcd
�2�

ª �



�Gab
�
�Gcd

�
�. �B1�

In the case of two sets of replica with va=v12 /2 for a
=1, . . . ,n /2 and va=−v12 /2 for a=n /2+1, . . . ,n, one has
Gab=qab /2 with qab defined in Eq. �87�. As for the sum
Pab

�1�
ª�
�Gab

�
� =��ab+	 �cf. Eq. �68��, replica symmetry re-
stricts this tensor to take the form

Pabcd
�2� = A�abcd + B��abc + �abd + �acd + �bcd� + C1�ab�cd

+ C2��ac�bd + �ad�bc� + D1��ab + �cd�

+ D2��ac + �ad + �bc + �bd� + E , �B2�

the coefficients of which can be obtained by solving the sys-
tem of linear constraints arising from the identities

�
a

Pabcd
�2� = GcPcd

�1�,

�abPabcd
�2� = G̃Pcd

�1�,

�
a

�ac�bdPabcd
�2� = �

a

Gab
2 .

The quantity of interest for the second-order expansion of
Eq. �61� is the second cumulant:

Ŵ�v��2� =
1

2� �
abcd

vavbvcvdPabcd
�2� − � �

abcd
vavbPab

�1�
2� .

�B3�

For the case of two-replica groups, one obtains the final
result:

Ŵ�v��2� =
1

2
v4�nA + n2�C1 + 2C2� − n2�2�

=
v4n2�2 − n�

�3 − n��1 − n�2���
a�1

G1a
2
− �1 − n� �

a�1
G1a

2 �
=

2v4

3 ��
0

1

G2�u�du − ��
0

1

G�u�du
2�n2 + O�n3� .

�B4�

From this, one derives Eq. �114� in the text by recalling that

R2�v� = lim
n→0

4T2

n2 Ŵ�v��2� �B5�

and G�u�=q�u� /2.

APPENDIX C: A USEFUL IDENTITY

For any function ��y� with derivatives decreasing strictly
faster111 than 1 / �y� for large �y�, one has

�
−�

�

dy y���y + z� +��y − z� − 2��y�� = − z2�����

−��− ��� . �C1�

Indeed,

�
−�

�

dy y���y + z� +��y − z� − 2��y��

= �
−�

�

dy y�
0

z

dz�����y + z�� −���y − z���

= − �
−�

�

dy�
0

z

dz����y + z�� −��y − z���

= − �
−�

�

dy�
0

z

dz��
−z�

z�
dz� ���y + z��

= − ����� −��− ����
0

z

dz��
−z�

z�
dz�

= − z2����� −��− ��� .

Applied to integrals over Gaussian averages, normalized
such that 	z2
z=1, Eq. �C1� implies
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�
−�

�

dy y�	��y + �Qz�
z −��y�� = −
Q

2
����� −��− ��� .

�C2�

APPENDIX D: PERTURBATION EXPANSION
FOR Ldv2™1

Here, we compute the two lowest orders in the expansion
defined in Sec. III C 2. The functions m1,2 satisfy, from Eq.
�111�,

ṁ1 = −
1

2
q̇�u��m0� + u�m0

2��� , �D1�

ṁ2 = −
1

2
q̇�u��m1� + u�2m0m1��� , �D2�

To lowest order, using that

m0� + �m0
2�� = 0, �D3�

one has to solve

ṁ1 = −
1

2
�1 − u�q̇�u�m0�. �D4�

The solution is

m1 = p�u�m0�, p�u� =
1

2
�

u

uc

dũ�1 − ũ�q̇�ũ� . �D5�

Integration by parts gives 2p�um�=�0
1du�1−u�q̇�u�=−q�0�

+�0
1q�u�du. The integration range can be extended to the

interval �0,1� since q̇=0 outside �um ,uc�. By plugging this
into Eq. �112� and using �0

�ym0�=−�0
�m0�=−1, the term pro-

portional to q�0� cancels and one obtains Eq. �113� in the
text.

The next-order correction satisfies, from Eqs. �D5� and
�D2�,

ṁ2 = −
1

2
q̇�u�p�u��m0� + u�2m0m0���� . �D6�

This gives

m2 =
1

2
m0��

u

uc

dũ q̇p + �m0m0����
u

uc

dũ ũq̇p . �D7�

In order to calculate Eq. �112�, we need

�
−�

�

dy ym0� = − �m0��−�
� = 0, �D8�

�
−�

�

dy y�m0m0��� = �
−�

�

dy m0�m0
2�� =

4

3
, �D9�

where on the second line we used Eq. �D3�. Inserting into
Eq. �112� gives

R2�v� =
8

3
T2�

0

1

du uq̇�u�p�u� , �D10�

where p�u� is defined in Eq. �D5�. Substituting the defini-
tions �D4� and �D5�, uq̇=2ṗ+ q̇, integrating by parts, and
using p�1�=0, one finds

�
0

1

du uq̇�u�p�u� = �p2 + qp�0
1 −

1

2
�

0

1

du�u − 1�qq̇

=
1

4
�

0

1

du q2 −
1

4
q�0�2 − p�0��p�0� + q�0�� ,

�D11�

which with p�0�= �1 /2���0
1duq−q�0�� yields the final result

�114� in the text.

APPENDIX E: THERMAL BOUNDARY LAYER OF THE
EFFECTIVE POTENTIAL CORRELATOR

Here, we revisit and complete the calculation of the effec-
tive potential defined in Ref. 47 in an attempt to connect with
the FRG function R�u�. The effective potential studied there
is constructed �see Ref. 47 for details� from the probability
distribution for a given Fourier mode u=uk �denoted there
 � 0� in a given environment. This sample dependent probabil-
ity is denoted here ZV�u� �unnormalized� and there P%� � 0�.
The authors then introduce the potential correlator:

V�u − u�� = − lim
n→0

Z�u�n/2Z�u��n/2 − Z�u�n/2Z�u��n/2

�n/2�2	2 ,

�E1�

describing the second moment of the effective potential

Ṽ�u�=	−1 ln�Z�u��. This is the central object studied there.
Although it is a very physical object, it is very different from

the effective potential studied here V̂�v�—which is also a
physical observable—but involves a source �implemented

via a quadratic well�. As a result, Ṽ�u� cannot be connected
to the standard FRG.112 Some discussion of the differences
between the two approaches was given in Sec. VIII G of Ref.
13. Here, we discuss more of the differences in details, based
on explicit calculation.

Since this version of an effective disorder is also interest-
ing, it is worthy to push here further the calculation of Ref.
47. To avoid confusion between u �displacement field� and u
�replica overlap�, we replace everywhere u→v, keeping in
mind, however, that its physical meaning is different from
the one �position of well center� given in the text. The above
partition function can be evaluated via a saddle point as in
the GVM:
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�
a=1

n

Z�va� = �



exp�−
	

2
v
�a�Gab

−1�k�v
�b��
= exp�−

n	

4
�k2 + m2��v2 + v�2��

��



exp�	
2

�v
�a��abv

�b��� . �E2�

In the same way as we derived R�v�, we can compute the

correlator of Ṽ as

V�v − v�� = − 2T2�
−�

�

dy y�M̃�0,y� − tanh�y�� ,

where M̃ satisfies the same flow equation as M, but with the
“inverse coupling”:

q̃�u� =
	

4
�v − v��2��u� . �E3�

We can now apply our general expressions �126� and �134�
to the above case and find for the thermal boundary layer:

− V�v − v�� = V0�v − v�� + V1�v − v�� + ¯ , �E4�

where

V0�v − v�� = − 2T2q̃�uc� = −
T��uc�

2
�v − v��2,

V1�v − v�� = T2�
um

uc

du�u
dq̃

du

	�„z�2�q̃c − q̃�…
z

= �v − v��2uc�c�1 + 
��
m�/mc

�

1

dvv�2/��−1

����z�v − v�

T
��T�c

2
�1 − v�2/��−1�
�

z

,

�E5�

where �c=��uc�. These formulas have well-defined limits as
T→0 �recalling that uc /T=Amc

� and T�c=2mc
2−� / ��2−��A��.

For m→0, the last term reduces to

V1�v − v�� →
�v − v��3uc�c�T�c�1/2

4

��1 + �/�2 − ���
���5/2� + �/�2 − ���

.

With the notation introduced in Ref. 47 �for d�2�,

1 + 
ª
2

�
− 1 =

4 − d

d − 2
, �E6�

g ª

1 + 


8
	��uc�uc

2�v − v��2, �E7�

the above results can be recast into the form

V�v − v�� = − V0 − V1 =
4

�	uc�2� g

1 + 

− uc

3&2� g

uc
2
� ,

where

&2�x� =
x

2��0

1

dvv1+
��z�4x�1 − v1+
�
1 + 



�
z

, �E8�

and ��x�=2x coth�x�, as before. Using ��x�→2�x� for large
arguments, one further finds

&2�x� →
x→�

�2x3/2� 1

�1 + 
�5/2
�„1/�1 + 
�…

���5/2� + 1/�1 + 
��� .

The term in brackets is easily seen to tend to 1 as 1+

=� / �d−2�→0. Thus, &2

�→0�x→��→�2x3/2.113

For large arguments v, the flow of M̃ is attracted to an

intermediate fixed point M̃�u ,y�� tanh�uy�. This happens
for a large coupling parameter g�1 �or, more explicitly, for
displacements such that �v−v��2mc

2+��1�. If, in addition, the
mass is sufficiently small, �v−v��2�m−�2+��, the correlator V
is controlled by this intermediate fixed point and can be
shown to scale as

V�v − v�� � g2�/�2+�� � �v − v��4�/�2+��. �E9�

An important difference to the FRG correlator R�v� con-
cerns the scale on which the nonanalyticity lives in V�v�.
Comparing V0 and V1, we find that higher-order terms be-
come dominant for v�v**�mc

�2+��/2, reflecting the fact that
the effective potential correlator V is sensitive to physics on
the Larkin scale, rather than to shocks occurring on the scale
m, as is the case for the FRG correlator.

APPENDIX F: COMPARISON WITH THE THERMAL
BOUNDARY LAYER FOR DROPLETS

Due to the O�N� symmetry, the disorder correlator is only
a function of v= �v� � �for spatially uniform v�. Accordingly,
the force correlator splits into transverse and longitudinal
parts:

− �vi
�vj

R̂�v� = �L�v�
viv j

v2 + �T�v���ij −
viv j

v2 
 , �F1�

with �L�v�=−R̂��v� and �T�v�=−
R̂��v�

v , derivatives being
with respect to v= �v� �. Both correlators are equal at v=0, so

that �vi
�vj

R̂�v� is well defined and proportional to �ij at v
=0. Note that at large N, one has 1

N �i�vi

2 R=�T�v�+O�1 /N�,
and hence, the transverse components dominate the average
force correlator.

The TBL contribution to the droplet force correlator �155�
can be expressed in terms of longitudinal and transverse cor-
relators:

− �L
drop�v� = T

m4

4
�y1

2��m2y1

2
v̂
�

y
, �F2�

− �T
drop�v� = T

m4

4
�y2

2��m2y1

2
v̂
�

y
, �F3�

where y1=y� denotes the component of y parallel to v, while
y2 is an arbitrary orthogonal component.
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To make contact with expressions obtained for the mani-
folds, we recast these expressions into the form

− �L,T
drop�v� = T� db �L,T

drop�b���b�v̂�� , �F4�

with the distributions

�L
drop�b� =

2

m2 � dN−1y�b2D�y� =
2b

m2 ,y�
 ,

�T
drop�b� =

2

m2 � dN−1y��m2y2

2

2

D�y� =
2b

m2 ,y�
 . �F5�

In computing the force correlators �159�, we have used
that

�v̂	v̂2��v̂xz�
z = �2v̂��v̂xz� + v̂z
d

dz
��v̂xz��

z

= 	v̂�1 + z2���v̂xz�
z, �F6�

�v̂
2	v̂2��v̂xz�
z = ��1 + z2���v̂xz� + z�1 + z2�

d

dz
��v̂xz��

z

= 	�z4 − z2���v̂xz�
z. �F7�

APPENDIX G: ONE-STEP SADDLE POINTS IN THE
GAUSSIAN VARIATIONAL METHOD AND THEIR LOW

TEMPERATURE LIMITS

Here, we first give for completeness the general one-step
saddle-point equations for the equilibrium statics, valid for
any d and �. Equations �166�–�168�, �170�, �171�, and �174�
form a closed set of equations, which together with Eqs.
�169� and �170� determines uc=uc

eq:

0 =
d �uc�

duc
=

1

2T
�B��0� − B��1� − ��0 − �1�B���0��

−
T

2uc
2�

k
� �1

gk
−1 + �1

− ln�1 + �1gk�� . �G1�

The easiest way to show this is to consider �1 and uc as
independent variational parameters of the saddle-point equa-
tions, such that d�1 /duc=0, and then use Eq. �175�.

Let us now analyze the limit T→0+ of the various one-
step saddle points for d�2 and �=�. It is easy to see that
the corresponding saddle-point equations �174� and �175� to-
gether with the three possible conditions �178� and �183�, or
�184� admit solutions of the form uc=Tûc with finite ûc as
T→0:

�0 =
4Ad

��2 − d�
1

ûc
� 1

m2−d −
1

�m2 + �1�1−d/2� ,

�1 � T → 0,

�1 = − 2ûc�B���1� − B���0�� → − 2ûc�B��0� − B���0�� .

�G2�

The three possible values for the breakpoint are

�i� existence of a cusp in the FRG in the large-v regime
�ûc= ûc

cp�, i.e., condition �184�:

4Ad

�m�B���0� = 1, �G3�

�ii� the equilibrium static condition �ûc= ûc
eq�, which from

Eq. �G1�, using Eq. �173�, reads

d 

dûc

= 0 =
1

2
�B��0� − B�0� − �0B���0��

−
Ad

��2 − d�ûc
2� �1

�m2 + �1�1−�d/2� −
2

d
��m2 + �1�d/2 − md�
 ,

�G4�

�iii� the condition �183� for threshold states �ûc= ûc
th�,

which is equivalent to

�1 = mc
2�T� − m2 → mc

2�0� − m2. �G5�

For concreteness, we give explicit results for model �276a� in
the limit m→0; an illustration for general m and d=1 at a
fixed temperature can be found in Fig. 4.

For small m, B��0��B���0��e−�0→0 and �0→0. One
finds, from Eq. �G1�, for any 0�T�Tc:

uc
eqed�1−uc

eq�/� =
T

Tc
, �1

eq = 2
uc

eq

T
e−duc

eq/�2−d�, �G6�

where Tc is given in Eq. �186�. Using condition �iii�, one
finds, for any 0�T�Td,

uc
the2�1−uc

th�/� =
T

Td
, �G7�

�1
th = mc

2�T� = 2
uc

th

T
e−2uc

th/�2−d�, �G8�

where Td is the dynamical transition temperature given in Eq.
�187�. In the T→0 limit, one obtains114

ûc
eq = �21+�d/2�Ad

d�
�2/�

=
1

Tc exp�d/��
=

d=1

0.7937,

ûc
th =

mc�0�2

2
=

1

2
�4Ad

�

2/�

=
d=11

2
. �G9�

The cusp condition �G3� imposes that �0 � log m, and from
the saddle-point equations, it follows that

ûc
cp � md−2/log�1/m� → � . �G10�

We finally determine the T→0 limit of the configurational
entropy associated to this branch of cuspy solutions, ��ûc

cp�
= ûc

2 d 
dûc

. For m�mc, one finds �1 �2ûc
cp�m. Hence, the

leading term in the configurational entropy is
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��ûc
cp� � �ûc

cp�2 d 

dûc

——→
T→0,m→0

−
�ûc

cp�2

2

� − 8� Admd−2

�2 − d�� log�4Ad/�m���2

, �G11�

which is negative. Hence, the condition �G3� selects expo-
nentially rare configurations.

APPENDIX H: THERMAL BOUNDARY LAYER IN THE
CASE OF ONE-STEP REPLICA SYMMETRY

BREAKING

Here, we prove that the thermal boundary layer in the
one-step case can be written as

R1�v� = 2T2ucV��Q� , �H1�

where

V��Q� = �
0

Q

dQ�	z�2Q� coth�z�2Q��
z. �H2�

Since both expressions at small Q are easily seen to be of
order O�Q�, it is sufficient to show the equivalence for the
second derivative with respect to �Q. Taking the second de-
rivative of R1�v� in Eq. �199�, we find

1

2T2uc

�2

���Q�2
R1 = − �

−�

�

dy	z2�z���z −�� + z2��z��2

− z2�z���z� −�� − zz��z��z�
� − 1
z,z�,

�H3�

where �=��y�=ln cosh�y�, �z=��y+z�Q�, and primes de-
note derivatives with respect to y. After a partial integration
�in y� of the terms containing ��, the expression simplifies to

�
−�

�

dy	z�z − z���1 −�z��z�
� �
z,z�

= ��z − z��2

2
���z − z���Q��

z,z�
= 	z2��z�2Q�
z,

�H4�

where ��a�=2a coth�a� as in Eq. �133�, and we have used

the fact that z+z� and z−z� are independent Gaussian vari-
ables with variance 2.

On the other hand, one finds

V���Q� = 2�Q	z�2Q coth�z�2Q�
z,

V���Q� = 	4z�2Q coth�z�2Q�
z + 	2�2Qz2�z coth�z�2Q�
z

= 	2�2Qz3 coth�z�2Q�
z = 	z2��z�2Q�
z, �H5�

where we performed a partial integration in the second but
last line �with the remaining term coming from the derivative
of the measure e−z2/2�, completing the proof.

APPENDIX I: GENERAL SOLUTION FOR CONTINUOUS
REPLICA SYMMETRY BREAKING

The general continuous RSB solution has been derived in
detail for the model gk

−1=k2+m2 in Ref. 13. Here, we sketch
its generalization to arbitrary gk

−1. A continuous RSB ansatz
is always just marginally stable on all scales, as expressed in
the present case by the identity

1 = 4B��2�
k

G̃�k� − G�k,u�
�
k

1

�gk
−1 + ����u��2 , �I1�

for all um�u�uc. Using Eq. �15�, which in continuous form

reads ��u�=− 2
TB��2�kG̃�k�−G�k ,u��, this leads to the rela-

tion

��u� = −
2

T
B� �B��−1� 1

4�k�gk
−1 + ����u��−2
! . �I2�

Further, the relation 1 /u=d� /d��� allows one to solve for
��u�.

In particular, using ����um�=0, we find immediately the
general expression for ��um�=��0�:

��0� = ��um� = −
2

T
B� �B��−1� 1

4I2

! . �I3�
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eq=1 /Tc�m=0� is given. This results,

however, from a rather unrealistic assumption on the behavior of
B�x� at small x.

115 H. Yoshino and T. Rizzo, arXiv:cond-mat/0608293, Phys. Rev. B
�to be published�.

CUSPS AND SHOCKS IN THE RENORMALIZED… PHYSICAL REVIEW B 77, 064203 �2008�

064203-39


