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Glass Transition and the Coulomb Gap in Electron Glasses
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We establish the connection between the presence of a glass phase and the appearance of a Coulomb
gap in disordered materials with strongly interacting electrons. Treating multiparticle correlations in a
systematic way, we show that in the case of strong disorder a continuous glass transition takes place whose
Landau expansion is identical to that of the Sherrington-Kirkpatrick spin glass. We show that the marginal
stability of the glass phase controls the physics of these systems: it results in slow dynamics and leads to
the formation of a Coulomb gap.
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The relation between the slow dynamics of Coulomb
glasses and the appearance of a soft ‘‘Coulomb’’ gap in
their density of states (DOS) due to strong electron-
electron repulsion [1,2] has been a mystery for a long
time. Efros and Shklovskii [3] showed that the long-range
Coulomb interaction between localized electrons in semi-
conductors leads to a soft gap and to the crossover in
the temperature dependence of the conductivity from
Mott’s law ln��� � �TM=T�

1=4 to the Efros-Shklovskii
law ln��� � �TES=T�1=2 at low temperatures [4]. The latter
was verified in semiconductors, alloys, and granular met-
als, and recently the gap itself was observed in semicon-
ductors [5]. In such materials, the presence of disorder
frustrates the Coulomb interactions and leads to glassy
behavior [6], as was first evidenced by the slow relaxation
of charge injected into compensated semiconductors [7].
Later, Ovadyahu’s group established that the slow dynam-
ics in indium oxides is indeed due to electron-electron
interactions [8], and recently they found memory and aging
effects similar to those of spin glasses [9].

Despite the experimental progress a thorough under-
standing of the glass phase is still missing. The difficulty
is due to many particle correlations that are essential to
describe glassy phenomena [10] but are not captured in the
single particle theory by Efros and Shklovskii. An increas-
ing number of experiments suggests that multiparticle
processes and correlations are also crucial for a quantita-
tive description of the hopping conductivity [11].

The mean field solution of a model of uniformly inter-
acting electrons in a disordered medium indicates that the
glass transition and the formation of a pseudogap in the
DOS are driven by the same mechanism, and a similar
relation has been conjectured for the Coulomb glass [12].

The goal of this Letter is to develop a formalism that
accounts for the correlations between the electrons in a
realistic model for Coulomb glasses in 3D and allows one
to study the properties of the vitreous state. Our approach is
based on the locator approximation developed for spin
glasses in Refs. [13–15]. The idea is to map the original
lattice problem into an effective single-site problem that
encodes correlations by the distribution of a fluctuating
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local field, which gives exact results for infinite range
models. In the limit of strong disorder, the Coulomb inter-
actions are essentially unscreened, so that the effective
number of neighbors is large and the locator approximation
is parametrically well justified. In this regime, we find a
replica symmetry breaking glass transition (at finite Tc),
which belongs to the same universality class as the tran-
sition in the Sherrington-Kirkpatrick (SK) spin glass [16].
Below Tc, ergodicity is broken since the phase space
divides into an exponential number of metastable states,
only a few of which can be explored in finite time. As in
any generic glass, the vast majority of those states is only
marginally stable and thus exhibits soft modes that lead to
the slow relaxation dynamics observed in experiments. We
show that the genuine Coulomb gap starts to form only
below Tc; in particular, we derive the asymptotics of the
DOS at low temperatures (parabolic in 3D) from the con-
dition of marginal stability.

We consider the classical model [4] for strongly local-
ized electrons occupying a fraction K � 1=2 of a given set
of impurity sites i,

H �
1

2

X
i�j

�ni � 1=2�J ij�nj � 1=2� �
X
i

ni
i; (1)

where ni 2 f0; 1g is the occupation number of the site i.
For simplicity, we take them to be arranged on a cubic
lattice with lattice spacing ‘ 
 1. The unscreened
Coulomb interactions are described by J ij � 1=rij in units
where e2=‘ 
 1, and the 
i’s denote random on-site
energies. The particle-hole symmetry of the K � 1=2
case suggests to introduce pseudospin variables si � ni �
1=2 � �1=2. Further, we assume a Gaussian distribution
of width W for the on-site energies 
i. Their randomness
emulates the effect of the disorder in the site positions
which is present in all physical electron glasses and gen-
erates rather large site-to-site fluctuations of the Coulomb
potential. We focus on dimension D � 3 and on the limit
of strong disorder, W � 1, which reduces the bare density
of states and thus suppresses the screening on short scales
so that the effective interactions remain long range; this
justifies the use of the locator approximation [17]. We
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show that at low temperatures the self-generated disorder
becomes very large. We thus expect that in this regime the
locator approximation becomes valid even in the case of
weak disorder.

In the case of long-range interactions, diagrammatic
expansions (see, e.g., [2]) can be efficiently resummed
since the large number of effective neighbors allows one
to approximate the self-energy by an average local term, as
shown in Fig. 1. This also suggests to replace the inter-
actions of a given site with its environment by an effective
local field described by couplings of the site to its replicas.
This reduces the model to a single-site problem, while the
disorder average allows one to translate the complexity of
the environment into a nontrivial replica structure of the
one-site Hamiltonian [12,15],

�H0�fs�g� �
1

2

X
a;b

sa�B� �2W2I�absb: (2)

Here I denotes a n n block matrix with all entries equal
to 1 (as usual, the number of replicas n is implicitly
assumed to tend to zero in the end of calculations). We
note that this is similar to the way in which the SK model is
transformed into a one-site problem. Indeed, the locator
approximation applied to the SK model sums all treelike
diagrams with doubled interaction lines which becomes
exact in the large N limit.

To make contact between the Hamiltonians (1) and (2),
we require that they both yield the same single-site corre-
lation functions,

hsasbi�
X
fs�g

sasbe
�1=2

P
�;�

s� ~B��s�
�

�
1

~B��

�
ab

�
1

N

X
i

hsi;asi;bi�
1

V
Tr
�

1

�J��2W2I��

�
ab
: (3)

We have averaged over the random energies 
i and defined
~B � B� �2W2I . In Eqs. (3) we approximated the full
propagator for either model as a simple geometric series
with a local self-energy insertion �ab�ij, as motivated
above. Since the mapping is to preserve correlations, the
FIG. 1 (color online). For long-range interactions the self-
energy � can be approximated by a local operator. The full
propagator is obtained as a simple geometric series. The (thick)
lines represent the (renormalized) interaction, the dots one-site
correlators.
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self-energy has to be the same for both models [15]. From
(2), we obtain the free energy

n�F�B� � � ln
�X

s�

e
�1=2

P
�;�

s� ~B��s�
�
�

U�B�

2
; (4)

where U�B� has to be determined such that the saddle point
equations with respect to B yield back Eqs. (3). Up to a
function of temperature, we find

U�B�� tr
�
ln� ~B����

1

V
Trln��J��2W2I���

�
; (5)

where tr denotes the trace in replica space. We emphasize
that in this expression the self-energy � has to be consid-
ered as an implicit function of B as defined through
Eq. (3). These equations are very similar to the ones
obtained in [18] for the regime W & 1 where the locator
approximation is difficult to justify, however. In the fol-
lowing we need spatial traces like gn�x� � V�1Tr 1

��J�x�n

which we evaluate in Fourier space, gn�x� �
R d3k

�2!�3 
1

��Jk�x�n , with Jk � 4!=k2 at small k. We assume some
cutoff procedure that regularizes the small scale physics so
that

R
k � 1 and

R
k Jk � 0. For x � � we obtain gn�x� �

x�n�1� Cn��=x�
3=2�, where C1 � 2

����
!

p
and C2 � 5

����
!

p
.

Let us first discuss the replica symmetric (RS) solution
of Eqs. (3) for which we assume �ab � ��0�ab � �IIab,
and Bab � �B0�ab � BIIab. For W � 1, we find �0 ��������
2!

p
�W, suggesting the interpretation of ��1

0 as the frac-
tion of thermally active sites (for Tc < T � W). The dis-
tribution of local fields obtained from this RS solution
agrees well with numerical data for T * Tc and W & 1
[18]. A depletion of sites in small fields is found due to
strong correlations in this ‘‘Coulomb plasma.’’ However, a
closer analysis reveals that there is no true pseudogap on
the replica symmetric level, the depletion disappearing
completely for strong disorder. This is also reflected in
the pseudoequilibrium charge susceptibility defined by
&RS � ��1=4� hsasbia�b� � �=�0 which tends to a fi-
nite constant ( � 1=W) within this solution. Physically, &
measures the charge response to a local potential change
when the particles on other sites are allowed to readjust to
the induced charge, without driving the system out of its
local free energy minimum. The genuine Coulomb gap is
formed only when the replica symmetry is broken. For
W � 1, the RS solution indeed exhibits an instability
(the extremum in FRS becomes a saddle point) when the
condition

Z 1

�1
dy

e�y2=2�W2�BI=�2��������������������������������������
2!�W2 � BI=�

2�
p 1

�2 cosh��y=2��4

� �g�2
1 ��0� � g�1

2 ��0��
�1 � �!�3�0�

�1=2 (6)

is met, from which we extract the critical temperature
Tc � W�1=2=�6�2=!�1=4� � 1 � W. We emphasize that
the difference g�2

1 ��0� � g�1
2 ��0� is controlled by the

contribution from large scales, 1=k�
�����
W

p
, which justifies
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our assumption of a large number of effective neighbors.
To verify that the transition is not an artifact of the locator
expansion we calculated the disorder average of the
squared correlator hsisji2c in the original lattice model
and checked that it shows critical behavior at the same Tc.

The instability (6) signals a continuous glass transition
with full replica symmetry breaking (RSB). We may ana-
lyze it further by expanding the free energy with respect to
the replicon mode �B (with �Baa � 0 and �BI � 0)
around the RS solution n��F�W�3=2�tr��(�B2 �

c2�B
3� � c3

P
a;b�B

4
ab�, where ( � 1� T=Tc. This shows

that the glass transition in Coulomb glasses belongs to the
same universality class as the one in the SK model: the
order parameter develops continuously. Hence, many re-
sults for infinite range spin glasses [19] should be directly
applicable to the present case, providing, e.g., a description
of the aging and memory effects observed in experiments
[9]. Further, the electron glasses present a testing ground
for many theoretical ideas developed for the SK model.

We now turn to a more detailed analysis of the physics
far below Tc. Since we expect that �0 � �&�1 � � we
may expand the free energy (5) in �J=�. Using Eqs. (3)
we eliminate � and obtain U�B� � �tr�B3�=12!�3, re-
sembling the SK model where U�B� � �tr�B2�=�2. The
exponent reflects the spatial dimension D � 3 and is re-
sponsible for the shape of the pseudogap [��E� � ED�1].
For the following it is more convenient to keep the self-
energy in the formalism. Let us suppose that the replica
symmetry is broken at the level of K steps. We represent
the Parisi matrices as � � ��0 �

PK
k�1 �kRmk

, where
Rmk

consist of blocks of size mk on the diagonal with all
entries equal to 1. Let us focus on the set C of the m1

pseudospins corresponding to one of the innermost blocks.
They experience an effective field y created by all other
replicas. We describe its fluctuations by a distribution P�y�,
which was a simple Gaussian in the RS case [see Eq. (6)].
We note that P�y� corresponds to the distribution of pseu-
doequilibrium local fields yi defined by hsii � mi �
tanh��yi=2�=2 on the original lattice [20]. P�y� is a func-
tional of B which could be obtained by integration of
Parisi’s differential equation using the methods of
Ref. [20]. Here, we exploit only the well-known fact that
a full RSB glass is in a marginally stable state at all T < Tc
[19,20] (i.e., the Hessian @2F=@B2 has a vanishing eigen-
value in the replicon mode �B characterized by �Baa � 0
and �BRmk

� 0 for all k). This imposes the following
constraint on P�y�:
Z 1

�1
dyP�y�

1

�2 cosh��y=2��4
�

1

g�2
1 ��0� � g�1

2 ��0�
: (7)

Further, the innermost component of Eqs. (3) read

& 
 �
�
1

4
� hsasbia�b2C

�
� �g1��0�

� �
Z 1

�1
dyP�y�

1

�2 cosh��y=2��2
: (8)
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Expanding gn for �0=� � 1, one can see that at low
temperatures these two equations admit a solution only if
�0 � �3 and P�y� takes the scaling form

T�2P�y 
 zT� ! p�z� �T ! 0�; (9)

with p�z� � z2 for z � 1. This implies that the suscepti-
bility obeys the scaling &� T2, and the (static) screening
length diverges at low temperatures as lsc � �4!&��1=2 �
T�1. Note that & is associated with the pseudoequilibrium
local fields yi that account for relaxations of other charges
within the local free energy minimum. While we expect &
to control the hopping conductivity, tunneling experiments
[5] probe the system on short time scales, sampling the
distribution ~P�h� of instantaneous local fields hi �P

jJ ijsj. The thermal average of these fields, hhii �P
jJ ijmj, is related to the field yi via a Thouless-

Anderson-Palmer (TAP) equation [21], hhii � yi �
hsiihO, where the Onsager term

hO � �
Z
k

J2k
�Jk ��0

� 2
����������������
!�=�0

q
� 2

�������
!&

p
(10)

accounts for the extra polarizations induced by the pres-
ence of the charge hsii. For consistency with the locator
approximation, we have retained only terms corresponding
to a local self-energy. The deviation of the local field hi
from its mean hhii is essentially a Gaussian variable with
width hO. More precisely, the relation

~P�h� �
Z

dyP�y�
cosh��h=2�
cosh��y=2�

e���h�y�2=2hO�������������������
2!hO=�

p
e��hO=8

(11)

holds [17], which generalizes a known result for the
SK model [22]. The tunneling density of states at zero
bias then follows from 30 � �

R
dh ~P�h��2 cosh��h=2���2.

Equation (11) implies that ~P�h� obeys a scaling analogous
to Eq. (9), and hence 30 � T2. Generally, in order to make
quantitative predictions, one needs to know the functional
form of the field distributions. It turns out, however, that
certain parameters are not very sensitive to their details. It
is convenient to assume a simple form P�hhi� � ��hhi2 �
�T2� for the distribution of average fields, obtain P�y� via
the TAP equations, and solve Eqs. (7) and (8). This yields
&, 30, and � as slowly varying functions of � [23]:
� � 0:204� 0:0067�, & � �22:27� 0:81��T2, 30 �
�2:178� 0:008��T2. The tunneling DOS 30 is roughly an
order of magnitude smaller than the full susceptibility &, as
is also evident from the typical distributions shown in
Fig. 2. This agrees well with the experimental observation
[11] that the susceptibilities governing tunneling and
hopping transport differ significantly. The value of �
should be compared to the Efros-Shklovskii prediction
�ES � 3=! � 0:95 [3] which is larger than our estimate
because their self-consistency argument imposes stability
only with respect to single electron hops. By contrast, our
estimate includes multiparticle constraints that decrease �
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FIG. 2. The distributions ~P�h� and P�y� of the instantaneous
and pseudoequilibrium fields, respectively. Since the latter in-
clude the relaxation of the environment, the gap is narrower.
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below �ES in agreement with large-scale numerical simu-
lations [24].

In conclusion, we have developed the locator approxi-
mation for Coulomb glasses, allowing us to include multi-
particle correlations. We have used this formalism to
provide evidence for a continuous glass transition below
which the Coulomb glass gets stuck in a marginally stable
state, resulting in subexponential relaxation dynamics and
the universal Coulomb gap at low temperature. Formally,
the locator approximation is justified for large disorder.
However, in the absence of crystallization, a structural
glass transition provides sufficient self-generated disorder,
so that we expect our results to hold at low temperatures
even in the case of weak external disorder. We verified [17]
that in this limit the local observables are controlled by
large scales and reveal the Efros-Shklovskii gap. Further,
as noticed in [18], the locator approximation gives a sig-
nificant decrease of the DOS with temperature already
above Tc, in agreement with numerics. Moreover, it pre-
dicts a discontinuous glass transition at a scale of Tc �
0:030 which depends, however, on the details of the cutoff
at small scales. The validity of this prediction remains
unclear.

The locator approximation not only provides new insight
into classical Coulomb glasses but also allows for quanti-
tatively new predictions that go beyond the single particle
theory, setting the stage for further developments of the
theory of correlated transport and glassy relaxation in these
systems. For instance, it allows one to study the collective
modes of electrons that induce fluctuations in the local
electric fields [10] and thus allow resonant tunneling in
the absence of phonons. This provides an alternative
mechanism for electron transport as observed at low tem-
peratures when phonons freeze out [25]. Finally, exten-
sions of the locator approximation to describe quantum
electron glasses [12,26] may be envisioned.
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[19] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173

(1993); J. Phys. A 27, 5749 (1994).
[20] H.-J. Sommers and W. Dupont, J. Phys. C 17, 5785 (1984);

A. Crisanti, L. Leuzzi, and G. Parisi, J. Phys. A 35, 481
(2002).

[21] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.
Mag. 35, 593 (1977).

[22] M. Thomsen et al., Phys. Rev. B 33, 1931 (1986).
[23] Analogous estimates for the SK model lead to excellent

estimates for the slope of the linear pseudogap [14,21].
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