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Localization transitions as a function of temperature require a many-body mobility edge in energy,
separating localized from ergodic states. We argue that this scenario is inconsistent because inclu-
sions of the ergodic phase in the supposedly localized phase can serve as mobile bubbles that induce
global delocalization. Such inclusions inevitably appear as rare fluctuations in any typical state.
We conclude that the only possibility for many-body localization occurs in lattice models that are
localized at all energies. Building on a close analogy with a two-particle problem, where interactions
induce delocalization, we argue why hot bubbles are mobile and do not localize upon diluting their
energy. Numerical tests of our scenario show that the previously reported mobility edges cannot be
distinguished from finite-size effects.

PACS numbers: 05.30.Rt, 72.15.Rn, 72.20.Ee

It is now almost mathematically proven that many-
body localization, i.e., the absence of long range trans-
port in a thermodynamic many-body system, occurs in
certain quantum lattice models with sufficiently strong
quenched disorder, at any energy density. [1] In these
cases it comes along with a complete set of conserved
quasi-local quantities [2–4]. However, it remains less
clear whether the originally predicted localization tran-
sition at finite temperature [5, 6] exists as a genuine
dynamical phase transition defining a sharp many-body
mobility edge in energy density. Even though several
numerical investigations in small 1d systems have re-
ported such mobility edges [7–9], recent theoretical con-
siderations [4, 10–13] have raised doubts about non-
perturbative effects which might reduce the putative
transition to a crossover. A related open issue concerns
the many-body analogue of Mott’s argument, which for-
bids the coexistence of localized and delocalized states at
the same energy in single particle problems.

In this Letter, we address these issues, which are fun-
damental for a complete understanding of localization,
equilibration and transport in closed many-body quan-
tum systems. We argue that for systems with short
range interactions many-body mobility edges cannot ex-
ist, thus ruling out sharp transitions from a conducting
to a completely insulating phase as a function of temper-
ature. These considerations also imply a strong many-
body version of Mott’s argument, which rules out the
coexistence of localized and delocalized states, even at
extensively different energies. To this end, we first intro-
duce and discuss a simple two-particle model of assisted
hopping, which illustrates several important features that
this problem has in common with the rare events that in-
duce delocalization in many-body systems and wash out
finite mobility edges whenever there is a ergodic state at

some finite temperature.
Assisted hopping model - Consider particles on a hyper-

cubic lattice, hopping with amplitude t1 and subject to a
disorder potential ǫx, i.i.d. uniformly in [−W,W ]. A par-
ticle on site x interacts with others by inducing assisted
hoppings of strength t2 along the diagonals of plaquettes
that x belongs to (e.g. due to lattice distortions)

H = −t1
∑

〈x,y〉

(c†xcy + h.c.) +
∑

x

ǫxnx (1)

−t2
∑

x

∑

s,s′=±

∑

1≤α<β≤d

nx(c
†
x+s~eα

cx+s′~eβ + h.c.).

We consider parameters t1 ≪ W , for which the single
particle problem is localized in the whole spectrum. For
t2 ≫W , the two-particle problem has several interesting
features: In dimensions d > 2, the assisted hopping term
induces a delocalization of close pairs which will move to-
gether diffusively as a composite light particle and over-
come Anderson localization. This effect is closely related
to the interaction-induced increase of the localization
length in sufficiently weakly localized systems [14, 15].
A single particle analogue of the phenomenon is the solv-
able case of two coupled Bethe lattices [16]. The delo-
calization in (1) seems natural, since all configurations
of two particles at distance one are strongly resonant
with each other. They thus form a percolating, delo-
calized resonant subgraph in configuration space, which
supports delocalized wavefunctions with inverse partic-
ipation ratios that vanish as the inverse volume. This
type of effect is confirmed numerically in [17–19]. In a
system of only two particles the eigenstates come in two
kinds: The overwhelming number of states is strongly
concentrated on a configuration with two distant, immo-
bile particles. Only a vanishing fraction of order log(L)/L
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of all two-particle states are delocalized as dynamically
bound, mobile pairs. In this example localized and delo-
calized states coexist at the same energy. This is possible
because the matrix elements that couple the two kinds of
states through a random perturbation of the Hamiltonian
are typically exponentially small in the system size and
thus negligible as compared to the relevant level spacings.
Let us now discuss how a finite density of particles

modifies the situation. In the thermodynamic limit, there
is a finite density of close pairs in typical configurations.
These pairs diffuse through the sample. Initially well iso-
lated and localized particles scatter inelastically off these
pairs and thus move as well, leading to complete delocal-
ization. Even in exponentially rare configurations where
initially all particles are far from each other, particles
eventually tunnel together and decay into the continuum
of diffusive pair states. We thus do not expect any local-
ized eigenstates to survive at finite density.
Many-body systems: Delocalization from rare bubbles -

The argument of Basko et al. [5] for a localization tran-
sition as a function of temperature, i.e., a many-body
mobility edge, builds on the idea that conduction can set
in only if the energy density exceeds a critical level essen-
tially everywhere in the sample. We argue instead that
delocalization occurs as soon as finite, but mobile excita-
tions exist, even if they are very rare and atypical. They
constitute the analogues of the diffusive pairs above. Ex-
amples of such excitations are large, albeit finite regions
which are internally ergodic thanks to a higher than av-
erage energy density [27]. Hereby we assume that inter-
actions are local, so that the internal ergodicity is only a
function of the energy contained in that region.
Let us assume that at some temperature there is con-

duction and ergodicity [28]. In typical states and in any
given place such ergodic regions occur with finite proba-
bility as spontaneous fluctuations of energy density, with-
out being tied to a particular disorder realization. Thus,
there exists a (possibly very low) finite density of ergodic
spots. Below we will argue that these excitations are
mobile and delocalize the whole system, akin to the dif-
fusing pairs above. From this reasoning it follows that
finite conduction at some temperature [29] implies finite
conduction at any temperature in thermodynamic sys-
tems with local interactions.
To argue for the mobility of the hot bubble excitations

we proceed in two steps: First we show that there exists
a resonant, delocalized subset of bubble configurations.
In a second step we argue that the delocalization remains
robust when processes are taken into account that lead
away from the resonant subgraph.
We consider a quantum lattice system with local inter-

actions and a bounded energy density, possessing a puta-
tive many-body mobility edge at energy density ǫc, such
that states below (above) ǫc are localized (ergodic). For
simplicity, we assume the model to be one-dimensional.
Now consider a rare hot bubble of a super-critical en-

ergy density above some ǫ2 > ǫc, surrounded by ”cold”
regions of energy density below ǫ1 < ǫc. If this energy
fluctuation is large enough (much larger than a correla-
tion length ξ(ǫ2)) and decoupled from the surrounding,
it is internally ergodic by assumption.
We argue that this state can hybridize with a translate

of the bubble by some length ℓ0 > max[ξ(ǫ1), ξ(ǫ2)] when
the coupling between the hot region and its surrounding
is switched on. It suffices to show that extending (or
shortening) the hot region by a length ℓ0 (by heating
up or cooling down the relevant region) can occur as a
resonant transition. For the latter it suffices to show that
changing the energy in the boundary region by a finite
amount is a resonant process. Let H1 = gOh⊗Oc be the
interaction term coupling a hot (h) and a cold (c) region
of size ℓ0 across their common boundary. Let Ψ,Ψ′ be
eigenstates in the hot region and η, η′ eigenstates in the
cold region. For any hot eigenstate Ψ in a sufficiently
large bubble we can find (many) Ψ′ such that

|〈Ψη|H1|Ψ′η′〉|
|E(η) − E(η′) + E(Ψ)− E(Ψ′)| ≫ 1, (2)

because on the one hand, by the eigenstate thermaliza-

tion hypothesis (ETH) [20], |〈Ψ |Oh|Ψ′〉| ∼ d
−1/2
h where

dh is the dimension of an appropriate micro-canonical en-
semble for the hot bubble at the energy density set by Ψ,
while the matrix element |〈η|Oc|η′〉| = O(1) is finite and
independent of dh. On the other hand, we can pick Ψ′

such that |E(η)−E(η′)+E(Ψ)−E(Ψ′)| ≤W/dh, where
W is the energy width of the ensemble. The ratio in (S6)

thus scales as ∼ d
1/2
h and grows exponentially with the

length of the bubble. It may thus become much larger
than unity, indicating a resonant process. This is not
surprising: it merely expresses that a sufficiently large
ergodic bubble acts as a bath for small systems coupled
to it. It follows that configurations with hot bubbles in
different positions hybridize with each other.
Can bubbles freeze? - We now ask whether some pro-

cesses that have not been taken into account in the previ-
ous analysis could impede the hybridization of bubbles.
The first objection that can be raised is that hot bub-
bles should not survive dynamically, but should rather
spread, dilute their energy and eventually localize, so
that they could not evolve back to their original hot con-
figuration. Though such a spreading is indeed entropi-
cally favored in real time dynamics, that argument is fal-
lacious. At a fundamental level, Hamiltonian dynamics is
micro-reversible. If a given transition is possible, then its
reverse is as well. By invariance of the Gibbs ensemble,
one can definitely rule out that initially present bubbles
typically completely disappear with time for most initial
configurations. Looking at it from a different perspec-
tive, there are eigenstates that have a significant overlap
with bubble configurations and they assure that there
is a finite, albeit small, probability per unit volume to
observe bubbles at all times.
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Though we show that entropic effects alone do not suf-
fice to make bubbles disappear, it still remains to check
that their mobility is not suppressed when all the diluted
states of a bubble are taken into account, as a result of
quantum mechanical effects. To this end, we first notice
that, as the spreading of the bubble ends up in local-
ized configurations, only finitely many degrees of freedom
are affected, say ℓh around a fixed hot bubble position.
Suppose then that the spreading mixes the original hot
bubble states with states of a larger local Hilbert space
of finite dimension Dh ≫ dh. [30] We also suppose that
the resonant coupling between hot regions centered in
different positions remains restricted to the original dh
configurations (because the spread-out bubbles may have
lost their ability to translate directly). Assuming ergod-
icity within the larger space, the matrix elements get
reduced by a factor Dh. However, the minimal denomi-
nators decrease by essentially the same factor to W̃/Dh,

except that now a slightly larger energy range W̃ inter-
venes. Since the ratio W̃/W grows at best linearly with
ℓh, which itself cannot grow faster than linearly with
the length of the bubble because of local energy con-
servation, it cannot offset the exponential in (S6), and
thus, the resonantly hybridizing subgraph persists. This
contrasts with single particle problems where sufficiently
strong coupling to a bath may induce localization due to
a significant increase of the effective bandwidth, as dis-
cussed in [21]. These considerations are formulated more
precisely in the Supplementary Material [19]. Similarly
as in the assisted hopping model, the admixture of config-
urations that are not part of the resonant network cannot
prevent hybridization, but it does increase the timescale
for transitions between different positions of the bubble
by a factor Dh/dh.
So far we have reasoned that the construction of a res-

onant subgraph essentially implies delocalization. While
we believe that in the present context this conclusion
is correct, we nevertheless caution that this condition is
not always sufficient, like in single-particle localization in
weak disorder in low dimension, or in hopping problems
without potential disorder on structurally disordered lat-
tices close to classical percolation. However, in these
cases localization is restored by specific mechanisms,
which are not present in our many-body case: the pro-
liferating amplitude of return to the origin in d ≤ 2, and
the generation of random self-energies from the struc-
tural disorder along barely percolating paths [24, 25].
Non-ergodic behavior is also known to occur in many-
body systems due to orthogonality catastrophes, like in
spin-boson systems at T = 0 and related spin problems
at finite T . However, a closer examination [19] of the
bubble situation suggests that such effects at best renor-
malize time scales, but do not fully suppress the motion
of bubbles.
Bubbles are rare objects, as they correspond to large

deviations from the average energy density. As discussed

FIG. 1: Left: Disorder averaged energy per link εi at t = 0
(red) and averaged over time (green) for L = 12. Initially a
cold region of length Lc = L/2 is prepared. The disorder
strength is δJ = 3J . Right: Same protocol, but for δJ = J
and very short cold intervals (Lc = 2), at various L. The
memory effects diminish with increasing L, but the hot

region fails to thermalize the system well, even at the largest
sizes. Results were averaged over 5000 disorder realizations.

in Ref. [4], such effects are neglected in the analysis of
Refs. [4–6], which focus on the set of the most numerous
decay paths at a given order of perturbation theory. This
set does not capture mobile high energy bubbles.
Numerical studies - Our theoretical arguments contra-

dict recent numerical data in favor of mobility edges [7–9].
The inconsistency is, however, only apparent. Indeed, we
find that numerically accessible system sizes are not suf-
ficiently large to host bubbles that are ergodic enough to
be mobile. Therefore, delocalization by bubbles could not
have been seen in numerics up to now. In other words,
the numerical results do not contradict delocalization by
rare bubbles, but rather confirm that available sizes are
not large enough.
We study the disordered Ising chain with next-to-

nearest neighbor interaction considered in Ref. [7],

H = −
L∑

i=1

[
(J + δJi)σ

z
i σ

z
i+1 + J2σ

z
i σ

z
i+2 + hzσ

z
i + hxσ

x
i

]
,

where δJi ∈
[
− δJ

2 ,
δJ
2

]
are independent random vari-

ables, and periodic boundary conditions are taken. We
choose parameters J = 1, J2 = 0.3 and hx = 0.6 as in
Ref. [7], but add a finite hz = 0.1 to remove the Ising
symmetry and the associated degeneracies. The phase
diagram in Ref. [7] predicts a mobility edge in the ther-
modynamic limit at disorder strength δJ = 3. To test
our ideas, we prepare the system at δJ = 3 in a product
state of the form |ψ(0)〉L = |φc〉Lc

⊗|χh〉L−Lc
, where |φc〉

is the ground state of an interval of Lc sites, while |χh〉
is an eigenstate of the complement close to the middle of
the spectrum (a hot bubble). We choose L−Lc as large as
possible but such that the resulting global energy density
is below the putative mobility edge. We then compute
the time-evolving energy density on link (i, i+ 1),

εi (t) ≡ − (J + δJi) 〈ψ (t)|σz
i σ

z
i+1 |ψ (t)〉 . (3)

Our theory of mobile bubbles would predict that the εi(t)
profile becomes approximately flat as t → ∞. Via ex-
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FIG. 2: Distribution of ln(IPR) associated with matrix elements of σz

1 evaluated on eigenstates randomly picked from the
middle of the spectrum, for δJ/J = 0.1, 1, 3, 5. In the ergodic phase, the typical IPR is exponentially small in the size L. In
the localized phase, the distribution is size independent. At δJ = J and the considered L, the distribution is very wide as

compared to the typical IPR. δJ = 3J is nearly critical: the ’localized’ peak at IPR = O(1) slowly decreases with increasing L.

act diagonalization, we evaluated its time average, but
almost no energy spreading from the initial state is ob-
served cf. Fig. 1 (left). For tiny cold regions (Lc = 2) and
bubbles of almost the system size the global energy den-
sity is supercritical. Yet, still only a very small fraction
of the bubble energy spreads to the cold region at L = 12
(not shown), while in the thermodynamic limit, the en-
ergy profile would obviously thermalize and become flat.
Therefore, this data shows unambiguously that at our
system size the hot region is still unable to act as a bath.
To document this further, we calculated the inverse

participation ratio (IPR) of an eigenstate |α〉 of the full
system, acted upon by a local unitary operator such as
σz
1 , in a basis of eigenstates |β〉:

IPRα ≡
∑

β

|〈β|σz
1 |α〉|4 . (4)

At strong disorder, eigenstates are nearly eigenstates of
σz
i as well, and thus IPRα ≈ O(1), whereas deep in the

delocalized phase, one expects eigenstate thermalization
and behavior akin to randommatrix theory, |〈β|σz

1 |α〉| ∝
exp[−sL/2], leading to a typical value IPRα ∼ exp[−sL],
with a narrow distribution. The results shown in Fig. 2
confirm the absence of a truly ergodic phase at L = 12
and δJ = 3, in accordance with results of [7]. In fact,
the distribution of IPR’s at these parameters looks more
characteristic of localization. Nevertheless a slight, but
clear tendency towards enhanced delocalization with in-
creasing size is seen. This hints that in the thermody-
namic limit the system will become ergodic, in agreement
with the finite size extrapolations in [7].
To chart the lack of ergodicity at small sizes, we also

look at δJ = 1, where Ref. [7] suggests that most eigen-
states are delocalized, even at L = 12. Nevertheless,
here, too, we find strong deviations from fully ergodic
behavior, using the same two protocols as above. Even
in the extreme case of Lc = 2 in Fig. 1 (right), despite
some energy transfer, the hot and cold regions are still
clearly distinguishable. To quantify this effect, we con-
sider the time average of the energy imbalance between
hot and cold regions, ∆ε ≡ (L−3)−1

∑
i/∈{c,c±1}(εi−εc),

where c denotes the single link fully in the cold re-
gion. The imbalance decays exponentially with system
size, ∆ε ∼ exp (−L/ξ) where ξ increases with disor-
der strength. For δJ/J in the range [1, 1.5] we esti-
mate ξ ≈ O(10) [19], which sets a characteristic scale
required to observe genuine ergodic behavior. This sug-
gests strongly that at reachable sizes the hot bubble
is far from being ergodic. Also Fig. 2 illustrates that
δJ = 1, L = 12 is far from the thermodynamic limit: the
distribution of ln (IPRα) is much wider (as compared to
the mean) than in a clearly ergodic sample.

Impossibility of MBL in the continuum - In the contin-
uum the single-particle localization length becomes arbi-
trarily large at high energies. For dimensions d > dc it
even diverges at a mobility edge, so that there is always
some activated transport at finite T . For d < dc arbi-
trarily weak interactions render bubbles of high enough
energy ergodic. Our arguments thus imply finite trans-
port at any T > 0 in any continuum system (see also the
discussion in Ref. [26]). However, for d < dc the conduc-
tivity of insulators is non-perturbative in the interaction,
as the energy content of a mobile bubble diverges as the
interaction strength vanishes.

Conclusion - We have argued that in the thermody-
namic limit many-body-localized and ergodic states can-
not coexist, not even at very different energies. This has
important consequences on the nature of the MBL tran-
sition. On a lattice, it implies that a transition is possible
at best upon tuning the interaction strength, but not the
temperature. In the continuum, genuine MBL is replaced
by a strong crossover in the conductivity instead, which
is notoriously hard to distinguish from a genuine transi-
tion. Nevertheless, finite size systems will exhibit states,
which for every practical purpose are localized - as they
do not contain any of the rare bubbles that induce delo-
calization and weak transport.
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M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I.
Bloch, arXiv:1501.05661.

[24] Y. Shapir, A. Aharony and A. B. Harris, Phys. Rev. Lett.
49, 486 (1982).

[25] D. E. Logan and P. G. Wolynes, Phys. Rev. B 31, 2437
(1985).

[26] R. Nandkishore, Phys. Rev. B 90, 184204 (2014).
[27] We stress that the bubble excitations considered in this

Letter are thermal, and are not tied to local, anomalous

realizations of the disorder. Notice that here the strategy
of Ref. [1] to show the existence of an MBL phase would
fail. Indeed, it requires that the location of all possible
resonant spots can be determined independently of the
state of the system.

[28] We believe that, in the thermodynamic limit, the pres-
ence of finite conduction implies ergodicity, too. This fol-
lows by disregarding the exotic scenario of non-ergodic,
but delocalized many-body systems, where transport is
confined to a fractal support in real space. Indeed, in
large enough systems, delocalized modes supported on a
finite fraction of space will serve as a bath, which is ex-
pected to thermalize any finite set of degrees of freedom
in finite times.

[29] An analogous argument applies to disorder-free, but
strongly interacting systems, where the putative tran-
sition is tuned by density and the obviously delocalized
phase is at low density, see [10]. There the analogues of
the hot bubbles discussed above are bubbles of low den-
sity.

[30] Note that, in contrast, the entanglement of the bubble re-
gion with its surroundings grows logarithmically without
limits, reflecting that an increasing number of degrees of
freedom affects the relative phases of configurations in
the bubble region. However, this does not alter the fact
that the relevant number of hybridizing configurations
remains finite.

http://lanl.arxiv.org/abs/1403.7837
http://lanl.arxiv.org/abs/1501.03824
http://lanl.arxiv.org/abs/1412.7861
http://lanl.arxiv.org/abs/1501.05661


1

SUPPLEMENTARY MATERIAL: ABSENCE OF MANY-BODY MOBILITY EDGES

This note contains supplementary material for the main paper ’Absence of many-body mobility edges’, consisting of:
1) A formal argument for delocalization by bubbles

2) Numerical analysis of a two-particle model with assisted hopping
3) Numerical analysis of the (partial) thermalization of a 2-site cold region by a 10-site hot bath.

FORMAL PRESENTATION OF THE BUBBLE

ARGUMENT

We consider a quantum lattice system with local in-
teractions, having a putative many-body mobility edge.
For concreteness, we assume that the model is one-
dimensional and that states below energy density ǫc are
(putatively) localized, whereas those above ǫc are er-
godic. We choose the energy density of the bottom of the
spectrum as a reference and set it zero. We also impose a
maximal energy density ǫm > ǫc, reflecting the fact that
the Hilbert space is locally finite. For our argument it is
important to have states at our disposal that are clearly
ergodic or localized in a given finite volume and there-
fore we introduce, somehow arbitrarily, two other energy
densities ǫc1 < ǫc < ǫc2. Let ℓ(ǫ) be the localization
length, diverging as ǫ ր ǫc. We express lengths in units
of lattice spacings, and energy densities ǫ as energy per
site. We will now coarse-grain the model and group ℓ0
adjacent sites into ’units’. The length ℓ0 is chosen such
that it is a) larger than the localization length ℓ(ǫc1), and
b) large enough so that the interaction energy between
two neighboring units is small compared to ℓ0ǫc1, (max-
imal energy in a localized unit). The second constraint
in particular ensures that the interaction of a unit with
energy density below ǫc1 with the surroundings does not
trivially suffice to render the unit ergodic. To satisfy it,
we used locality of the interaction. The coarse-graining
provides a useful starting point, from which to proceed
with perturbation theory. Within each unit, we compute
the eigenstates which come in three kinds, cold (below
ǫc1), hot (above ǫc2) or intermediate (between ǫc1 and
ǫc2). If we consider the Hamiltonian without the inter-
action between units, then obviously the eigenstates are
products of unit eigenstates. Let us focus on eigenstates
at very low energy density ǫ≪ ǫc1. Then, typically, non-
cold units appear only with a density ν that tends to
0 as ǫ/ǫc1 → 0. Chains of labeled units now serve as
’mesostates’, i.e. ccciccchhhiiccc would be a mesostate,
with c/i/h standing for cold/intermediate/hot. Hence,
we can now write our model as

H =
∑

x

[H0(x) +H1(x, x + 1)] , (S1)

where x label the units, H0(x) acts on the Hilbert space
H(x) at unit x only, and H1 describes the coupling be-
tween neighboring units. Mesostates are eigenstates of

the term H0. We now consider switching on the coupling
terms and evaluate their effect on the unperturbed eigen-
states ofH0. This procedure is similar to the one followed
in [1]. First we add the interaction terms between cold
units (see below for what is meant precisely). Since we
assumed that ℓ(ǫc1) < ℓ0, this will not have much effect
on the localized eigenstates, which thus remain close to
products. Note that by doing this, from the point of view
of a typical state at energy density ǫ, we have already
added most of the interaction terms. What remains is
a small fraction ∼ 2ν (which is controlled by the overall
energy density) of all interaction terms. We now add the
interaction terms between hot units. By assumption, suf-
ficiently long stretches of such units . . . hhhh . . . (which
we call ’bubbles’) are ergodic and we will assume that
the resulting hot eigenstates in those bubbles satisfy the
eigenstate thermalization hypothesis (ETH). The situa-
tion at this moment is hence that we have partitioned the
Hilbert space into a big direct sum, and the Hamiltonian
is block diagonal, with the blocks labelled by mesostates.
Let P r

x be the projector that restricts the value of H0(x)
so that unit x is of type r = h, i, c. With this notation
the interaction terms that have already been added are

P
r′x
x P

r′x+1

x+1 H1(x, x+ 1)P rx
x P

rx+1

x+1 , (S2)

for (rx, rx+1) = (r′x, r
′
x+1) = (c, c), and for (rx, rx+1) =

(r′x, r
′
x+1) = (h, h). Some terms are obviously very small

(because the interaction is local in energy) and seem
irrelevant, namely those corresponding to, (rx, rx+1) =
(c, c), (r′x, r

′
x+1) = (h, h) and with primes and no primes

reversed. The main terms that we will be focusing on are
those that allow bubbles to spread and move. Those are
terms with

rx = r′x = h, and arbitrary rx+1, r
′
x+1,

and they feature prominently in the next section.

Mobility of bubbles

Let us now consider states of the following form (bub-
ble in a cold environment)

cccccccc hh . . . hh︸ ︷︷ ︸
nunits

cccccccc, (S3)

where n is sufficiently large so that the eigenstates in
the bubble satisfy ETH. We now argue that this state
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can hybridize with translates of the bubble when we add
some of the missing coupling terms: In particular, we
want to admix the mesostates (with x, y labelling units)

. . . ccch
x
hhhc

y
cc . . . ↔ . . . cccc

x
hhhh

y
cc . . .

in which the bubble has been translated by one unit.
More precisely, we mean that most microstates (i.e.,
eigenstates of the Hamiltonian considered up to now) cor-
responding to the left mesostate can hybridize with a lot
of microstates corresponding to the right mesostate. This
in turn strongly suggests that we should expect all eigen-
states to delocalize completely over these two mesostates.
To obtain this, we have included the relevant coupling
terms (S2) corresponding to two bonds (x, x + 1) and
(y−1, y). This hybridization process can be broken down
into elementary steps, that is, transitions in first order of
perturbation theory. First, by energy exchange with the
hot region, the cold (c) unit at y is heated until it becomes
i and finally hot (h). Second, the h unit at x is cooled
down until it becomes c, via intermediate stages of i. Mi-
croscopically, let us consider a state Φ corresponding to
the mesostate ccchhhhccc and such that H0(y) is not far
below ǫc1. We will argue that Φ hybridizes with a lot
of states Φ′ corresponding to the mesostate ccchhhhicc
where r′(y) = i. If instead H0(y) is far below ǫc1, then it
hybridizes with a lot of states Ψ′ which still corresponds
to r′(y) = c (ccchhhhccc), but now with H0(y) a bit
closer to ǫc1. Here we care about not adding too much
energy in one transition, even though this is basically re-
dundant (see below). However, we want our argument
to go through even if the simplifying assumption is made
that the interactions are strictly local in energy. Finally,
we need to increase the energy stepwise from i to h at
unit y. The argument for all these transitions is essen-
tially the same and for the sake of simplicity, we stick
to r(y) = r′(y) = c. The next subsection below clearly
shows the flexibility of the argument.
Obviously, it suffices to take eigenstates in Φ,Φ′ in the

region [x, y] because of the essential product structure
(exact at the left edge, approximate at the right edge
around y, because we have already included the coupling
between cold regions). They are of the form

Φ = Ψ⊗ η, Φ′ = Ψ′ ⊗ η′, (S4)

where η, η′ are the unperturbed eigenstates at unit y,
while Ψ,Ψ′ are hot bubble states in the region [x, y − 1]
consisting of n = y − x units. Consider Ψ′ such that its
energy (evaluated with H0) is within a range W ∼ ǫm
of the energy of Ψ. The space spanned by such states
has dimension dh ≈ exp[sℓ0n] which grows exponentially
in n, s being the corresponding entropy density. Write
H1(y− 1, y) = gOh ⊗Oc, the first factor acting on y− 1,
the second on y. From ETH it then follows that

|〈Ψ|Oh|Ψ′〉| ∼ 1/
√
dh. (S5)

In other words, the (non-eigenstate) vector OhΨ is essen-
tially a random amplitude superposition of eigenstates
Ψ′. Take now ∆E := E(η)−E(η′) sufficiently small, i.e.
not exceeding W , then |〈η|Oc|η′〉| ∼ 1. In fact, assur-
ing the non-vanishing of |〈η|Oc|η′〉| is the main reason to
choose W sufficiently small. We can then find many Ψ′

(in fact, ∼
√
dh of them) such that

|〈Ψη|H1|Ψ′η′〉|
|∆E + E(Ψ)− E(Ψ′)| ≫ 1, (S6)

because the energy spacings are of order W/dh and
〈Ψη|H1|Ψ′η′〉 ∼ g/

√
dh. Hence the ratio in (S6) is huge

since dh grows exponentially in n. The outcome of this
calculation should not come as a surprise: it merely ex-
presses that an ergodic bubble can act as a bath for a
small system (here unit y) that is coupled to it. Upon
repeating the same calculation a few times, one easily
convinces oneself that states with the bubble in different
positions hybridize with each other.

Spatial range of direct hybridizations

In the above derivation, we focused on transitions that
result in the translation of a bubble by one unit. This
may appear to be a small translation if the bubble is
very large, n ≫ 1. Here we show, however, that direct
hybridizations can take place at distances which are a
finite fraction of the bubble length.

As already pointed out, in the above derivation, we
were careful to pick states η, η′ whose energy difference
was small enough so that |〈η,Ocη

′〉| ∼ 1. This is, how-
ever, not crucial, and if r′(y) = i, h, then it cannot be
assured anyhow. The matrix element | 〈η|Oc |η′〉 | will
typically decay exponentially in the energy difference
E(η) − E(η′). Hence, it can be as small as e−l0ǫm , but
obviously this number decreases with ℓ0 and not with n,
so it is irrelevant. To determine at what distance direct
hybridizations are possible, we proceed as follows. In-
stead of making the transition η → η′ at unit y, we now
make a transition η → η′ in a stretch of ℓ units starting
at y. By the structure of localized states, we know that

|
〈
η
∣∣Oc

∣∣η′
〉
| ∼ (g/ǫm)ℓℓ0 . (S7)

The transition is possible as long as this small number is
larger than

√
1/dh, so that we find

ℓ ∼ s

2 log(ǫm/g)
n. (S8)

This shows us that the bubble hybridizes with translates
by a finite fraction of its size. However, this fraction
becomes parametrically small as the coupling becomes
weak g/ǫm → 0.
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Can bubbles freeze due to further couplings?

However, so far we have not yet added all omitted
coupling terms. Indeed, the bubble cannot only move
through the cold background, it can also spread its en-
ergy, and entropically, this is of course much more likely.
In particular, one sees that starting from a bubble con-
figuration, the most likely thing to happen is that the
bubble spreads until its energy density is intermediate or
just below the putative mobility edge, at which point we
cannot expect it to spread further as the involved states
are now localized. The question arises whether these fur-
ther couplings may induce a localization of bubbles, de-
spite the above construction of an apparently resonant,
delocalized network of bubble configurations. This issue
is addressed below.

Hybridization

In the notation of the previous section, the relevant
type of transitions are as follows

ccchhhhccc ↔ cccchhhhcc
l l

. . .↔ . . . cciiiiiiiicc ccciiiiiiic . . .↔ . . . ,
(S9)

whereby the states on the lower line represent a multi-
tude of mesostates. Let us pretend that they themselves
do not communicate with each other. This simplifying
assumption favors maximally the possibility that the cou-
pling to such states could localize the bubble and thus in-
validate our preliminary conclusion above. Simplifying a
bit, we consider the following situation. We consider the
two subspaces, each of dimension dh, that correspond to
the mesostates on the upper line, the eigenstates of which
are hybridized by the perturbation H1. Let us refer to
them as left and right subspaces. We now couple each
of them to a space of dimension d′h ≫ dh and we ask
whether the perturbation H1 is still able to induce hy-
bridization between left and right subspaces. Concretely,
the subspace Cdh is now embedded in the space Cdh⊕CD′

h

of dimension Dh ≡ D′
h+dh, and Oh becomes Oh⊕0. We

focus on the transitions between the ergodic states Ψ,Ψ′

(notation as above), and just consider the operator Oh

which acts on the hot bubble. Let us assume that after
diagonalizing within the larger spaces of dimension Dh,
the eigenstates Ψ̃, Ψ̃′ are completely ergodic and well cap-
tured by random matrix theory. (In practice, this defines
the relevant space to be added to the bubble subspace,
and its dimension Dh.) We now have to discuss how the
ratio

|〈Ψ̃|Oh|Ψ̃′〉|
|∆E + E(Ψ̃)− E(Ψ̃′)|

(S10)

differs from the original ratio

|〈Ψ|Oh|Ψ′〉|
|∆E + E(Ψ)− E(Ψ′)| ∼

√
dh
W

(S11)

with given |∆E| ≤ W . We find a suppression of the
numerator because now

|〈Ψ̃|Oh|Ψ̃′〉| ∼
√
dh
Dh

. (S12)

Indeed, the simplest way to derive this is by remarking
that

∑

Ψ̃,Ψ̃′

|〈Ψ̃|Oh|Ψ̃′〉|2 = Tr(O†
hOh) ∼ dh. (S13)

as Oh acts only in the original subspace (with dimen-
sion dh) and it is zero on the attached space with di-
mension Dh. On the other hand, the energy spacing
|∆E + E(Ψ) − E(Ψ′)| can now be made as small as

W̃/Dh, where W̃ is the width in energy of all states
that significantly couple to the original bubble states.
It follows that the ratio (S11), and hence (S6), is re-

duced by a factor W/W̃ . If this effect rendered (S11)
smaller than 1, the eigenstates would likely not hybridize
across the subspaces, i.e. we would find localization in-
duced by coupling to further degrees of freedom. How-
ever, the maximal conceivable value of W̃ is nǫm, which
is the local energy that is available for spreading. This
yields W̃/W . n, which is insufficient for localization,
since the ratio (S6) is exponentially large in n. In con-
trast, such effects have been observed and discussed in
the context of single particle problems coupled to extra
degrees of freedom in Refs. [16, 21]. In those cases, there
is no exponentially large factor that offsets the effect of an
increased bandwidth W̃ , which makes coupling-induced
localization possible.

Dynamic retardation

Even though the attachment of the states on the lower
line of (S9) cannot prevent hybridization, it does of
course increase the timescale necessary for transitions be-
tween the two bubble positions. The transition rates can
be estimated from a simple Fermi Golden Rule calcula-
tion as

τ−1 ∼ |〈Ψη|H1|Ψ′η′〉|2
|∆E + E(Ψ)− E(Ψ′)| ,

|〈Ψ̃η|H1|Ψ̃′η′〉|2
|∆E + E(Ψ̃′)− E(Ψ̃)|

,

(S14)
before and after attaching the extra states, respectively.
The first rate is of order g2/W , while the second is of

order (dh/Dh)g
2/W̃ . Hence, by adding the new states,

we have increased the timescale by order Dh/dh (keep-
ing only terms exponential in n). This is very intuitive:
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Transitions are now only possible from a fraction dh/Dh

of all states. One can also view this as follows: For a large
bubble close to criticality (with structure cciiiiiiiiicc) the
’active’ configurations of the type cccchhhhcccc manifest
themselves as large deviations and they occur with ex-
ponential rarity. Yet, as shown above, they do lead to
hybridization of eigenstates, and hence to delocalization.

ASSISTED HOPPING MODEL IN d = 2

Here we describe our numerical analysis for an assisted
hopping model. The main aim is to show that delocal-
ization on a resonant subgraph remains robust to adding
additional terms that connect that subgraph to localized
states. We also show coexistence of localized and de-
localized states, a failure of Mott’s argument, which is,
however, a particularity of the zero density limit of the
considered model.

Description of the model.

To reach the largest possible system sizes, we consider
a Hamiltonian in d = 2 with spin-orbit coupling, which
gives rise to weak anti-localization and thus allows for a
genuine delocalized phase. To the best of our knowledge,
this is the smallest system where delocalization can be
expected, and is thus best suited for a numerical analysis.
Here, ’smallest’ means that the dimension of the Hilbert
space grows at the slowest possible rate with growing
linear size L.
Let H be the Hamiltonian of two indistinguishable

hard-core bosons (with positions q1,2) having a single
spin 1

2 degree of freedom, s, attached to them. We con-
sider points q = (x, y) on the lattice (Z/L)2 and we im-
pose periodic boundary conditions. The full Hamiltonian
is

H = H0 + h1H1 + h2H2, (S15)

where H0 is the uniformly distributed on-site potential

H0 =
∑

q

ǫqa
+
q aq, −W ≤ ǫq ≤W. (S16)

H1 is the single-particle hopping Hamiltonian

H1 =
∑

q∼q′

(a+q aq′ + aqa
+
q′), (S17)

(q ∼ q′ denoting nearest neighbors) andH2 is the assisted
hopping, including a spin-orbit interaction. We describe
H2 by its matrix elements. Let

S = {q1 = (x1, y1), q2 = (x2, y2) : q1 6= q2,

max{|x1 − x2|, |y1 − y2|} ≤ 1} (S18)

be the set of pairs of spatially neighboring points. We
then define 〈q′1, q′2, s′|H2|q1, q2, s〉 to be

IS(q
′
1, q

′
2)IS(q1, q2) 〈q′1, q′2, s′|HSO|q1, q2, s〉, (S19)

where the characteristic functions IS ensure that the ini-
tial and final pair configuration belong to S. Further,
HSO = H1

SO +H2
SO with

H1
SO = −i

[
σ(x)Ty1

− σ(y)Tx1

]
(S20)

− i

[
(σ(x) − σ(y))

2
Tx1

Ty1
− (σ(x) + σ(y))

2
Tx1

T †
y1

]
+ h.c.

Here σ(x,y) are Pauli matrices acting on the spin degrees
of freedom, while the translation operators are defined
by Tx1

∣∣(x1, y1), (x2, y2), s
〉
=

∣∣(x1+1, y1), (x2, y2), s
〉
and

similarly for Ty1
. H2

SO is defined analogously.

The HamiltonianH1
SO is a lattice version of the Rashba

Hamiltonian σ(x)py1
− σ(y)px1

. We notice that restrict-
ing the definition of H1

SO to the first term −i{σ(x)Ty1
−

σ(y)Tx1
} would lead to a degeneracy due to the lattice

structure. This would prevent H from being a generic
GSE Hamiltonian for any value of h2.

FIG. S1: Hopping for the Hamiltonian H . Left panel:
single-particle hopping. Right panel: assisted hoppings of

the left particle, allowed by the presence of the right particle.

Numerical results.

In all the simulations, we take L = 9 and W = 1. The
analysis is divided into two parts.

(i) Delocalization via assisted hopping - First we take
h1 = 0 and h2 > 0 (only assisted hopping). Since the
majority of states (all configurations outside S) are now
trivially localized, we restrict ourselves to the subspace
HS spanned by all the classical states in S (see (S18)),
each coming with spin up/down. We aim at finding h2
such that H0 + h2H2 can be considered a “typical” GSE
matrix with truly delocalized eigenstates. For this, we
evaluate numerically the parameter r defined as

r =
〈 1

dim(HS)− 2

dim(HS)−1∑

n=2

min{∆En,∆En−1}
max{∆En,∆En−1}

〉
,

(S21)
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where 〈·〉 is the disorder average and ∆En ≡ En+1 −En,
with En being the ordered eigenenergies of the system.
For the three classical ensembles, they take the values

r(GOE) ≃ 0.53, r(GUE) ≃ 0.60, r(GSE) ≃ 0.67.
(S22)

For h2 = 0.7, we find r = 0.64 ± 0.05. This value is
significantly larger than r(GUE). The discrepancy with
r(GSE) presumably arises from the contributions from
the more localized edges of the spectrum.
To characterize (de)localization we use the logarithm

of the inverse participation ratio,

logIPR(ψ) ≡ − log10

(∑

η

|〈ψ|η〉|4
)
, (S23)

where the sum over η runs over the classical particle con-
figurations.
Note that dim(HS) = 648, and thus logIPR(ψ) ∼ 2.5

for a fully delocalized state ψ. From the point of view of
the parameter r, h2 = 0.7 is rather optimal: The spec-
trum is mostly delocalized, but the Hamiltonian is still
genuinely GSE. Indeed, when h2 becomes significantly
larger than 0.7, the localized tails of the spectrum are
further suppressed, but the value of r starts bending
down as an effect of approaching the integrable limit
h2 → ∞.

(ii) Robustness of delocalization against addition of
single particle hopping - Let us now fix h2 = 0.7, but vary
h1 > 0. We determine numerically the statistics for the
logIPR’s of the eigenstates ψ ofH . The results are shown
in Fig. S2. The central message of that data is the fol-
lowing: Adding a finite h1, which connects the resonant
subspace S to its much larger localized complement, does
not destroy the delocalization on the resonant subspace,
as shown by the left and middle panel of Fig. S2. In par-
ticular, for h1 = 0.07 (middle) we see delocalized states
(inside the subspace HS) coexisting with a majority of
localized states. Obviously a relatively large h1 leads
to delocalization of almost all states, with logIPR’s that
start approaching the value log10[dim(H) = 6480] ∼ 3.5
of fully delocalized wavefunctions, cf. the right panel. A
comparison of histograms at the same values of h1, but
with h2 = 0 (not shown) revealed that the histograms
are significantly shifted to larger logIPR in the presence
of the delocalized channel of mobile pairs.

TIME AVERAGED ENERGY IMBALANCE

BETWEEN AN INITIALLY COLD SPOT IN A

HOT SURROUNDING

As explained in the main text, we studied the time av-
erage of the energy imbalance ∆ε, between a cold region
of Lc = 2 sites and a hot region of L − Lc sites. The
initial state is a product between the ground state in the

FIG. S2: Statistics for the logIPR’s of all eigenstates of H
for h2 = 0.7 and different values of h1. From left to right:

h1 = 0.01, h1 = 0.07, h1 = 0.15. Averages are taken over 500
realizations.

cold region and an eigenstate near the middle of the band
in the hot region. The (time-averaged) imbalance

∆ε = (L− 3)−1
∑

i/∈{c,c±1}

(εi − εc) (S24)

was studied as a function of system size L and disorder
strength δJ . The results are shown in Fig. S3, where each
plot corresponds to a different disorder value. The re-
sults were averaged over 5000 disorder realizations. The
data show that ∆ε decreases slowly with system size.
The dependence is consistent with exponential decay. We
have fitted the associated characteristic length ξδJ , which
grows with increasing δJ . These lengths ξδJ are of the
same order as system sizes achievable in current numeri-
cal studies.
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δJ/J=1

 

δJ/J=1.1

 

δJ/J=1.2

δJ/J=1.3

 

δJ/J=1.4

 

δJ/J=1.5

 

FIG. S3: Energy imbalance ∆ε as a function of system size,
for disorder strengths J ≤ δJ ≤ 1.5J .


