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Systems of strongly interacting dipoles offer an attractive platform to study many-body localized phases,
owing to their long coherence times and strong interactions. We explore conditions under which such
localized phases persist in the presence of power-law interactions and supplement our analytic treatment
with numerical evidence of localized states in one dimension. We propose and analyze several experimental
systems that can be used to observe and probe such states, including ultracold polar molecules and solid-
state magnetic spin impurities.
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Introduction.—Statistical mechanics is the framework that
connects thermodynamics to themicroscopicworld. It hinges
on the assumption of equilibration; when equilibration fails,
so does much of our understanding. In isolated quantum
systems, this breakdown is captured by the phenomenon
known as many-body localization (MBL) [1–29]. Many-
body localized phases conduct neither matter, charge, nor
heat. Moreover, they can exhibit symmetry breaking and
topological order in dimensions normally forbidden by
Mermin-Wagner-type arguments [20,26]. To date, none of
these phenomena has been observed in experiments, in part
because of the isolation required to avoid thermalization.
In this Letter, we investigate dilute dipolar systems as a

platform for realizing MBL phases and studying the
associated localization phase transition. Our work is
motivated by recent experimental advances that make it
possible to produce and probe isolated, strongly interacting
ensembles of disordered particles, as found in systems
ranging from trapped ions [30] and Rydberg atoms [31,32]
to ultracold polar molecules [33,34] and spin defects
in solid-state systems [35–38]. The presence of strong
interactions in these systems underlies their potential for
exploring physics beyond that of single-particle Anderson
localization [1]. However, the power-law decay of those
interactions immediately raises the following question: Can
localization persist in the presence of such long-range
interactions? Indeed, Anderson observed in his seminal
paper that long-ranged hopping, t ∼ 1=rα, delocalizes any
putatively localized single-particle states for α ≤ d, with d
the dimension of space. In what follows, we consider the
generalization of Anderson’s criterion to the interacting
power-law regime and produce a necessary condition for
localization with such interactions [6–9]. To support
these considerations, we carry out an extensive numerical
analysis of power-law interacting systems in d ¼ 1 spatial
dimensions. With this criterion in hand, we analyze the
feasibility of observing MBL states in two complementary
ultracold polar molecule proposals, wherein the power

laws, interaction scales, and dimensionality may be tuned.
Finally, we generalize our analysis to solid-state systems
where localization can be studied in the quantum dynamics
of magnetic spin impurities.
Conditions for localization.—In localized systems, injec-

tions of energy propagate at most a finite distance even after
infinite time. This is obviously inconsistent with the
proliferation of long-range resonances through which
energy may be transported. In the following, we identify
resonant degrees of freedom and ask whether the number
of such resonances diverges at large scales; such divergence
suggests the existence of a percolating network that
conducts energy [6–9]. We consider a general two-body
Hamiltonian of spin 1=2 particles with conserved total Sz,

H¼
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where ϵi is a site-dependent disorder field of bandwidthW,
while α and β are the exponents governing the power-law
decay of spin flip-flops and spin interactions, respectively
[39]; we assume β ≤ α, consistent with all physical

FIG. 1 (color online). (a) Schematic of four-spin resonance
structure. Each pair of (red) spins at separation R1 forms a
pseudospin (blue) with the level structure shown below. (b) A
pseudospin at the origin resonates with another pseudospin in a
shell R2 < r < 2R2.
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realizations of which we are aware. Clearly, the analysis
applies to general long-range interacting two-level systems
with a conserved charge.
We identify resonant pairs of spins as those for which

jϵi − ϵjj≲ tij=jrijjα; the expected number of resonant spins
at a distance R1 < jrijj < 2R1 from a central spin is

N1ðR1Þ ∼ ðρRd
1Þ
t=Rα

1

W
; ð2Þ

where ρ is the density of spins. If N1ðR1Þ diverges as
R1 → ∞, that is, if d > α, then any spin resonates with
arbitrarily distant spins and localization is impossible;
this is precisely Anderson’s criterion for single-particle
localization. In the critical case, d ¼ α, a detailed renorm-
alization group treatment confirms subdiffusive but delo-
calized behavior for the noninteracting case [1,40,41].
As shown in Fig. 1(a), the two strongly hybridized central

levels of a resonant pair define a new pseudospin degree
of freedom (blue arrows) with local splittings δ ∼ t=Rα

1 .
Pseudospins can exchange energy through the interaction V
since the operators Sz have spin-flip matrix elements
between the two pseudospin states [6–9]. Two pseudospins
separated by R2 resonate if δ1, δ2 > VðR2Þ≳ jδ1 − δ2j [42].
The number of such resonances available in a shell from
distance R2 to 2R2 around a fixed pseudospin [Fig. 1(b)] is

N2ðR1; R2Þ ∼ ½n1ðR1ÞRd
2&
V=Rβ

2

t=Rα
1

; ð3Þ

where n1 ¼ ρN1 is the density of pseudospins. As before, if
N2 diverges as R2 → ∞, large-scale pseudospin resonances
induce delocalization [6–9]. There are two limits. The
simplest case occurs when one holds the pair size R1 fixed
as R2 diverges; this “small pairs” condition yields a
localization criterion d < β. The second case requires
optimizing R1 as R2 grows in order to saturate the proba-
bility of pseudospin resonance. More precisely, one
should replace ðV=Rβ

2Þ=ðt=Rα
1Þ → min½1; ðV=Rβ

2Þ=ðt=Rα
1Þ&

in Eq. (3). The optimum arises for R1 ∼ Rβ=α
2 , yielding a

more stringent “extended pairs” condition, d < αβ=ðαþ βÞ.
It is clear that one can continue iterating the construction

of pair resonances. However, the resulting criteria for MBL
saturate after the third level [42,43],

N3ðR1; R2; R3Þ ∼ ½n2ðR1; R2ÞRd
3&
V=Rβ

3

V=Rβ
2

; ð4Þ

where n2 ¼ n1N2 is the density of pseudo-pseudospins.
There are three limits as R3 diverges. Holding R1, R2 fixed
reproduces the small-pairs criterion. Holding R1 fixed
but optimizing R2 ∼ R3 [to saturate the probability of

resonance in Eq. (4)] yields a new, “iterated pairs” criterion
d < β=2. Finally, optimizing both R1 ∼ Rβ=α

2 and R2 ∼ R3

reproduces the extended pairs criterion.
The above results hold for generic anisotropic distributions

of tij, Vij (first two columns of Table I). In certain cases,
which we term “multipole,” the effective matrix elements
that arise in the four-spin construction cancel at leading order.
To be precise, this cancellation occurs when the derivatives
of the interaction scale as the interaction divided by the
distance separating the spins. This can be understood
within a multipole expansion (for R1 < R2), which amounts
to replacing V=Rβ

2 → VR2
1=R

βþ2
2 for N2 and analogously for

subsequent iterations (last column of Table I).
A few comments are in order. (1) In the anisotropic and

unmixed (α ¼ β) cases, the iterated pairs criterion d < β=2
is always most stringent, a result first derived in Refs. [8,9].
(2) In the multipole case, for α < β þ 4, the extended-pairs
criterion is most stringent, while for α > β þ 4, the iterated-
pairs criterion dominates. (3) The case of an Anderson
insulator with Coulomb interactions corresponds to the
α → ∞ limit of the multipole case, giving an upper critical
dimension of dc ¼ 1.5. (4) The case of interacting dipoles
with α ¼ β ¼ 3 also gives dc ¼ 1.5. Interestingly, the
orientation dependence of the dipolar interaction is suffi-
ciently isotopic to enable a multipole expansion. Thus, in
experiments that can realize α ¼ 6, β ¼ 3 (as will be
discussed later), dc ≈ 2.3 [42].
Ultimately, all of the resonance arguments described above

rely upon the analysis of finite subsets of spins. While
providing useful insights, such arguments must be viewed
as heuristic. To supplement, we have performed extensive
exact diagonalization studies of Eq. (1) in d ¼ 1 for
α ¼ β ¼ 1; 3=2; 2; 3.We consider periodic systems up to size
L ¼ 14 at the filling fraction ν ¼ 1=2. The random fields are
drawn from a uniform distribution of widthW, the interaction
Vij ¼ V ¼ 2, and the hopping tij ¼ t ¼ 1. The presence of
a many-body localized phase may be detected by the finite-
size flow of the dynamic polarization D, a measure of spin
transport across the 1D system at infinite temperature [11].
We perturb each eigenstate with a small (long-wavelength)
inhomogeneousspinmodulationoftheformF̂ ¼

P
jS

z
je

i2πj=L

and measure the relaxation of this inhomogeneous polariza-
tion at infinite time. For each disorder realization η and
eigenstate k, the dynamic polarization is given by

Dk
η ¼ 1 −

hkjF̂†jkihkjF̂jki
hkjF̂†F̂jki

: ð5Þ

We then defineD as the infinite temperature disorder average
of Dk

η. As L → ∞, in the ergodic phase, one expects D → 1

TABLE I. Critical dimensions for MBL with power laws.

Unmixed α ¼ β [8,9] Anisotropic β < α Multipole β < α

Hopping d < α d < α d < α
Small pairs d < β d < β d < β þ 2
Extended pairs d < β=2 d < αβ=ðαþ βÞ d < αðβ þ 2Þ=ðαþ β þ 4Þ
Iterated pairs d < β=2 d < β=2 d < ðβ þ 2Þ=2
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since the initial inhomogeneity relaxes away; in the MBL
phase, one expects D → 0 since there is no transport.
The results are shown in Fig. 2. For all exponents, we

find that the finite-size flow of D is consistent with
delocalization at weak disorder. At strong disorder, for
α ¼ 2; 3, there are signs of flow reversal, consistent with a
transition into a MBL phase, while for α ¼ 1, the flow
remains toward delocalization for all disorder strengths.
Owing to the small sizes accessible to exact diagonaliza-
tion, flow reversal does not prove the existence of a
transition; however, for α ¼ 3, the combination of rela-
tively clear flow and the previous theoretical argument
suggests the existence of a MBL phase. The strong disorder
flow at intermediate exponents α ¼ 3=2 is inconclusive.
Accordingly, for d ¼ 1, we numerically bound the critical
power law with 1 < αc < 3, noting that the extended-pairs
criterion gives αc ¼ 2. The difficulty of investigating a
MBL transition in small-size numerics emphasizes the
importance of controlled experiments.
Experimental realizations.—Next, we analyze two

classes of experimentally accessible systems in which
MBL phases may be realized. First, we consider an array
of polar molecules confined to a one-dimensional tube
geometry (via an optical lattice) as depicted in Figs. 3(a)
and 3(b) [33]. The optical lattice is strongly confining along
the ŷ and ẑ axes, but molecules can tunnel with nearest-
neighbor hopping strength t along the tube in the x̂
direction (α → ∞). The molecules are prepared in their
rovibrational ground state and are subject to a static electric
field E perpendicular to the tube direction. The applied
electric field weakly aligns the molecules along the
field direction, inducing a finite dipole moment d and a
long-range electric dipole-dipole interaction between the
molecules V ∼ d2=R3 (β ¼ 3). By ensuring that the dipolar

interaction strength is much weaker than the rotational
splitting B [Fig. 3(d)], all molecules remain in the rovibra-
tional ground state. Finally, an optical speckle field may be
superimposed on top of the underlying lattice, introducing
on-site potential disorder with strengthW controlled by the
laser intensity [Fig. 3(b)] [44].
The magnitude of the electric field tunes the strength of

the dipolar interaction V ∼ d2. In the limit E → 0, the
interaction strengthV → 0, and the resulting nearest-neighbor
Hamiltonian can be fermionized. This noninteractingmodel is
completely Anderson localized in the presence of any dis-
order. With the addition of local interactions, the existence
of a MBL phase has been established both theoretically and
numerically [4,5,10–12]. According to the criterion in Table I,
theMBL phase ought to also survive the introduction of long-
range dipolar interactions. To confirm this expectation and
further establish an experimentally relevant phase diagram,
we perform exact diagonalization for molecular filling frac-
tions ν ¼ 1=2; 1=3; 1=4 up to system sizes ofL ¼ 16; 18; 20,
respectively [Fig. 4(a)]. As depicted in Fig. 4(b), we obtain
the MBL phase diagram as a function of interaction strength,
filling fraction, and speckle intensity [44].
Next, we consider disordered arrays of interacting mol-

ecules with a fixed center-of-mass position and focus on the
dynamics of rotational excitations [Fig. 3(c)]. In the deep
lattice limit, the orbital motion of the molecules is pinned,
and the residual rotational degree of freedom is governed
by an effective Hamiltonian, Hm ¼ BJ2 − dzE [45]. A
combination of electric and magnetic fields allows us to

(a) (b) 

(c) (d) 

FIG. 2 (color online). Finite-size scaling of the long-time
dynamic polarization for Eq. (1) in d ¼ 1 (with units t ¼ 1,
V ¼ 2) with (a) α ¼ β ¼ 1, (b) α ¼ β ¼ 3=2, (c) α ¼ β ¼ 2, and
(d) α ¼ β ¼ 3. The lack of flow reversal in (a) suggests delo-
calization at all disorders. The sharpening of the crossover as a
function of increasing system size in (d) suggests the existence of
a phase transition at approximately Wc ≈ 10 into an MBL phase.
The flow at intermediate power laws (b) is inconclusive.

FIG. 3 (color online). (a) Schematic of the one-dimensional
tube geometry with strong confinement in the ŷ and ẑ directions
and hopping in the x̂ direction. (b) Dipolar molecules in each 1D
tube are subject to an optical speckle pattern that generates an
effective random on-site chemical potential for the hopping
molecules. (c) Schematic of the dipolar “spin” hopping model.
Molecules pinned with dilution in the deep optical lattice may
exchange rotational excitations. (d) Effective rotational level
structure of a polar molecule, with j↑i ¼ j1; 1i, j↓i ¼ j0; 0i
shown for the α ¼ β ¼ 3 rotor model. (e) Level structure of two
polar molecules for the α ¼ 6 rotor model, wherein hopping is
mediated by a second-order dipolar process.
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isolate an effective two-level system: j↓i ¼ jJ ¼ 0; mj ¼ 0i
and j↑i ¼ jJ ¼ 1; mj ¼ 1i [Fig. 3(d)] [46]. The rotors
interact via electric dipole-dipole interactions with the
Hamiltonian, Hdd ¼ 1

2

P
i≠j(dið1 − 3r̂ijr̂ijÞdj=r3ij), where

d is the dipole moment operator. Projecting Hdd onto the
two-level subspace fj↓i; j↑ig and keeping only secular
terms yields theHamiltonian of Eq. (1) with effective on-site
fields given by ϵi ¼

P
j≠idsda=r

3
ij, α ¼ β ¼ 3, and

ds;a ¼ 1=2ðh1jdzj1i' h0jdzj0iÞ. Assuming Poissonian
(uncorrelated) dilution, the fields ϵi become randomvariables
with standard deviationW ∼ ðdsda=a30Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1 − νÞ

p
, wherea0

is the lattice spacing [42]. We expect theweak correlations of
the random fields to leave the previous numerical phase
diagrams in d ¼ 1 qualitatively unchanged [Fig. 2(d)].
This dipolar spin model becomes particularly intriguing

as one varies the dimensionality of the system since the
“extended-pairs” criterion predicts dc ¼ 3=2 for α¼β¼3.
Compared to the simple Anderson criterion, which predicts
dc ¼ 3, this already allows one to investigate the validity of
the resonant pair counting arguments for optical lattice
pancakes where d ¼ 2.
An additional feature of such systems is the ability to

tune the spin-flip power law. The large rotational constant B
enables restriction to the Hilbert space spanned by j↓i ¼
jJ ¼ 1; mj ¼ −1i and j↑i ¼ jJ ¼ 1; mj ¼ 1i. In this
case, the dipolar flip-flop process is effectively eliminated
at first order; the system instead hops two units of Jz

via a second-order process of the form [see Fig. 3(e)]
H0 ¼

P
t2ij=r

6
ij½ðdiþÞ2ðdj−Þ2 þ ðdi−Þ2ðd

j
þÞ2&, while the inter-

action remains formally unchanged. With the effective
hopping power law increased to α ¼ 6 and the interaction
remaining as β ¼ 3, one finds that (in d ¼ 2) all criteria for
the consistency of localization are now satisfied, including
both the extended-pairs criterion, which predicts dc ≈ 2.3,
and the iterated-pairs criterion with dc ¼ 2.5.
Finally, solid-state implementations can be considered

using spin defects in semiconductors. For example,
nitrogen-vacancy (NV) defects in diamond [35–38] are
spin-1 magnetic impurities described by the Hamiltonian

HNV ¼ D0S2z þ μeBSz, where D0 is a large crystal field
splitting. In the presence of an applied magnetic field, one
can restrict the NV dynamics to a two-level subspace and
recover the Hamiltonian of Eq. (1).
Experimental feasibility.—There are several probes avail-

able for detectingmany-body localization in quantum optical
systems: (1) observing arrested decay of a long-wavelength
spin-number modulation, (2) generalized single-site spin-
echo protocols that exhibit anomalously slow dephasing
[14,15,17–19], and (3) direct measurements of real-space
correlation functions. The simplest approach is to directly
observe a lack of diffusion. In a typical ergodic system, an
initial long-wavelength inhomogeneous spin polarization
decays as ∼e−Dk2t, where D is the diffusion constant. For
a many-body localized phase, D ¼ 0. In any experiment,
coupling to an external bath is unavoidable and produces
characteristic decoherence time scales; T1-type depolariza-
tion provides a uniform k-independent contribution to the
overall decay. In the presence of weak Markovian T2

dephasing, extrinsic energy fluctuations induce diffusion,
with DT2

∼ a20=T2 (neglecting backaction onto the bath).
Since T2 ≤ T1, the figure of merit in such experiments is a
separation of scale between DT2

and the expected ergodic
diffusion,De ∼ a20=Ta0 , whereTa0 represents the lattice scale
hopping time. Alternatively, one can also measure the decay
of an initially polarized region; for a Gaussian spot of initial
size l (larger than any correlation length), the modulation at
the origin decays as ∼ðl2 þDtÞ−d=2e−t=T1 . Here, one hopes
to extract the subexponential diffusive behavior,which can, in
principle, be achieved by varying the spot size.
In the molecular case, the most direct experimental

realization of our proposals would be in diatomic alkali
systems [34,47–51]. Both the orbital and rotational cases
can be carried out with currently available technology;
indeed, the loading of 40K87Rb molecules into 1D [33] and
3D [47] lattices, as well as dipolar spin exchange [46], has
already been demonstrated. For a typical polar molecule
with saturated dipole moment ∼3 Debye, the interaction
strength at 532 nm (optical lattice spacing) corresponds to
approximately 100 kHz, yielding Ta0 ≈ 10 μs. Meanwhile,
dephasing times of up to T2 ∼ 100 ms [46] and ground-
state lifetimes of up to T1 ∼ 25 s have been observed [47].
In the case of NVs, recent advances in implantation and

annealing have enabled dense defect ensembles with average
spacing ∼2–3 nm [52]. The magnetic dipolar interaction
at such distances is given by Ta0 ∼ 1 μs, significantly
smaller than the typical room-temperature coherence times
T1, T2 ∼ 10 ms of isolated NVs (working at cryogenic
temperatures can lead to further improvements [53]). To
observe many-body localization in such a systemwill require
the ability to reduce the effective dimensionality; this can be
achieved by fabricating quasi-1Ddiamond nanopillars [54] or
by controlled implantation in 2D layers [55,56].
In summary, by constructing hierarchical spin resonances,

we have analyzed upper critical dimensions for many-body
localization in the presence of power laws (Table I). Our

(a) (b) 

FIG. 4 (color online). Exact diagonalization study of Eq. (1)
with nearest-neighbor hopping (α → ∞) and dipolar interactions
(β ¼ 3). Random fields are drawn from a uniform distribution of
width W. (a) Finite-size scaling of the long-time dynamic
polarization. The finite-size flow suggests a delocalization phase
transition atWc ≈ 1.4t. (b) MBL phase boundaries determined by
finite-size flow for V=t ¼ 1; 2; 4.
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arguments suggest that MBL is accessible to AMO-type
experiments involving dipolar spins in two dimensions or
hopping polar molecules in three or fewer dimensions. Our
work opens a number of intriguing directions: (1) generaliza-
tions tootherdipolarplatformssuchasRydbergatoms, trapped
ions, and other spin qubits and (2) working near the upper
critical dimensions to probe the nature of the MBL transition.
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