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We introduce a solvable model of driven fermions that elucidates the role of the localization transition in
driven disordered magnets, as used in the context of dynamic nuclear polarization. Instead of spins, we study
a set of noninteracting fermions that are coupled locally to nuclear spins and tend to hyperpolarize them. The
induced hyperpolarization is a fingerprint of the driven steady state of the fermions, which undergo an Anderson
localization (AL) transition upon increasing the disorder. Our central result is that the maximal hyperpolarization
level is always found close to the localization transition. In the limit of small nuclear moments the maximum is
pinned to the transition, and the hyperpolarization is strongly enhanced by multifractal correlations in the critical
state of the nearly localized driven system, its magnitude reflecting multifractal scaling.
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I. INTRODUCTION

Statistical mechanics is grounded on the assumption that
simple macroscopic laws emerge whenever time evolution
is so complex that specific details become irrelevant. Al-
though this picture is generically confirmed in the evolution
of closed quantum systems, recent work [1] has predicted
that strong disorder can prevent thermal equilibrium when
a quantum system evolves under its own dynamics. Under
certain circumstances (low dimension lattice models, short-
range interactions), this phenomenon occurs as a sharp tran-
sition which goes under the name of many-body localization
(MBL). In higher dimensions or in systems with power-law
interactions, the MBL transition is believed to become a sharp
crossover. Experimental measurements of MBL have been
reported in highly controlled experimental settings, such as
ultracold atomic fermions [2,3] and chains of trapped ions [4].
Most theoretical studies have so far focused on isolated one-
dimensional lattice systems which display the main features
of the MBL phase [5–12].

However, a small coupling to the environment is present
in any physical system, even in cold atoms and trapped ions,
while standard solid state systems always feel the presence of
the bath of phonons on sufficiently long timescales. For this
reason, recent studies have started to address the fate of the
MBL transition in the presence of weak dissipation [13–15].
On sufficiently long timescales, the presence of a nonlocalized
environment always restores ergodicity in an otherwise local-
ized phase. Nevertheless, when a weakly dissipative system is
driven out of equilibrium, it can reach a stationary state whose
characteristics will strongly depend on whether its intrinsic
dynamics is ergodic or nonergodic—even though no genuine
transition survives in the space of steady states, but only a
strong crossover [16,17]. Up to date, mainly two experimental
settings of driven dissipative systems have been studied in this
context: interacting gases of Rydberg atoms [18] and dynamic
nuclear polarization (DNP) protocols [17,19,20]. Here we

focus on the latter, for which it has been shown that the MBL
crossover of the closed system manifests itself in key features
of the driven-dissipative steady state.

DNP is a very promising technique to cool nuclear spins
and thereby improve the signal-to-noise ratio in nuclear mag-
netic resonance (NMR) measurements [21]. The procedure
is as follows: a glassy (amorphous) sample of the nuclear
compound is doped with radicals, i.e., molecules with un-
paired electron spins. The sample is then cooled down to
temperatures of the order of 1 K and subjected to a strong
magnetic field B, which in many standard experiments is
fixed to B = 3.35 T. Under these conditions, electron spins
have a high polarization level, whereas nuclear spins remain
almost unpolarized and thus yield a very small NMR signal.
The sample is then driven out of equilibrium by a microwave
field. By tuning the frequency of the microwaves close to the
Zeeman gap of the electron spins, one observes a huge transfer
of polarization from the electron spin system to the nuclear
one, which results in a strongly enhanced NMR contrast. In
order to optimize the resulting cooling, it is thus paramount to
understand the underlying polarization transfer mechanism.

In a recent work [17] we showed that the efficiency of
the procedure (i.e., the final nuclear polarization) depends on
the interplay between the disorder arising from the g-factor
anisotropy of the electron spins, and their dipolar interactions,
whose magnitude is tuned in practice with the radical concen-
tration. For strong interactions, the electron spins are ergodic,
and their stationary state can be described by an effective spin
temperature [22,23]. In contrast, when disorder is dominant
and the closed system is localized, the stationary nuclear
polarization was found to rapidly drop. As a consequence,
the optimal value is attained close to the MBL crossover of
the isolated system, a prediction which has already received
preliminary confirmation in recent experiments [24].

However, these results were obtained by exactly diago-
nalizing an interacting electron system, which is limited to
small system sizes with at most 13 spins. Moreover, that study
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FIG. 1. Sketch of the DNP setup: A system of spins being irradiated by microwaves. Electron spins are displayed in orange and nuclear
spins in gray. The dipolar interactions between pairs of electron spins are displayed by solid red lines, and are much more important than
the hyperfine interactions between couples of electron/nuclear spins, represented by dashed blue lines. The nuclear dipolar interactions are
represented by a gray line. Phonons from the lattice and microwaves mostly couple to the electronic sector, as in the realistic DNP setup. (Left)
Sketch of a realistic system: a matrix of atoms hosting 13C spins, doped with a dilute set of electron spins sitting at random positions and
subject to randomness in the g factor, due to the amorphous (glassy) nature of the compounds used in DNP. (Right) Simplified model of the
DNP setup, which replaces the electron spins by free fermions in a cubic lattice. Each core nuclear spin is in direct contact with one and only
one electron spin, and the strong dipolar interactions make the nuclear spin system fully ergodic.

could not furnish a thorough understanding of the crossover
from the ergodic into the localized regime, and the associated
maximum in the cooling effect. In order to go beyond these
limitations, here we present the study of a free-fermion analog
of the electron spin problem, which allows us much larger
sizes (�104). Because of integrability, the free fermions do not
have a genuine ergodic phase. Nevertheless, disorder tunes a
single-particle Anderson localization (AL) transition, which
we find to result in the same key parameters of the driven
steady state as in the many-body spin system. In particular, the
maximal nuclear polarization is reached when the electrons
are close to the localization transition. Our toy model has
the crucial advantage that the properties of this crossover
are much better accessible to analytical insight. Indeed, the
stationary nuclear polarization can be put in direct relation
to basic quantities which describe the critical behavior of the
Anderson transition, such as the inverse participation ratio and
the (multifractal) eigenfunction correlations.

In Sec. II we present the DNP protocol and some review
of the theoretical treatments studied so far. In Sec. III we
present an approximation reasonable for weak interactions
that allows exact computations of the nuclear polarization. In
Sec. IV we compute the nuclear polarization and present it in
function of the strength of the electron dipolar interactions.
Finally, in Sec. V we discuss its behavior and link it to the
localization/ergodicity properties of the electron spin system.

II. MICROSCOPIC DESCRIPTION OF DNP

The DNP protocol operates with two spin species, nuclear
and electronic ones, as sketched in Fig. 1 (left). Intraspecies
interactions are given by dipolar couplings, while nuclear and
electron spins are coupled with each other through hyperfine
interactions. The Hamiltonian of the isolated spin system can

thus be written as the sum of three terms:

ĤS = Ĥe + Ĥn + Ĥe–n, (1)

where the first and second terms stand for the electronic and
nuclear subsystems, respectively, and the last term describes
the hyperfine interactions. Let us describe how we treat each
term in more detail:

Ĥe =
Ne∑
j=1

ωj Ŝ
z
j + Ĥ (dip)

e , (2a)

Ĥn = −ωn

Nn∑
p=1

Î z
p + Ĥ (dip)

n , (2b)

Ĥe–n =
Ne∑
j=1

Aj Ŝ
z
j Î

x
j , (2c)

where Ŝ�
j and Î �

p are, respectively, the �-component corre-
sponding to the Ne electronic and Nn nuclear spins. In actual
experiments, the concentration of electron spins, which result
from doping with free radicals, is always much smaller than
the concentration of nuclei (by a ratio of �1/104), so we
will always assume Nn � Ne. The Larmor frequencies ωj

and ωn are proportional to the external magnetic field, and
their opposite signs are chosen by convention, so as to reflect
the negative g factor of the electrons. Electron spins are
subject to inhomogeneities in the Larmor frequencies, i.e.,
ωj = ωe + δωj , due to the local g-factor anisotropy, while
such anisotropies are negligible for the nuclear spins. The
coefficients Aj indicate the strength of hyperfine interactions:
here we assume that, among the Nn nuclear spins, only
Ne � Nn are “core” nuclear spins, i.e., they have a significant
interaction with the electron spins. For the sake of simplicity
we assume that each core nucleus is attached to one and only
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one electron spin. We also assume that there are no electron
spins without a core nucleus. We use Î �

j , j = 1, . . . , Ne, to

label those spins and Î �
p, p = 1, . . . , Nn, to label the full set

of spins. The precise form of the dipolar Hamiltonians Ĥ
(dip)
e/n

is given in Appendix A.
The spin system is weakly coupled to a (phonon) reservoir

at a temperature β−1. It is irradiated by a microwave field of
frequency ωMW that couples with an amplitude ω1 to the elec-
tron spins, via a Hamiltonian ĤMW = ω1

∑
j Ŝx

j cos(ωMWt ).
The full Hamiltonian of the system reads

Ĥtotal = Ĥe + Ĥn + Ĥe–n + ĤR + ĤS–R + ĤMW. (3)

The term ĤR governs the dynamics of the reservoir and ĤS–R

contains the coupling of the spin system with the reservoir.
It would be a formidable task to describe this system exactly,
and one is thus forced to resort to certain approximations.

Review of Lindblad approximation schemes

A natural approach is to treat separately fast and slow
timescales in the full system: Ĥtotal = Ĥfast + Ĥslow, where
Ĥfast and Ĥslow will be specified later on. This allows us
to perform the weak-coupling approximation, leading to an
equation for the density matrix of the spin system in a
Lindblad form [25]: the fast unitary dynamics due to Ĥfast

is treated exactly, while the contribution of Ĥslow is taken
into account perturbatively. Within this approximation, one
can obtain a further simplification by projecting the Lindblad
equation onto the eigenstates of Ĥfast. In this basis, the density
matrix of the spin system is always diagonal and the dynamics
reduces to a classical master equation describing the evolu-
tion of the probabilities of occupation of the eigenstates |n〉
of Ĥfast: Ĥslow only determines the transition rates between
pairs of eigenstates |n〉 , |m〉 through matrix elements of all
the local operators Ô involved in Ĥslow, i.e., | 〈n| Ô |m〉 |2.
Within this approach, to take into account the time-dependent
microwaves, one resorts to the rotating-wave approximation
[23], which amounts to neglecting rapidly oscillating terms
and thereby obtaining a static Hamiltonian in the rotating
frame.

Different schemes are obtained according to how Ĥtotal is
split into Ĥfast and Ĥslow. Given that the coupling with the
reservoir and microwaves is always weak, a first possibility,
discussed in [17,26,27], is to include in Ĥslow the last three
terms of (3). Although this already represents a significant
simplification of the original problem, one still faces the
nontrivial task of diagonalizing the interacting Hamiltonian in
(1) and computing the appropriate matrix elements between
its eigenstates. In the absence of further simplifications, one
is limited to the use of exact diagonalization and small sys-
tem sizes (maximum of 20 electron spins). This route was
followed in [17].

A second approach [28–30] consists in including into Ĥslow

not only the coupling with the reservoir and the microwaves,
but also all the interaction terms inside ĤS. In this way,
the eigenstates |n〉 become simply product states of spins
polarized along the direction of the magnetic field and all the
transition rates can be computed analytically. The solution
of the master equation can be obtained with Monte Carlo

simulations for much larger system sizes. However, in order
for this approach to be efficient, all the rates have to be of
the same order of magnitude: this was successfully used in
[28,29] in the presence of a single electron spin to model the
process of nuclear spin diffusion. Instead, when many electron
spins are considered, the presence of inhomogeneities and
their fast dynamics render this method inefficient. Moreover,
for the purpose of the present paper, we cannot entirely follow
this approach: indeed the product states have no mixing and
thus they do not capture the ergodicity properties of the
DNP system. Nonetheless, inspired by this approach, here
we include the hyperfine interactions into Ĥslow [30], which
is already an important simplification and accounts for the
ergodicity properties of the electron spin system, found to be
the most relevant to study the MBL crossover [17].

III. DNP IN THE LIMIT OF WEAK DIPOLAR
INTERACTIONS

Here we propose a different approach that allows us to
deal with a large number of degrees of freedom (Ne up to
104). As we anticipated, we treat perturbatively the hyperfine
interaction Ĥe–n, so that the eigenstates of the whole spin
system factorize as

|n〉 = |A〉 ⊗ |μ〉 , (4)

with |A〉 an eigenstate of Ĥn and |μ〉 one of Ĥe. For the
nuclear system, given the negligible inhomogeneity of the
Larmor frequencies, it is treated as a perfectly ergodic many-
body system, which satisfies the eigenstate thermalization
hypothesis (ETH) [31].

For the electron spins, in order to treat the competition
between dipolar interactions and inhomogeneous Larmor fre-
quencies, we resort to a strong simplification.

A. Simplified model for the electron spins: The free-fermion
approximation

Let us replace the bosonic spin degrees of freedom with
spinless fermions

Ŝx
j → ĉ

†
j + ĉj

2
, Ŝ

y

j → −ı
ĉ
†
j − ĉj

2
, Ŝz

j → 1

2
− ĉ

†
j ĉj .

(5)

so that a value of Sz
j = ±1/2 corresponds to an empty or

occupied site j , respectively. The fermionic operators satisfy
the anticommutation relation {ĉ†i , ĉj } = δij . For a single-site
j , this is an exact mapping, as it correctly reproduces all the
spin commutation relations. However, for different sites, spins
commute while fermions anticommute. This problem can be
solved by a nonlocal Jordan-Wigner tail to the fermions (upon
defining an order of the sites). In higher dimensions, while the
introduction of meandering Jordan-Wigner tails is in principle
possible, such an exact mapping becomes impractical and one
is forced to make some approximations. Here we simply drop
the Jordan-Wigner tail in order to obtain a tractable model and
make the substitutions (5) in (2a). Since we are interested in
qualitative aspects of the model, we simplify even further by
dropping interaction terms, and restricting fermion hoppings
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to nearest neighbors to obtain the following Hamiltonian (see
Appendix A for a detailed discussion):

ĤA =
∑

i

�ic
†
i ci − t

∑
〈i,j〉

(c†i cj + c
†
j ci ) + ωe

∑
i

c
†
i ci , (6)

where the �i are uniformly distributed in the interval
[−w/2, w/2]. The hopping parameter t between nearest
neighbors parametrizes the strength of dipolar interactions,
as for instance, after our replacement (5) Ŝ+

j Ŝ−
k → c

†
j ck . Un-

der standard DNP conditions for trityl radicals, the external
magnetic field of B = 3.35 T is responsible for the chemical
potential term with ωe = 93.9 × 2π GHz and, via the g-
factor anisotropy, for the strength of the disorder characterized
by the width of its distribution w ∼ 108 × 2π MHz. The
Hamiltonian (6) is simply the 3D-Anderson model. Its main
advantage is that it combines solvability with the presence
of a localization transition at a critical value of the ratio
between disorder and hopping, which for a cubic array of sites
and box-distributed disorder takes the value w/t = (16.536 ±
0.007) [32]. This allows us to study qualitative features of the
localization transition and their effect on the driven steady
state. Note that the algebraic tail of the dipolar interactions
would translate into algebraic hoppings, which are known to
lead to delocalization even in strong disorder [33]. However,
the associated dynamic timescale just grows exponentially
with the disorder strength instead of truly diverging at a
critical disorder. Once this dynamic timescale exceeds the
long timescales associated with the driving and heat bath
coupling, it becomes irrelevant whether the internal dynamics
is genuinely localized or simply very slow. For that reason
the algebraic tails in the hopping do not seem crucial to
understand the properties of the steady state at the disorder
strength where the two timescales become comparable. We
therefore restrict ourselves to a short-range model with a sharp
localization transition. This allows us to take the limit of
infinitely weak coupling to the drive and the bath, and thereby
obtain useful theoretical insight into the effects of incipient
localization on the driven steady state.

Before we proceed to analyze the driven dynamics of this
free-fermion model, let us comment about the status of (6)
and its validity in describing the original spin system. Let
us point out that we are not interested in a quantitatively
accurate description of the behavior of the driven spin system.
Our aim is rather to understand how qualitative features of
the localization transition enter into properties of the steady
state. In the extremely localized limit (t → 0), i.e., when the
disorder dominates over the dipolar interactions, the fermions
correctly describe decoupled electron spins. For weak dipolar
interactions, a small hopping term can capture qualitatively
the perturbative regime. However, increasing the dipolar in-
teractions, the spins become more and more interacting and
undergo increasingly strong quantum fluctuations. The cor-
responding increase of the hopping term in (6) also leads
to a larger localization length, however still within a system
of noninteracting fermions. This mere delocalization effect
is of course not equivalent to the more complex interaction
and fluctuation effects in the spin model, as (6) can never
describe an ergodic thermal reservoir. Nevertheless, we take
the fermionic model as a useful, simplified but tractable toy

model in which to investigate the role played by the Anderson
localization transition and evaluating analogs of the correla-
tion functions that are relevant in the driven spin system. The
results from the fermionic study provide qualitative insight
on the crossover from MBL to ergodicity occurring in the
original spin model of Eq. (2a).

B. Diagonalization of the free-fermion Hamiltonian

To construct the eigenstates of (6), one introduces the
fermionic operators aα = ∑

i φ
∗
αici , or equivalently ci =∑

α φαiaα . The coefficients φαi describe the single-particle
wave-functions φα that correspond to the eigenvectors of the
matrix

Mij =
{
ωi i = j,

−t i, j nearest neighbors,
(7)

with eigenvalue εα . They verify the orthogonality and com-
pleteness relations, i.e.,

∑
i φ

∗
αiφβi = δαβ and

∑
α φ∗

αiφαj =
δij . In terms of aα, a

†
β , one obtains the diagonal Hamiltonian

ĤA =
Ne∑

α=1

εαa†
αaα. (8)

The many-body eigenstates of (8) can be written as

|μ〉 = ∣∣nμ
1 , n

μ
2 , . . . , n

μ

Ne

〉 =
Ne∏

α=1

(a†
α )n

μ
α |0〉 , (9)

where nμ
α ∈ {0, 1} is the occupation number of the single-

particle mode α in the many-body eigenstate |μ〉. Their energy
is given as Eμ = ∑

α nμ
αεα . This is a huge simplification as

compared to the original spin problem, since determining the
many-body eigenstates of ĤA only requires the numerical
diagonalization of the matrix Mij in (7), whose size grows
linearly with the volume of the system, in contrast to the
exponential growth of the Hilbert space of the spin model.

In our simulations we consider a cubic lattice of linear size
L, corresponding to Ne = L3 spins in the original model, as
sketched in Fig. 1. Note that the microscopic parameters of
the system used for all the computations within this paper are
presented in Table I. Then, the Anderson transition occurs at
tc = w/16.5 ≈ (6.6 ± 0.2) (2πMHz). In Fig. 2 the density of
states (DOS) ρ(ε) = N−1

e

∑
α δ(ε − εα ) is shown for different

values of t : this is a self-averaging quantity which is not
affected by the localization transition, but still affects the DNP
efficiency as we will see. For large t , its shape is broader and
smoother than the box distribution obtained in the absence of
hopping, i.e., in the atomic limit.

C. Relaxation and microwave dynamics in the free-fermion
model

In the DNP protocol, the system is in contact with a
thermal bath at a temperature β−1 but driven to an out of
equilibrium stationary state by microwave irradiation. Both
bath and microwaves induce spin flips in the system. Each
flip causes transitions between two eigenstates of the system,
|n〉 and |m〉. The general expressions for the corresponding
transition rates were derived in [17,19]. After the translation to
fermions, a spin flip at a given site corresponds to the injection
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TABLE I. Microscopic parameters pertaining to a trityl system
in a magnetic field of B = 3.3 T (ωe = 93.9 2πGHz) in contact with
a thermal bath at temperature β−1 = 1.2 K and in the presence of
microwave irradiation with amplitude ω1. The hyperfine coupling is
assumed small enough so that the transitions involving nuclei are
slower than the relaxation time T1e of electron spins A2

0/(ω2
nT2n) �

T −1
1e . This justifies the approximation that the electron spins remain

in their steady state pμ � pstat
μ at all times. Stationary nuclear polar-

izations only depend on A2
0T1n.

Parameters of electron spins
T1e (s) T2e (s) ωMW (2πGHz) ω1 (2πkHz)

1 10−6 93.86 25

Parameters of nuclear spins

T1n (s) T2n (s) ωn (2πMHz) A0 (2πkHz)
104 10−5 20 4.47

or emission of a fermion at that site. This is a rather artificial
process, however, since the drive injects or extracts fermions
at a sharply defined energy. To realize this physically one
would require a large fermionic reservoir with a very narrow
energy filter. However, we remind the reader that we consider
the fermionic model primarily as a theoretical toy model, with
the main aim to study correlation functions analogous to those
arising in the more realistic spin model.

Due to the factorization in (4), the state of the nuclear
spins |A〉 is unchanged in these processes. Using (9), the ma-
trix elements for spin raising or lowering operators translate
into single particle matrix elements for fermionic creation or
annihilation operators. The corresponding transition rates for
processes due to bath coupling or driving are then given by
(see Appendix B 1 for a brief derivation)

WBATH
μ→ν =

∑
α

h(�Eμν )

T1e

(|〈μ|a†
α|ν〉|2 + |〈μ|aα|ν〉|2), (10a)

WMW
μ→ν =

∑
α

T2eω
2
1(| 〈μ| a†

α |ν〉 |2 + | 〈μ| aα |ν〉 |2)

1 + T 2
2e(|�Eμν | − ωMW)2

. (10b)

FIG. 2. Density of states of the 3D-Anderson model for a sys-
tem of linear size of L = 8 at constant disorder strength w =
108 (2πMHz) and for different values of the hopping parameter t =
1, 5, 8, 14 (2πMHz), corresponding to inverted and regular triangles,
squares, and dots, respectively.

They govern the master equation describing the dynamics
of occupations of many-body eigenstates. Here the function
h(ε) = eβε/(1 + eβε ) assures the detailed balance character-
istic of a thermal equilibrium at temperature β−1. T1e and T2e

are, respectively, the relaxation and coherence times for the
system of electron spins, and �Eμν = Eμ − Eν . Note that in
order for these rates to be nonvanishing, the states |μ〉 and |ν〉
have to differ in one and only one single mode occupation nα .
Therefore, we only need to know the single-particle energies
εα to obtain explicit expressions for the rates in (10). As
a consequence, in the absence of the hyperfine couplings,
the occupation dynamics of different single-particle modes α

decouple. Denoting by n̂α = a†
αaα the occupation number op-

erator for the mode α, we can obtain its stationary expectation
value as 〈n̂α〉t→∞ = [1 + PB (εα )]/2, with the bias

PB (ε) =
[
1 + T 2

2e(ε − ωMW)2
]

tanh(βε/2)

1 + T 2
2e(ε − ωMW)2 + 2ω2

1T1eT2e

. (11)

This expression coincides with that for the stationary po-
larization of a single spin coupled to a bath and driven by
microwave irradiation, known as the Bloch equation. From
these biases one immediately obtains the expression for the
stationary occupation probability of any eigenstate |μ〉 as

pstat
μ = 1

2Ne

Ne∏
α=1

[1 − (−1)n
μ
α PB (εα )]. (12)

Note that in the absence of microwave irradiation, Eq. (10a)
always leads to the thermalization of the electron spin system
to the inverse temperature β, as is confirmed by setting
the driving amplitude ω1 → 0 in (11). However, when the
electron spins are driven by microwaves, the stationary state
features a nontrivial occupation of the different modes. In
the case where the single-particle wave-functions φα,i are
localized, the stationary state will become spatially very
heterogeneous, as the absorbed microwave energy cannot
distribute homogeneously, before it leaks out to the bath again.
In this way the AL transition (and more generally the MBL
crossover) of the closed system manifests itself also at the
level of the driven open system, even if strictly speaking one
cannot characterize the open system as localized anymore.

D. Rates involving nuclear transitions

The hyperfine interactions Ĥe–n in (2c) induces two types
of transitions (see Appendix B 2 for the details):

(i) A three-spin transition labeled ISS which is responsible
for the cross-effect mechanism of hyperpolarization. This
transition involves the spin-flip of a nuclear spin together with
the flip-flop of two electron spins. In our free-fermion model,
the flip-flop transition can connect eigenstates |μ〉 and |ν〉 only
if they differ in the occupation number of two single-particle
modes, as in the example

|A〉 × |0, 1︸︷︷︸
α

, 1, 0︸︷︷︸
β

〉 � |B〉 × |0, 0︸︷︷︸
α

, 1, 1︸︷︷︸
β

〉 , (13)

where |A〉 and |B〉 are two eigenstates of Ĥn, whose features
will be specified later on. The rate of the process in (13)
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involving the spin-flip of the nucleus j is

W ISS = T2nA
2
j |φα,j |2|φβ,j |2| 〈A| Î x

j |B〉 |2
1 + T 2

2n(|εα − εβ | − ωn)2
, (14)

where T2n denotes the coherence time of a nuclear spin. This
channel becomes very efficient when the resonance condition
|εα − εβ | ∼ ωn is matched.

(ii) A polarization-loss (PL) transition where a nuclear spin
flip leaves the many-body fermionic state unchanged:

|A〉 × |μ〉 � |B〉 × |μ〉 (15)

for any fermionic eigenstate |μ〉. The rate of the process in
(15) induced by the operator Î x

j writes

W PL = T2nA
2
j | 〈A| Î x

j |B〉 |2
1 + T 2

2nω
2
n

[∑
α

|φα,j |2
(
nμ

α − 1
2

)]2

. (16)

Note that this term is always off-resonant and therefore its
effect is rather weak as compared to the other transitions. In
particular, dissipative processes that decrease nuclear polar-
ization are governed by the contact with the bath, which leads
to the leakage rate

WLEAK
A→B =

Nn∑
p=1

h(�EAB )

T1n

| 〈A| Î x
p |B〉 |2, (17)

with h(x) defined below Eqs. (10) and T1n being the relaxation
time of a nuclear spin due to contact with the bath. These
processes are typically more relevant than W PL, as they affect
all nuclei and not only those coupled to electrons.

IV. INDUCING NUCLEAR HYPERPOLARIZATION

Equations (10), (14), (16), and (17) define the rate equa-
tions governing the occupation of the many-body eigenstates
of the free-fermion model which mimics the spin system.
The stationary state is given by the occupation probabilities
pstat

n , obtained as the eigenvector associated with the vanishing
eigenvalue of the transition matrix

Tn,n′ = W tot
n′→n − δn,n′

∑
m

W tot
n→m, (18)

where W tot
n′→n is the sum of all rates for processes taking |n′〉

to |n〉. The size of this matrix is huge, as it scales as 2Ne+Nn .
However, the simple structure of many-body eigenstates based
on the factorization (4) and on the free-fermion approximation
allows in principle the use of a Markov-chain Monte Carlo
method with a complexity that grows only linearly with the
system size. However, we will not pursue this strategy here,
but leave it for future studies.

In the following we are interested in a situation as it arises
in DNP protocols with trityl radicals, for which hyperfine
couplings are weak. In such cases, the stationary state of the
electron spins was empirically found to be independent of
the concentration of nuclear spins [34]. This suggests that the
occupation probability pA,μ of having the nuclear spin system
in the state |A〉 and the fermions in the many-body eigenstate
|μ〉 can be factorized, pA,μ = pA × pμ. Then, in the limit of
vanishing hyperfine interaction, we can assume the electron
system to permanently remain in the stationary state, so that
we can replace pμ → pstat

μ in (12). This allows us to trace out

the electron spin degrees of freedom and obtain a rate equation
for the nuclear spins only.

Stationary value of the nuclear polarization

In the presence of efficient nuclear dipolar interactions
(as usually given in experiments), we assume that statistical
properties of nuclear many-body eigenstates are completely
characterized by global conserved quantities. In the present
case this is only the total energy of the system of nuclear
spins Ĥn. Therefore, it suffices to describe the evolution of
the total energy of the nuclear system. For simplicity, we
take the same hyperfine coupling Aj = A0 in (2c) for all
core nuclear spins that are coupled to the electrons, and set
Ap = 0 for all other nuclei. Given that ωn is much larger
than the typical strength of dipolar coupling between nuclear
spins, we assume that dipolar interactions are strong enough
to render them ergodic, while contributing only a negligible
broadening to the Zeeman gap ωn. In this limit, the energy
of a nuclear eigenstate |A〉 only depends on the number of
up/down spins: EA = (N (A)

+ − N
(A)
− )ωn/2. The total rate of

transitions that lower the nuclear energy by ωn can be obtained
as �emit = ∑

p �p(ωn), where the function �p(ω) is derived
in Appendix B 2 and reads

�p(ω) = A2
pT2n

4

∑
α,β

|φα,p|2|φβ,p|2
[
PB (εα )PB (εβ )

1 + T 2
2nω

2

+ [1 + PB (εα )][1 − PB (εβ )]

1 + T 2
2n(ω + εβ − εα )2

]
+ h(ω)

T1n

. (19)

Likewise, the rate of transition for an absorption process (that
raises the energy of ωn) is �abs = ∑

p �p(−ωn). Note that
with this expression we also take into account the contribution
of nuclear spins not coupled to the electrons, for which only
the leakage part is present as Ap = 0.

Since the nuclear spins establish an equilibrium with tem-
perature β−1

N among themselves, the balance of energy flows
in the steady state requires that exp(−βN ωn) = �abs/�emit,
from which one deduces the total magnetization

Pn = tanh

(
βN ωn

2

)
= �emit − �abs

�emit + �abs
. (20)

An alternative derivation of this result including a nontrivial
broadening due to the interactions is presented in Appendix D
using Srednicki’s ETH formula [31] for the matrix elements
of local operators in an ergodic system.

An important aspect is that the microscopic details of the
electron system determine the stationary nuclear polarization
(20) only via the correlation function

K(ε, ε′) = 1

Ne

∑
α,β,j

|φα,j |2|φβ,j |2δ(εα − ε)δ(εβ − ε′), (21)

which measures the overlap between eigenvectors at energies
ε and ε′. This correlator was discussed in detail in [35] in
the context of Anderson localization, where it characterizes
multifractality and the strong correlation in the spatial support
of wave functions with close energies.
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FIG. 3. Average nuclear polarization for the Anderson model
(light blue squares), contrasted with the result for GOE-like electron
wave functions with the same density of states (blue triangles).
The vertical line identifies the Anderson transition. The nuclear
polarization for the Anderson model is obtained from Eq. (20) by
using the exact overlap function in Eq. (21). Instead, the GOE case
is obtained by approximating the overlap function with Eq. (23).
The linear size of the system was L = 18. Data are averaged over
60 realizations of the disorder and error bars indicate one standard
deviation.

Using the above expression in (19) and (20), we obtain

Pn =
Ne

4

∫
dεdε′K(ε, ε′) PB (ε)−PB (ε′ )

1+T 2
2n(ε−ε′+ωn )2

Ne

4

∫
dεdε′K(ε, ε′) 1−PB (ε′ )PB (ε)

1+T 2
2n(ε−ε′+ωn )2 + 2Nn

A2
0T1nT2n

, (22)

where we neglected the contribution from the polarization loss
rate in (16), since it is subleading with respect to the leakage
term of Eq. (17) [36].

In Fig. 3 we show the behavior of the nuclear polarization
in (20) as a function of the hopping parameter t , while the
disorder strength is kept fixed. To elucidate the effect of
localization, we compare the results of the Anderson model to
those of a fictitious model with (randomly) delocalized wave
functions, but having the same density of states. To describe
the latter, we keep the same distribution of eigenvalues for
εα’s, but replace the wave-functions φα,i [previously obtained
from the diagonalization of M in Eq. (7)] by those obtained
from diagonalizing a matrix in the Gaussian orthogonal en-
semble (GOE). In this way, the DOS remains unchanged,
while the eigenstates are fully delocalized, with |φαi |2 ≈
1/Ne. This leads to the trivial correlator:

KGOE(ε, ε′) = ρ(ε)ρ(ε′). (23)

The comparison between the polarizations obtained from
Eqs. (21) and (23) allows us to disentangle the effects of the
density of states from those of the localization transition. In
particular, at large t � tc, the eigenfunctions of the Anderson
model are delocalized and the GOE approximation in (23)
becomes accurate. Therefore, the two curves in Fig. 3 agree
rather well. This shows that the decay at large t is mostly due
to the broadening of the density of states, as we will explain in
more detail in the next section. However, at small values of t ,
the two models behave very differently: the nonlocalized GOE
model displays a polarization that monotonically increases

with decreasing t , while the Anderson model is sensitive to
the localization transition, which suppresses the polarization.
Thus, in the Anderson model the nuclear polarization is sup-
pressed for very small as well as for very large values of t , t �
tc, and t � tc, respectively. As a consequence, the nuclear
polarization reaches a maximal value at an intermediate value
tmax of the hopping. We will show that in the proximity
of the Anderson transition the polarization is exceptionally
enhanced due to multifractal critical scaling and thus, at fixed
disorder strength, the maximum occurs close to the transition
tmax � tc. In Fig. 4 this generic behavior is confirmed for
a broad range of microwave frequencies ωMW and nuclear
Zeeman gaps ωn (corresponding to different nuclear species).

V. BEHAVIOR OF THE NUCLEAR POLARIZATION

A. Nuclear polarization away from criticality

To gain further understanding, we show in Fig. 5 the
interplay of the different rates entering the numerator and
denominator of (22). Note that in our regime of parameters,
the denominator is always dominated by the leakage term.
This suggests that the behavior of the polarization can be
understood qualitatively by focusing on the numerator of (22).
There the contribution of the ISS process is strongly peaked
at the resonant condition ε − ε′ � ωn, which leads to the
following approximate formula for the polarization:

Pn � πA2
0T1nNe

8Nn

∫
dε K(ε, ε + ωn)[PB (ε) − PB (ε + ωn)].

(24)

In the delocalized region, we can use the GOE approximation,
i.e., the form (23) of the correlator. The dependence of the
nuclear polarization on t then derives merely from the broad-
ening of the DOS induced by the hopping. In Fig. 6 we show
that the nuclear polarization obtained from (24) depends on
the shift between the center of the irradiation frequency ωMW

and the center of the DOS ωe. Upon increasing t beyond the
disorder level w, the density of electronic states is broadened.
This has two effects (see Fig. 2): On the one hand, the
total integrand becomes increasingly odd around ωMW − ωn,
which tends to suppress the integral. On the other hand, the
density of states itself decreases as ρ(ε) � O(t−1). This large-
t depletion is independent of localization phenomena and is at
play mostly as long as t � w, that is, well into the ergodic
phase. A similar phenomenon was already discussed in [17].

The localized regime and critical regimes are more in-
teresting. Indeed, the eigenfunction correlator K(ε, ε′) is af-
fected by the onset of localization. To explain qualitatively
its behavior, we remark that in the presence of a flat disorder
distribution, as considered here, it essentially depends on the
energy difference only, as

K(ε, ε + ω) � ρ(0)−1K (ω), K (ω) =
∫

dε K(ε, ε + ω),

(25)

where ρ(0)−1 � max(t, w) is the bandwidth of the DOS. As
one can check explicitly from (21), it must satisfy the sum rule∫

dω K (ω) = 1. (26)

224202-7



RODRÍGUEZ-ARIAS, MÜLLER, ROSSO, AND DE LUCA PHYSICAL REVIEW B 98, 224202 (2018)

FIG. 4. Average polarization obtained from Eq. (20) as a function of the hopping parameter t . The maximal polarization is always obtained
close to the localization transition t ≈ tc. (Left) Different values of the microwave frequency ωMW (shifting in steps of 10 × 2π MHz towards
the center of the disorder distribution at ωe = 93.9 × 2π GHz), with fixed ωn = 20 × 2π MHz. (Right) Different values of ωn, corresponding
to different nuclear spin species, fixing ωMW = 93.86 × 2π GHz. For both plots, the vertical line identifies the known Anderson transition in
the undriven system, assuming a fixed width of the box distribution of disorder w = 108 (2πMHz). The linear size of the system was L = 18.
Each data point was obtained by averaging over 60 realizations of disorder. The error bars correspond to one standard deviation. Almost
everywhere they are smaller than the symbol size.

To proceed further, it is convenient to define the inverse
participation ratio (IPR) of single particle wave functions as

I2 = 1

Ne

∑
α,j

|φα,j |4. (27)

Once localization has set in, single-particle eigenstates have a
support over a finite number of lattice sites whose number can
be measured by I−1

2 . Then the overlap function K (ω) becomes
singular at small ω, i.e.,

K (ω) = δ(ω)I2 + nonsingular contributions. (28)

Since at small t , the sum rule (26) is almost saturated by
I2 at ω = 0, K (ω) for ω � ωn is strongly suppressed. This
expresses the simple fact that at small hopping amplitude
wave functions with an energy difference exceeding t are very

FIG. 5. Comparison between the different (normalized) rates
appearing in (22), as a function of t : The difference of emission
and absorption rates in the numerator (dark blue triangles) and their
sum (the first term in the denominator), corresponding to the ISS
processes (light blue squares).

unlikely to overlap in space. As a consequence, the number
of ISS processes is strongly reduced once the transition is
crossed. The total polarization is found to scale as O(t2), as
we will explain below. In the next subsection we discuss the
features of K (ω) that are reflected in the stationary nuclear
polarization, especially close to the transition.

B. Enhancement of nuclear polarization from multifractality
at the localization transition

In the previous section we observed that, in general, the
stationary nuclear polarization is expected to decay both at
t � tc and t � tc, thus reaching a maximum at an inter-
mediate value tmax. We now argue that, for a broad range
of frequencies ωn, this value tmax is close to tc, meaning

ωe ωωMW

(ωMW − ωn)

FIG. 6. Sketch of the factors in the integrand of (24): PB (ε) −
PB (ε + ωn) (black) and the product of two DOS ρ(ε)ρ(ε + ωn)
(blue) (the normalization is adjusted to produce a clear plot). The
stationary polarization in the GOE approximation P GOE

n is obtained
as the integral over the domain where the product of the two DOS
does not vanish. Upon increasing t , the DOS broadens and the
integration window becomes larger. Accordingly P GOE

n decreases,
both because the total integrand gets closer to being odd and because
of the decreasing magnitude of the DOS ρ(ε) in the bulk.
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that a maximal nuclear polarization is achieved by tuning
the electronic system close to the Anderson transition. We
had reported a similar effect for interacting spins in previous
work on very small systems [17]. Here, however, we can
reach a much deeper understanding of the role played by the
localization transition.

For simplicity we assume that T1n and T2n are such that
(i) the leakage in (17) dominates the denominator of (22) and
(ii) the integrand of (22) is dominated by the contributions at
ε − ε′ � ωn. Then we can write

Pn � C(ωn)P GOE
n , (29)

where we rescaled the overlap function by the DOS, setting

C(ω) = K (ω)∫
dερ(ε)ρ(ε + ω)

. (30)

From (29) it is clear that P GOE
n is responsible for the decay

at large t/w, through the broadening of the DOS. In contrast,
the function C(ωn) controls the suppression at small t . Indeed,
at small values of t/ωn, t/w � 1, we can use perturbation
theory for the wave functions. The overlap of nonresonant
wave functions centered on nearest neighbors then scales as t ,
the square of which dominates K (ω). This immediately yields
the quadratic behavior C(ωn) � t2/ω2

n.
To understand qualitatively the behavior of C(ω) close to

the transition t � tc, we remark that, in the localized phase
t < tc, the eigenfunctions φαj decay exponentially on a scale
ξloc(t ), known as the localization length. Similarly, in the
delocalized phase, one can introduce a correlation length char-
acterizing the eigenfunctions ξdel(t ). Approaching the critical
point t → tc, from the two sides, these lengths diverge. From
the two sides, we define a length scale

ξ (t ) ≡
{

ξloc(t ) t < tc

ξdel(t ) t > tc
∝ |t − tc|−ν, (31)

where the critical exponent ν has been introduced. Inside the
critical volume Vξ ≡ ξ (t )d (d = 3 being the spatial dimen-
sion) the statistics of eigenfunctions is governed by multifrac-
tality. It is reflected in the inverse participation ratio [37]

I2 �
{

ξ (t )−d2 t �= tc,

N
−d2/d
e t = tc.

(32)

For the Anderson model in d = 3, we have d2 ≈ 1.44 and
ν ∼ 1.571 [32,35]. Multifractality also affects the frequency
dependence of the overlap function, which is governed by
the same fractal dimension d2 as I2 [38], via an exponent
μ = 1 − d2/d ≈ 0.52. Slightly on the delocalized side t > tc,
the overlap function behaves as

C(ω) �
{(

t
�ξ

)μ

∼ ξd−d2 , ω � �ξ ,(
t
ω

)μ
, �ξ � ω � 2t,

(33)

where �ξ = [ξ (t )dρ(0)]−1 denotes the mean level spacing in
the correlation volume. An analogous critical behavior holds
for t � tc, where �ξ simply has to be replaced by the mean-
level spacing in the localization volume. The power-law decay
at intermediate values of ω reflects critical behavior, known as
Chalker-Daniell scaling [39,40].

FIG. 7. Eigenfunction correlation function C(ωn) defined in
Eq. (30) as a function of the hopping strength t for small values of the
nuclear Zeeman energy ωn = 1.0, 2.0, 3.0, 4.0, 5.0 (2π MHz). This
overlap function controls the nuclear polarization in the localized
regime. It peaks very close to the Anderson transition. The linear
size of the system was L = 20 and each point of the hopping
was obtained by averaging over ten realizations of the Anderson
Hamiltonian in Eq. (6).

A thorough numerical study of the overlap function in
the 3D-Anderson model was performed in [35] confirming
the validity of (33). For ω � �ξ , the support of the two
eigenfunctions are very similar and therefore the overlap
function is essentially the same as the self-overlap, given by
the localization volume ξd × I2. For ω of the order of the
Fermi energy ω � 2t , one leaves the critical energy region
where multifractality is relevant and enters a regime where
overlaps happen on sites where one wave function can be
treated perturbatively. This leads back to the quadratic behav-
ior C(ω) ∼ (t/ω)2 described above.

Let us come back to the nuclear polarization, which is
approximately given by (29). The expression is particularly
interesting for the case of small nuclear Zeeman energies
ωn < t , where the stationary nuclear polarization senses the
critical behavior of C(ω) in (33). Indeed we find

Pn

P GOE
n

� C(ωn) �
(

t

max(ωn,�ξ )

)μ

, (34)

which displays a distinct peak around t � tc, with a width
δt � ω

1/dν
n . In the limit of small ωn, i.e., for nuclear spins

with tiny magnetic moments, the peak becomes increasingly
sharp and high, the enhancement being a direct consequence
of critical, multifractal scaling.

A quantitative confirmation of the above scaling for the nu-
clear polarization is difficult numerically, since multifractality
becomes visible only for large system sizes, which are beyond
the scope of this work. Nevertheless, in the data shown in
Fig. 7, it is clearly visible that the maximum in the overlap
function C(ωn) appears close to t � tc, and increases with
decreasing ωn.

VI. CONCLUSION

In this work we have presented a simplified approach to
the dynamics of electron spins and the transfer of polarization

224202-9



RODRÍGUEZ-ARIAS, MÜLLER, ROSSO, AND DE LUCA PHYSICAL REVIEW B 98, 224202 (2018)

to nuclear spins in the DNP protocol. It is based on an ap-
proximate mapping to the free-fermion 3D-Anderson model,
for which we can obtain exact results regarding the driven
steady state in large systems. As the free-fermion model is
integrable, it fails to accurately describe the spin-temperature
regime of an ergodic spin system. However, it exhibits a well-
studied Anderson transition, which allows us to investigate
the influence of localization phenomena on the stationary
nuclear polarization. Remarkably, in a broad range of physical
parameters relevant for DNP experiments, the optimal nuclear
polarization is reached close to the localization transition.
This agrees with the results obtained in [17] for much smaller,
but interacting systems.

However, here we reach an additional nontrivial prediction:
the critical scaling close to the localization transition, in
particular the multifractal correlations of excitations close in
energy, can further improve the efficiency of nuclear polariza-
tion, provided that the nuclear Zeeman energy ωn is smaller
than the hopping amplitude t . We conjecture that a simi-
lar multifractal enhancement occurs in the real many-body
problem of driven electronic spins. Instead of the density-
density correlator, it is the local spin-spin correlator which
is relevant there. Recent work [41] has indeed shown that
a similar power-law enhancement arises at low frequencies
when the overlap function is generalized to the appropriate
matrix element of local operators. This effect should come
into play when the dipolar interaction J between nearest
neighbor electronic spins (the analog of t in the present work)
exceeds the nuclear Zeeman energy ωn.

To be able to profit off such an enhancement at the
many-body localization crossover, the dilution of electronic
spins has to be tuned such that w/J reaches its critical
value [typically of order about O(20) in d = 3 dimensions],
where w = Bδ(gμe ) is the inhomogeneous broadening of the
electronic Zeeman energy. Multifractal enhancement should
then become relevant for ISS processes if the nuclei have
magnetic moments smaller than δ(gμe )/(w/J )c. In practice
this requires either fairly small nuclear moments, or a dipo-
lar material with a large variation of electronic magnetic
moments. The latter could be achieved, e.g., by materials
with a substantial local variation of Landé factors or strong
internal fields. The above result suggests that DNP could in
fact be used as a diagnostic tool to investigate localization
physics, especially if it is probed by nuclear spins with small
magnetic moments. Notice, however, that while in the limit
ωn � J multifractal scaling does manifest itself, this is likely
not to be an optimal regime for maximizing the nuclear
hyperpolarization itself. This is because the lowest reachable
spin temperature Ts is of the order of O(J ), and thus, very
small magnetic moments ωn � J ∼ Ts will only be weakly
polarized by such a spin temperature. Multifractality has the
effect of slowing down the decrease of polarization with
decreasing ωn as compared to the behavior deep in the ergodic
regime.

In the setup of realistic DNP experiments, the disorder w

due to random local environments is essentially given, and
therefore it is optimal to dilute the spins down to the many-
body localization crossover. (The only simple way to affect
w is by tuning the magnetic field, which at the same time
affects ωn). However, on a theoretical level, it is interesting

to ask what would happen in the limit of very weak or even
vanishing disorder, as the electron spin system is driven. In
particular it would be interesting to study whether indepen-
dently increasing the disorder enhances the resulting hyperpo-
larization, since one approaches the many-body localization
crossover. This question may be relevant when the nuclear
spin cooling mechanism employed in DNP is generalized to
other driven quantum systems where the disorder may be
controlled independently.

Our work opens several interesting directions: while here
the dynamics of electron spins was frozen to their station-
ary state due to negligible influence from the nuclei, it is
interesting to explore different regimes, where the effect of
the nuclei on the electron spins must be taken into account.
In particular, one might consider that for sufficiently strong
hyperfine interactions, an ergodic system of nuclei leads to
the delocalization of the electron spins. As we mentioned, this
situation can be approached within our framework by means
of a Montecarlo simulation, which will be analyzed in the
future. However, opposite scenarios could arise as well, where
strong hyperfine coupling creates electronuclear complexes
that behave more classically and thus are more localized than
the electronic system without hyperfine couplings.

Finally, in this work we have assumed nuclear spins to
be a perfectly ergodic system, supposing that nuclear spin
diffusion occurs on a timescale that is much faster than all
other nuclear processes. Extending our approach to include a
finite nuclear spin-diffusion time is a challenging direction,
which requires a more sophisticated approach and will be
addressed in future research.
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APPENDIX A: DIAGONALIZATION
OF THE 3D-ANDERSON MODEL

The starting point for the free-fermions model for the
electron spins is the Hamiltonian in Eq. (2a), including the
term that accounts for the dipolar interactions:

Ĥ (dip)
e =

∑
i<j

∑
�=x,y,z

Dij Ŝ
�
i Ŝ

�
j , (A1)

which is analogous to the dipolar coupling between nuclear
pairs of spins. The exact form of those dipolar couplings
between two spins Ŝi , Ŝj with respective gyromagnetic ratios
γi, γj —being γe for an electron spin and γn for a nuclear
one—reads

Dij = μ0γ1γ2

16π |rij |3 (1 − 3 cos2 θij ), (A2)

with rij the vector connecting the two spins and θij the angle
that this vector forms with the external magnetic field. Note
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that the expression in Eq. (A2) varies strongly from pair to
pair.

At this point one performs the spin-to-fermion transforma-
tion given in Eq. (5), which results in a quadratic fermionic
Hamiltonian

Ĥferm =
∑
i,j

c
†
i Mij cj , with Mij = ωjδij + Dij , (A3)

after a constant shift of the energy and the Larmor frequencies
ωj of ωe with respect to zero. Apart from dropping the Jordan-
Wigner tails, we have neglected the interaction term arising
from the dipolar coupling, and have retained the hopping term
only. We further retain a constant hopping term between near-
est neighbors assuming Dij = −tδi±1,j in Eq. (A3), which

finally leads to the 3D-Anderson model introduced in (6).
Numerical diagonalization of the matrix Mij is performed
and we denote φαi as a single-particle eigenfunction, i.e., an
eigenvector of the matrix Mij with eigenvalue εα . We can
then define creation/annihilation operators for those eigen-
states aα = ∑

i φ
∗
αici , or equivalently ci = ∑

α φαiaα . The
Hamiltonian (A3) thus becomes

Ĥferm =
∑
i,j

∑
αβ

εαc
†
i φαiδαβφ∗

βj cj =
∑

α

εαa†
αaα. (A4)

The eigenfunctions are normalized and satisfy the orthogonal-
ity relations

∑
i φ

∗
αiφβi = δαβ .

APPENDIX B: MICROSCOPIC DERIVATION OF THE TRANSITION RATES

1. Lattice and microwave-induced rates for the free fermions

The explicit expressions for the transition rates induced by the reservoir and the microwaves can be obtained making several
assumptions: We consider on the one hand that the lattice modes couple to local electronic spins only. This means that they can
induce spin flips respecting detailed balance at the temperature of the phonon bath β−1. The rates for a spin system were derived
in [19]. We can perform the spin-to-fermion substitution in (5),

W bath
μ→ν =

Ne∑
j = 1

� = x, y

2
h(�Eμν )

T1e

∣∣ 〈μ| Ŝ�
j |ν〉 ∣∣2 =

Ne∑
j = 1

� = +, −

2
h(�Eμν )

T1e

∣∣ 〈μ| Ŝ�
j |ν〉 ∣∣2 =⇒

W bath
μ→ν =

Ne∑
j=1

h(�Eμν )

T1e

(| 〈μ| c†j |ν〉 |2 + | 〈μ| cj |ν〉 |2) =
∑

α

h(�Eμν )

T1e

(| 〈μ| c†α |ν〉 |2 + | 〈μ| cα |ν〉 |2). (B1)

The function h(ε) = eβε/(1 + eβε ) assures the Gibbs equilibrium at temperature β−1 when the system is not irradiated; T1e is
the typical time that the bath takes to induce a spin flip in the system and �Eμν = Eμ − Eν .

On the other hand, the system is being irradiated with the microwave field ĤMW = ω1
∑

j Ŝx
j cos(ωMWt ). This Hamiltonian

is time dependent, but one can perform the rotating-wave approximation that neglects the fast-oscillating terms. In [19] the
following rate for the microwave-induced transitions was obtained as

WMW
μ→ν = 4ω2

1T2e

1 + T 2
2e(|�Eμν | − ωMW)2

∣∣∣∣∣∣〈μ|
Ne∑
j=1

Ŝx
j |ν〉

∣∣∣∣∣∣
2

. (B2)

Then one performs again the spin-to-fermion substitution in Eq. (5).

WMW
μ→ν = ω2

1T2e

1 + T 2
2e(|�Eμν | − ωMW)2

∣∣∣∣∣∣〈μ|
Ne∑
j=1

(c†j + cj ) |ν〉
∣∣∣∣∣∣
2

=
∑

α

T2eω
2
1|Aα|2

1 + T 2
2e(|�Eμν | − ωMW)2

| 〈μ| a†
α + aα |ν〉 |2, (B3)

with Aα = ∑
i φα,i . Note that the rate of bath induced transitions (B1) is given by the sum of independent single spin flips, unlike

microwaves which act simultaneously on the total spin
∑

j Ŝj . As a consequence, the microwave intensity ω1 is renormalized
to ω1|Aα|. In the absence of interactions it is easy to check that |Aα| = 1. In the regime where (5) is well justified, the hopping
term Dij � ωj , so that Aα � 1; for larger values of the hopping term, Aα exhibit unphysical fluctuations (although on average
over α it remains true that 〈A2 〉α = 1): this is a manifestation of the breaking of the naive spins-to-free fermions stated in (5).
Consistently with our assumptions of weak dipolar coupling, we set from now on |Aα| = 1.

2. Hyperfine-induced rates: A single nuclear spin

We are now interested in computing the transition rates induced by the presence of a single nuclear spin (labeled by the index
p) weakly coupled to the electron spin at site j . We thus take the Hamiltonian in (2c), which induces on the one hand a nuclear
spin flip iz → īz and, on the other hand—due to the fact that expectation values of the local Ŝz

j operators are no longer conserved
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quantities—a change on the fermionic eigenstate:

Wizμ→īzν = T2n

1 + T 2
2n(2izωn + Eμ − Eν )2

| 〈μ, iz| Ĥe–n |ν, īz〉 |2

= T2nA
2
jp

1 + T 2
2n(2izωn + Eμ − Eν )2

| 〈μ, iz| Îx (c†j cj − 1/2) |ν, īz〉 |2

= T2nA
2
jp

1 + T 2
2n(2izωn + Eμ − Eν )2

| 〈μ| (c†j cj − 1/2) |ν〉 |2 | 〈iz| Îx |īz〉 |2

= T2nA
2
jp/4

1 + T 2
2n(2izωn + Eμ − Eν )2

| 〈μ| (c†j cj − 1/2) |ν〉 |2. (B4)

The only matrix element that requires a little care to compute is

〈μ|
(

c
†
j cj − 1

2

)
|ν〉 =

∑
αβ

φ∗
α,jφβ,j 〈μ|

(
a†

αaβ − δα,β

2

)
|ν〉

=
∑

α

δμ,ν |φα,j |2
(

nν
α − 1

2

)
+

∑
α,β �=α

φ∗
α,jφβ,j

(
1 − nν

α

)
nν

βnμ
α

(
1 − n

μ
β

) ∏
γ �=α,β

δnν
γ n

μ
γ
. (B5)

As we see, the total number of fermions is conserved. Two transitions are induced:
(i) A polarization-loss transition which flips only the nuclear spin and leaves the fermionic eigenstate unchanged. The rate

of this process is

W leak
izμ→īzμ

= T2nA
2
jp

1 + T 2
2nω

2
n

∑
α,β

|φα,j |2|φβ,j |2
(

nμ
α − 1

2

)(
n

μ
β − 1

2

)
≡ T2nA

2
jp

1 + T 2
2nω

2
n

[∑
α

|φα,j |2
(

nμ
α − 1

2

)]2

. (B6)

(ii) An ISS transition which flips the nuclear spin exchanges the occupation number of two single particle fermionic modes
(one being empty and the other full and vice versa). The corresponding rate writes

W ISS
izμ→īzν �=μ

= T2nA
2
jp

1 + T 2
2n(2izωn + Eμ − Eν )2

∑
α,β �=α

|φα,j |2|φβ,j |2
(
1 − nν

α

)
nν

βnμ
α

(
1 − n

μ
β

) ∏
γ �=α,β

δnν
γ n

μ
γ
. (B7)

APPENDIX C: DERIVATION OF THE NUCLEAR POLARIZATION IN THE ABSENCE OF NUCLEAR DIPOLAR
INTERACTIONS

For the sake of simplicity we restrict the hyperfine interactions to Ajp = Ajδjp. Thus, in absence of nuclear dipolar
interactions, a nucleus hyperpolarizes only in proximity of an electron spin j . Thus we can write the following master equation:

ṗ
j

iz,μ
=

∑
ν

(
p

j

īz,ν
W

j

īzν→izμ
− p

j

iz,μ
W

j

izμ→īzν

) +
∑

ν

(
p

j

iz,ν
W

j

izν→izμ
− p

j

iz,μ
,W

j

izμ→izν

)
, (C1)

where p
j

iz,μ
is the probability of having the nucleus in proximity to the electron j in the state iz and the fermions in the many-body

eigenstate |μ〉. By summing over the possible electron states |μ〉, we obtain the probability for the nucleus to be in the state iz:
p

j

iz
= ∑

μ p
j

iz,μ
. The second sum in Eq. (C1) contains only transitions which do not change the state of the nucleus and are

eliminated by the sum over |μ〉. Then we have

ṗ
j

iz
=

∑
μν

(
p

j

īz,ν
W

j

īzν→izμ
− p

j

iz,μ
W

j

izμ→īzν

) =
∑
μν

(
p

j

īz,μ
W

j

īzμ→izν
− p

j

iz,μ
W

j

izμ→īzν

)
. (C2)

To find the stationary state we set ṗ
j

iz
= 0 and make the additional assumption—well justified for trityl electron radicals—

that the dynamics of the nucleus does not affect the electron stationary state: this suggests the factorization p
j

iz,μ
= p

j

iz
× pμ,

where pμ is the probability of the fermions being in the many-body eigenstate |μ〉. Let us define the transition rate W
j

iz→īz
=∑

μ,ν pμW
j

izμ→īzν
≡ �j (2izωn), which is given by

�j (ω) =
∑
μ,ν

A2
j T2npμ

1 + T 2
2n(ω + Eμ − Eν )2

∑
α,β

|φα,j |2|φβ,j |2
⎡
⎣δμν

(
nν

α − 1

2

)(
nν

β − 1

2

)
+ (

1 − nν
α

)
nν

βnμ
α

(
1 − n

μ
β

) ∏
γ �=α,β

δnν
γ n

μ
γ

⎤
⎦.

(C3)
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It is convenient to replace the single-particle occupation numbers of a given many-body eigenstate with the polarization of the
original spin model, namely P μ

α = 2nμ
α − 1 (which is either ±1):

�j (ω) = A2
j T2n

4

∑
α,β

|φα,j |2|φβ,j |2
∑

μ

pμ

[(
P μ

α

)2
δα,β + P μ

α P
μ
β (1 − δα,β )

1 + T 2
2nω

2
+

(
1 + P μ

α

)(
1 − P

μ
β

)
1 + T 2

2n(ω + εα − εβ )2

]
. (C4)

The first term represents the polarization loss and the second one represents the ISS transition and involves the hopping of a
fermion from the single-particle mode α to the single-particle mode β (two spin flip-flop), thus the difference of energy reduces
to �Eμν = εα − εβ . In the stationary state pμ → pst

μ,
∑

μ pst
μP μ

α = PB (εα ), and
∑

μ pst
μP μ

α P
μ
β = PB (εα )PB (εβ ) for α �= β,

where PB (εα ) is the Bloch polarization defined in Eq. (11). We finally obtain

�j (ω) = A2
j T2n

4

∑
α,β

|φα,j |2|φβ,j |2
[
δα,β + PB (εα )PB (εβ )(1 − δα,β )

1 + T 2
2nω

2
+ [1 + PB (εα )][1 − PB (εβ )](1 − δα,β )

1 + T 2
2n(ω + εβ − εα )2

]
, (C5)

which has been simplified to yield Eq. (19) by removing the vanishing contribution of the δαβ terms.
We obtain that the total rate for the transition of the j th nucleus |↓〉 → |↑〉 reads

W
j

↓→↑ ≡
∑
μ,ν

pstat
μ W

j

(↓,μ→↑,ν) = �j (ωn). (C6)

Similarly, one obtains W
j

↓→↑ = �j (−ωn). In this way, we obtain the stationary polarization for the nucleus as

P j
n = P↑ − P↓

P↑ + P↓
= �j (ωn) − �j (−ωn)

�j (ωn) + �j (−ωn)
=

∑
αβ |φα,j |2|φβ,j |2 Pβ−Pα

1+T 2
2n(εβ−εα+ωn )2∑

αβ |φα,j |2|φβ,j |2
( PαPβ

1+T 2
2nω

2
n

+ 1−PαPβ

1+T 2
2n(εβ−εα+ωn )2

) . (C7)

APPENDIX D: DERIVATION OF THE NUCLEAR POLARIZATION FOR NUCLEI IN THE ETH PHASE

Here we want to compute the nuclear polarization of a strongly dipolar-interacting system of nuclear spins. In this case, the
only conserved quantities are the total energy and the total magnetization of the nuclear spins. This corresponds to the regime
of eigenstate thermalization hypothesis (ETH). According to this hypothesis, we can assume that the matrix element of the local
operator Î x

p between two nuclear eigenstates labeled by |A〉 and |B〉 takes the form

〈A| Î x
p |B〉 = e−S(EAB )/2f (EAB,�EAB )RAB, (D1)

where EAB = (EA + EB )/2, S(E) is the entropy, and RAB contains all the fluctuations, being Gaussian random variables with
zero average and unit variance. In the following we set R2

AB = 1 for simplicity. As before, we now want now to compute the
probability for the nuclear system to be at a given energy E. We define

p(E) = e−S(E)
∑

A|EA=E

pA = e−S(E)
∑

A|EA=E

∑
μ

pA,μ (D2)

and again we make the assumption pA,μ = pA pμ. We can perform a semiclassical integration that leads us to

ṗ(E) = e−S(E)
∫

dE′ ∑
A|EA = E

B|EB = E′

∑
μ,ν

(pBpμW(μ,B )→(ν,A) − pApμW(μ,A)→(ν,B ) )

= e−S(E)
∑

j

∫
dE′ ∑

A|EA = E

B|EB = E′

∣∣ 〈A| I q
x |B〉 ∣∣2

[pB�j (−�EAB ) − pA�j (�EAB )]

= e−S(E)
∑

j

∫
dω

∑
A|EA = E

B|EB = E + ω

e−S(E+ω/2)f (E + ω/2, ω)2[pB�j (−ω) − pA�j (ω)]

=
∑

j

∫
dωeS(E+ω)−S(E+ω/2)f (E + ω/2, ω)2

[
p(E + ω)�j (−ω) − p(E)�j (ω)

]
. (D3)
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In order to fix the function f (E,ω), we compute the two-point correlation for an arbitrary observable Ô = ÔD + δÔ where ÔD

is the diagonal component. We have

1

Z
Tr[e−βH δÔ(t )δÔ(0)] =

∑
μ,ν

e−βEμei(Eμ−Eν )t | 〈μ| δÔ |ν〉 |2 =
∑
μ,ν

e−βEμei(Eμ−Eν )t e−S(E)|f (E,ω)|2R2
μν

�
∫

dEe−βE+βω/2+S(E)
∫

dω|f (E,ω)|2eiωt �
∫

dω|f (Eβ, ω)|2e(β/2+it )ω. (D4)

Applying this formula to the specific case δÔ = Î
q
x we have∫

dω|f (E,ω)|2e(β/2+it )ω = 1

Z
Tr

[
e−βN (E)HN I q

x (t )I q
x

]
, (D5)

where HN is the Hamiltonian of the nuclear system (including the dipolar interactions), and E is the average energy associated
with the temperature βN (E)−1: Z−1 Tr[e−βN (E)ĤN ĤN ] = E. In this way the function f (E,ω) is simply connected to the Fourier
transform of the two-point correlation function of the I

q
x operator. Note that such a correlation function can be accessed

experimentally in the linear response regime.
As E is a macroscopic energy, we can approximate S(E + ω/2) � S(E) + S ′(E)ω/2, with S ′(E) = βN (E) and we arrive at

ṗ(E) =
∑

j

∫
dωeβN (E)ω/2|f (E,ω)|2[p(E + ω)�j (−ω) − p(E)�j (ω)]. (D6)

This equation is valid for an arbitrary nuclear system under the hypothesis of ETH, i.e., Eq. (D1) and only requires the knowledge
of f (E,ω). If we now assume that the dipolar coupling between nuclear spins is sufficient to establish an ETH, but negligible
with respect to their Zeeman gap ωn, we can estimate f (E,ω) from the correlation function computed in absence of interactions

1

Z
Tr

[
e−βN (E)HN I q

x (t )I q
x

] = cosh[(βN (E) + it )ωn/2]

cosh[βN (E)ωn/2]
⇒ |f (E,ω)|2 = δ(ω − ωn) + δ(ω + ωn)

2 cosh[βN (E)ωn/2]
, (D7)

which is peaked around the frequencies ±ωn. Here we have associated with the microcanonical energy E the corresponding
canonical βN (E) using

E =
∫

dE′ p(E′)E′ = Nnωn tanh[βN (E)ωn/2]

2
. (D8)

Injecting (D7) in (D6) we can now look for the stationary solution of (D6) [i.e., ṗ(E) = 0], which requires

p(E + ωn)

p(E)
=

∑
j �j (ωn)∑

j �j (−ωn)
⇒ Pn =

∑
j �j (ωn) − �j (−ωn)∑
j �j (ωn) + �j (−ωn)

, (D9)

which we quoted in Eq. (20) of the main text.
A simpler way to derive this result in this approximation would be to assume that the eigenstates |A〉 of the nuclear

Hamiltonian with a given number N+ of spins up take the form

|A〉 = 1

(N+)1/2

N+∑
s=1

cA
s |s〉 , N+ =

(
Nn

N+

)
, (D10)

where the sum over s runs over all the N+ factorized configurations with N+ spins up and cA
s are random coefficients with zero

average and variance 1 and for simplicity we set (cA
s )2 = 1. Then one can explicitly compute the matrix element in (D1) which

is nonvanishing only when N+
A = N+

B ± 1. This leads to the master equation in the limit of large Nn:

ṗ(E) = N+
Nn

∑
j

[p(E + ωn)�j (ωn) − p(E)�j (−ωn)] +
(

1 − N+
Nn

)∑
j

[p(E − ωn)�j (−ωn) − p(E)�j (ωn)], (D11)

which is equivalent to (D7) and (D6) once one uses that in equilibrium at temperature βN (E)−1, the ratio N+/Nn is {1 +
tanh[βN (E)ωn/2]}/2.
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