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We study the magnetoresistance of two-dimensional bosonic Anderson insulators. We describe the

change in spatial decay of localized excitations in response to a magnetic field, which is given by an

interference sum over alternative tunneling trajectories. The excitations become more localized with

increasing field (in sharp contrast to generic fermionic excitations which get weakly delocalized): the

localization length �ðBÞ is found to change as ��1ðBÞ � ��1ð0Þ � B4=5. The quantum interference

problem maps onto the classical statistical mechanics of directed polymers in random media (DPRM).

We explain the observed scaling using a simplified droplet model which incorporates the nontrivial

DPRM exponents. Our results have implications for a variety of experiments on magnetic-field-tuned

superconductor-to-insulator transitions observed in disordered films, granular superconductors, and

Josephson junction arrays, as well as for cold atoms in artificial gauge fields.
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Transport in Anderson insulators [1,2] is crucially deter-
mined by the properties of localized wave functions. Their
structure is very complex, both deep in the insulator, as
well as upon approaching the delocalization transition.
A particularly important tool in probing the nontrivial
structure of localized states in Anderson insulators is
magnetoresistance (MR). This is because a magnetic field
sensitively affects the quantum interference, which in turn
influences quantum localization. This effect of the mag-
netic field has been studied extensively in the past,
concentrating mostly on fermions [3,4].

Recent experiments on disordered superconducting
films provide evidence for bosonic insulators with local-
ized electron pairs as carriers [5,6]. These and other similar
systems feature a giant peak in magnetoresistance [7–11].
This is often interpreted as a crossover from bosonic to
fermionic transport [12,13], even though the details remain
controversial. Bosonic localization problems arise also in
disordered granular superconductors in the insulating
regime, in cold bosonic atoms in speckle potentials (where
artificial gauge fields can mimic a magnetic field), as well
as in disordered quantum magnets.

The predominant mode of transport in disordered
insulators is variable-range hopping of carriers between
localized excited states [14]. The spatial decay of wave
functions describing these localized excitations deter-
mines the inelastic hopping rate and thus the resistance.
At low temperature, the (phonon-assisted) hops become
significantly longer than the average distance between
impurity sites hosting the excitations. In this situation,
one needs to know the wave-function amplitudes at
distances greater than the Bohr radius of an impurity

state. At these distances, the amplitude is reinforced
by multiple scatterings from intermediate impurities
[15] whereby many alternative paths interfere with
each other [3,4].
A perpendicular magnetic field affects the interference

of the scattering paths on all length scales and modifies the
localization properties. Interestingly, bosons and fermions
behave very differently in this respect: while in the absence
of a field fermion, paths typically come with amplitudes of
arbitrary signs, low-energy bosonic amplitudes are positive
and thus interfere in a maximally constructive way. The
magnetic field suppresses this interference, yielding a
strong positive magnetoresistance. It exceeds by far a
largely opposite effect seen in fermions, which arises
from a subtle suppression of negative interferences [16].
Despite numerous studies of fermionic MR [3,17–19], a

full understanding of the effect of magnetic field on the
large-scale structure of localized wave functions has not
been obtained. In this Letter, we study the bosonic cousin
of this problem and show that it is amenable to a complete
solution. The simplifying circumstance is the absence of
additional sign factors in the quantum interference prob-
lem, which allows a mapping to the classical statistical
mechanics of directed polymers in randommedia (DPRM).
More generally, our analysis of MR is also valid for fer-
mionic problems, provided the interfering paths have only
positive amplitudes. This arises, e.g., in the tunneling
below the bottom of the conduction band in a solid semi-
conductor solution [20], or in fermionic impurity bands
with Fermi level very close to the band bottom.
The model.—Here we study a model of hard-core bosons

on a square lattice,
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with uniformly distributed on-site disorder in the range
"i 2 ½�W;W�. We take W ¼ 1 as the energy unit and
consider weak nearest-neighbor tunneling, t � W. We
fix the chemical potential to � ¼ 0 to study a half-filled
impurity band. A perpendicular magnetic field is intro-
duced via the vector potential A ¼ Bxey , with B being

the flux per plaquette in units of the flux quantum.
We now focus on the spatial structure of an excitation

localized around site i. It is characterized by the residue of
the pole at ! � �i of the retarded Green’s function

GR
j;ið!Þ ¼ �i

R1
0 dtei!th½cjðtÞ; cyi ð0Þ�i [21]. Its decay

away from the site i defines a localization length. Deep
in the insulating regime, GR

j;i can be evaluated using a

locator expansion [16]. To leading order in small hopping,
one obtains a sum over all paths � of shortest length [3],
distðijÞ (cf. Fig. 1, only right-going steps are allowed)

SjiðBÞ � 1

tdistðijÞ
GR

j;ið!Þ
GR

i;ið!Þ
��������!!"i

¼ X
�

ei��ðBÞJ�ð! ¼ "iÞ;

(2)

which is closely analogous to the sum over paths for
fermionic Anderson insulators [1]. In Eq. (2), each path
� contributes with an amplitude

J�ð!Þ ¼ Y
k2�nfig

sgnð"kÞ
"k �!

; (3)

and an accumulated phase ��ðBÞ ¼
R
� dr �A. On aver-

age, the larger the excitation energy "i, the faster the
spatial decay of jSjij [16]. Henceforth, we focus on low-

frequency excitations (relevant for transport at low T) and
hence set ! ¼ "i ¼ 0.

Within this ‘‘forward-scattering approximation’’ [3]
justified for t � W, bosons and fermions differ only by
the presence and absence (respectively) of the factor
sgnð"kÞ in the amplitudes (3). For bosons, the amplitudes
are all positive for "i ¼ 0. A magnetic field destroys this
complete constructive interference and thus localizes the
wave function more [16,18,22]. In contrast, typical fermi-
onic problems [3] feature amplitudes which vary in sign,
depending on the number of sites on the path with
"i < � which are occupied in the ground state. In this
case, the dominant effect of a magnetic field lies in destroy-
ing negative interferences of competing paths, which tends
to delocalize the wave function slightly. Both cases are
readily amenable to efficient numerical studies via transfer
matrices [3,17], which we use below. The results shown in
Fig. 2 illustrate the opposite trends.
The relevant quantity for transport is the typical spatial

decay of localized excitations. Therefore, one focuses on
the (typical) magnetoconductance defined as [3]

��NðBÞ¼ expðln½jSjiðBÞ=Sjið0Þj�Þ; N�distðijÞ; (4)

where the overbar denotes the disorder average. We take
(i, j) on opposite corners of a square [23] (cf. Fig. 1). The
linear variation with distance in Fig. 2 implies that at large
scales, B changes the typical decay rate, i.e., the inverse
localization length 1=�, of the excitations.
Numerical evaluation.—One numerically evaluates

SjiðBÞ � Sxj;yjðBÞ (with i as origin) by recursion

Sxþ1;yðBÞ ¼ Vxþ1;y½ei��Sx;y�1ðBÞ þ ei�þSx;yþ1ðBÞ�; (5)

with �� ¼ R
�� A � dr, where ��: ðx; y� 1Þ ! ðxþ 1; yÞ

are straight paths along the lattice links and Vx;y ¼
1=j"x;yj. ��NðBÞ evaluated from this varies as B2N3 for

small (B,N) and shows a sharp crossover toNB4=5 at larger
fields or distances (cf. Fig. 3). The data for different N are
found to collapse onto a scaling function

FIG. 1 (color online). The approximation of directed propaga-
tion [3] maps the wave function to a directed polymer. The
droplet picture suggests that traces of localized wave functions
or low-energy polymer configurations form a string of loops of
competing or interfering paths. Relevant loops of size ‘ have
transverse roughness �‘�¼2=3. They are rare, being separated by
a typical distance ‘1þ� ¼ ‘2� 	 ‘. We show two competing
paths �1;2 and the loops or droplets they form.

FIG. 2 (color online). Magnetoconductance of fermions and
bosons as a function of distance N in a half-filled impurity band
(� ¼ 0). The linear dependence implies that the magnetic flux B
changes the localization length �. While it increases slightly for
fermions, it shrinks much more substantially in bosons.
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jln��NðBÞj¼N�1=3�ðNB3=5Þ;
�ðx�1Þ¼b1x

10=3; �ðx	1Þ¼b2x
4=3; (6)

with b1 � 0:31, b2 � 0:56. This scaling is expected theo-
retically from the physics of directed polymers (DPRM),
as we explain below.

Mapping to directed polymers.—By virtue of the posi-
tive path amplitudes, SjiðB ¼ 0Þ can be interpreted as the

partition sum of DPRM in 1þ 1 dimensions [24,25] with
random on-site energies lnj"ij (at temperature T ¼ 1) and
ends fixed at sites i and j. Each polymer configuration
corresponds to a directed path � of the expansion (2).

In low dimensions, DPRM exhibit a pinned phase at
large scales, as the random potential is relevant under
renormalization [26,27]. Beyond a characteristic pinning
scale Lc (of the order of the lattice scale here), the random
potential competes strongly with the polymer’s entropic
elasticity and induces roughness exceeding that of random
walks: on longitudinal scales ‘, typical transverse excur-
sions of configurations grow as ‘� with � > 1=2. A low-
energy excitation that differs from dominant configurations
on scale, ‘ has typical excitation energy Eð‘Þ � ‘�, with
energy exponent � ¼ 2� � 1 [28]. In 1þ 1 dimensions
(MR in 2D), the value � ¼ 2=3 is known exactly [29],
while �3D � 0:62 is known numerically [30].

When B � 0, the polymer configurations acquire com-
plex weights. Studies of � and � exponents of complex
DPRM [31] suggest that the scalings of the pinned phase
do not change with complex weights. In fact, for fermi-
ons at B ¼ 0, where negative weights are abundant,
there is numerical evidence that the wave functions are
still governed by DPRM exponents [32–34]. We thus
assume that the DPRM exponents hold for finite fields
as well.

It is interesting to note that for weak fields, Eq. (5)
admits a continuum limit, where S obeys the equation

DxS ¼ D2
ySþ Vðx; yÞS; (7)

with a �-correlated random potential term Vðx; yÞ and
D	¼ðx;yÞ � @	 � iA	ðx; yÞ being the gauge-covariant

derivative (in Landau gauge Ay ¼ 0). This generalizes

the Kardar-Parisi-Zhang equation [35] to the presence of
complex potentials V ! V þ iAx and may render bosonic
MR amenable to a field theoretic analysis similar to
Refs. [36,37]. However, a rigorous study of this modified
Kardar-Parisi-Zhang equation is not attempted here.
In DPRM language, the magnetoconductance can be

cast as a thermodynamic average of the phase factors

ei��ðBÞ over polymer configurations, and the ratio of ampli-
tudes Sji takes the manifestly gauge-invariant form:��������SjiðBÞSjið0Þ

��������
2 ¼

"P
�;�0 e�E��E�0 cosðBA��0 ÞP

�;�0 e�E��E�0

#
: (8)

Here E� ¼ P
k2�ni lnj"kj is the energy of configuration �,

and A��0 is the oriented area enclosed by � and �0.
MR in weak fields.—For weak fields or short distances,

one can evaluate ��NðBÞ perturbatively in B. Typical
loops of linear extent ‘ enclose a flux �B‘1þ� . Of the
N=‘ possible independent loops, only a fraction �‘��

interfere significantly, cf. Fig. 1, and are thus sensibly

affected by B. As long as N � ‘B � B�ð1=ð�þ1ÞÞ, the domi-
nant contribution to Eq. (8) comes from the largest loops of
length ‘� N, which nevertheless enclose only a fraction of
a flux quantum. This results in the magnetoconductance (4)
��N / �N��ðBN1þ� Þ2 ¼ �B2N3. The roughness expo-
nent drops out of this perturbative result. We therefore
recover the scaling previously predicted for interfering
paths with positive weights [3], even though those assumed
random walk scaling, � ¼ 1=2.
MR in strong fields.—For N > ‘B, DPRM scalings show

more clearly in the magnetoresponse. The dominant con-
tribution to��N comes from reduced interference in loops
of length ‘B, each of which decreases��N byOð1Þ. Larger
loops contribute similarly, but their probability to interfere
significantly decreases as ‘��. On the other hand, smaller
loops, albeit more abundant and likely to interfere, enclose
a small fraction of a flux quantum, and thus have a negli-
gible effect. The contribution from loops of size ‘B gives
rise to an extensive lnð��NÞ proportional to the density of
significantly interfering loops,

ln��N

N
� ��

�
1

�

�
��‘�1

B ‘��
B ¼ �Bð1þ�Þ=ð1þ�Þ

¼ �B2�=ð1þ�Þ: (9)

This is equivalent to a reduction of the inverse localization

length by B4=5 in 2D. In 3D the same arguments yield an
exponent 2�=ð1þ �Þ � 0:765. Both exceed the value 2=3
obtained upon neglecting pinning and assuming random

FIG. 3 (color online). Scaling of the magnetoconductance ��
with distance N and flux per plaquette B. The crossover from the
perturbative regime j ln��NðBÞj � B2N3 to the nonperturbative
regime j ln��NðBÞj � NB4=5 occurs at N � ‘B, where many
successive interfering loops start contributing. Inset: change of
inverse localization length for N ¼ 200, and best fit to the
leading two terms in Eq. (11), ��1ðBÞ���1ð0Þ¼c1B

4=5þc2B.
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walk scaling with � ¼ 1=2. The latter is valid only for a
limited number of weak scatterings [3,20].

So far we have discussed the leading scaling with mag-
netic field. However, the numerical data show small sub-
leading corrections, cf. inset of Fig. 3. Those arise from
spatially overlapping loops. To understand their effect, we
introduce a hierarchical model built on the droplet theory
for directed polymers [27,28]. At a given length scale L,
the polymer has a preferred set of configurations, which
usually competes with alternative, subdominant sets of
paths. The leading family of subdominant paths has
OðL�Þ higher free energy and wanders off the dominant
configuration by L� , enclosing a typical loop areaOðL1þ� Þ.
This pattern repeats at all length scales. We simplify this
phenomenology by considering a model where loops and
alternative paths are restricted to lengths Lk ¼ N2�k

where N 	 1 is the fixed distance between end points.
Each parent loop L of size Lk is composed of a dominant
and a subdominant set of paths, each consisting of two
successive loops L0

1;2 and L00
1;2 of size Lkþ1, cf. Fig. 4. We

define the propagation amplitude and build in DP scaling
by defining

SkL ¼ Skþ1
L0

1
Skþ1
L0

2
þ e�fLL

�
k eiaLBL

1þ�
k Skþ1

L00
1
Skþ1
L00

2
; (10)

and setting all SkL ¼ 1 for kwith Lk & ‘B [38]. fL > 0 and

aL are random variables of order Oð1Þ, with a probability
density 
ðfL; aLÞ assumed to be independent and identi-
cally distributed for all loops L. The magnetoresistance is

then defined as ��N ¼ lnðjS0NðBÞ=S0Nð0ÞjÞ. Note that
significant interference between the paths L0 and L00 in
Eq. (10) occurs only in rare ‘‘active loops’’ L for which
fLL

� & 1.
In contrast to the hierarchical lattices analyzed in

Ref. [39], we explicitly include here the known scaling
of excitation energies and areas of loops, which are essen-
tial to discuss magnetoresponse.

The perturbative scaling ��N � B2N3 is easy to obtain
in this model. In the nonperturbative regime (N	‘B	1)
using that active loops are sparse, one can expand

ln��NðBÞ in powers of the density of active loops of linear
size ‘B, [40]

ln��NðBÞ
N

¼ �B2�=ð1þ�Þ½c1 þ c2B
�=ð1þ�Þ

þ c3B
2�=ð1þ�Þ þ � � ��; (11)

where the constants ci depend only on the distribution

ðf; aÞ. As in the cluster expansion for interacting parti-

cles, one obtains a term of OðBð1þn�Þ=ð1þ�ÞÞ from contribu-
tions with n active loops. The leading coefficient c1 is
positive definite, and we found c2 > 0, independently of
our choice of the distribution 
ðf; aÞ. Subleading terms due
to interfering loops thus enhance the negative MR of
bosons. This may explain a similar effect seen in the
numerical data on the original lattice (inset of Fig. 3),
where a fit yields c1 � 0:34, c2 � 0:67. In practice,
ln�� thus appears to follow a power law with slightly
larger exponent than 4=5.
Experimental consequences.—At low T, the boson

transport proceeds by variable-range hopping, whose
resistance, at fixed T, depends on the localization length
as Rð�Þ ¼ 
 expðA=�	Þ, with 	 ¼ 1=2 (with Coulomb
gap) and 2=3 (constant density of states in d ¼ 2) [14].
According to Eq. (9), a perpendicular magnetic field
reduces the localization length � according to

1=�ðBÞ � 1=�0 þ �½1=��ðBÞ; Bmin & B � B̂a2

�0

;

(12)

where we recall the definition of B in terms of the phys-

ical field B̂, the spacing a between impurities, and the

relevant flux quantum �0. Here Bmin ¼ ðRhop=aÞ�5=3 ¼
½lnðRð0Þ=
Þ�0=a��5=3 is required to access the strong MR

regime, in which ‘B ¼ aB�3=5 is shorter than the typical
hopping distance Rhop. At smaller fields, the perturbative

results above predict a relative increase of resistance pro-
portional to B2ðRhop=aÞ3, which is dominated by the

response of a few rare elementary resistors. In contrast,
in the strong MR regime, to lowest order in B the resistance
increases by the large factor

RðBÞ=Rð0Þ ¼ ½Rð0Þ=
�	�0�½1=��; Bmin & B: (13)

For B � 1, the exponent is 	c1�0B
4=5. For B ! 1, sub-

leading terms further add to this, yielding values as big as
0:3	�0, cf. Fig. 3. These effects are even much stronger in
the presence of a Coulomb gap [41]. As resistances up to
Rð0Þ=
� 106 are easily measurable, and localization
lengths � & 2 are safely within the regime of applicability
of forward scattering, our theory can reliably predict
strongly positive MR of bosons, with enhancement factors
of up to 2 or 3 orders of magnitude.
In contrast, the analogous fermionic problem exhibits

negative MR, with much smaller maximal amplitudes,

FIG. 4 (color online). Hierarchical droplet model: at each level
of the hierarchy, a parent loop L (composed of a dominant and
subdominant branch) is split into four subloops, two forming the
dominant branch (L0

1;2, thicker line), and two forming the

subdominant branch (L00
1;2, thinner lines), cf. Eq. (10). The parent

levels are indicated by dashed lines. The dots indicate the
splitting into two successive loops at the next level.
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cf. Fig. 2. The importance of the bosonic effect suggests
that it is a key ingredient in the MR peak observed in
superconducting films with preformed pairs [7]. Those
experiments are usually conducted close to criticality
where � 	 a. In that case, our theory still applies qualita-

tively in weak fields where B̂�2 (upon coarse graining to
scales ��). However, the MR receives additional positive

contributions at larger fields B̂ * �0=�
2, which affect the

bosonic ground state within the correlation volume.
Apart from experiments of MR in condensed matter, it

would be very interesting to probe magnetoresponse and its
sensitivity on quantum statistics using cold atoms, e.g.,
employing synthetic gauge fields.

After this work was completed, we became aware of
Ref. [42], which also discusses similar magnetoresistance
phenomena for single-particle variable-range hopping.
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