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Collective tunneling is a ubiquitous phenomenon in finite-size spin clusters that shows up in systems as diverse
as molecular magnets or spin clusters adsorbed at surfaces. The basic problem we explore is to understand
how small flipping terms can cooperate to flip a large spin to the opposite direction or a cluster of interacting
elementary Ising spins into the time-reversed state. These high-order processes will involve at least two channels,
a single spin-flip channel due to a transverse field and a two-spin flip channel due to exchange or other pairwise
interactions or due to single-ion anisotropies. In view of the complexity of high-order perturbation theory,
nonperturbative approaches based on large-spin path integrals were developed when this problem was first
addressed in the context of single spin models. In the present paper, we show that high-order perturbation theory
can in fact be formulated and evaluated with the help of simple recurrence relations, leading to a compact theory
of tunneling in macroscopic spins, in one-dimensional clusters, as well as in small higher-dimensional clusters.
This is demonstrated explicitly in the case of the Ising model with a transverse field and transverse exchange,
and in the case of macroscopic spins with uniaxial anisotropy. Our approach provides a transparent theory of
level crossings, where the tunneling between time-reversed configurations vanishes as a function of the external
field. Those crossings result from the destructive quantum interferences between competing flipping channels.
Destructive interferences are expected to be present as soon as the two-spin flip channels have an overall positive
amplitude and thus compete with the intrinsically negative second-order processes due to the transverse field. Our
theory consistently predicts N crossings in chains of N Ising spins and 2S crossings in single spins of magnitude
S and yields explicit analytical formulas for the level crossings of open chains and macroscopic spins. Disorder
can be easily implemented in this perturbative formalism. Leading disorder effects can be treated analytically for
spin rings. We find that at the smallest transverse field crossing the suppression of tunneling is most robust with
respect to disorder and fluctuations in the parameters. We briefly discuss the implications of our findings for the
use of realistic spin clusters on surfaces to store information.
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I. INTRODUCTION

Quantum tunneling in magnetic clusters was intensively
studied in the 1990s as a special case of macroscopic quan-
tum tunneling [1]. Quantum tunneling between two states
with very different quantum numbers, e.g., Sz = S and −S
for large spin S, is in general a very high-order process
since elementary terms such as a transverse field or ex-
change processes only change this quantum number by 1
or 2, and high-order perturbation calculations of the tunnel-
ing were limited to systems with a single tunneling chan-
nel [2–4]. Other approaches included a Wentzel-Kramers-
Brillouin (WKB) approximation in the semiclassical limit
[4,5], but the most successful approach proved to be an in-
stanton and path integral formulation [6–11]. The predictions
of these theories, for instance the difference between half-
integer and integer spin [8,9] or the presence of oscillations
of the tunneling as a function of a transverse field [10],
have been beautifully confirmed by experiments on ferro-
magnetic molecules that measured Landau-Zener transition
probabilities, which are sensitive to the tunneling between
nearly degenerate levels [12]. The tunnel splitting was found
to oscillate with the transverse field, and the position of the
minima of the tunneling amplitudes were shown to alter-

nate depending on whether the difference between the Sz

components of the initial and final spin states was even or odd.
For a review, see Refs. [13,14].

More recently, it has become possible to create and control
very small clusters of magnetic adatoms deposited on surfaces
[15–17], where the exchange couplings between adatoms can
be tailored by their positioning [18]. One promising idea is to
use arrays of small antiferromagnetic (AFM) chains or ladders
of Ising spins as a means to store bit information in a very
compact way [16]. Applying a large-enough voltage pulse
with the STM tip, tunneling between the AFM Ising ground
states can be induced, providing a way to switch between bit
states. The limitation of the associated memory comes from
spontaneous tunneling, thermal or quantum, between the two
classical AFM ground states. For low-enough temperature, the
switching rate between the Ising AFM ground states saturates
to the quantum tunneling rate, which decays exponentially
with system size. Thus, one way to preserve the bit state
longer is to increase the size of the cluster at the cost of
lower density of information. If, however, quantum tunneling
depends strongly on an applied transverse field, with marked
minima as in the case of molecular magnets, one could
reduce the rate of quantum tunneling without increasing the
cluster size. Turning on and off the tunneling by tuning an
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external parameter, such as the applied transverse field, is not
only a way to control the switchability of classical storage
units, but it is also a way to manipulate quantum two-level
systems (qubit). This is particularly interesting in cases where
the relevant two-level system is topologically protected from
dephasing noise, as happens e.g., in one-dimensional (1D)
p-wave superconductors, discussed below.

The first indication that quantum tunneling can be re-
duced very effectively comes from a recent experiment that
demonstrated that anisotropic chains of N spins-1/2 can have
ground-state crossings as a function of an applied magnetic
field [19]. The crossings occur between the two lowest lev-
els which form a quasidegenerate subspace (which becomes
exactly degenerate in the thermodynamic limit). At these
crossings, the quantum tunneling between the two states is
completely suppressed. For small spin chains, this can easily
be demonstrated numerically [20]. A general theory of these
level crossings has not yet been developed, however. One step
in this direction has been achieved in Ref. [21]. This approach
relies on a mapping of the spin model onto a fermionic chain
using Jordan-Wigner transformation, and it is thus limited to
open chains. A mean-field decoupling of this fermionic model
maps it onto the Kitaev model of a one-dimensional p-wave
superconductor [22]. This leads to the prediction of exactly N
crossings, where N is the number of sites of the chain. In this
framework, the crossings are naturally interpreted in terms of
the oscillating, exponentially weak coupling between the two
Majorana edge states on either end of the chain.

In this paper, we develop a perturbative approach that
provides a unified and general framework for all these phe-
nomena. It relies on a reformulation of degenerate pertur-
bation theory to lowest nontrivial order in terms of a sim-
ple recurrence between flipping amplitudes. This approach
leads to a general expression of the tunneling amplitude as
a homogeneous polynomial in the amplitude of the transverse
exchange processes and of the square of the transverse field.
In this approach, the destructive quantum interferences that
lead to level crossings appear as a natural consequence of
the competition between tunnel processes with positive and
negative amplitudes. In the case of a single exchange channel,
level crossings will be present as soon as the amplitude of
this process is positive (AFM) since it will then compete with
the second-order process due to the transverse field, which
is intrinsically negative. Our approach leads to a number of
analytical results in the limit of small exchange processes and
transverse field (e.g., the exact solution for the open chain, or
for a macroscopic spin), to very good asymptotic expressions
for large closed rings and the effect of weak disorder, as
well as to general qualitative conclusions (e.g., concerning the
number of level crossings in a ring).

In higher dimension, our method still works, as we show
on small rectangular, triangular, and cubic clusters, but it
becomes rapidly very complex because of the large number of
cluster shapes generated in the recurrence. The interest of the
method is to show for the example of small clusters that the
interference leads to a number of ground-state crossings equal
to the number of Ising spins, independently of the geometry,
suggesting that this remains true for larger systems.

Our formalism turns out to be particularly convenient to
study the effect of disorder (such as heterogeneities among

different clusters, spatial g-factor variations, weak random
fields, etc.) on the suppression of tunneling amplitudes. As
we shall see, the suppression of tunneling in the lowest
transverse fields is the least affected by disorder. This leads
us to the conclusion that, in order to achieve a maximally
robust suppression of tunneling over a range of potentially
fluctuating parameters of clusters, one should use the lowest
transverse field for which a ground-state crossing occurs in
the disorder-free limit.

The paper is organized as follows: In Sec. II we introduce
the spin models used throughout the rest of the paper. In
Sec. III we present the iterative perturbation theory method
applied to Ising models. In Sec. IV, we apply the method
to a 1D ring and chain, and in Sec. V to small 2D and 3D
clusters. In Sec. VI we introduce disorder on the pertubative
couplings of a ring and obtain the mean-square displacement
of the transverse field zeros, as well as the second moment
of the tunneling to leading order in the disorder strength. In
Sec. VII we apply our method to an anisotropic single spin
model and obtain the tunneling amplitude, including an exact
result for the crossing field values. In Sec. VIII we discuss
other systems where one can observe interference between
different tunneling paths and, consequently, crossings. Finally,
in Sec. IX we discuss our results and their experimental
consequences.

II. MODELS

All the models we consider are spin models and can be
written in the form

H = H0 + V, (1)

where H0 is a dominant diagonal term with a doubly degener-
ate ground state where the two states transform into each other
by flipping all spins, and

V = λV1 + λ2V2, (2)

where V1 and V2 are perturbations that respectively flip one or
two spins. λ is only an auxiliary parameter which we introduce
to organize the perturbation expansion. It will be set to 1
later. We thus require that the matrix elements of V1,2 are
much smaller than the norm of the terms in H0. We use the
following notation for the two lowest-energy states of the full
Hamiltonian H :

H |�±〉 = E±|�±〉. (3)

Our main goal is to calculate in leading order in λ the splitting
�E ≡ E+ − E− of the ground-state doublet of H0.

All the Hamiltonians we consider share the same symme-
try, which physically corresponds to a spin reflection across
the x-y plane, Sz → −Sz. We write the symmetry formally in
a way that applies to all models, as

R ≡ TeiπSz , R2 = 1, [H, R] = 0, (4)

where Sz is the total spin projection along z, so that exp(iπSz )
rotates all spins by π around their z axis and T is the time-
reversal operator which inverts all spins.

Let us call the two ground states of H0 as |∅〉, |�〉. The
operator R flips all spins and transforms one ground state into
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the other,

R|∅〉 = |�〉, R|�〉 = |∅〉. (5)

Taking this into account together with the fact that R is
antilinear, we may write the (unnormalized) ground states as
simultaneous eigenstates of H and R as

|�±〉 = e−iφ±/2|∅〉 ± eiφ±/2|�〉 + . . . , (6)

with two unknown phases φ±. In all the models we consider,
�E becomes zero for some specific combinations of the
couplings. At such points the flipping of the effective two level
system is completely suppressed, and thus the information
contained in its state is preserved [23]. If in addition the con-
sidered two-level system is well isolated from environmental
noise (e.g., by topological protection) and from coupling to
other degrees of freedom, then the exact degeneracy of the
two ground states ensures the absence of dephasing in the
two-level system if considered as a qubit.

In the following subsections we introduce the spin models
used throughout the paper. We start with an Ising model with
transverse terms, followed by other Ising models which are
extensions of that model. One can solve the extended models
straightforwardly, only requiring a transformation of the cou-
plings to be able to use the solution of the first Ising model.
Finally, we introduce an anisotropic single spin model, a
conceptually simpler model than the Ising models, which was
studied in the literature to analyze ground-state degeneracies,
having many similarities to a ferromagnetic Ising model.

A. Ising model with transverse field and exchange

We first consider the Ising model in a small transverse field
and subject to weak transverse exchange interactions [21]:

H0 = Jz

∑
〈i j〉

σ z
i σ z

j ,

V1 = −hx

∑
i

σ x
i , V2 = Jx

∑
〈i j〉

σ x
i σ x

j . (7)

Here σ are the Pauli matrices and N is the number of Ising
spins. We keep the lattice general for now; however, we do
require that the lattice be classically unfrustrated, such that
the ground-state manifold of H0 is only doubly degenerate.
In the following sections we will carry out more detailed
calculations by restricting ourselves to specific lattices and
Ising interactions.

We denote the Ising eigenstates and energies as

H0|m〉 = εm|m〉, (8)

where |m〉 are the classical Ising configurations with the spins
either up or down along the axis z. We label the states |m〉 by
the set m of spins that are flipped with respect to one of the
Ising ground states. By definition, our reference ground state
corresponds to the empty set m = ∅, and the other ground
state to m = �, the set of all spins. The energy of these two
states is ε∅(= ε� ).

Before proceeding with introducing various extensions,
let us comment on the ground-state degeneracies of the full
Hamiltonian H on the spin chain with even N . When Jx > 0
and for finite size, there are lines in the (Jx, hx) plane where

FIG. 1. Color plot of the energy difference between the two
lowest-energy eigenstates |�±〉 [Eq. (6)] of the full Hamiltonian (7)
on a spin chain of eight spins, obtained with exact diagonalization.
A change of sign in �E indicates a crossing between the opposite-
parity states and therefore a change of the ground-state parity. The
full lines indicate the locations where the ground state is degenerate,
while the dashed lines indicate our perturbative prediction [Eq. (64)],
which works very well for small fluctuation parameters Jx and hx .
Calculating the energy gap close to the phase transition hx = Jz, Jx =
0 perturbatively in the small parameters hx − Jz and Jx yields � ≈
2(hx − Jz − 2Jx ) [24]. This gives the approximate location of the
quantum critical line between the Ising-ordered and the paramagnetic
phases as Jx ≈ (hx − Jz )/2, as shown in the plot. This is still accurate
for large Jx since a similar calculation close to the phase transition
at (hx = 2Jx, Jz = 0) gives the same gap [25]. For the full phase
diagram, see Ref. [26]. There are no zeros when Jx < 0, and the
ordered phase shrinks with increasingly negative Jx . Both reflect the
fact that the transverse terms reinforce each other for Jx < 0, while
they compete for Jx > 0.

the ground state is degenerate, as shown in Fig. 1. In our per-
turbative regime, these lines scale as hx ∼ √

Jx|Jz|. The lines
continue for larger Jx, hx, but the scaling becomes linear. In
fact, when Jx, hx 
 Jz, all lines except one approach the criti-
cal line Jx = hx/2 of the Jz = 0 classical model (an AFM Ising
with longitudinal field), separating the AFM-ordered phase
along x from the PM phase. The classical ground state on this
critical line is highly degenerate, but the Jz exchange coupling
lifts the degeneracy and induces many ground-state crossings
close to the classical critical line. The line corresponding to
the smallest field for given Jx instead approaches the classical
critical line Jx = hx. On that line it costs no energy to flip
the terminal spin of the chain which is antialigned to the
external field in the AFM phase. This separate degeneracy line
is present only for chains with even N .

B. Ising model with a staggered field

The first extension we consider is a staggering of the
magnetic field on bipartite lattices with the same number of
sites on either sublattice but different transverse fields hx,A and
hx,B acting on the two sublattices A and B, respectively. Thus,
the modified perturbation is

V1 = −
(

hx,A

∑
i∈A

σ x
i + hx,B

∑
i∈B

σ x
i

)
, (9)

with unchanged V2. In Fig. 2 we show the ground-state energy
splitting of the full Hamiltonian H of this model as a function
of the staggered fields. The zero lines scale as hx,Ahx,B ∼
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FIG. 2. Color plot of the exact energy difference between the
two lowest-energy eigenstates |�±〉 [Eq. (6)] of the full Hamiltonian
defined in Sec. II B on a spin chain of six spins, obtained with
exact diagonalization. The full green lines indicate the locations
where the ground state is degenerate, while the dashed lines indicate
the prediction from perturbation theory [Eqs. (34) and (62)]. The
diagonal hx,B = 0 is marked to show that the zeros only occur in
the region where the field and the exchange term V2 favor opposite
ground states.

Jx|Jz|, but only when hx,Ahx,BJx > 0 do ground-state degen-
eracies occur, that is, only when the field and the exchange
coupling favor opposite ground-state configurations. In gen-
eral we can state that tunneling suppression occurs when the
transverse fluctuations are competing or “frustrated.”

C. Ising model with general transverse couplings

We will also extend the model by having transverse cou-
plings along both transverse axes,

V1 = −
∑

i

(
hxσ

x
i + hyσ

y
i

)
,

V2 =
∑
〈i j〉

(
Jxσ

x
i σ x

j + Jyσ
y
i σ

y
j

)
. (10)

On a 1D chain of spins with open boundary conditions, this
model has an interesting limit in which it is exactly solvable.
Taking Jy = hx = 0, one can map the model with a Jordan-
Wigner transformation [27] onto the Kitaev chain model [22],
a free fermion model which one can solve exactly [21,23]
to obtain field values in which not only the ground state is
degenerate but all eigenstates are

h(n)
y = 2

√
JxJz cos

(�N/2
 + 1 − n

N + 1
π

)
, (11)

where n = 1, . . . , �N/2
. If we take Jx > 0, then these zeros
only appear if Jz > 0, as one can see in Fig. 3. Interestingly,
our perturbative approach yields exactly the same expres-
sion in the appropriate limit [Eqs. (62) and (43)], with no
higher-order corrections. This is presumably a consequence
of the fact that the zero-energy Majorana fermions do not
backscatter, so that our leading-order approximation, which
is equivalent to a forward-scattering approximation for the
fermions, becomes exact [28].

D. Single spin model

Instead of studying a cluster of N spins explicitly with all
its internal couplings, one may consider the cluster as a big

FIG. 3. Color plot of the exact energy difference between the
two lowest-energy eigenstates |�±〉 [Eq. (6)] of the full Hamiltonian
defined in Sec. II C on a spin chain of eight spins, obtained with
exact diagonalization. We set Jy = 0, Jx = 0.2 so we may study the
energy splitting in the hx-hy plane. The ground-state crossings are
drastically different depending on the sign of Jz. If the ground state is
ferromagnetic (above), then there are only degeneracies when hy = 0
(these are the same zeros as in Fig. 1 along the Jx = 0.2 line). This
is predicted by our perturbative calculations, where we obtain the
zeros marked in black as given by Eq. (38). In the antiferromagnetic
case (below), we obtain lines of zeros in the plane which connect the
crossings of the model (7) (along the x axis) to the exact crossings
of the Kitaev chain model given by Eq. (11) (along the y axis).
These lines are consistent with the perturbative solution (dashed
line), where we find that the zeros do not depend on the orientation
of the field in the x-y plane [Eq. (43)].

effective spin S and consider the tunneling from the up to the
down state of this composite spin. The precise Hamiltonian
for this equivalent big spin would in general be very complex.
However, qualitative features can be expected to be captured
by simple effective interactions which can be written as low
powers of the total spin operators Sx,y,z.

A transverse field on a ferromagnetic cluster of spins
naturally translates into a transverse field acting on the big
spin. Also, the ferromagnetic Ising configurations are the
projections with largest total Sz of the largest spin one can
form with N (S = 1/2) spins. Thus, the ground state of a
Hamiltonian of the form −S2

z corresponds to a ferromagnetic
Ising ground state of the original cluster. Indeed, we shall see
later that this model captures qualitatively the features of a
ferromagnetic Ising model (Jz < 0) as considered in Sec. II C.
In contrast, it is not clear whether such an approximate
mapping is meaningful for antiferromagnetic clusters.

Here we will reconsider quadratic single spin Hamilto-
nians equivalent to those considered earlier in the literature
[3,5,10,12]. In particular, we take the most general quadratic
single spin model with anisotropy and a field transverse to
the easy axis. On choosing axes that bring the quadratic part
to a diagonal form, we are left with three quadratic couplings
Jx,y,z. We are free to choose the easy, medium, and hard axes to
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be, respectively, along the z, y, and x axes (i.e., Jz � Jy � Jx).
We are also free to set one of these couplings to zero, since
the ground-state splitting will be independent of a constant
term J �S · �S that one can add to the Hamiltonian. We therefore
consider the Hamiltonian

H0 = JzS
2
z ,

V1 = −(hxSx + hySy), V2 = JxS2
x ,

(12)

where we chose Jy = 0, implying that Jz � 0 and Jx � 0.
When performing perturbative calculations, we assume that

|Jz| 
 |Jx|, |hx|, |hy|. (13)

This model has 2S = N values of the magnetic field where the
ground state is doubly degenerate, as demonstrated by Garg
[10] using path-integral and instanton calculations justified
at large S but without restricting to the perturbative regime
(13). In the considered large-S limit, the crossings can be
interpreted as the negative interference of two tunneling in-
stantons having different Berry phases. We shall derive a very
similar result within perturbation theory but without relying
on the size of the spin (or N) and without taking a saddle-point
approximation.

We will show in Sec. VII that here again the underlying
mechanism behind the zeros is the competition of multiple
tunneling paths with oscillating signs. Finally, using a differ-
ent approach we will derive nonperturbatively the location of
the 2S equally spaced transverse field zeros without relying
on any approximation.

III. PERTURBATION THEORY FOR
COLLECTIVE TUNNELING

In this section we will present the perturbative method
applied to Ising models defined in Sec. II. The method is
derived in more detail in Appendix A.

Standard techniques to carry out degenerate perturbation
theory at arbitrarily high orders construct a perturbative ex-
pansion for an effective Hamiltonian Heff which only acts on
the Hilbert space spanned by unperturbed states and yields
the exact splitting of the ground-state manifold due to per-
turbations. Let us call the set of unperturbed ground-state
configurations g = {∅, �}. Defining P as the projector onto
the subspace g, one constructs Heff which projects out all the
excited states, i.e., PHeff = HeffP = Heff. However, Heff is not
fully specified by these requirements. A first full series expan-
sion for a possible choice of Heff was obtained in Ref. [29]
for a general Hamiltonian with a discrete spectrum. It leads
to a generalized eigenvalue equation that must be solved for
the split ground-state energies. A variation of Ref. [29] was
later given in Ref. [30], where the eigenvalue equations are
simpler, but the operator Heff will in general turn out to be non-
Hermitian. Here we use the latter approach. The eigenvalue
equations of this effective Hamiltonian are

HeffP|�±〉 = E±P|�±〉, (14)

where |�±〉 are the lowest-energy eigenstates of H . Due to the
antilinear symmetry R [Eq. (4)], which lets us write |�±〉 as

in Eq. (6), we deduce that the energy splitting is given by

�E = (eiφ+ + eiφ− )〈∅|Heff|�〉, (15)

in terms of the off-diagonal matrix element of the effective
Hamiltonian. Our perturbative method allows us calculate the
matrix element 〈∅|Heff|�〉 to leading order in λ. Since V1 and
V2 respectively flip one or two spins when acting on |m〉, and
given that V = λV1 + λ2V2, the power of λ of a tunneling path
between |∅〉 and |�〉 corresponds to the number of spin flips
that occurred. Since the shortest paths have exactly N spin
flips (each spin flips once and only once), it follows that λN is
the lowest order that will occur, and thus

〈∅|Heff|�〉 = tNλN + O(λN+1), (16)

where we have defined tN as the leading-order term.
In the limit λ → 0, the phases in Eq. (6) must vanish,

φ± → 0. This follows from the fact that in this limit the
ground states approach the two linear combinations

|�±〉 → |∅〉 ± |�〉 + O(λ). (17)

One thus finds

|�E | = 2|tN | + O(λN+1). (18)

As shown in Sec. A, the tunneling amplitude is given by

tN =
N∑

n=� N
2 �

∑
{li}

〈∅|Vl1 S . . .Vln−1 SVln |�〉, (19)

where the li=1,...n ∈ {1, 2} obey l1 + l2 + · · · + ln = N, and

S ≡ −
∑
m �∈g

|m〉〈m|
�εm

, (20)

where �εm ≡ εm − ε∅ is the unperturbed excitation energy
of the state |m〉. Let us denote by |m| the cardinality of the
set m, that is, the number of spins that are flipped relative
to the ground state ∅, so that |�| = N . The tunneling tN
can be calculated recursively. To this end we introduce cm

as an intermediate tunneling coefficient, analogously to tN in
Eq. (19),

cm ≡
|m|∑

n=� |m|
2 �

∑
{li}

〈∅|Vl1 S . . .Vln−1 SVln S|m〉, (21)

where we impose the condition l1 + l2 + . . . ln = |m|, on the
li, which restricts the sum to the terms that contribute to
leading order (λ|m|) to the tunneling between |∅〉 and |m〉. Fi-
nally, by inserting the identity as

∑
m′ |m′〉〈m′| before the last

two factors and expanding Vln S|m〉, one obtains a recursion
relation that connects cm to coefficients of smaller clusters
m′ ⊂ m, yielding the cluster recursion relations

cm = − 1

�εm

(∑
i∈m

〈m \ {i}|V1|m〉cm\{i}

+
∑
i, j∈m

〈m \ {i, j}|V2|m〉cm\{i, j}

⎞
⎠, (22)
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where we sum over flipped spins i ∈ m, or pairs of flipped
spins {i, j} ∈ m. An analogous expression follows for tN ,

tN =
∑
i∈�

〈� \ {i}|V1|�〉c�\{i}

+
∑

i, j∈�

〈� \ {i, j}|V2|�〉c�\{i, j}. (23)

The recursions (22) and (23) hold for general perturbations
V1,2 which flip single spin or pairs of spins, respectively. It
is straightforward to generalize the recursions (22) to include
higher-order terms of the form λkVk , which flip k spins.

The iterative procedure can be further simplified due to
the independence of disconnected clusters. Let us consider a
cluster m that is composed of several mutually disconnected
clusters mi of spins flipped relative to ∅. We call a set of
clusters disconnected if the excitation energy of the set is
the sum of the excitation energies of the individual clusters,
i.e., �εm = �εm1 + �εm2 + . . . �εmn . In Appendix B, we
show that for such separable sets, the intermediate tunneling
coefficient is the product of tunneling coefficients for their
disconnected components,

cm = cm1 cm2 . . . cmn . (24)

To calculate tN for a given cluster one proceeds as follows:
One identifies all inequivalent connected subclusters m of the
considered spin cluster, associates a coefficient cm to each of
them, and uses Eqs. (22) and (24) to calculate the coefficients
recursively for increasing cluster sizes |m|. We say that two
clusters are equivalent if their coefficients cm are the same,
which is for instance the case if the two clusters are symmetry
related.

If the unperturbed Hamiltonian is the Ising model with
nearest-neighbor couplings, then the excitation energy �εm

of a cluster is 2|Jz| times the number of bonds that connect
flipped spins (∈ m) to unflipped spins (∈ � \ m). In other
words, the excitation energy is proportional to the total length
of all domain walls between m and its complement.

In general, the recursions (22) and (23) can be rather
complicated to solve, especially if one has to consider a large
number of inequivalent clusters. However, we will see in the
following subsections that they take a simplified form when
applied to some of our models, and even result in recursion
relations with closed form solutions in some cases. Applying
the method to the first Ising model (7), our next step, will be
very instructive.

A. Tunneling in Ising models with transverse field and exchange

Let us consider the model (7) and let us apply the recursion
relations (22) and (23) to it. The first thing to note is that
the matrix elements in the recursion relations simplify greatly.
They are given by

〈m \ {i}|V1|m〉 = −hx (25)

and

〈m \ {i, j}|V2|m〉 = Jx (26)

if i, j are nearest neighbors and vanish otherwise. Then the
recursion relations become

cm = 1

�εm

⎛
⎝hx

∑
i∈m

cm\{i} − Jx

∑
〈i j〉∈m

cm\{i, j}

⎞
⎠, (27)

tN = −hx

∑
i∈�

c�\{i} + Jx

∑
〈i j〉∈�

c�\{i, j}. (28)

In this model, two clusters are equivalent if they are identical
including their environment up to their first neighbors. As an
example of this, consider a cluster of flipped spins in the bulk
of a lattice with open boundary conditions. Any translation
by a lattice unit whereby the cluster does not touch the
boundaries results in an equivalent cluster. When a boundary
is reached instead, the first neighbors of the cluster change and
we will find a different cluster coefficient.

Since tN is the sum over all tunnel paths that flip every
spin exactly once, it is clear that the resulting expression is
a polynomial in hx and Jx, each term being proportional to a
product Jk

x hN−2k
x with 0 � k � �N/2
. The general form for

the tunneling coefficient of a cluster of N spins, regardless of
the lattice, will thus take the form

tN =
� N

2 
∑
k=0

ak
Jk

x hN−2k
x

|Jz|N−k−1
(29)

∝ hmod(N,2)
x

|Jz|2� N
2 −1


� N
2 
∏

n=1

(
Jx|Jz| − αnh2

x

)
, (30)

with some lattice-dependent real coefficients ak and (poten-
tially complex) roots αn.

Due to the minus sign in the projector S [Eq. (20)], the sign
of ak reflects the number of flipping terms V1,2 that are applied
on the corresponding tunneling paths. The sign thus alternates
with k:

sgn(ak ) = (−1)k−1, (31)

where we have also taken into account the negative sign
of the matrix element of V1 in Eq. (25). If Jx < 0, then all
monomials contribute with the same sign, and thus |tN | grows
monotonously with the field hx, with no zero crossing. How-
ever, if Jx > 0, then there is a negative interference between
paths with different numbers of perturbative steps, and tN
may oscillate as a function of the field. In this case, we can
have ground-state crossings. If the polynomial of Eq. (30) has
positive real roots αn, the crossings occur at the fields

h(n)
x = ±α−1/2

n

√
Jx|Jz|. (32)

Thus there may be up to N values of the transverse field (or
�N/2
, if one restricts to hx � 0) where tN = 0, depending
on the number of real αn. (Note that real αn are necessarily
positive, since negative αn would imply zeros for Jx > 0,
which is excluded.)

Later we will solve the recursion relations for specific
spin clusters and lattices, where we do find that in all cases
considered the αn are real and positive. For now, let us assume
that indeed all αn > 0, so that we have either N degeneracy
points or none (except for the trivial one hx = 0 for odd N),
depending on the sign of Jx.
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B. Tunneling in Ising models with a staggered field

We consider the model presented in Sec. II B where the
field of the model (7) is staggered. One could calculate the
matrix elements and write down the recursion relations for
this model, but this turns out to be unnecessary. Let us
first guess the polynomial form of tN for this model. The
tunneling paths due to transverse exchange only contribute
with a factor JN/2

x . For tunneling paths involving spins flipped
by transverse fields, those must come in equal numbers on the
two sublattices, and thus tN must take the form

tN = JN/2
x

|Jz|N/2−1

N/2∑
k=0

ak

(
hx,Ahx,B

Jx|Jz|
)N/2−k

, (33)

where the coefficients ak must be the same as those of the
polynomial for a homogeneous field hx, cf. Eq. (29). Thus
one simply should substitute h2

x → hx,Ahx,B in that equation.
It follows that ground-state degeneracy occurs whenever

hx,Ahx,B = α−1
n Jx|Jz|. (34)

The condition hx,Ahx,BJx > 0 is a general prerequisite for
such degeneracies. If all αn are positive, then we recover the
behavior observed numerically in Fig. 2

C. Tunneling in Ising models with general transverse couplings

In the case of the more general Ising models (10), we
found the behavior of the ground-state crossings to depend on
the Ising ground state (Fig. 3). In particular, we distinguish
whether the dominant Ising interactions are ferromagnetic
(Jz < 0) or antiferromagnetic (Jz > 0), respectively.

1. Ising ferromagnets

Since the ground state is ferromagnetic, and since we
only flip each spin once, the matrix element 〈m \ {i, j}|V2|m〉
appears in the recursion relations only in the form

〈↑↑ |V2| ↓↓〉 = Jx − Jy, (35)

for two neighboring spins, while 〈m \ {i}|V1|m〉 only appears
as

〈↑|V1|↓〉 = −hx + ihy. (36)

This implies that the resulting recursion and the tunneling
amplitude tN will be the same as Eqs. (27) and (29) to the
substitution

Jx → Jx − Jy,

hx → hx − ihy,
(Ferro) (37)

and it suffices to solve the model (7).
Performing the substitution in Eq. (32), one finds that the

tunneling only vanishes if either hy = 0 and Jx > Jy, in which
case there are zeros at the fields

h(n)
x = ±

[
(Jx − Jy)|Jz|

αn

]1/2

, (38)

or if hx = 0 and Jy > Jx at fields

h(n)
y = ±

[
(Jy − Jx )|Jz|

αn

]1/2

. (39)

In other words, the transverse field has to be applied in the spin
direction which corresponds to the stronger antiferromagnetic
(or weaker ferromagnetic) exchange. This is analogous to the
result found in the single spin case by Garg [10], which we
will review in Sec. VII.

2. Ising antiferromagnets

For the antiferromagnetic Ising models case, let us consider
a bipartite lattice, so that the ground states have opposite spins
on each sublattice. V2 only acts in the form

〈↑↓ |V2| ↓↑〉 = Jx + Jy, (40)

while V1 flips spins from down to up on one sublattice and
from up to down on the other sublattice,

〈↑ |V1| ↓〉 = −hx + ihy, 〈↓ |V1| ↑〉 = −hx − ihy. (41)

We take each sublattice to have the same number of spins.
Since the lattice is bipartite and V2 flips one spin from each
sublattice, there must be an equal number of single flips due
to V1 on either sublattice. This implies that we can simply
substitute

Jx → Jx + Jy,

h2
x → h2

x + h2
y ,

(Antiferro) (42)

in Eqs. (27) and (29) to obtain the result for the generic,
bipartite antiferromagnetic Ising models. Interestingly, the
direction of the homogeneous transverse field in the x-y
plane is irrelevant. That is, zeros of the tunneling amplitude
occur in circles in the transverse field plane, provided that
the transverse exchange is predominantly antiferromagnetic
(Jx + Jy > 0). The tunneling vanishes for transverse fields of
magnitude

h(n) =
[

(Jx + Jy)|Jz|
αn

]1/2

, (43)

regardless of its angle in the x-y plane. While there is no angle
dependence to leading order, the radial symmetry is broken by
higher-order corrections as confirmed numerically in Fig. 3.

Note that the tunneling matrix element tN is in general
complex, and thus the condition tN = 0 determines a mani-
fold of codimension 2 in the parameter space of transverse
couplings. Thus, by fixing the exchange couplings Jx, Jy

and looking for zeros in the transverse field plane, one will
generically only find isolated points, as happens in the case
of ferromagnetic clusters. A qualitatively different situation
arises in antiferromagnetic clusters because there, due to the
substitution (42), the tunneling amplitude is always real, such
that zeros organize in a manifold of codimension 1, i.e., closed
lines in the transverse field plane.

IV. TUNNELING IN 1D SYSTEMS

In this section we apply our method to the 1D model
(7). The recursion relations for 1D systems are rather simple
because any connected cluster of flipped spins is uniquely
defined by its length and position. We first consider a ring
of N spins, where the exact solution of the recursion allows
us to extract explicit asymptotic expressions for large N . Then
we consider an open chain, where we even obtain a closed
analytical expression for tN for any N .
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A. Closed chain: A ring of spins

For a ring of spins, all connected clusters of a given length
are equivalent. We denote by cl the intermediate tunneling
coefficient associated with a cluster of length l . The appli-
cation of Eq. (27) is straightforward: By unflipping a single
spin from the cluster, we obtain one of l possible states with
l − 1 flipped spins. If the unflipped spin is at the edge of
the cluster, its contribution to cl is hxcl−1/(4|Jz|), since the
excitation energy of the cluster is 4|Jz| due to the two domain
walls at its ends. If the unflipped spin is in the bulk, then the
state consists of two clusters. We thus use Eq. (24) to write the
contribution of that state as hxcncl−n−1 for some 0 < n < l .
Defining c0 ≡ 1 we can combine the edge and the bulk terms,
and using an analogous reasoning for the term related to Jx we
finally have

cl = hx

4|Jz|
l−1∑
n=0

cncl−n−1 − Jx

4|Jz|
l−2∑
n=0

cncl−n−2. (44)

To obtain the polynomial for the full tunneling coefficient tN ,
a similar recursion can be used. It slightly differs from the
above due to the periodic boundary conditions. Unflipping a
pair or a single spin in the ring, we are left with a single cluster
of length N − 2 or N − 1. The unflipped spin(s) can be at N
positions, so that we find

tN = N (−hxcN−1 + JxcN−2). (45)

In general the location of the field zeros h(n)
x depends on

N . Interestingly, it turns out that the pair of largest zeros,
±h(�N/2
)

x , is common to chains of any size and takes the value
h(�N/2
)

x = 2
√

Jx|Jz|. To show that this is indeed so, we start
from Eq. (45). The condition to have tl+1 = 0 requires cl =
(Jx/hx )cl−1. If this is to hold for all l and given that c0 = 1,
then we must have cl = (Jx/hx )l . Using this in Eq. (44) and
simplifying we find that this relation is indeed satisfied if
hx = ±2

√
Jx|Jz|. For this value of hx the tunneling tN thus

vanishes for any N . We will retrieve this result from a direct
calculation of tN below.

In order to calculate tN for any value of hx, we define the
generating functions

C(z) =
∞∑

l=0

zlcl ,

(46)

T (z) = 2|Jz| +
∞∑

l=1

zl tl
l
,

where z is a complex variable. We then multiply Eqs. (44)
and (45) by zl , and sum them from l = 2 to l = ∞. Solving
for C(z) [31] and eventually for T (z), we obtain the closed
expression

T (z) =
√

4Jx|Jz|(z − z+)(z − z−), (47)

where

z± = hx ± √
h2

x − 4Jx|Jz|
2Jx

. (48)

The above formula for T (z) represents the power series (47)
with its domain of convergence at small enough z but analyti-

z+z−
1 2

3 4

x

y

z−

z+

1

2

3

4

x

y

FIG. 4. Keyhole contours of integration.

cally continues it beyond. We can now calculate tN by contour
integration of T (z)/zN+1 around its pole at z = 0. We have the
exact expression

tN
N

= 1

2π i

∮
z=0

T (z)

zN+1
dz. (49)

We now deform the contour, pushing it to infinity, but avoiding
the branch cuts ending at z±. This is best done using key-
hole contours (Fig. 4). The precise contour used depends on
whether z± are real or a pair of complex conjugate numbers,
which we discuss separately. We restrict ourselves to Jx > 0,
since only in that case tN exhibits interesting oscillations.

a. h2
x > 4Jx|Jz|. In this case, both z± are real and either

both positive or both negative, depending on the sign of hx.
Without loss of generality, we take hx > 0. The appropriate
contour is shown in Fig. 4 on the left. Pushing the radius of
the large circle to infinity and letting the radius of the small
circles around z± shrink to zero, the integrals 1 and 4 cancel,
while the integrals 2 and 3 between the branch points add to

tN = −2N
√

Jx|Jz|
π

∫ z+

z−

√
(z+ − x)(x − z−)

xN+1
dx. (50)

Note that on changing hx within the domain h2
x > 4Jx|Jz|, the

integrand remains positive, and thus tN never becomes zero.
b. h2

x = 4Jx|Jz|. At the border of the above domain one has
z+ = z−. From Eq. (50) one sees that the tunneling becomes
zero at this point, independently of N , as we have already
found previously. Since there are no zeros at higher fields, this
corresponds to the largest field zero.

c. h2
x < 4Jx|Jz|. Here the branch points become a pair of

complex conjugate numbers. We have

z± = r0e±iθ0 , (51)

where

r0 =
√

|Jz|
Jx

, cos(θ0) = hx√
4Jx|Jz|

. (52)

We consider the contour shown in Fig. 4 on the right, where
the branch points z± are avoided with keyholes oriented radi-
ally along the lines z = re±iθ0 . Shrinking the small circles to
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FIG. 5. Comparison of the exact tunneling polynomial of a ring
of spins with the asymptotic expression of Eq. (54), for N = 10 on
the left and N = 16 on the right. The exact tN is obtained by explicitly
solving the recursion relations in Eqs. (44) and (45). The asymptotic
expression approximates the exact polynomial better and better as
the system size increases.

zero, and expanding the large circle to infinity, the expression
for tN simplifies to the contribution of two line integrals along
the radial branch cuts, resulting in the exact expression:

tN = 4N
√

Jx|Jz|
π

× Im

[
eiθ0( 1

2 −N )
∫ ∞

r0

√
(r − r0)(reiθ0 − r0e−iθ0 )

rN+1
dr

]
.

(53)

At large N , we can make progress by replacing reiθ0 − r0e−iθ0

by its value at r = r0 (which is valid as long as θ0 
 1/N).
The remaining integral can be written in terms of Gamma
functions. To leading order at large N one obtains

tN ≈ |Jz|
(

Jx

|Jz|
)N/2

√
8 sin θ0

πN
sin

[
θ0

(
1

2
− N

)
+ π

4

]
. (54)

Note that this expression has, however, N + 2 zeros as a
function of hx: N zeros arise from the vanishing of the high-
frequency sine at fields given by

h(n)
x = ±2

√
Jx|Jz| cos

(
�N/2
 + 1

4 − n

N − 1
2

π

)
, (55)

with n = 1, . . . , �N/2
. Two further zeros are due to the van-
ishing of sin θ0. Those reproduce correctly the pair of largest
field zeros, hx = ±2

√
Jx|Jz|, which we have already identified

above. The two zeros h(n)
x with n = �N/2
 are instead artifacts

that are introduced by approximating the numerator in the
integrand with its value at r = r0. This approximation is
not controlled in that field regime since there one has θ0 =
O(1/N ). These two zeros thus have to be discarded, and we
are left with N zeros, as it should be.

In Fig. 5 we compare the asymptotic Eq. (54) with the exact
polynomial for tN obtained from explicitly solving Eqs. (44)
and (45). The agreement is very good even for moderate N ,
and it further improves with system size.

It is easy to extract from the explicit result of Eq. (54) and
directly visible from Fig. 5 that the tunneling grows linearly
with a small deviation of the transverse field from an exact

zero (55), namely:

tN
[
hx = h(n)

x + δhx
] ≈ δhx

∂tN
∂hx

≈ δhx
N− 1

2 (Jx/Jz )
N−1

2{
1 − [ h(n)

x

2
√

Jx |Jz |
]}1/4

.

(56)

B. Open Ising spin chains

In open chains, connected, flipped clusters that touch an
end of the chain create only one domain wall. Accordingly,
their excitation energy is only 2|Jz|, half that of a bulk cluster.
We define dl as the intermediate tunneling coefficient associ-
ated to such an edge cluster of size l , while cl is again that
associated to bulk clusters. These coefficients satisfy similar
recursion relations as before. The one for cl is unchanged,
while for dl one finds

dl = hx

2|Jz|
l−1∑
n=0

dncl−n−1 − Jx

2|Jz|
l−2∑
n=0

dncl−n−2, (57)

where we again defined c0 ≡ 1 and d0 ≡ 1. The fully flipped
state can only be created from edge clusters. We thus have

tN = −hx

N−1∑
n=0

dndl−n−1 + Jx

N−2∑
n=0

dndl−n−2. (58)

To proceed we again use the previously defined generating
function C(z) and define

D(z) =
∞∑

l=0

zldl , T̂ (z) =
∞∑

l=1

zltl . (59)

Again, multiplying the recursion relations by zl , summing
over l , and solving for T̂ (z), we obtain

T̂ (z) = |Jz| z(z − hx/Jx )

(z − z+)(z − z−)
, (60)

where the singularities z± are still given by Eq. (48). However,
here they appear as poles of T̂ (z), not as branch points. In this
case, the contour integral around z = 0 can be transformed
into a simple contour around the two poles, which yields the
exact result for tN as a sum of two residues:

tN = Res
z=0

[
T̂ (z)

zN+1

]
= −Res

z=z+

[
T̂ (z)

zN+1

]
− Res

z=z−

[
T̂ (z)

zN+1

]

= |Jz|
(z+ − z−)

(
z−
zN+

− z+
zN−

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∼ −|Jz|
(

hx
|Jz|
)N

,
h2

x
4|Jz | 
 Jx,

−|Jz|(N + 1)
(

hx
2|Jz |

)N
,

h2
x

4|Jz | = Jx,

−|Jz|
(

Jx
|Jz|
)N/2

sin [(N+1)θ0]
sin (θ0 ) ,

h2
x

4|Jz | < Jx.

(61)

Like for the closed chain, tN oscillates when h2
x < 4Jx|Jz|.

The high-frequency sine function in the oscillatory regime has
N + 2 zeros, but when h2

x = 4Jx|Jz| the denominator vanishes
too, and tN does not vanish. We are thus left with N zeros at
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TABLE I. Inequivalent connected clusters of a rectangular clus-
ter of six spins. Filled orange circles represent flipped spins. The
intermediate tunneling coefficients satisfy the indicated recursion
relations.

c1,1 = hx
4|Jz | c2,1 = hx (c1,1+c1,2 )−Jx

6|Jz |

c1,2 = hx
6|Jz | c2,2 = hx (2c1,1 )−Jx

4|Jz |

c2,3 = hx (2c1,2 )−Jx

8|Jz |

c3,1 = hx (2c2,1+c2
1,1 )−Jx (2c1,1 )

6|Jz |

c3,2 = hx (c2,1+c2,2+c1,1c1,2 )−Jx (c1,1+c1,2 )
6|Jz |

c3,3 = hx (c2,1+c2,3+c1,1c1,2 )−Jx (c1,1+c1,2 )
8|Jz |

c4,1 = hx (c3,1+c3,2+c2,1c1,1+c2,2c1,1 )−Jx (c2,1+c2
1,1+c2,2 )

6|Jz |

c4,2 = hx (c3,1+2c3,3+c2
1,1c1,2 )−Jx (2c1,1c1,2+c2

1,1 )

8|Jz |

c4,3 = hx (2c3,2+2c3,3 )−Jx (2c2,1+c2,2+c2,3 )
4|Jz |

c4,4 = hx (2c3,3+2c2,1c1,1 )−Jx (2c2,1+c2
1,1 )

8|Jz |

c5,1 = [hx (c4,1 + c4,2 + c4,3 + c4,4 + c3,2c1,1)

−Jx (c3,1 + c3,2 + c3,3 + c2,2c1,1)]/(4|Jz|)

c5,2 = hx (2c4,1+c2
2,2+2c3,2c1,1 )−Jx (2c3,2+2c2,2c1,1 )

6|Jz |

t3×2 = −hx (4c5,1 + 2c5,2) + Jx (2c4,3 + c2
2,2 + 4c4,1)

the fields

h(n)
x = ±2

√
Jx|Jz| cos

(�N/2
 + 1 − n

N + 1
π

)
, (62)

with n = 1, . . . , �N/2
.
On comparing the position of the zeros for open boundary

conditions, Eq. (62), with those for periodic boundary con-
ditions, Eq. (55), one finds that closing the chain shifts all
fields h(n)

x to higher values. This is expected since a closed
chain contains one more bond Jx, so that hx must slightly
increase to compensate the increased exchange contribution
to the tunneling.

V. 2D AND 3D CLUSTERS

While in 1D chains connected clusters only come in one
shape (a connected stretch of spins), the length and position
(edge or bulk) being their only characteristics, in quasi-1D
and in higher dimensions there are many more shapes of
clusters we have to consider. Finding a general solution for
the tunneling of any N-sized cluster therefore does not seem
possible. However, we will calculate the polynomial tN (hx, Jx )
for small spin clusters to demonstrate the method and to show
that the number of zeros still equals the number of spins N .

We first consider the model of Eq. (7) on a 3 × 2 cluster of
spins with open boundary conditions, the smallest nontrivial
2D cluster. Besides the fully flipped cluster there are 14
inequivalent connected clusters, cf. Table I for which we have
to compute the intermediate tunneling coefficients. The 3 × 2

TABLE II. Inequivalent connected clusters of a triangular cluster
of six spins. Filled green circles represent flipped spins. The interme-
diate tunneling coefficients satisfy the indicated recursion relations.

c1,1 = hx
4|Jz | c2,1 = hx (c1,1+c1,2 )−Jx

8|Jz |

c1,2 = hx
8|Jz | c2,2 = hx (2c1,2 )−Jx

12|Jz |

c3,1 = hx (2c2,1+c2
1,1 )−Jx (2c1,1 )

8|Jz |

c3,2 = hx (2c2,1+c2,2 )−Jx (c1,1+2c1,2 )
8|Jz |

c3,3 = hx (c2,1+c2,2+c1,1c1,2 )−Jx (c1,1+c1,2 )
12|Jz |

c3,4 = hx (3c2,2 )−Jx (3c1,2 )
12|Jz |

c4,1 = [hx (c3,1 + c3,2 + c3,3 + c2,1c1,1)

−Jx (2c2,1 + c1,1c1,2 + c1,1c1,1)]/(8|Jz|)

c4,2 = hx (c3,2+2c3,3+c3,4 )−Jx (2c2,1+2c2,2+c1,1c1,2 )
8|Jz |

c4,3 = hx (2c3,3+2c2,1c1,1 )−Jx (2c2,1+c2
1,1 )

12|Jz |

c5,1 = hx (2c4,1+2c4,2+c4,3 )−Jx (2c3,2+2c3,3+c3,1+2c2,1c1,1 )
4|Jz |

c5,2 = hx (2c4,1+2c3,1c1,1+c2
2,2 )−Jx (2c3,1+2c2,1c1,1 )

8|Jz |

t� = Jx (6c4,1 + 3c3,1c1,1) − hx (3c5,1 + 3c5,2)

cluster differs from a ring of six spins only by one additional
bond. By showing that the tunneling polynomial still has N
zeros, we thus demonstrate the robustness of the number of
zeros to certain perturbations. On gradually turning on the
bond that transforms the ring into the 3 × 2 cluster, the zeros
move toward higher fields, as one expects. We further derive
the tunneling polynomials t� for an equilateral triangle made
from six spins, cf. Table II, and t2×2×2 for a cube of 8 spins,
cf. Table III.

Solving the resulting recursion relations given in Tables I,
II, and III, we obtain the following polynomials, where we
define the variable x ≡ h2

x/(Jx|Jz|):

t3×2 = J3
x

|Jz|2
(

−539x3

5184
+ 511x2

576
− 193x

108
+ 25

36

)
, (63)

t� = J3
x

|Jz|2
(

− 65x3

2304
+ 905x2

2304
− 197x

192
+ 3

16

)
, (64)

t2×2×2 = J4
x

|Jz|3
(

− 3119x4

466560
+ 66839x3

583200
− 76921x2

129600

+ 6979x

7200
− 43

128

)
, (65)

which have the expected number of zeros, N = 6 or 8, as one
can see in Fig. 6.
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TABLE III. Inequivalent connected clusters of a cubic cluster of
eight spins. Filled blue circles represent flipped spins. The interme-
diate tunneling coefficients satisfy the indicated recursion relations.

c1,1 = hx
6|Jz | c2,1 = +hx (2c1,1 )−Jx (1)

8|Jz |

c3,1 = hx (2c2,1+c2
1,1 )−Jx (2c1,1 )

10|Jz |

c4,1 = hx (4c3,1 )−Jx (4c2,1 )
8|Jz |

c4,2 = hx (3c3,1+c3
1,1 )−Jx (3c2

1,1 )

12|Jz |

c4,3 = hx (2c3,1+2c2,1c1,1 )−Jx (2c2,1+c2
1,1 )

12|Jz |

c5,1 = hx (c4,1+c4,2+2c4,3+c3,1c1,1 )−Jx (3c3,1+2c2,1c1,1 )
10|Jz |

c5,2 = hx (2c4,3+2c3,1c1,1+c2
2,1 )−Jx (2c3,1+2c2,1c1,1 )

14|Jz |

c6,1 = hx (4c5,1+2c5,2 )−Jx (2c4,1+4c4,3+c2
2,1 )

8|Jz |

c6,2 = hx (2c5,1+2c5,2+2c4,2c1,1 )−Jx (2c4,2+4c3,1c1,1 )
12|Jz |

c6,3 = hx (6c5,2 )−Jx (2c4,2+4c3,1c1,1 )
12|Jz |

c7,1 = hx (3c6,1+3c6,2+c6,3 )−Jx (6c5,1+3c5,2 )
6|Jz |

t2×2×2 = Jx (12c6,1) − hx (8c7,1)

VI. WEAK DISORDER

In this section we consider a 1D ring with weak disorder in
the transverse fields and in the exchange in the form of

hx,i = hx + δhx,i, Jx,i = Jx + δJx,i, (66)

where Jx,i connects spins i and i + 1 and where Jx > 0, such
that there are zeros in the absence of disorder. We denote the
disordered tunneling as t̃N , reserving tN for the tunneling in the
disorder free limit. One can in principle determine the recur-
sion relations of such a system and thus study disorder using
explicit polynomials t̃N . However, we shall rather calculate the

FIG. 6. The tunneling amplitude tN for three small, higher-
dimensional clusters, as a function of hx , with the respective zeros
marked. All these clusters have N tunneling zeros, and the plot shows
the N/2 positive ones.

relevant average quantities to lowest order in an expansion in
δhx,i and δJx,i.

A quantity of particular interest is the typical finite tunnel-
ing induced by random fluctuations of the couplings when the
average external field is held at one of the tunneling zeros h(n)

x .
Let us denote the disorder induced tunneling at a zero as

Tn ≡ t̃N
∣∣
hx=h(n)

x
. (67)

We are also interested in how much a ground-state crossing
shifts due to the presence of randomness:

Kn ≡ h̃(n)
x − h(n)

x , (68)

where h̃(n)
x and h(n)

x are respectively the nth zeros of the
polynomials t̃N and tN . We can calculate the second moment
of these random variables by considering a homogeneous ring
where all spins and all bonds are equivalent and where in the
absence of disorder all couplings are equal. However, explicit
calculations of the second moment of Tn and Kn for open spin
chains showed qualitatively very similar behavior as we find
below for rings. For a ring, to first order in the perturbations,
one has

t̃N ≈ tN + 1

N

∂tN
∂Jx

N∑
i=1

δJx,i + 1

N

∂tN
∂hx

N∑
i=1

δhx,i. (69)

This follows since perturbations on different sites are equiva-
lent, and thus all partial derivatives are equal:

∂ t̃N
∂ (δhx,i )

∣∣∣∣
δJx=δhx=0

= 1

N

∂tN
∂hx

, (70)

and likewise for the exchange. For identically and indepen-
dently distributed local disorder, the disorder-induced vari-
ance of the tunneling evaluated at a transverse field zero h(n)

x
thus results as

〈
T 2

n

〉 =
〈
δJ2

i

〉
N

∣∣∣∣∂tN
∂Jx

∣∣∣∣
2

hx=h(n)
x

+
〈
δh2

i

〉
N

∣∣∣∣ ∂tN
∂hx

∣∣∣∣
2

hx=h(n)
x

+ O
(〈
δJ4

i

〉
,
〈
δh4

i

〉)
. (71)

To leading order, the response of the tunneling amplitude Tn

to disorder is linear. The shift of the transverse field, Kn,
necessary to compensate for this disorder-induced tunneling
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is then given by the relation

Tn + ∂tN
∂hx

∣∣∣∣
hx=h(n)

x

Kn = 0. (72)

From Eqs. (71) and (72), we see that in order to calculate Kn

we only need the ratio of the derivatives ( ∂tN
∂Jx

/ ∂tN
∂hx

)|hx=h(n)
x

. This
ratio is easily obtained from the factorized polynomial form
of tN [Eq. (30)] as(

∂tN
∂Jx

/
∂tN
∂hx

)∣∣∣∣
hx=h(n)

x

= −h(n)
x

2Jx
. (73)

From this we deduce the average mean square of the drift in
the zeros to leading order as:

〈
K2

n

〉 ≈
(

h(n)
x

2Jx

)2 〈
δJ2

x,i

〉
N

+
〈
δh2

x,i

〉
N

(74)

= 1

N

(
h(n)

x

2

)2[〈
μ2

i

〉 + 4
〈
η2

i

〉]
, (75)

where

μi ≡ δJx,i

Jx
, ηi ≡ δhx,i

h(n)
x

, (76)

quantify the relative fluctuations of the couplings. In many
cases these are the most appropriate measures of the disorder
strength. We see that the zeros corresponding to larger fields
are more strongly affected by disorder. This certainly holds as
long as the shifts are smaller than the typical spacing O(1/N )
between zeros.

One can obtain the standard deviation of the tunneling
amplitude from Eqs. (72) and (73), using the derivative ∂tN

∂hx

from Eq. (56). For a ring [Eq. (61)] we get

〈
T 2

n

〉 ≈ 1

2π

(
Jx

|Jz|
)N−1 (h(n)

x

)2[〈
μ2

i

〉 + 4
〈
η2

i

〉]
[
1 − ( h(n)

x

2
√

Jx |Jz |
)2]1/2

. (77)

Again, we see that Tn ∼ h(n)
x for small transverse field, while

it grows quickly as the largest zero h(�N/2
)
x = 2

√
Jx|Jz| is

approached.

VII. TUNNELING IN SINGLE SPIN MODELS

Here we consider the single spin models as presented
in Sec. II D. Similarly to an Ising ferromagnet, the unper-
turbed (λ = 0) ground-states correspond to the two states with
Sz = ±S. Applying our method to this Hamiltonian is rather
straightforward: We simply calculate the tunneling matrix
element from −S to the +S ground state to lowest order in λ,
using intermediate tunneling coefficients cm, where m refers
to the spin projection onto the z axis, with eigenstates defined
by

Sz|m〉 = m|m〉. (78)

If we use the Hamiltonian in the form of Eq. (12), then the
recursion for cm will involve both cm−1 and cm−2, but unlike
in the problem treated in Sec. III A, the matrix elements and
the denominators involved in the recursion depend themselves
nontrivially on m. The resulting recursion is hard to solve

analytically. We can, however, simplify the recursion greatly
by first performing a rotation in the x-z plane:

Sx = cos αS′
x + sin αS′

z,

Sz = cos αS′
z − sin αS′

x,

Sy = S′
y,

(79)

where we choose α to satisfy tan2 α = λ2Jx/|Jz|, such as to
kill the matrix elements 〈k|H |k − 2〉 between S′

z eigenstates,
S′

z|k〉 = k|k〉. This yields the Hamiltonian in the rotated basis

H ′ = (Jz + λ2Jx )S′2
z + λ

√
Jx|Jz|(S′

zS
′
x + S′

xS′
z )

− λhx

(√
|Jz|

λ2Jx + |Jz|S′
x +

√
λ2Jx

λ2Jx + |Jz|S′
z

)
− λhyS′

y,

(80)

where we consider dominant ferromagnetic Ising coupling
Jz < 0. In the perturbative regime, the rotation angle α is small
and the ground states of H ′ still have a large overlap with the
two S′

z eigenstates |±S〉. We now deal with the problem of
calculating the tunneling

〈S|H ′| − S〉 = t2Sλ
2S + O(λ2S+1) (81)

between these two states up to order λ2S . Since the matrix
form of H in the S′

z basis is tridiagonal, only the off-diagonal
terms proportional to λ contribute to t2S . Thus we write the
Hamiltonian in the form

H ′ = H ′
0 + λV ′

1 + O(λ2), (82)

where

H ′
0 = JzS

′2
z , (83)

V ′
1 =

√
Jx|Jz|(S′

zS
′
x + S′

xS′
z ) − hxS′

x − hyS′
y. (84)

The matrix elements of these operators are

〈k|H ′
0|k〉 =Jzk

2, (85)

〈k|V ′
1 |k − 1〉

〈k|Sx|k − 1〉 =
√

Jx|Jz|(2k − 1) − (hx − ihy), (86)

where we used 〈k|Sx|k − 1〉 = −i〈k|Sy|k − 1〉, and

〈k|Sx|k − 1〉 = 1/2
√

S(S + 1) − k(k − 1). (87)

Now that the Hamiltonian is tridiagonal, there is a single
tunneling path between |±S〉 of order λ2S . Its contribution
to t2S is just the product of all off-diagonal matrix elements
〈k|V ′

1 |k − 1〉 divided by (minus) the energies of all intermedi-
ate excited states. The total tunneling amplitude is

t2S =
∏S

k=−S+1〈k|V ′
1 |k − 1〉∏S−1

k=−S+1[〈S|H ′
0|S〉 − 〈k|H ′

0|k〉]

=
∏S

k=−S+1[
√

Jx|Jz|(2k − 1) − (hx − ihy)]〈k|Sx|k − 1〉∏S−1
k=−S+1 Jz(S2 − k2)

.

(88)
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Note that this already takes the form of a factorized polyno-
mial, with zeros given by the equation

hx − ihy =
√

Jx|Jz|(2n − 1), (89)

where n = −S + 1,−S + 2, . . . , S. Recall that we took the x
axis to be the hard axis (Jx > 0). We find 2S equally spaced
ground-state crossings for hy = 0 and transverse fields

h(n)
x =

√
Jx|Jz|(2n − 1). (90)

This is the same qualitative behavior as in a ferromagnetic
Ising cluster as seen in Sec. II C, cf. Eqs. (38) and (39). This
result coincides in lowest order with the zero positions as
calculated by Garg [10] and as demonstrated experimentally
by Wernsdorfer [12]. However, in the rotated frame it becomes
quite simple to obtain the exact degeneracies of this model, as
we show in the next subsection.

1. Exact degeneracies of single spin model

If we are only interested in the location of the zeros,
then the rotated Hamiltonian can be used beyond perturbation
theory to determine the position of the zeros exactly. Indeed,
a zero of the tunneling matrix element 〈S|H ′| − S〉 occurs
whenever one of the off-diagonal entries of H ′ becomes zero.
At that point, the Hamiltonian splits into two uncoupled
blocks for Sz � k and Sz � k − 1, implying that the up-state
is strictly decoupled from the down-state to all orders. This
entails an exact double degeneracy of the ground state (which
map onto each other on rotation by π around the x axis). Now,
the off-diagonal matrix element is given by〈

k|H ′|k − 1
〉

〈k|Sx|k − 1〉 =
√

Jx|Jz|(2k − 1) −
(

hx

√
|Jz|

Jx + |Jz| − ihy

)
.

(91)
Since Jx > 0, we can again have a ground-state degeneracy
only for a transverse field along x. The critical fields are
determined by the exact condition

h(k)
x =

√
Jx(Jx + |Jz|)(2k − 1), (92)

which agrees with the perturbative result of Eq. (90) to lowest
order in Jx and reproduces the nonperturbative path integral
results by Garg [10]. Here we have shown that this yields the
location of the zeros exactly, independently of the size S of
the spin.

The result that the transverse field has to be applied along
the hard axis is fully consistent with what we found for FM
spin clusters in Sec. II C. The main difference between the
exact cluster calculation and the single spin model consists,
however, in the precise location of the zeros. For the single
spin model, the zeros are equally spaced, while for clusters
they are spaced more and more densely the larger the trans-
verse field, as one can see, e.g., in Fig. 5, or read off from the
analytical result in Eq. (55).

VIII. OTHER SYSTEMS WITH COMPETING TUNNELING
CHANNELS

The mechanism we have studied here, namely the inter-
ference of parallel multistep tunneling channels between an

initial and a final state is very general in nature and appears in
various physical contexts.

A famous example is the case of resonant single-particle
tunneling via several intermediate sites, a problem introduced
by Nguyen, Spivak, and Shklovskii [32,33], with comprehen-
sive reviews given in Refs. [34,35].

For free particles (noninteracting fermions), different paths
from an initial to a final site contribute with an amplitude
whose sign alternates with the number of intermediate sites
whose energy is above the chemical potential. This leads to
negative interference between alternative paths. A magnetic
field introduces additional Aharonov-Bohm phases and de-
creases the likelihood of full negative interference, resulting
in increased transmission, that is, negative magnetoresistance
[36,37]. Recently, it was found that the equivalent question
for hard core interacting bosons leads to a similar interference
problem, where, however, at energies close to the chemical
potential all path amplitudes contribute with the same sign,
leading to maximally constructive interference [38,39]. This
situation resembles that of a ferromagnetic cluster with trans-
verse field applied in the direction in which the transverse
exchange is more ferromagnetic (i.e., the softer axis). In
contrast to the magnetic clusters, however, in these hopping
problems it is very hard or even impossible to tune a parameter
(e.g., the magnetic field or the chemical potential) to suppress
the tunneling completely.

Competing tunneling terms also arise in more general
magnetic clusters composed of electronic and nuclear spins,
a situation that frequently occurs in rare-earth compounds.
The magnetic ions are coupled to their nuclear spins, while
the electronic spins couple to each other via dipolar and/or
exchange couplings. Clusters of such ions often have doubly
degenerate ground or excited states, which are only split by
higher-order tunneling processes that involve the interference
of transverse fields, exchange/dipolar interactions and hy-
perfine couplings, that generically contribute with competing
signs. Tuning the transverse field often allows to induce
zeros in the corresponding collective tunneling. Similarly, the
tunneling of the spin associated with a crystal field doublet of
a magnetic ion can under certain circumstances be suppressed
by a transverse field applied at specific angles, if different
channels involving the magnetic field and transverse crystal
field terms compete.

Ground-state crossings have also been reported in SU(2)-
invariant, gapped frustrated spin chains [40,41]. In that case,
the crossings are related to the interaction between the edge
states of the chain. This is reminiscent of the explanation of
the level crossings in the model of Eq. (7) in terms of Majo-
rana edge states [21], and it is natural to ask whether these
crossings can also be seen as a consequence of destructive
interferences between different channels. For that purpose, let
us consider the level crossings in the bilinear-biquadratic spin-
1 chain [41], H = ∑

i J1(Si · Si+1) + Jb(Si · Si+2)2. If one adds
a strong uniaxial anisotropy along z, then one may work with
respect to an AFM ground state, and the transverse terms with
�Sz = 2 and 4 have competing signs if Jb > 0, presumably
leading to level crossings similar to those of the isotropic case.
It would be interesting to see if a more direct connection can
be established by studying the effective coupling between the
edge states starting from the AKLT model Jb = J1/3 for which
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the edge states are fully decoupled in the ground state [42].
This goes beyond the scope of the present paper, however.

IX. SUMMARY AND OUTLOOK

High-order degenerate perturbation theory allows us to
understand transverse field zeros in terms of negatively inter-
fering tunneling paths, which in turn is tied to the presence
of competing quantum fluctuations in the Hamiltonian. Our
method nicely applies to 1D systems, where the tunneling
can be obtained for any system size exactly, in contrast with
2D and 3D clusters where the number of different connected
clusters grows exponentially with system size. Overall, the
results support the existence of N zeros in some region of the
parameter space independently of the geometry.

The original model [Eq. (7)] can be further extended by
staggering the field or by adding exchange couplings along
the y axis while keeping the crossings. As we saw in Sec. II C,
systems with FM ground states exhibit zeros only when
the field is applied along the “hard axis” (the one with the
strongest antiferromagnetic or the weakest ferromagnetic cou-
pling). In contrast, AFM clusters on a bipartite lattice exhibit
suppressed tunneling on approximate circles in the transverse
field plane. This may make AFM cluster ground states more
attractive since the tunneling suppression is more resistant
to fluctuations in the orientation of the applied field. This
ability to control and suppress the quantum fluctuations in
small magnetic clusters or single molecule magnets is indeed
considered an important goal [43].

As we showed in Eq. (56), the tunneling amplitude scales
linearly with generic deviations from a zero condition. This
linear behavior contrasts with the scaling one often encounters
in situations where tunneling is suppressed (at hx = 0) due
to a point group symmetry, e.g., in rare earth non-Kramers
doublets such as Ho in LiHoF4: Here the doublets have no
splitting at zero transverse field hx, but a quadratic splitting
∼h2

x is induced at small transverse field [44,45]. The power of
hx with which the tunneling grows depends on the structure of
the crystal field levels involved in the non-Kramers doublet.
These differences have advantages in different contexts: A
linear response in tunneling implies that one needs smaller
field deviations to manipulate a classical bit or qubit; quadratic
or higher-order scaling instead imply better protection from
dephasing (of a qubit) due to transverse field noise.

Introducing disorder in the exchange couplings and in
the transverse fields, the crossings change position but do
not disappear. The latter only happens when in ferromagnets
Jx − Jy, or in antiferromagnets Jx + Jy, it starts to change sign
and turn negative. The relation between a set of Jx, either
randomly generated or carefully chosen, and the resulting
number of crossings remains to be studied more deeply.

A certain amount of disorder in the exchange is always to
be expected from static sources such as lattice imperfections,
strain, or dynamically due to slow phonons. Spatial inhomo-
geneities can also induce g-factor variations that lead to an
effective disorder in the transverse field. In an ensemble of
weakly disordered clusters it is thus impossible to suppress
the tunneling simultaneously in all clusters, and even in a
single cluster temporal fluctuations of the parameters will de-
stroy the perfect negative interference of competing tunneling

channels. The best strategy to suppress the tunneling as much
as possible consists then in tuning the transverse field to
the first (smallest) zero, h(n=1)

x , corresponding to the average
exchange coupling in the system. The disorder-induced fluctu-
ations away from vanishing tunneling turn out to be smallest
under those conditions. This is closely related with the fact
that the location of this smallest transverse field zero moves
the least as the parameters of the Hamiltonian are slightly
perturbed. Hence this zero seems to be the most interesting
one for most applications.

Our recursive calculation of collective tunneling ampli-
tudes generalizes nicely to simpler single spin models, and
the ground-state crossings in this model can be interpreted
with the same tunneling interference argument. Given the 2S
crossings of a single spin, one may expect that an appropri-
ately chosen spin-S model on a lattice of N spins will exhibit
2SN crossings.

It is an interesting question to ask what happens to the zeros
as one leaves the perturbative regime. In the ferromagnetic
single spin model we can trace them easily, since we can
obtain them exactly. If the hard axis is along the x axis and
one tunes Jy up to and beyond Jz for example, then the number
of 2S zeros remains intact, even though the easy axis has
undergone a flop from the z to the y axis. In lattice models,
the zero lines in the hx-Jx plane do not seem to disappear
either. They even may cross quantum phase transition lines,
as long as they enter a new phase with a degenerate ground
state or a gapless phase. The study of the related phenomena
and implications is left for future work.
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APPENDIX A: DEDUCTION OF METHOD

Following Bloch’s recipe [30] we consider the effective
Hamiltonian Heff projected onto the unperturbed ground-state
subspace g = {∅, �} by the projection operator P. It takes the
form

Heff = PHP + P

⎛
⎝ ∞∑

n=2

∑
{ki}

V Sk1 . . .V Skn−1

⎞
⎠V P, (A1)

where n specifies the order in V of the term. For a given n, we
sum over all (n − 1) tuples of ki = 0, 1, . . . , that obey

k1 + k2 + · · · + ks � s, (A2)

for all s = 1, . . . , n − 2, and

k1 + k2 + · · · + kn−1 = n − 1. (A3)

The operator Sk is defined as

Sk =
{

−P = −∑
m∈g |m〉〈m|, k = 0,

1−P
(ε∅−H0 )k = ∑

m �∈g
|m〉〈m|

(−�εm )k , k � 1,
(A4)

where �εm = εm − ε∅. The eigenvalue equations read

HeffP|�±〉 = E±P|�±〉, (A5)
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where |�±〉 are the lowest-energy eigenstates of H . Due to the
symmetry R [Eq. (4)] we may write the eigenstate projections
to leading order as

P|�±〉 = |∅〉 ± |�〉 + O(λ). (A6)

The relevant matrix element to calculate is

t ≡ 〈∅|Heff|�〉. (A7)

On expanding V = λV1 + λ2V2 in Eq. (A1) and substituting in
t , we group terms according to their powers of λ. Taking n1

(n2) to be the number of V1 (V2) operators present in a term of
orders n and u, we have

n1 + n2 = n, n1 + 2n2 = u, (A8)

from which we find what orders of n contribute to u by taking
the limiting cases of n1 = mod(u, 2) and n2 = 0. Finally, we
only need to sum over the permutations of V1 and V2 that
respect the order u. Applying this to t , we have

t =
∞∑

u=1

λu
u∑

n=� u
2 �

∑
{ki},{li}

〈∅|Vl1 Sk1 . . .Vln−1 Skn−1Vln |�〉, (A9)

where the li = 1, 2 obey l1 + l2 + . . . ln = N. It helps to look
at the calculation of the matrix element in Eq. (A9) sequen-
tially; that is, starting with the extreme left operator, we apply
each operator to the states on its left. While V1 and V2 always
transform the states 〈m| they act on, Sk mainly acts as a
projector onto a subspace of states, either the ground state g
(if k = 0) or the excited states (if k > 0). Now the treatment
of V2 as a second-order perturbation is crucial for our method
and physically justified by the fact that the basic action of V2

on |m〉 is to flip pairs of neighboring spins while V1 flips single
spins. In the term of order λu, 〈∅| is acted on with enough V1’s
and V2’s to at most flip u spins. Since we need a minimum of
N spin flips to transform ∅ into �, it follows that the lowest
order is λN . After applying a Vl to the states on its left, the
resulting states must have l more spin(s) flipped than before
for such terms to yield a nonzero contribution to order λN . In
particular, this means a projection onto g by S0 = −P would
only give terms that will eventually have zero contribution.
This imposes ki > 0 in the leading term O(λN ). However, the
constraint (A3) only allows for one single choice of the ki,
namely ki = 1 for all i. Using this information in Eq. (A9),
and writing t = tNλN + O(λN+1), we now have

tN =
N∑

n=� N
2 �

∑
{li}

〈∅|Vl1 S . . .Vln−1 SVln |�〉, (A10)

where S ≡ S1. This proves Eq. (19) in the main text.
Now we shall prove the recursion relations in Eq. (27),

starting from the definition of the intermediate tunneling
coefficients

cm ≡
|m|∑

n=� |m|
2 �

∑
{li}

〈∅|Vl1 S . . .Vln−1 SVln S|m〉, (A11)

where

l1 + l2 + . . . ln = |m|, (A12)

and we remind the reader that |m| is the number of spins of |m〉
that are flipped relative to |∅〉. Summing over ln and redefining
n → n − 1, we have

cm =
|m|−1∑

n=� |m|
2 �−1

∑
{li}

〈∅|Vl1 S . . .Vln SV1S|m〉

+
|m|−1∑

n=� |m|
2 �−1

∑
{l ′i }

〈∅|Vl ′1 S . . .Vl ′n SV2S|m〉, (A13)

where

l1 + . . . ln = |m| − 1, l ′
1 + . . . l ′

n = |m| − 2. (A14)

By expanding V1,2S|m〉 in Eq. (A13), we shall see that we
recover the cluster coefficients of smaller clusters. Consider
first V1S|m〉. We have that

S|m〉 = 1

−�εm
|m〉, (A15)

which follows from the definition of S. Then, applying V1 to
the state |m〉, we get a sum over states m′ which differ by one
spin flip from m. However, only m′ clusters with |m′| = |m| −
1 yield a nonzero contribution to cm. Thus,

|m|−1∑
n=� |m|

2 �−1

∑
{li}

〈∅|Vl1 S . . .Vln SV1S|m〉

=
|m|−1∑

n=� |m|
2 �−1

∑
{li}

〈∅|Vl1 S . . .Vln S
∑

m′
|m′ |=|m|−1

|m′〉〈m′|V1S|m〉

=
∑

m′
|m′ |=|m|−1

cm′ 〈m′|V1S|m〉. (A16)

With an analogous argument applied to V2S|m〉 we obtain
the recursion relations (23) and (22) in the main text. The
expression for tN follows from an analogous derivation, the
only difference being that there is no insertion of the operator
S at the last step, as one can note from comparing Eq. (A10)
and Eq. (A11). This eliminates the corresponding energy
denominator.

APPENDIX B: CLUSTER INDEPENDENCE

Consider a cluster C which is composed of two
(dis)connected clusters of flipped spins A and B, by which
we mean that the excitation energy of cluster C is the sum
of independent excitation energies,

�εC = �εA + �εB. (B1)

Here we want to prove the relation among intermediate tun-
neling coefficients:

cC = cAcB, (B2)

which one should expect to hold because to leading order we
can simply reduce the Hamiltonian to the parts acting on either
A or B and drop all other terms, so that the flipping of A and B
are independent processes.
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This assertion is conveniently proved by induction on the
size of the cluster C. We suppose that we have proved it for
a small cluster of size up to |C| − 1. For sizes 0 and 1 the
assertion is trivial. The general recursion formula (22) shows
that

cC = − 1

�εC

∑
m′

cm′ 〈m′|V |C〉, (B3)

where we sum over the m′ obeying |m′| = |C| − 1 or |m′| =
|C| − 2. Let us now write C = A ∪ B, and m′ = A′ ∪ B or
m′ = A ∪ B′, depending on where V acts. Thus:

cC = − 1

�εC

(∑
A′⊂A

cA′∪B〈A′ ∪ B|V |A ∪ B〉

+
∑
B′⊂B

cA∪B′ 〈A ∪ B′|V |A ∪ B〉
)

(B4)

= − 1

�εC

(∑
A′⊂A

cA′cB〈A′|V |A〉 +
∑
B′⊂B

cAcB′ 〈B′|V |B〉
)

,

(B5)

where in the second line we used the induction hypothesis for
smaller clusters, which implies that cA′∪B = cA′cB. Now we
use the relation (B3) in the form

∑
A′

cA′ 〈A′|V |A〉 = −�εAcA, (B6)

and an analogous expression for cB. Together with (B1), this
proves the relation (B2).
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