
Atmospheric (Climate) Dynamics

Fred Kucharski

This course consists of 15 lectures.

- Each lecture is 90 minutes long.

- At the end of each lesson, exercises will be given as homework and discussed
in the beginning of the following lesson.

- Recommended textbooks:
James R. Holton: Dynamic Meteorology, Third edition, Academic Press.
Joseph Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag.
Others are suggested in the individual lectures. Many others are good as well,
so choose!

- Lecture notes will be available at
http://users.ictp.it/∼kucharsk/lecture notes AD section1.pdf, etc.

- If you find mistakes, corrections are highly appreciated!

Topics in the course

- Vorticity equation for synoptic-scale motion; potential vorticity conservation
(barotropic and general) [1.5 h]

- Quasi-geostrophic motion; Thermo-Hydrodynamic equations in pressure coor-
dinates [1.5 h]

- Rossby waves; free Rossby waves; forced Rossby waves; turning latitude [1.5
h]
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- Baroclinic instability; two-layer model [1.5 h]

- Equatorial waves; Rossby-gravity waves; Kelvin waves [1.5 h]

- ENSO atmosphere and ocean feedback mechanisms; Gill model; Reduced
Gravity Model [1.5h]

- Boundary Layer Processes; turbulent fluxes; Ekman pumping [1.5 h]

- Rainfall responses to heating; Ekman pumping effect; upper-level divergence
[1.5h]

- The General Circulation; Hadley Cell; Ferrell Cell [1.5 h]

- Tropical zonal and meridional circulations; Walker circulation; Sverdrup bal-
ance [1.5h]

- Energetics of the General Circulation; Lorenz’ energy cycle [1.5 h]

- Vertically integrated moisture balance; precipitation; evaporation; moisture
flux convergence; application to Sahel drought; Charney feedback mechanism
[1.5 h]

- Analysis of climate Variability; EOF analysis, PCA analysis [3 h]

- Modes of variability in the climate system: ENSO, PDO, NAO, AMO [1.5]

- Predictability, Lorenz’ Model; measures of predictability [3 h]
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1 Vorticity equation for synoptic-scale motion

Figure 1: Idealised situation (meridional-vertical section) of the extratropical mean
state. Potential temperature (solid lines, K) and zonal wind (dashed, m/s). As we
will show later in ths Climate Dynamics course the wind approximately fulfill the
thermal wind equation ∂ug/∂z ≈ −g/(fT ) ∂T/∂y.

Vorticity is an important concept for the analysis of all kind of atmospheric
motions, but in particular for large-scale atmospheric motions. We use the ap-
proximate horizontal equations of motion (in the vertical the equation of motion
degenerates to the hydrostatic equation) on a sphere, but neglecting all metric
terms that occur in the total derivative. Furthermore, we use the abbreviations
dx = rcosφ dλ, dy = r dφ, dz = dr). Also recall the definition of the Coriolis
parameter f ≡ 2Ω sinφ, and note that we have already neglected the small term
proportional to the vertical velocity Coriolis term.
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If we apply ∂/∂y to Eq. 1 and ∂/∂x to Eq. 2 and substract the first from the second,
we obtain using the definition ξ = ∂v/∂x− ∂u/∂y (Exercise!)

3



Figure 2: Typical surface pressure [hPa] and potential temperature [K] distributions
in extratropical cyclones.
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The coriolis parameter only depends on y, so we may write:
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This is the vorticity equation usually used to analyse synoptic-scale motions (the
direction is perpendicular to the earths surface). It states the the rate of change of
absolute vorticity following the motion is given by the sum of three terms, called the
divergence term, the tilting or twisting term, and the solenoidal term, respectively.

The first term on the right-hand side may be interpreted as expression of the
angular momentum conservation. Imagine a ice skater who rotates and while rotat-
ing moves his arms closer to his body: His rotation accelerates (see Fig. 3). But
since we are dealing with large scales, in Eq. 4 the absolute vorticity, η = ξ + f ,
has to be considered. The interpretation of the second term is that vertical vorticity
may be generated by the tilting of horizontal vorticity components by a non-uniform
vertical motion field. The meaning of the third term is the solenoidal term. It can
be expressed as (exercise!):
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where k is the unit vector in vertical direction. In order to create vorticity through
the solenoidal term, lines of constant density have to intersect with lines of constant
pressure. A land-sea breeze is a typical example where vorticity in created in such
a way.

1.1 Scale analysis of the vorticity equation

In order to understand which terms and therefore mechanisms are the dominant
ones in the vorticity equation (4) in this section a ’scale-analysis’ will be performed.
The scale analysis uses the dimensions of the synoptic scales we are interested in,
but also observed magnitudes of flow velocities and other quantities. It is not a
rigorous procedure (you use part of the answer as input), but it helps to identify
dominant mechanisms.

The scales are given in the following table:

Table 1: Scale parameters for synoptic-scale flow.

U ∼ 10 m s−1 horizontal velocity scale
W ∼ 1 cm s−1 vertical velocity scale
L ∼ 106 m length scale
H ∼ 104 m vertical scale
δp ∼ 10 hPa horizontal pressure scale
ρ ∼ 1 kg m−3 mean density
δρ/ρ ∼ 10−2 fractional density fluctuation
L/U ∼ 105 s time scale
f0 ∼ 10−4 s−1 Coriolis parameter
β = df/dy ∼ 10−11 m−1 s−1 ’beta’ parameter

This gives

ξ =
∂v

∂x
− ∂u

∂y
∼ U

L
∼ 10−5s−1 , (6)

and
ξ/f0 ∼ U/(f0L) ≡ Ro ∼ 10−1 , (7)

the ratio of relative to planetary vorticity is equal to the Rossby number, which
is small for synoptic flow. Therefore, ξ may be neglected compared to f in the
divergence term in the vorticity equation
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The magnitudes of the various terms in equation 4 can now be estimated as follows:
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The estimation of the divergence is an overestimation. Indeed it will be shown
later in this course the the divergent part of the flow (which is also the non-
geostrophic part) is an order of magnitude smaller that the rotational part (geostrophic).
We have therefore (

∂u

∂x
+
∂v

∂y

)
∼ 10−6s−1 , (9)

which means that the divergence is typically one order of magnitude smaller than
the vorticity of synoptic-scale motion. Therefore,

f
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Therefore in the vorticity equation (4), we have the first order balance
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The synoptic-scale vorticity equation 11 states that the rate of change of absolute
vorticity following the horizontal motion is approximately given by the generation
(destruction) of vorticity owing to horizontal convergence (divergence; see sketch 3).
Indeed, this is considered to be the main mechanism of cyclone (and anticyclone)
developments, connecting cyclonic motion to low pressure and anticyclonic motion
to high pressure (only for large-scale motions!).

1.2 The Barotropic (Rossby) Potential Vorticity Equation

As barotropic model of the Atmosphere we assume that there is incompressibility
and the flow may be confined by the height of two given boundaries, h(x, y, z, t) =
Ht−Hb (see also lecture on equatorial waves). The incompressibility condition may
be expressed as

∂u

∂x
+
∂v

∂y
= −∂w

∂z
. (13)
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Figure 3: Sketch of ice scater closing in arms. From: courses.lumenlearning.com

We also assume that the horizontal velocities are independent of height. With this
we can integrate the vorticity equation (11) vertically to obtain

h
dh(ξ + f)

dt
= (f + ξ)[w(Ht)− w(Hb)] . (14)

Note that in equation (14), the relative vorticity ξ may be replaced, to a first ap-
proximation, by the geostrophic relative vorticity

ξ ≈ ξg ≡ ∇2gh/f0 = ∇2Φ/f0 , (15)

where we have assumed that the meridional scale, L, is small compared to the radius
of the earth so that the geostrophic wind may be defined using a constant reference
latitude of the Coriolis parameter f ≈ f0 ≡ 2Ω sinφ0. Also, in the operator (12) the
horizontal velocities may be approximated by the geostrophic ones

v ≈ vg ≡ f−1
0 k×∇gh = f−1

0 k×∇Φ , (16)

Equations 15 and 16 can be derived from the geostrophic equations and integration
of the hydrostatic equation for an incompressible fluid (exercise!). Note that, for
beauty, we have re-introduced the small ξ effect on the rhs of Eq. (14). Since
w(Ht) = dHt/dt, w(Hb) = dHb/dt we have,

1

ξ + f

dh(ξ + f)

dt
=

1

h

dhh

dt
. (17)

Integrating left and right side leads to

dh
dt

[ln(ξ + f)] =
dh
dt

[lnh] , (18)

which implies that
dh
dt

(ξ + f)

h
= 0 , (19)

which is the potential vorticity conservation theorem for a barotropic fluid, first ob-
tained by C. G. Rossby. The quantity conserved following the horizontal motion is
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the barotropic potential vorticity. It explains nicely some features of the observed
stationary waves, e.g. induced by the Rocky mountains. If the flow is purely hor-
izontal, i.e. rigid lid and lower boundary, then we obtain the barotropic vorticity
equation

dh(ξ + f)

dt
= 0 , (20)

which states that the absolute vorticity is conserved following the horizontal motion.
The flow in the mid-troposhere approximately fulfils this condition and equation (20)
my be used to explain the movement of air particles in Rossby waves!

Note that using the approximations (15) and (16) the barotropic vorticity equa-
tion (20) can be re-written in terms of the streamfunction ψ ≡ Φ/f0 = gh/f0 or
equivalently also in terms of geopotential Φ = gh (exercise!)

dh
dt
∇2ψ + β

∂ψ

∂x
= 0 . (21)

Also the operator dh/dt can be expressed in terms of streamfunction

dh
dt

=
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
(22)

Equations (21) and (22) can be used conveniently to compute Rossby wave solutions
numerically (exercise in section 3!)

1.3 The exact potential vorticity conservation law; Ertel’s poten-
tial vorticity

The barotropic potential vorticity conservation law 19 for is a very instructive special
case (incompressible, barotropic fluid) of a much more general conservation law.
Ertel (1942, Meteorologische Zeitung, 59, 271-281) was the first to derive the law
in the most general form. In order to derive it, we start from a general form of the
equations of motion

ρ
dv

dt
= −∇p− 2ρΩ× v − ρ∇φ−∇ · F , (23)

where F is the frictional tensor, Ω is the (constant) rotation vector of the earth.
From Eq. 23 we may derive (exercise!) the full 3-dimentional vorticity equation,
which is a generalization of Eq. 4

dvorta
dt

= vorta · ∇v − vorta∇ · v +
∇ρ×∇p

ρ2
−∇× ∇ · F

ρ
, (24)

where vorta = 2Ω + ξ is the 3-dimensional absolute vorticity vector. Note, that
whereas Ω is constant, its components following the earth surface are not! Using
the continuity equation, this may be re-written as (exercise!)

d

dt

vorta
ρ

=
vorta
ρ
· ∇v +

∇ρ×∇p
ρ3

− 1

ρ
∇× ∇ · F

ρ
. (25)
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Let us consider a scalar quantity, λ, which is a function of just ρ and p. For a
one component system, any thermodynamic quantity could be used, but in the end
it turns out that quantities that obey a conservation law are particularly useful.
Therefore, the entropy is a very good candidate (or potential temperature in the
atmosphere or potential density in the ocean). The equation may then look like

dλ

dt
= σλ . (26)

Let us perform the following simple calculation

vorta ·
d

dt
∇λ = vorta · ∇σλ − [vorta · ∇v] · ∇λ . (27)

On the other hand, if we multiply as scalar product Eq. 25 by ∇λ, we get

∇λ · d
dt

vorta
ρ

=

[
vorta
ρ
· ∇v

]
· ∇λ+∇λ · ∇ρ×∇p

ρ3
− 1

ρ
∇λ · ∇ × ∇ · F

ρ
. (28)

Combining Eqs. 27 and 28 leads to

d

dt

[∇λ · vorta
ρ

]
=

1

ρ3
∇λ · (∇ρ×∇p) +

vorta
ρ
· ∇σλ −

1

ρ
∇λ · ∇ × ∇ · F

ρ
. (29)

The quantity on the lhs of Eq. 29 is conserved following the motion if (why?,
Exercise):

• The fluid is barotropic ( (∇ρ×∇p = 0) or λ is a thermodynamic function of
p and ρ, i.e. λ = λ(p, ρ),

• the quantity λ is itself conserved following the motion, i.e. σλ = 0,

• the flow is frictionless (F = 0).

In case the above criterion are fulfilled, we may call the quantity

q =

[∇λ · vorta
ρ

]
(30)

potential vorticity. So far, apart from the momentum budget, no physical contrain
is on the variable λ, which may be chosen as suitable. A good choice is the entropy
s, which for adiabatic-reversible processes is a constant following the motion. For at-
mospheric purposes it is convenient to choose alternatively the potential temperature
θ. Furthermore, for large-scale atmospheric (and ocean) dynamics it is generally a
good approximation that the vorticity is dominated by its vertical component (note
that this approximation may break down if there are strong horizontal potential
temperature gradients). In this case the potential vorticity can be expressed as

q =

[
η

ρ

∂θ

∂z

]
, (31)
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where η = ξ + f is the vertical component of the absolute vorticity. The form 31 is
most conveniently explored in the pressure coordinate system, which will be intro-
duced in the next section. Note that a convenient and exact version of the potential
vorticity can be derived using a coordinate system with the potential temperature
as vertical coordinate.

The barotropic from of the potential vorticity Eq. 19 may be derived by consid-
ering the quantity

λ =
z −Hb

h
, (32)

which measures the relative height of a parcel with respect to the total height of the
fluid and turns out to be conserved for barotropic flow with constant density.

Excercises

1. Show that applying ∂/∂y to Eq. 1 and ∂/∂x to Eq. 2 leads to Eq. 3.

2. Show the validity of Eq. 5.

3. Show that the geostrophic formulations 15 and 16 can be derived from the
usual geostrophic wind

vg ≡
1

ρf0
k×∇p

and that with this the barotropic vorticity equation 20 can be written as Eq.
21 with 22.

4. An air parcel at 30 N moves northward conserving absolute vorticity. If its
initial relative vorticity is 5 × 10−5s−1, what is its relative vorticity upon
reaching 90 N?

5. An air column at 60 N with ξ = 0 initially stretches from the surface to a fixed
tropopause at 10 km. If the air column moves until it is over a mountain barrier
2.5 km high at 45 N, what are its absolute vorticity and relative vorticity as
it passes the mountain top, assuming that the flow satisfies the barotropic
potential vorticity equation?

6. Derive Eq. 24 from 23 and Eq. 25 from 24.

7. Discuss under which conditions 30 is conserved following the motion.
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2 Quasi-geostrophic motion

2.1 The basic equations in isobaric Coordinates

The basic governing equations are (see Eqs. 1 and 2)

The horizontal momentum equations

dv

dt
+ fk× v = −1

ρ
∇p , (33)

where v = iu+ jv and the nabla operator has just the horizontal components.
The vertical equation of motion degenerates for all large-scale motion (e.g. scales

more than 100 km) into the hydrostatic equation (discuss how good this approxi-
mation is):

∂p

∂z
= −ρg . (34)

Equation (34) states that there is a monotonic relation between pressure p and
height z, which leads to the possibility of using p as a vertical coordinate. The basic
equation for deriving all transformation from the height to the pressure coordinate
system is: ψ(x, y, p, t) = ψ(x, y, z, t), which leads, for example to

∂ψ

∂x
|p=

∂ψ

∂x
|z +

∂ψ

∂z

∂z

∂x
|p . (35)

Inserting ψ = p and applying Eq. (35) also to the derivative in y direction gives
the transformation for the horizontal pressure gradient force ∇zp = ρg∇pz = ρ∇pΦ.
Thus the horizontal momentum equation reads

dv

dt
+ fk× v = −∇pΦ . (36)

This looks a little like the horizontal momentum equation of the shallow water model,
but it is not! Applying ψ(x, y, p, t) = ψ(x, y, z, t) to a vertical derivative and letting
ψ = p gives the hydrostatic equation in pressure coordinates

∂Φ

∂p
= −1

ρ
= −α = −RT

p
. (37)

The total derivative d/dt is invariant and can be expressed as (as follows directly
from ψ = ψ(x, y, p, t))

d

dt
=

∂

∂t
+

∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂p

dp

dt
(38)

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
(39)

=
∂

∂t
+ v · ∇p + ω

∂

∂p
. (40)
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ω = dp/dt (called the ’omega’ vertical velocity) is the pressure change following the
motion. Note that when w is positive ω is typically negative.

The Continuity Equation

The easiest way to derive the continuity equation is through the principle of mass
conservation. For an infinitesimal mass element we may write:

δm = ρδV = ρδxδyδz = −δxδy 1

g
δp . (41)

Note that the first part of equation (41) is just the definition of the density. In the
second part the hydrostatic equation (34) has been used to replace the vertical per-
turbation by a pressure perturbation. Let’s calculate the derivative of (41) following
the motion (conservation of mass)

1

δm

d

dt
δm =

g

δxδyδp

d

dt

δxδyδp

g
= 0. (42)

After appying the product rule of differentiation, and changing the order of differ-
entiation we obtain

1

δx
δ
d

dt
x+

1

δy
δ
d

dt
y +

1

δp
δ
d

dt
p =

δu

δx
+
δv

δy
+
δω

δp
= 0 . (43)

Letting δx, δy, δz → 0, it follows the continuity equation in pressure coordianates:(
∂u

∂x
+
∂v

∂y

)
p

+
∂ω

∂p
= 0 . (44)

In pressure coordinates the full continuity equation takes the form of that of an
incompressible fluid, i.e. the time derivative of density does not occur anymore
explicitely.

The Thermodynamic Energy Equation

Recall Eqs. 108 or 110 for the Enthalpy, and after multiplying with T from our
Earth System Thermodynamics course (for ds = 0), which was approximately valid
for the atmosphere in which phase transitions from water vapour to liquid water are
allowed (do you remember what the symbols Llv and mv stand for?):

cp
dT

dt
− RT

p

dp

dt
= −Llv

dmv

dt
. (45)

If we further allow diabatic processes to occur (e.g. radiation), then we can simply
add Tds/dt on the rhs and abbreviate those terms as Q.

cp
dT

dt
− αdp

dt
= Q . (46)
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Q is thus the heat added by diabatic processes (i.e. condensation, radiation).
Using the total derivative in pressure coordinates and the definition of ω we have(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
p

− Spω =
Q

cp
, (47)

where the stability factor

Sp =
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
(48)

has been introduced. In Eq. (48) we have used the definition of the potential
temperature (Exercise!)

θ = T

(
p0

p

) R
cp

. (49)

p0 is a constant reference pressure here. Using the dry adiabatic lapse rate Γd = g/cp,
we have also (excercise!)

Sp = (Γd − Γ)/(ρg) , (50)

where the definition of the lapse rate −dT/dz = Γ has been used.
The set of equations (36), (37), (44) and (47) is the basis for our analysis of

synoptic-scale motion, but also the basis for many numerical models of the atmo-
spheric circulation.

It is also useful to derive the approximate version of the potential vorticity 31 in
pressure coordinates, because it takes a more convenient form. We can write (e.g.
using ψ(x, y, p, t) = ψ(x, y, z, t) to evaluate a vertical derivative

∂θ

∂z
=
∂θ

∂p

∂p

∂z
= −ρg∂θ

∂p
. (51)

With this 31 becomes

qp =

[
ηp
∂θ

∂p

]
, (52)

where the constant factor −g has been excluded from the definition (this does not
matter, why?). Note, that the absolute vorticity ηp = k · ∇p × v + f is the verti-
cal component of the absolute vorticity and has to be evaluated on pressure levels.
The physical interpretation of the approximate potential vorticity in pressure coor-
dinates, qp, is that a fluid element within an isentropic flow may be considered as
confined between two potential temperature values ∆θ. The thickness of the fluid
element, ∆p, however, may change. If this occurs, then the absolute vorticity has
to adjust in order to maintain potential vorticity conservation.
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2.2 Some observed features of the extratropical mean flow

A primary goal of dynamic meteorology is to interpret the observed structure of
large-scale atmospheric motions in terms of physical laws governing the motions.
These laws, which express the conservation of momentum, mass, and energy com-
pletely determine the relationships among the pressure, temperature, and velocity
fields. However, the pure laws provide an enormously complicated picture of the
motions. For extratropical synoptic-scale motions, however, the horizontal veloci-
ties are approximately geostrophic. Such motions, which are often referred to as
quasi-geostrophic, are simpler to analyze than, for example, tropical disturbances.
They are also the major systems of interest in traditional short-range weather fore-
casting and are thus a reasonable starting point for dynamical analysis. In this
section we show that for extratropical synoptic-scale systems the twin requirement
of hydrostatic and geostrophic balance constrain the baroclinic motions so that to
a good approximation the structure and evolution of the three-dimensional velocity
field are determined by the distribution of geopotential height on isobaric surfaces.
The equations that express these relationships constitute the quasi-geostrophic sys-
tem. Before developing this system of equations it is useful to summarize briefly
the observed structure of mid-latitude synoptic systems and the mean circulations
in which they are embedded.

Zonally averaged cross sections do provide some useful information on the gross
structure of the planetary-scale circulation, in which synoptic-scale eddies are em-
bedded. Fig. 4 and 5 show the zonal mean meridional-vertical sections of tem-
perature (left) anomaly from zonal mean and zonal velocity (right) for northern
(December-to-February; DJF) and southern winter (June-to-August; JJA), respec-
tively. The vertical direction is measured in pressure (hPa). The average pole-
to-equator temperature gradient in the Northern Hemisphere troposphere is much
larger in winter than in summer. In the southern hemisphere the difference between
summer and winter temperature distributions is smaller, owing mainly to the large
thermal inertia of oceans together with the greater fraction of the surface that is
covered by oceans in the Southern Hemisphere. The zonal flow and the meridional
temperature gradients satisfy to a large degree the thermal wind relation (Exercise!),
the largest zonal wind speeds are located in upper levels in regions with the largest
meridional temperature gradients

∂ug
∂p

=
R

fp

(
∂T

∂y

)
p

. (53)

The core of maximum zonal wind speed (called jet stream axis) is located just
below the tropopause (the boundary between troposphere and stratosphere). In both
hemispheres the location is about 30◦-35◦ during winter and 40◦-45◦ during summer.

However, there are some important deviations from the zonal mean picture.
Fig. 6 shows the zonal wind distribution at the 200 hPa level. As can be seen the
largest wind speeds are concentrated just off the coast of Asia and North America,
where also the largest meridional temperature gradients occur. Also, whereas the
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Figure 4: Northern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

pacific jet is quite zonal, the Atlantic one is clearly tilted from the south-west to the
north-east. It is in these regions where most extratropical cyclones and anticyclones
develop. I will be shown in section 4 that the mechanisms where these systems draw
energy from is the meridional temperature gradient due to an instability called
baroclinic instability. The systems propagate downstream along the storm tracks
that approximately follow the jet axis.

The large departure of the northern winter climatological jet stream from zonal
symmetry can also be inferred from examination of Fig. 7, which shows the DJF
mean 500 hPa geopotential contours (the z from Φ = gz in Eq. 36). Even after aver-
aging the geopotential height contours for one season, very striking departures from
zonal symmetry remain. These are clearly linked to the distribution of continents
and Oceans (for example orographic Rossby waves due to approximate barotropic
potential vorticity conservation [see section 1.3]).

The most prominent asymmetries are the throughs to the east of the American
and Asian continents. Referring back to Fig. 6, we see that the intense jet at 35◦

N and 140◦ E is a result of the semi-permanent trough in that region (that is the
isolines of height show strong gradient in that region).

Thus, it is apparent that the mean flow in which synoptic systems are embedded
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Figure 5: Southern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

should really be regarded as a longitude-dependent time-averaged flow. In addition
to its longitudinal dependence, the planetary-scale flow also varies from day to day
owing to its interactions with transient synoptic-scale disturbances.

It is a common observation in fluid dynamics that jets in which strong velocity
shears occur may be unstable with respect to small perturbations. By this is meant
that any small disturbance introduced into the jets will tend to amplify, drawing
energy from the jet as it grows. Most synoptic-scale systems in mid-latitude appear
to develop as the result of an instability of the jet-stream flow. This instability, called
baroclinic instability, depends on the meridional temperature gradient, particularly
at the surface. Hence, through the thermal wind relationship, baroclinic instability
depends on vertical wind shear.

2.3 The Quasi-geostrophic approximation

The main goal of this chapter is to show how the observed structure of midlatitude
systems can be interpreted in terms of the constraints imposed on synoptic-scale
motions by the dynamical equations. Specifically we show that for equations that
are hydrostatic and nearly geostrophic the three-dimensional flow is determined
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Figure 6: Northern winter (DJF) 200 hPa zonal wind. Units are m/s.

approximately by the isobaric distribution of geopotential height [Φ(x, y, p, t)]. For
this analysis, it is convenient to use the isobaric coordinate system both because
meteorological measurements are generally referred to constant-pressure surfaces
and because the dynamical equations are somewhat simpler in isobaric coordinates
than in height coordinates. Thus, use of the isobaric coordinate system simplifies
the development of approximate prognostic and diagnostic equations.

2.3.1 Scale Analysis in Isobaric Coordinates

We consider the set of equations (36), (37), (44) and (47). In the following we will
drop the notation ()p to indicate derivatives at constant pressure, which is valid
in this section for all horizontal and time derivatives. The stability parameter is
positive [Sp ≈ 5 × 10−4 K Pa−1 in the mid-troposphere]. This set of equations,
although simplified by use of the hydrostatic approximation and by neglect of some
small terms that appear in the complete spherical coordinate form, still contains
terms that are of secondary significance for mid-latitude synoptic-scale systems.
They can be further simplified by the observation that the horizontal flow is nearly
geostrophic and that the ratio of the magnitudes of vertical to horizontal velocities
is of the order of 10−3.

We first separate the horizontal velocity into geostrophic and ageostrophic parts
by letting

v = vg + va , (54)

where the geostrophic wind is defined as

vg ≡ f−1
0 k×∇Φ , (55)

and va is just the difference between the total horizontal wind and the geostrophic
wind. Here we have assumed that the meridional scale, L, is small compared to the
radius of the earth so that the geostrophic wind may be defined using a constant
reference latitude of the Coriolis parameter (f ≈ f0 as in equation 15). Note that
the definition (55) implies that the geostrophic wind is non-divergent.
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Figure 7: Northern winter (DJF) 500 hPa zonal geopotential height. Units are
decametre.

For the systems of interest |vg| � |va|. More precisely,

|va|
|vg|
∼ O(Ro) ≈ 10−1 . (56)

The Rossby number Ro has been introduced in Eq. (7).
The momentum can then be approximated to O(Ro) by its geostrophic value, and

the rate of change of momentum or temperature following the horizontal motion can
be approximated to the same order by the rate of change following the geostrophic
wind. Thus, in the total derivative (40), v can be replaced by vg and the vertical
advection, which arises from ageostrophic flow, can be neglected. The rate of change
of momentum following the total motion is then approximately equal to the rate of
change of the geosptrophic momentum following the geostrophic wind:

dv

dt
≈ dgvg

dt
, (57)
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where
dg
dt

=
∂

∂t
+ vg · ∇ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
. (58)

Note, however, that the vertical advection in the thermodynamic equation, 47, has
been combined already with the adiabatic expansion term to provide the stability
term Spω.

Although a constant f0 can be used in defining vg, it is still necessary to retain
the dynamical effect of the variation of the Coriolis parameter with latitude in the
Coriolis force term in the momentum equation. This variation can be approximated
by expanding the latitudinal dependence of f in a Taylor series about a reference
latitude φ0 and retaining only the first two terms to yield

f = 2|Ω| sinφ ≈ f0 + βy , (59)

that is the sinφ-dependence is approximated linearly for a given latitude φ0 by a
Taylor series expansion (therefore β = 2|Ω|cosφ0/a; a being the mean radius of
the earth). This approximation is usually referred to as mid-latitude beta-plane
approximation. For synoptic-scale motions the ratio of the first two terms in the
expression of f has the order of magnitude

βL

f0
≈ cosφ0

sinφ0

L

a
∼ O(Ro)� 1 . (60)

This justifies letting the coriolis parameter have a constant value f0 in the geostrophic
approximation and approximating its variation in the coriolis force term by (59).

From Eq. (36) the acceleration following the motion is equal to the difference
between the Coriolis force and the pressure gradient force. This difference depends
on the departure of the actual wind from the geostrophic wind. We can write, using
(54), (59) and (55)

fk× v +∇Φ = (f0 + βy)k× (vg + va)− f0k× vg

≈ f0k× va + βyk× vg . (61)

The approximate horizontal momentum equation thus has the form

dgvg

dt
= −f0k× va − βyk× vg . (62)

Since the geostrophic wind (55) is non-divergent, the continuity equation (44)
may be written as

∇ · va +
∂ω

∂p
= 0 , (63)

which shows that ω is only defined by the ageostrophic part of the wind field (i.e.
it is the ageostrophic wind that drives vertical motions that are relevant for energy
conversions!!!).
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In the thermodynamic energy equation (47) the horizontal advection can be
approximated by its geostrophic value. However, as mentioned above, the vertical
advection is not neglected, but forms part of the adiabatic heating and cooling term.
This term must be retained because the static stability is usually large enough on
the synoptic scale that the adiabatic heating or cooling owing to vertical motion
is of the same order as the horizontal temperature advection despite the smallness
of the vertical velocity. It can be somewhat simplified, though, by dividing the
total temperature field Ttot, into a basic state (standard atmosphere) portion that
depends only on pressure, T0(p), plus a deviation from the basic state, T (x, y, p, t)

Ttot = T0(p) + T (x, y, p, t) . (64)

Since |dT0/dp| � |∂T/∂p| only the basic state portion of the temperature field need
to be included in the static stability term and the quasi-geostrophic thermodynamic
energy equation may be expressed in the form

∂T

∂t
+ vg · ∇T −

(
σp

R

)
ω =

Q

cp
, (65)

where σ ≡ −RT0p
−1d ln θ0/dp and θ0 is the potential temperature corresponding to

a basic state temperature T0 (σ ≈ 2× 10−6 m2 Pa−2 s−2 in the midtroposhere).
Equations (62), (55), (37), (63) and (65) constitute the quasi-geostrophic equa-

tions. If Q is known these form a complete set in the dependent variables Φ, T,vg,va
and ω.

2.4 The Quasi-Geostrophic Vorticity Equation

Just as the horizontal momentum can be approximated to O(Ro) by its geostrophic
value, the vertical component of the vortivity can also be approximated geostrophi-
cally. Using Eq. (55) the geostrophic vorticity ξg = k · ∇ × vg can be expressed in
terms of the Laplacian of the geopotential

ξg =
∂vg
∂x
− ∂ug

∂y
=

1

f0
∇2Φ . (66)

Equation (66) can be used to determine ξg(x, y) at any given time from a known
field Φ(x, y). Alternatively, (66) can be solved by inverting the Laplacian operator
to determine Φ from a known distribution of ξ provided that suitable conditions
on Φ are specified on the boundaries of the region in question. This invertibility
is one reason why vorticity is such a useful forecast diagnostic; if the evolution
of vorticity can be predicted, then inversion of Eq. (66) yields the evolution of
the geopotential field, from which it is possible to determine the geostrophic wind.
Since the Laplacian of a field tends to be a maximum where the function itself is a
minimum, positive vorticity implies low values of geopotential and vice versa (see
Fig. 7). We will use the invertibility to solve a problem numerically in section 3.

The quasi-geostrophic vorticity equation can be obtained from the x and y com-
ponents of the quasi-geostrophic momentum equation (62) and yields (exercise!)
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dgξg
dt

= −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg , (67)

which should be compared with Eq. (11). Thus the quasi-geostrophic vorticity
equation takes the form of the barotropic vorticity equation! Using (63), Equation
(67) can be re-written as

∂ξg
∂t

= −vg · ∇(ξg + f) + f0
∂ω

∂p
, (68)

which states that the local rate of change of geostrophic vorticity is given by the
sum of the advection of the absolute vorticity by the geostrophic wind plus the
concentration or dilution of vorticity by stretching or shrinking of fluid columns
(the divergence effect). The vorticity tendency owing to vorticity advection [the
first term on the right in Eq. (68)] may be rewritten as

−vg · ∇(ξg + f) = −vg · ∇ξg − βvg . (69)

The two terms on the right represent the geostrophic advections of relative vorticity
and the planetary vorticity, respectively. For disturbances in the westerlies, these
two effects tend to have opposite signs. In the upstream of a 500 hPa trough,
the geostrophic wind is directed from the negative vorticity maximum at the ridge
toward the positive vorticity maximum at the trough so that −vg · ∇ξg < 0. But at
the same time, since vg < 0 in that region, the geostrophic wind has its y component
directed down the gradient of planetary vorticity so that −βvg > 0. Hence, in
this region the advection of relative vorticity tends to decrease the local relative
vorticity, whereas the advection of planetary vorticity tends to increase the local
relative vorticity. Similar arguments (but with reversed signs) apply to a region
downstream a trough. Therefore, advection of relative vorticity tends to move the
vorticity and trough (and ridge) pattern eastward (downstream). But advection
of planetary vorticity tends to move the troughs and ridges westward against the
advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends
upon which type of advection dominates. Given a geopotential height wavy field,
the vorticity increases with the square of the wave number, so that the first term on
the right of Eq. (69) is larger for large wave numbers (i.e. short waves; typically Lx <
3000 km), while for long waves (Lx > 10000 km) the planetary vorticity advection
tends to dominate. Therefore, as a general rule, short wavelength synoptic-scale
systems should move eastward with the advecting zonal flow while long planetary
waves should tend to be stationary of move against the zonal advection. This will be
discussed in more details when we derive the dispersion relation for Rossby waves.

Vorticity advection does not alone determine the evolution of meteorological
systems. The orographic effects, for example seems to have vanished from Eq. (68).
But they are still present, because orography will lead to vertical motions that make
the second term on the right important.
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Exercises

1. Show that
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
= (Γd − Γ)/(ρg)

using the definition of potential temperature, and dry adiabatic and actual
lapse rates.

2. Show that from (62) follows the quasi-geostrophic vorticity equation (67).
[Hint: apply ∂/∂x to the second component of Eq. (62) and substact ∂/∂y
applied to the first component of Eq. (62)].

3. Derive the thermal wind equation for u-component of the zonal wind (Eq. 53)
and also for the v-component in pressure coordinates using the geostrophic
relation 55.

4. Suppose that on the 500 hPa surface the relative vorticity at a certain location
at 45◦ N latitude is increasing at a rate of 3 × 10−6s−1 per 3 h. The wind
is from southwest at 20 m/s. and the relative vorticity decreases toward the
northeast at a rate of 4 × 10−6s−1 per 100 km. Use the quasi-geostrophic
vorticity equation to estimate the horizontal divergence at this location on a
β plane.

5. Given the following expression for the geopotential field:

Φ(x, y, p, t) = Φ0(p) + f0[−Uy + k−1V cos(πp/p0) sin k(x− ct)] , (70)

where U, V, c, k, p0 are constants, use the quasi-geostrophic vorticity equation
(68) to obtain an estimate for ω. Assume that df/dy = β is a constant (not
zero) and that ω vanishes for p = p0.
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3 Rossby Waves

Suggested Literature:

1. Hoskins, B.J. and Karoly D.J., 1981: ’The Steady Linear Response of a Spher-
ical Atmosphere to Thermal and Orographic Forcing’, J. Climate, 38, 1179-
1196

3.1 Free Barotropic Rossby Waves

The dispersion relation for free barotropic Rossby waves can be derived by linearizing
the barotropic vorticity equation in the form (21). This equation states that the
absolute (geostrophic) vorticity is conserved following the horizontal (geostrophic)
motion. As usual, we assume that the fields can be expressed as small perturbations
from a basic state ψ = ψ + ψ′. We linearize using a basic state that has only flow
in zonal direction ψ = −uy + const. This mean state fulfills Eq. (21). With this
mean state ∇2ψ = ∇2ψ′. Thus, by linearizing, in the first term the total derivative
operator can be replaced by the mean operator and it follows(

∂

∂t
+ u

∂

∂x

)
∇2ψ′ + β

∂ψ′

∂x
= 0 . (71)

As usual, we seek for solutions of the type

ψ′ = Aei(kx+ly−νt) . (72)

Inserting (72) into (71) yields the dispersion relation

(−ν + ku)(−k2 − l2) + kβ = 0 , (73)

which we can solve immediately for ν

ν = uk − βk/K2 , (74)

where K2 ≡ k2 + l2 is the total horizontal wave number squared. Recalling that
cx = ν/k, we find that the zonal phase speed relative to the mean wind is

cx − u = −β/K2 . (75)

Thus, the Rossby wave zonal phase propagation is always westward relative to the
mean zonal flow. Furthermore, the Rossby wave phase speed depends inversely on
the square of the horizontal wave number. Therefore, Rossby waves are dispersive
waves whose phases speeds increase rapidly with increasing wavelength. This re-
sult is consistent with the discussion in section 2.4, in which we showed that the
advection of planetary vorticity, which tends to make the disturbances retrogress,
increasingly dominates over relative vortivcity advection as the wavelength of a dis-
turbance increases. Equation (75) provides a quantitative measure of this effect in
cases where the disturbance is small enough in amplitude.

23



From Eq. (75) we may calculate the stationary free Rossby wave wavelength

K2 = β/u ≡ K2
s . (76)

This means that stationary free Rossby waves only exist if there is a positive mean
flow u. This condition is important for Rossby waves that may be generated by
tropical convection.

The group velocity of Rossby waves may be calculated as (exercise!):

cgx ≡
∂ν

∂k
= u+ β

k2 − l2

K4
(77)

cgy ≡
∂ν

∂l
= 2

βkl

K4
. (78)

Therefore, the energy propagation of stationary Rossby waves is always eastward
(Fig. 8; exercise!).

These waves can also be derived from the original, compressible equations, but
the analysis is much more complicated. There are some minor modifications in the
phase velocities if the full equations are considered, but the main results remain
valid.

3.2 Forced Topographic Rossby waves

Forced stationary Rossby waves are of primary importance for understanding the
planetary-scale circulation pattern. Such modes may be forced by longitudinal de-
pendent latent heating, or by flow over topography. Of particular importance for the
Northern Hemisphere extratropical circulation are stationary Rossby modes forced
by flow over the Rockies and the Himalayas.

As the simplest possible dynamical model of topographic Rossby waves we use
the barotropic vorticity equation for a homogeneous fluid of variable depth (e.g.
Eqs. 14 or 17). We assume that the upper boundary is at fixed height H and the
lower boundary is at the variable height hT (x, y). We also use the quasi-geostrophic
scaling |ξ| � f0. Then, from 14 and 17 we have

H
dh(ξ + f)

dt
= −f0

dhT
dt

, (79)

where is has been also assumed that h ≡ H − ht ≈ H on the left side (i.e. the
mountain height is much smaller than the troposphere height). After linearizing (as
we did to derive Eq. 71)(

∂

∂t
+ ū

∂

∂x

)
∇2ψ′ + β

∂ψ′

∂x
= −f0

H
ū
∂hT
∂x

. (80)

Lets consider the solutions of Eq. (80) for the special case of a sinusoidal lower
boundary. We specify the topography to have the from

hT (x, y) = h0 sin(kx+ φ) cos ly , (81)
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where φ is an arbitrary phase (therefore equivalent to A cos kx + B sin kx). If we
insert the streamfunction perturbation

ψ′ = ψ0 sin(kx+ φ) cos ly , (82)

then Eq. (80) has the steady-state solution (i.e. dropping the partial time derivative)
[exercise!]

ψ0 = f0h0/[H(K2 −K2
s )] . (83)

The streamfunction is either exactly in phase (ridges over the mountains) or exactly
out of phase (troughs over the mountains) with the topography depending on the
sign K2 −K2

s . For long waves, (K < Ks), the topographic vorticity source in Eq.
(80) is primarily balanced by meridional advection of planetary vorticity (the β
effect). For short waves (K > Ks) the source is balanced primarily by the zonal
advection of relative vorticity.

The topographic wave solution (83) has the unrealistic characteristic that when
the wave number exactly equals the critical wave number Ks the amplitude goes
to infinity. This is the resonant response case when the wave number reaches the
stationary wave number of free Rossby waves.

Fig. 8 gives another example for a stationary Rossby wave, caused by ENSO
forcing (discuss Eq. 11).

3.3 Turning Latitude

In reality the theory applied here with a constant β and u is a little to over-simplified,
and a more correct treatment would make use of the dynamics in spherical coordi-
nates (as in e.g. Hoskins and Karoly, 1981). However, we can derive some properties
for an initially north-eastward propagating stationary Rossby wave here knowing
that β slowly deceases in the meridional direction. Let us conisder the stationary
Rossby wave 85

k2 + l2 = β/u . (84)

Let’s assume a wave generated by ENSO in the tropics moves north-eastward,
and that its zonal wave number is a constant. If we further take into account
that β decreases to the north with the cosine of the latitude, then the meridional
wave number l must decrease until it becomes 0. From this point the wave turns
southward again. The latitude in which this occurs is called turning latitude, and it
is an important property of stationary Rossby waves generated in the tropics. Try
to identify the turning latitude in Fig. 8.

We can go a step further, and let also the mean wind u depend on latitude, in
which case Eq. 84 has an additional terms:

k2 + l2 =

(
β − d2u

dy2

)
u

. (85)
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There are some metric terms missing in this equation, but this expression gives
a hint why a strong jet can modify stationary Rossby waves (the full correct ex-
pression can be found in Hoskins and Karoly, 1981). Strong jets are therefore also
able to modify the turning latitude and other properties of stationary Rossby waves.
Fig. 9 shows two examples of stationary wave number distribution in the merid-
ional direction versus the zonal wavenumber for regions with a strong jet (South
Asian/Western Pacific region; solid line) and one with a weaker jet (Eastern Pacific
region). North of a strong jet the turning latitude is reduced, and we get an effect
called waveguide, e.g. wave numbers 5 and 6 are essentially trapped in the region
between 25◦ and 35◦N. How do you determine the turning latitude in this graph?

Figure 8: Stationary Rossby wave induced by ENSO.
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Figure 9: Meridional profile of stationary wave number (Ks). From Master thesis
of Alessandro Raganato.

Exercises

1. Derive the group velocities for Rossby waves (77) and (78) and show that
for stationary Rossby waves fulfilling Eq. (85), the cgx component is always
positive.

2. Show that (83) is the solution of (80) with (81).

3. Using the linearized form of the potential vorticity equation (11) and the
β-plane approximation, derive the Rossby wave speed for a homegenous in-
compressible ocean of depth h. Assume a motionless basic state and small
perturbations that depend only on x and t,

u = u′(x, t), v = v′(x, t), h = H + h′(x, t) , (86)

where H is the mean depth of the ocean. With the aid of the continuity
equation for a homogeneous layer

∂h′

∂t
+H

∂u′

∂x
= 0 (87)

and the geostrophic wind relationship v′ = gf−1
0 ∂h′/∂x. Show that the per-

turbation vorticity equation can be written in the form

∂

∂t

(
∂2

∂x2
− f2

0

gH

)
h′ + β

∂h′

∂x
= 0 (88)
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and that h′ = h0e
ik(x−ct) is a solution provided that

c = −β(k2 + f2
0 /gH)−1 . (89)

If the ocean is 4 km deep, what is the Rossby wave speed at latitude 45◦ N for
a wave of 10000 km zonal wavelength?

4. Rossby-type waves can be generated in a rotating cylindrical vessel if the depth
of the fluid is dependent on the radial coordinate. To determine the Rossby
wave speed formula for this equivalent β effect, we assume that the flow is
confined between rigid lids in an annular region whose distance from the axis
of rotation is large enough so that the curvature terms in the equations can
be neglected. We then can refer the motion to cartesian coordinates with x
directed azimutally and y directed toward the axis of rotation. If the system
is rotating at angular velocity Ω and the depth is linearly dependent on y,

H(y) = H0 − γy , (90)

show that the perturbation (shallow water) continuity equation (dH/dt =
−H∇ · v) can be written as

H0

(
∂u′

∂x
+
∂v′

∂y

)
− γv′ = 0 (91)

and that the perturbation quasi-geostrophic vorticity equation is thus

∂

∂t
∇2ψ′ + β

∂ψ′

∂x
= 0 , (92)

where ψ′ is the perturbation geostrophic streamfunction and β = 2Ωγ/H0.
What is the Rossby wave speed in this situation for waves of wavelength 100
cm in both the x and y directions if Ω = 1s−1, H0 = 20 cm, and γ = 0.05?
(Hint: Assume that the velocity field is geostrophic except in the divergence
term.)

5. Solve the nonlinear potential vorticity conservation equation (19) using (22)
and including a Ekman pumping term reξ, re = 1/day numerically for a chan-
nel with the centre at 45◦N of Ly = 3 · 106 m meridional width and a zonally
periodic domains of a length of Lx = 2 · 107 m using a spatial discretization
of ∆x = ∆y = d = 1 · 105 m and a ∆t of 1 h. Assume that the top is fixed
at a height H = 1.2 ·104 m, so that the total height of the fluid is given by
h = H − ht. Let a sinusoidal mountain be if the shape

ht(x, y) = h0 sin(N2πx/Lx) sin(πy/Ly) ,

where h0 = 1 ·103 m, and let N (the number of the mountain waves in the
channel) be a) N=2 and b) N=8. The initial condition zonal flow, which,
expressed in streamfunction means

ψ(x, y, 0) = −10(y − Ly) .
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Compare the solutions for a) and b) (after 7 days) and especially compare the
position of the eddy streamfunction crests relative to the mountain crests for
both cases and interpret the results. Hint: Equation (19), with the condition of
a fixed upper height H and given lower topography, including Ekman pumping
terms can be written as

∂

∂t
ξ = F (x, y, t)−reξ = −

[
∂

∂x
(uξ) +

∂

∂y
(vξ)

]
−βv+

f0

h

[
∂

∂x
(uh) +

∂

∂y
(vh)

]
−reξ .

(93)
and

u = −∂ψ
∂y

(94)

v =
∂ψ

∂x
(95)

ξ = ∇2ψ , (96)

given that the quasi-geostrophic approximations (15) and (16) are valid. Note
that Eq. (93) can be written in its formulation because the geostrophic wind
(Eq. 94) is divergence free and the height does not depend explicitly on time.

Discretize the terms in Eq. (93) as (using an implicit discretization of the
Ekman damping)

ξ(t+ ∆t) = ξ(t) + ∆tFi,j(t)−∆treξ(t+ ∆t) (97)

with

Fi,j(t) = − 1

2d
[(ui+1,jξi+1,j − ui−1,jξi−1,j) + (vi,j+1ξi,j+1 − vi,j−1ξi,j−1)]− βvi,j

+
f0

hi+1,j

1

2d

[(ui+1,jhi+1,j − ui−1,jhi−1,j) + (vi,j+1hi,j+1 − vi,j−1hi,j−1)] (98)

where the right side is evaluated at the time t, where the fields are already
known. This leads to

ξ(t+ ∆t) = (ξ(t) + ∆tFi,j)/(1 + ∆tre) (99)

Knowing the vorticity, the streamfunction can be determined by Eq. (96),
which can be discretized as (see MMG lectures)

(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j)/d
2 = ξi,j . (100)

If we can solve this equation for ψi,j , we can derive the velocity fields by using
Eqs. (94), (95) in discretized form

ui,j = −(ψi,j+1 − ψi,j−1)/(2d) (101)

vi,j = (ψi+1,j − ψi−1,j)/(2d) (102)

(103)

A scheme how to solve the initial value problem is:
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(a) Given the initial condition ψi,j , (100) can be solved to determine ξi,j ,
(101) and (102) can be used to determine the velocities

(b) Evaluate Fi,j using Eq. (98).

(c) ξt+∆t can be determined by integrating (99).

(d) Knowing ξt+∆t, (100) can be inverted to calculate ψt+∆t

(e) Go back to (a).

Integrate this scheme for 7 days to reach a steady-state solution and plot the
eddy streamfunction and topography.
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4 Baroclinic Instability

4.1 A two-layer Model

Even for a highly idealized mean flow profile the mathematical treatment of baro-
clinic instability in a continuously stratified atmosphere is rather complicated. Thus,
we focus on the simplest model that can incorporate baroclinic processes. The at-
mosphere is represented by two discrete layers bounded by surfaces numbered 0,2,
and 4 (generally taken to be the 0-, 500-, and 1000-hPa surfaces, respectively). The
quasi-geostrophic vorticity equation for the midlatitude β plane is applied at levels
denoted 1 and 3 and the thermodynamic energy equation is applied at level 2. Be-
fore writing the specific equations of the two-layer model, it is convenient to define a
geostrophic streamfunction, ψ ≡ Φ/f0 (see definitions leading to Eq. 21). Then the
geostrophic wind (Eq. 55) and the geostrophic vorticity (Eq. 66) can be expressed
as

v = k×∇ψ, ξ = ∇2ψ (104)

The quasi-hydrostatic vorticity equation (68) and the hydrostatic thermodynamic
equation (65) can be written with help of (37) in terms of ψ and ω as (assuming no
diabatic processes)

∂

∂t
∇2ψ + v · ∇(∇2ψ) + β

∂ψ

∂x
= f0

∂ω

∂p
(105)

∂

∂t

(
∂ψ

∂p

)
= −v · ∇

(
∂ψ

∂p

)
− σ

f0
ω . (106)

We now apply the vorticity equation (105) at the two levels designated as 1
and 3, which are in the middle of the two layers. To do this we must estimate the
divergence term ∂ω/∂p at these levels using finite difference approximations to the
vertical derivatives (

∂ω

∂p

)
1

≈ ω2 − ω0

δp
,

(
∂ω

∂p

)
3

≈ ω4 − ω2

δp
, (107)

where δp is the pressure interval between levels 0-2 and 2-4 and subscript notation
is used to designate the vertical level for each dependent variable. The resulting
vorticity equations are

∂

∂t
∇2ψ1 + v1 · ∇(∇2ψ1) + β

∂ψ1

∂x
= f0

ω2

δp
(108)

∂

∂t
∇2ψ3 + v3 · ∇(∇2ψ3) + β

∂ψ3

∂x
= −f0

ω2

δp
, (109)

where we have used the fact that ω0 = 0 and assumed that ω4 = 0, which is approx-
imately true for a level lower boundary surface. We next write the thermodynamic
energy equation (106) at level 2. Here we must evaluate ∂ψ/∂p using the difference
formula

(∂ψ/∂p) ≈ (ψ3 − ψ1)/δp .
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The result is

∂

∂t
(ψ1 − ψ3) = −v2 · ∇(ψ1 − ψ3) +

σδp

f0
ω2 . (110)

The first term on the right-hand side in Eq. (110) is the advection of the 250-750
hPa thickness by the wind at 500 hPa. However, ψ2, the 500 hPa streamfunction,
is not a predicted field in this model. Therefore, ψ2 must be obtained by linearly
interpolating between the 250- and 750-hPa levels

ψ2 = (ψ1 + ψ3)/2 . (111)

If this interpolation formula is used, (108)-(110) become a closed set of prediction
equations in the variables ψ1, ψ3, and ω2.

4.2 Linear Perturbation Analysis

To keep the analysis as simple as possible we assume that the streamfunctions ψ1 and
ψ3 consist of basic state parts that depend linearly on y alone, plus perturbations
that depend only on x and t (similar to section 3). Thus, we let

ψ1 = −U1y + ψ′1(x, t)

ψ3 = −U3y + ψ′3(x, t) (112)

ω2 = ω′2(x, t) .

The zonal velocities at levels 1 and 3 are then constants with the values U1 and U3,
respectively. Hence, the perturbation field has meridional and vertical velocity com-
ponents only. Inserting (112) into (108)-(110) and linearizing yields the perturbation
equations (see section 3) (

∂

∂t
+ U1

∂

∂x

)
∂2ψ′1
∂x2

+ β
∂ψ′1
∂x

= f0
ω′2
δp

(113)(
∂

∂t
+ U3

∂

∂x

)
∂2ψ′3
∂x2

+ β
∂ψ′3
∂x

= −f0
ω′2
δp

(114)(
∂

∂t
+ Um

∂

∂x

)
(ψ′1 − ψ′3)− UT

∂

∂x
(ψ′1 + ψ′3) =

σδp

f0
ω′2 , (115)

where we have linearly interpolated to express v2 in terms of ψ1 and ψ3 and have
defined

Um ≡ (U1 + U3)/2, UT ≡ (U1 − U3)/2 .

Thus, Um and UT are, respectively, the vertically averaged mean zonal wind and the
mean thermal wind for the interval δp/2. The dynamical properties of this system
are more clearly expressed if (113)-(115) are combined to eliminate ω′2. We first note
that (113) and (114) can be rewritten as(

∂

∂t
+ (Um + UT )

∂

∂x

)
∂2ψ′1
∂x2

+ β
∂ψ′1
∂x

= f0
ω′2
δp

(116)(
∂

∂t
+ (Um − UT )

∂

∂x

)
∂2ψ′3
∂x2

+ β
∂ψ′3
∂x

= −f0
ω′2
δp

. (117)
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We now define the barotropic and baroclinic perturbations as

ψm ≡ (ψ′1 + ψ′3)/2, ψT ≡ (ψ′1 − ψ′3)/2 (118)

Adding (116) and (117) and using the definitions in (118) yields[
∂

∂t
+ Um

∂

∂x

]
∂2ψm
∂x2

+ β
∂ψm
∂x

+ UT
∂

∂x

(
∂2ψT
∂x2

)
= 0 , (119)

while subtracting (117) from (116) and combining with (115) to eliminate ω′2 yields[
∂

∂t
+ Um

∂

∂x

](
∂2ψT
∂x2

− 2λ2ψT

)
+β

∂ψT
∂x

+UT
∂

∂x

(
∂2ψm
∂x2

+ 2λ2ψm

)
= 0 , (120)

where λ2 ≡ f2
0 /[σ(δp)2]. Equations (119) and (120) govern the evolution of the

barotropic (vertically averaged) and baroclinic (thermal) perturbation vorticities,
respectively. As usual we assume that wavelike solutions exist of the form

ψm = Aeik(x−ct), ψT = Beik(x−ct) . (121)

Substituting these assumed solutions into (119) and (120) and dividing through by
the common exponential factor, we obtain a pair of simultaneous linear algebraic
equations for the coefficients of A,B

ik[(c− Um)k2 + β]A− ik3UTB = 0 (122)

ik[(c− Um)(k2 + 2λ2) + β]B − ikUT (k2 − 2λ2)A = 0 . (123)

From the Mathematical Methods course we know that a homogeneous set of equa-
tions has only nontrivial solutions if the determinant of the coefficients for A and B
is zero. Thus the phase speed c must satisfy the condition

(c− Um)k2 + β −k2UT
−UT (k2 − 2λ2) (c− Um)(k2 + 2λ2) + β

= 0 , (124)

which gives a quadratic dispersion equation in c

(c−Um)2k2(k2 + 2λ2) + 2(c−Um)β(k2 +λ2) + [β2 +U2
Tk

2(2λ2− k2)] = 0 , (125)

The solution for c is

c = Um −
β(k2 + λ2)

k2(k2 + 2λ2)
± δ1/2 , (126)

where

δ ≡ β2λ4

k4(k2 + 2λ2)2
− U2

T (2λ2 − k2)

(k2 + 2λ2)
. (127)

We have shown that (121) is a solution for the system (119) and (120) only if the
phase speed satisfies (126). Although (126) appears to be rather complicated, it is
immediately apparent that if δ < 0 the phase speed will have an imaginary part and
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the perturbations will amplify exponentially. Before discussing the general physical
conditions required for exponential growth it is useful to consider two special cases.

As the first special case we let UT = 0 so that the basic state thermal wind van-
ishes and the mean flow is barotropic. There can be no instability if the thermal wind
vanishes (i. e. without horizontal mean-state temperature gradients). The available
potential energy stored in the mean state temperature gradients is responsible for
baroclinic growth! The phase speeds in this case are

c1 = Um − βk−2 (128)

and
c2 = Um − β(k2 + 2λ2)−1 (129)

These are real quantities that correspond to the free (normal mode) oscillations
for the two-level model with a barotropic basic state current. The phase speed
c1 is simply the dispersion relationship for a barotropic Rossby wave with no y
dependence (see Eq. [75]). Substituting the expression (128) in place of c in (122)
and (123) we see that in this case B = 0, so that the perturbation is barotropic in
structure. The expression (129), on the other hand, may be interpreted as the phase
speed of an internal baroclinic Rossby wave. Note that c2 is a dispersion relationship
analogous to the Rossby wave speed for a homogeneous ocean with a free surface,
which was given in problem 3 of section 3. But, in the two-level model, the factor
2λ2 appears in the denominator in place of the f0/gH for the oceanic case. In each
of these cases there is vertical motion associated with the Rossby wave so that static
stability modified the phase speed.

Comparing (128) and (129) we see that the phase speed of the baroclinic mode is
generally much less than that of the barotropic mode, since for average midlatitude
tropospheric conditions λ2 ≈ 2 × 10−12 m−2, which is comparable in magnitude to
k for zonal wavelength of ∼ 4500 km.

Returning to the general case where all terms are retained in (126), the stability
criterion is most easily understood by computing the neutral curve, which connects
all values of UT and k for which δ = 0 so that the flow is marginally stable. From
Eq. (126), the condition δ = 0 implies that

β2λ4

k4(2λ2 + k2)
= U2

T (2λ2 − k2) (130)

or
k4/(4λ4) = 1/2{1± [1− β2/(4λ4U2

T )]1/2} . (131)

Fig. 4.2 shows nondimensional quantity k2/2λ2, which is a measure of the zonal
wavelength, plotted against the nondimensional parameter 2λ2UT /β, which is pro-
portional to the thermal wind, according to Eg. (131).

As indicated in the figure, the neutral curve separates the unstable region of the
UT , k plane from the stable region. It is clear that the inclusion of the β effect serves
to stabilize the flow, for unstable roots exist only for |UT | > β/(2λ2). In addition to a
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Figure 10: Neutral stability curve for the two-level baroclinic model

minimum value of UT required for unstable growth depends strongly on k. Thus, the
β effect strongly stabilizes the long-wave end of the wave spectrum (k → 0). Again,
the flow is always stable for waves shorter than the critical wavelength Lc =

√
2π/λ

(why?). The long-wave stabilization associated with the β effect is caused by the
rapid westward propagation of long waves, which occurs only when the β effect is
included in the model.

Differentiating Eq. (130) with respect to k and setting dUT /dk = 0, we find the
minimum value of UT for which unstable waves exist occurs when k2 =

√
2λ2. This

wave number corresponds to the wave of maximum instability. Wave numbers for
observed disturbances should be close to the wave number of maximum instability,
if UT were gradually raised from zero the flow would first become unstable for per-
turbations of wave number k = 21/4λ. Those perturbations would then amplify and
in the process remove energy from the mean thermal wind, thereby decreasing UT
and stabilizing the flow. Under normal conditions of static stability the wavelength
of maximum instability is about 4000 km, which is close to the average wavelength
for midlatitude synoptic systems.

Exercises

1. Suppose that a baroclinic fluid is confined between two rigid horizontal lids in
a rotating tank in which β = 0 but friction is presented in the form of linear
drag proportional to the velocity (i.e., Fr = −µv). Show that the two-level
model perturbation vorticity equations in cartesian coordinates can be written
as

(
∂

∂t
+ U1

∂

∂x
+ µ

)
∂2ψ′1
∂x2

− f0
ω′2
δp

= 0
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(
∂

∂t
+ U3

∂

∂x
+ µ

)
∂2ψ′3
∂x2

+ f0
ω′2
δp

= 0 ,

where perturbations are assumed in the form given in Eq. (112). The thermo-
dynamic equation remains (115). Assuming solutions of the form (121), show
that the phase speed satisfies a relationship similar to (126), with β replaced
everywhere by iµk and that as a result the condition for baroclinic instability
becomes

UT > µ(2λ2 − k2)−1/2 .
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5 Equatorial Wave Theory

Lecture based on ’An Introduction to Dynamic Meteorology’ by J. R. Holton, Aca-
demic Press, INC., 3rd edition, 511 pp.

Figure 11: Dispersion diagram for tropical Outgoing longwave radiation. Source:
www.cgd.ucar.edu,NOAA.

Equatorial waves are an important class of eastward and westward propagating
disturbances that are trapped about the equator (that is, they decay away from the
equatorial region). In a dispersion diagram for observed equatorial quantities, these
wave can be identified as regions of increased energy density (Fig. 11).

Diabatic heating by organized tropical convection may excite equatorial wave
motions (see Fig. 12). Through such waves the dynamical effects of convective
storms can be communicated over large longitudinal distances in the tropics. Such
waves can produce remote responses to localized heat sources. Furthermore, by
influencing the pattern of low-level moisture convergence they can partly control
the spatial and temporal distribution of convective heating. In order to introduce
equatorial waves in the simplest possible context, we here use a shallow-water model
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Figure 12: Equatorial Kelvin and Rossby waves triggered by an SST-induced heat-
ing. Source: Kucharski et al. 2008: A Gill-Matsuno-type mechanism explains the
tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. R. Mete-
orol. Soc. (2009), 135, 569-579, DOI: 10.1002/qj.406

and concentrate on the horizontal structure.

5.1 The shallow water equations

The shallow water equations are a drastic simplification to the real atmospheric flow.
However, despite it’s simplicity it gives often a good insight into many atmospheric
wave phenomena. The basic assumptions in the shallow water model are

(i) The flow is incompressible ρ = const.

(ii) The flow is shallow enough so that the horizontal velocity components are
independent of height.

(iii) The flow is hydrostatic. Accelerations in the vertical direction may be ne-
glected.
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Let us consider the horizontal momentum equations 1 and the hydrostatic equa-
tion 34

∂u

∂t
+ (v · ∇)u = −1

ρ

∂p

∂x
+ fv (132)

∂v

∂t
+ (v · ∇)v = −1

ρ

∂p

∂y
− fu (133)

1

ρ

∂p

∂z
= −g , (134)

Further consider the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (135)

Integrating the hydrostatic equation from a height z to the top of the fluid leads to
(assuming the pressure is vanishing there)∫ h(x,y,t)

z

∂p

∂z
dz = −

∫ h(x,y,t)

z
ρgdz , or (136)

−p(x, y, z, t) = −ρg[h(x, y, t)− z] . (137)

Thus the horizontal pressure gradient force in the equations of motion 132, 133 may
be expressed as

−1

ρ

∂p

∂x
= −g∂h

∂x
= −∂Φ

∂x
(138)

−1

ρ

∂p

∂y
= −g∂h

∂y
= −∂Φ

∂y
, (139)

where we have defined Φ(x, y, t) = gh(x, y, t). Thus, keeping in mind that there the
horizontal velocities do not depend on the vertical direction and ignoring the coriolis
term proportional to the vertical velocity, the horizontal equations of motion may
be written as

∂u

∂t
+ (v · ∇)u = −∂Φ

∂x
+ fv (140)

∂v

∂t
+ (v · ∇)v = −∂Φ

∂y
− fu , (141)

The number of dependent variables in Eqs. 140 and 141 is reduced to 3, (u, v,Φ).
Thus, if we have another equation only containing (u, v,Φ), then the system may
be complete. This is achieved by simplification of the continuity equation 135 and
vertical integration. First, we note that because of ρ = const, Eq. 135 reduces to

∂w

∂z
= −∇ · v . (142)
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If we integrate this equation vertically from 0 to h(x, y, t) we have∫ h

0

∂w

∂z
dz = −

∫ h

0
∇ · v dz (143)

w(h) :=
dh

dt
=

∂h

∂t
+ v · ∇h = −(∇ · v)h (144)

Eq. 144 may as well be written as

∂Φ

∂t
+ v · ∇Φ = −Φ∇ · v . (145)

Eqs. 140, 141 and 145 build a complete set of differential equations for (u, v,Φ), and
are called the shallow water equations.

5.2 Linearization for an Equatorial β-plane

Now we linearize the set of equations 140, 141 and 145 about a motionless mean
state with height he on an equatorial β-plane. Generally speaking, the β-plane
assumption states that f = 2|ω| sinφ ≈ f0 + βy, that is the sinφ-dependence is
approximated linearly for a given latitude φ0 by a Taylor series expansion (therefore
β = 2|ω|cosφ0/a; a being the mean radius of the earth). If we set the base point at
the equator we have f0 = 0, therefore f ≈ βy.

∂u′

∂t
= −∂Φ′

∂x
+ βyv′ (146)

∂v′

∂t
= −∂Φ′

∂y
− βyu′ (147)

∂Φ′

∂t
= −ghe

(
∂u′

∂x
+
∂v′

∂y

)
, (148)

where the primed variables denote the perturbations from the basic state. This is
our basic set of linearized equations (with variable coefficients!) to study equatorial
wave dynamics. By adjusting the scale height he as well the ocean case may be
included.

Discuss Inertia-Gravity waves for extratropical situation and approximation f =
f0 = const, and assume u′(x, t), v′(x, t),Φ′(x, t).

5.2.1 Equatorial Rossby and Rossby-Gravity Modes

In order to find solutions to the linearized system 146, 147 and 148, we assume that
the y-dependence can be separated u′

v′

Φ′

 =

 û(y)
v̂(y)

Φ̂(y)

 ei(kx−νt) . (149)
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Substitution of Eq. 149 into 146-148 then yields a set of ordinary differential equa-
tions in y for the meridional structure functions û, v̂, Φ̂:

−iνû = −ikΦ̂ + βyv̂ (150)

−iνv̂ = −∂Φ̂

∂y
− βyû (151)

−iνΦ̂ = −ghe
(
ikû+

∂v̂

∂y

)
. (152)

If Eq. 150 is solved for û = k/νΦ̂ + iβyv̂/ν and inserted into Eq. 151 and 152 we
obtain

(β2y2 − ν2)v̂ = ikβyΦ̂ + iν
∂Φ̂

∂y
(153)

(ν2 − ghek2)Φ̂ + iνghe

(
∂v̂

∂y
− k

ν
βyv̂

)
= 0 . (154)

Finally, Eq. 154 is inserted into Eq. 153 to eliminate Φ̂, yielding a second-order
differential equation in the single unknown, v̂

∂2v̂

∂y2
+

[(
ν2

ghe
− k2 − k

ν
β

)
− β2y2

ghe

]
v̂ = 0 . (155)

We seek solutions of this equation for the meridional distribution of v̂, subject to the
boundary condition that the disturbance fields vanish for |y| → ∞. This boundary
condition is necessary since the approximation f ≈ βy is nor valid for latitudes
much beyond ±30◦, so that solutions must be equatorially trapped if they are to
be good approximations to the exact solutions on the sphere. Equation 155 differs
from the classic equation for a harmonic oscillator in y because the coefficient in
square brackets is not a constant but is a function of y. For sufficiently small y this
coefficient is positive and solutions oscillate in y, while for large y, solutions either
grow or decay in y. Only the decaying solutions, however, can satisfy the boundary
conditions.

It turns out that solutions to Eq. 155 which satisfy the condition of decay
far from the equator exist only when the constant part of the coefficient in square
brackets satisfies the relationship (which is as well the dispersion relation!)

√
ghe
β

(
−k
ν
β − k2 +

ν2

ghe

)
= 2n+ 1; n = 0, 1, 2, ...... (156)

which is a cubic dispersion equation determining the frequencies of permitted equa-
torially trapped free oscillations for zonal wave number k and meridional mode
number n. These solutions can be expressed most conveniently if y is replaced by
the nondimensional meridional coordinate

ξ =

(
β√
ghe

)1/2

y . (157)
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With the Eqs. 156 and 157, Eq. 155 becomes

∂2v̂

∂ξ2
+
(
2n+ 1− ξ2

)
v̂ = 0 . (158)

This is the differential equation for a quantum mechanical, simple harmonic oscilla-
tor. The solution has the form

v̂(ξ) = Hn(ξ)e−ξ
2/2 , (159)

where Hn(ξ) designates the nth Hermite polynomial. The first of these polynomials
have the values

H0 = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2 . (160)

Thus, the index n corresponds to the number of nodes in the meridional velocity
profile in the domain |y| < ∞. Inserting the solution 159 into Eq. 158 leads to
one of the defining differential equations for Hermite polynomials. In general, the
three solutions of Eq. 156 can be interpreted as eastward- and westward-moving
equatorially trapped gravity waves and westward-moving equatorial Rossby waves.
The case n = 0 (for which the meridional velocity perturbation has a gaussian
distribution centered at the equator) must be treated separately. In this case the
dispersion relationship 156 (which is something like a characteristic equation that
gives the ν(k)-dependence from which we may derive the phase velocities) factors as(

ν√
ghe
− β

ν
− k

)(
ν√
ghe

+ k

)
= 0 . (161)

The root ν/k = −
√
ghe, corresponding to a westward-propagating gravity wave,

is not permitted since the second term in parentheses in Eq. 161 was explicitly
assumed not to vanish when Eqs. 153 and 154 were combined to eliminate Φ. The
roots given by the first term in parentheses in Eq. 161 are

ν = k
√
ghe

[
1

2
± 1

2

(
1 +

4β

k2
√
ghe

)1/2
]
. (162)

The positive root corresponds to an eastward-propagating equatorial inertio-gravity
wave, while the negative root corresponds to a westward-propagating wave, which
resembles an inertio-gravity wave for long zonal scale k → 0 and resembles a Rossby
wave for zonal scales characteristic of synoptic-scale disturbances. This mode is
generally referred to as a Rossby-gravity wave.

5.2.2 Equatorial Kelvin Waves

In addition to the modes discussed in the previous section, there is another equatorial
wave that is of great practical importance. For this mode, which is called the
equatorial Kelvin wave, the meridional velocity perturbation vanishes and Eqs. 150
to 152 are reduced to the simpler set
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−iνû = −ikΦ̂ (163)

βyû = −∂Φ̂

∂y
(164)

−iνΦ̂ = −ghe (ikû) . (165)

Eliminating Φ between Eq. 163 and Eq. 165, we see that the Kelvin wave dispersion
equation is that of the shallow-water gravity wave

c2 =

(
ν

k

)2

= ghe . (166)

According to Eq. 166 the phase speed c can be either positive or negative. But, if
Eq. 163 and Eq. 164 are combined to eliminate Φ we obtain a first-order equation
for determining the meridional structure

βyû = −c∂û
∂y

, (167)

which may be integrated immediately to yield

û = u0 e
−βy2/(2c) , (168)

where u0 is the amplitude of the perturbation zonal velocity at the equator. Equation
168 shows that if solutions decaying away from the equator are to exist, the phase
speed must be positive (c > 0). Thus Kelvin waves are eastward propagating and
have zonal velocity and geopotential perturbations that vary in latitude as Gaussian
functions centered on the equator. The e-folding decay width is given by

YK = |2c/β|1/2 , (169)

which for a phase speed c = 30 m s−1 gives YK = 1600 km. The meridional force
balance for the Kelvin mode is an exact geostrophic balance between the zonal
velocity and the meridional pressure gradient. It is the change in sign of the Coriolis
parameter at the equator that permits this special type of equatorial mode to exist.
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Figure 13: Illustration of Kelvin (upper panel) and Rossby-gravity (lower panel)
waves.
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Figure 14: Dispersion diagram for equatorial Rossby-gravity and Kelvin waves.
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6 ENSO atmosphere and ocean feedback mechanisms
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6.1 Some general observations

Lets consider the sea surface temperature anomaly on 26th November, 2015 (Fig.
15). It’s a manifestation of an El Nino development in the year 2015. Let’s try to
understand what is going on in the Pacific region.

The typical equatorial Pacific background state is shown in Fig. 16, in a vertical-
zonal section. As can be seen it gets colder as we go from the surface downward
(why?). And it also gets colder if we go from west to east. Looking at a map of sea
surface temperature (SST), we see this equatorial asymmetry clearly (Fig. 17).

A schematic what is the situation in normal conditions (or La Nina) is given
in 18. Trade winds are blowing near the equator from east to west (the reason
theses trade winds will be discussed later in this course, but briefly it is due to the
maximum convective heating that occurs in the mean around the equator). These
trade winds push the warm surface waters to the west. What is happening then in
the east?

However, there is an additional Bjerknes feedback mechanism working at the
equator, which even further strengthens the equatorial easterly winds as shown in
Fig. 19.

In El Nino conditions (Fig. 21) this normal situation breaks down and we get to
a situation where also the eastern Pacific is flushed with warm waters (intuitively
one would think that this is the ’normal’ situation).
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Figure 15: SST anomaly on 26. Nov 2015. Source:
http://www.ospo.noaa.gov/data/sst/anomaly/2015/anomnight.11.26.2015.gif.

6.2 Atmospheric (ENSO) Teleconnections

In winter 2015/2016 one of the largest El Nino event in recent history happened
(Fig. 22).

Such an ENSO event is considered to be the major source of seasonal predictabil-
ity due to ENSO teleconnections Fig. 23.

In this section the physical basis for atmospheric teleconnections induced by
tropical SST anomalies will be briefly discussed. How can we understand the origin
of these teleconnections? Assuming we have an area warm SST anomalies. How do
we assess what are the atmospheric adjustment processes. Surely a warm area of
SST’s will modify the stability of a parcel (see Fig. 24), but how exactly?

Note that the parcels that are considered here are much smaller in scale ( 1km)
compared to the large-scale flow adjustments that we want to understand eventually.
From the Atmospheric Physics course in the last term you know that for a moist,
saturated parcel to be unstable the following criterion has to be fulfilled:
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Figure 16: Average January temperature as a function of depths and longitude along
the equator. Map from Pacific Marine Environmental Laboratory of NOAA, Seattle.

∂T

∂z
≤ − g

cp

(
1 + Llvmvs

RT

)
(

1 +
L2
lv
mvs

cpT 2Rv

) , (170)

where quantities refer to the large-scale environment. As long as the parcel is not
saturated the stability condition governed by the dry adiabate by setting mvs to
zero. This means that a warm surface would favour unstable conditions (Fig. 25).

For the moist saturated adiabatically rising parcel we have

dT

dt
= −w g

cp

(
1 + Llvmvs

RT

)
(

1 +
L2
lv
mvs

cpT 2Rv

) . (171)

Again, we can recover the unsaturated case by setting mvs to zero, and this leads to
the dry adiabatic lapse rate. This means the parcel always cools! It can be shown
(look at your Atmospheric Physics course) that due to the decreasing temperature
the Relative Humidity (RH) of a rising, unsaturated parcel always increases until
saturation is reached
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Figure 17: Mean sea-surface temperature calculated from the optimal interpolation
technique (Reynolds and Smith, 1995) using ship reports and AVHRR measurements
of temperature.

dRH

dt
= − mv

m2
vs

dmvs

dt
≥ 0 , (172)

If the parcel is rising further then condensation will occur. If the parcel raises far
enough then nearly all its moisture may condensate and fall out as rain. This leads to
diabatic heating of the atmosphere. In an unstable environment this leads to a huge
asymmetry between rising and sinking parcels, because the sinking parcel may just
evaporate the little moisture content in it. Note that if no rainfall is occurring, then
the process of rising (condensation) and sinking (evaporation) would be reversible
(no Entropy generation). It is the net heating related to the falling rain that makes
the convection process irreversible. See also Foehn effect mechanism (Fig. 26).

As a net effect there is a large-scale tropospheric convective heating due to the
SST-induced unstable conditions. From the thermodynamic equation (e.g. 47), we
know that this will lead to further adjustments. In particular, for tropical regions
we may assume that horizontal and time derivatives are negligible. We get the
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Figure 18: Normal conditions in the Pacific with strong trade winds pushing surface
water toward the west and heavy rain in the west driving the atmospheric circulation.

approximate relations

ω ≈ −ρgw ≈ −Q
cp

1

Sp
(173)

or

w ≈ Q

cp

1

Spρg
. (174)

This relation may also be applied to perturbations of Q and w.

∆w ≈ ∆Q

cp

1

Spρg
, (175)

if we assume that perturbations of Sp and ρ are small. It follows that increased
heating in the region of warm SST anomalies has to be compensated by rising
motion. Further adjustments may be explained by continuity as illustrated in Fig.
27.

For ENSO this could look like in Fig. 28. The signal in the upper troposphere
may be spread through equatorial Rossby and Kelvin waves, and the resulting upper-
level divergence may act as a Rossby-wave source in the vorticity equation 11.
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Figure 19: Cold conditions in east and warm conditions in west increase trade winds
further due to the hydrostatic equation.

The typical sea surface temperature anomaly for an El Nino event is shown in
Fig. 29. A warming of typically more than 1K is occurring in the eastern Pacific
and surrounded by a cooling (so-called Horse-shoe pattern).

Fig. 30 shows the typical (composite) response of the atmosphere (rainfall [or
heating!], and low-level winds) to the typical (composite) El Nino SST anomaly of
Fig. 29.

The response in the central equatorial Pacific is a weakening of the trade winds,
which is the positive atmospheric feedback, because a initial warm anomaly in the
eastern Pacific will cause a response that is strengthening the original SST anomaly
(why?). What is the typical period of ENSO? We will try to understand this local
atmospheric response and the subsequent ocean response in the following subsections
from a more theoretical point of view.

6.3 Atmospheric response to SST or heating anomaly

Kelvin and equatorial Rossby-gravity waves are also relevant for shaping the sta-
tionary response to an equatorial heating, so-called Gill response (Gill, 1980). In
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Figure 20: La Nina conditions in the Pacific with strong trade winds (black ar-
rows) pushing surface water toward the west (white arrows) and heavy rain in the
west driving the atmospheric circulation (black arrows). Colors give temperature
of the ocean surface, red is hottest, blue is coldest. From: NOAA Pacific Marine
Environmental Laboratory.

the Gill model a simple parameterization of the effect of heating on divergence, Q, is
added to the continuity equation (in the Gill’s paper and references therein proper
justifications for this approach are presented)

∂u′

∂t
= −∂Φ′

∂x
+ βyv′ (176)

∂v′

∂t
= −∂Φ′

∂y
− βyu′ (177)

∂Φ′

∂t
= −ghe

(
∂u′

∂x
+
∂v′

∂y

)
−Q , (178)

Finally, rayleigh friction and Newtonian cooling are added to the equations by re-
placing the time derivatives ∂/∂t by ∂/∂t + ε, and the equations are solved for a
stationary state. The result of the (complicated) computations are illustrated in
Fig. 31. To the west of the heating, we find the Rossby-gravity wave-type response,
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Figure 21: El Niño conditions in the Pacific with weak or reversed trade winds in
the west (black arrows) allowing surface water to surge eastward (white arrows) and
with heavy rain in the central equatorial Pacific driving the atmospheric circulation
(black arrows). Colors give temperature of the ocean surface, red is hottest, blue is
coldest. From: NOAA Pacific Marine Environmental Laboratory.

to the east we find the Kelvin wave-type response. Note that the Gill model is used,
for example, to explain the atmospheric part of the positive (Bjerknes) feedback
that leads to the ENSO phenomenon. Also note that a positive ’heating’ Q explains
the low-level convergent motions, but not the upper level ones (one would have to
change sign to explain the upper-level response; upper-level divergence in case of a
positive heating! Discuss!).

6.4 Response in the equatorial Ocean

6.4.1 Reduced gravity model

In this subsection we want to derive the equatorial ocean response to an atmospheric
forcing of the Gill-type. If we consider the mean stratification of the equatorial
Pacific Ocean of Fig. 16, one sees that warm water is residing on top of colder
waters, divided by the thermocline. The simplest model of the upper Pacific are
assuming therefore that there are 2 layers, divided by a density jump. Let layer 2 be
the lower layer of density ρ2 and height h2, and the upper layer be of density ρ1 and
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height h1. The aim here is to derive the pressure gradient force in the upper layer in
this situation. We derive the pressure gradient force by integrating the hydrostatic
equation 134 first in layer 2 from an arbitrary vertical position to the boundary h2∫ h2(x,y,t)

z

∂p2

∂z
dz = −

∫ h2(x,y,t)

z
ρ2gdz , or (179)

p2(h2)− p2(x, y, z, t) = −ρ2g[h2(x, y, t)− z] . (180)

Then we apply the horizontal gradient

∇p2(h2) = ∇p2(x, y, t)− ρ2g∇h2(x, y, t) , (181)

noting that the horizontal pressure gradient is independent on the vertical position.
Next we integrate further in layer 1∫ z

h2(x,y,t)

∂p1

∂z
dz = −

∫ z

h2(x,y,t)
ρ1gdz , or (182)

p1(x, y, z, t)− p1(h2) = −ρ1g[z − h2(x, y, t)] . (183)

We again apply the horizontal gradient

∇p1(x, y, t) = ∇p1(h2) + ρ1g∇h2(x, y, t) , (184)

Continuity demands that p1(h2) = p2(h2), therefore inserting 184 into 181 leads
to:

∇p1(x, y, t) = ∇p2(x, y, t)− (ρ2 − ρ1)g∇h2(x, y, t) . (185)

Assuming the lower layer motionless and without pressure gradient ∇p2(x, y.t) = 0
and H = h1 + h2 = const (rigid lid; an approximation here), and therefore ∇h1 =
−∇h2 we get

∇p1(x, y, t) = (ρ2 − ρ1)g∇h1(x, y, t) , (186)

or
1

ρ1
∇p1(x, y, t) =

ρ2 − ρ1

ρ1
g∇h1(x, y, t) . (187)

The pressure gradient in the upper layer can be, to a first approximation, expressed
in terms of the change in density between lower and upper layer and the gradient
of the thermocline depth h1. Since with respect the standard one-layer case the
factor g is replaced by (ρ2 − ρ1)/ρ1g = g′, this model is called reduced gravity
model. The density change (ρ2− ρ1)/ρ1 is typically about 1%. The reduced gravity
model is identical to the shallow water equations, but with the pressure gradient
force 187, because if the slight change of density between the 2 layers. We add a
wind-stress forcing on the rhs of the following equations to mimic the ocean forced
case. These equations are similar to the atmospheric Gill model, but with forcing
in the momentum equations instead of in the continuity equation.
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∂u

∂t
+ (u · ∇)u = −g′∂h

∂x
+ fv +

1

ρh
τx (188)

∂v

∂t
+ (u · ∇)v = −g′∂h

∂y
− fu+

1

ρh
τy (189)

∂h

∂t
+ u · ∇h = −h∇ · u . (190)

We have used h instead of h1 for simplicity as the thermocline depth, and ρ instead
of ρ1 as density in the upper layer. It is quite instructive to consider the motionless
stationary state of such a model (even in a more complex situation this may be a
good approximation):

∂h

∂x
=

1

ρhg′
τx (191)

∂h

∂y
=

1

ρhg′
τy , (192)

assuming a typical situation in the equatorial Pacific with purely easterly trade
winds (τx < 0, τy = 0) it becomes clear why the equatorial Pacific thermocline is
tilted from west to east!!!!

It is interesting to note that the (forcing) free Eq. (188) - (190) are formally
identical to the shallow water equations 140, 141 and 145 that we used to derive the
equatorial Rossby and Kelvin waves, if we replace g by g’, the reduced gravity. This
means that the reduced gravity equations support the same solutions as the shallow
water equations near the equator, if we also in all phase velocities replace g by g’.
We will see these kind of waves in the following example.

In the following we present and discuss the ocean adjustment to a constant
atmospheric wind-stress forcing of the ocean derived from a model similar, but
slightly more complicated than Eq. 188 - 190. The addition is basically an equation
for the surface temperature that is not present in Eq. 188 - 190. In a strict sense, the
surface temperature would never be influenced by the thermocline depth as long as
this is positive. However, in the real world, there is a still a gradient present in the
upper-layer, meaning that if the thermocline is nearer to the surface, the temperature
is lower there, just as seen in Fig. 16. Furthermore, if temperature is allowed to
vary horizontally then there will also be horizontal advection of temperature.

6.5 Ocean response to a zonal wind stress anomaly

Fig. 32 shows the wind-stress forcing applied with maximum at equator at 180 E,
and a Gaussian shape of with 10 degrees in east-west and 5 degrees in north-south
direction. The forcing is of magnitude 0.015 N/m2, which is a typical response of the
atmosphere to a typical ENSO anomaly. This forcing is mimiking the atmospheric
Gill-response on the equator to the ENSO-induced heating (SST) anomaly. We are
considering the time evolution of the thermocline response to the constant forcing.
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Fig. 33a shows the response after the first month of forcing, and we see interestingly
that the response resembles the Gill response that we discussed for the atmosphere
to a diabatic heating anomaly, with an equatorial Kelvin wave to the east of the wind
stress forcing and 2 Rossby waves struddling the equator to the west. The Kelvin
wave signal moves to the east as time evolves and the Rossby wave signal moves
to the west (as they should). The Kelvin waves reach the eastern boundary after
about 4 month (Fig. 33b) and appear to transform into coastal Kelvin waves that
move north- and southward from the equator. The maximum response is reached
after about 6 month, and is then decaying somewhat. The stationary response is
seen in Fig. 33f. The thermocline tilt in the steady-state solution seems to balance
the wind-stress forcing, showing that Eqs. 191 are a good approximation.

Fig. 34 shows the corresponding response in sea surface temperatures (using
an additional equation not present in Eq. (188) - (190)). Remember that the
atmospheric forcing was mimicking the Gill-type response to a warm SST anomaly.
From Fig. 34 we clearly identify that the ocean response to the atmospheric forcing
provides a positive feedback: The SST in the eastern equatorial Pacific is further
increased. The SST response evolves slower than the thermocline response (because
the response starts in the central/western Pacific where the thermocline is relatively
deep in the mean state and its fluctuations are therefore less coupled to the surface.
The maximum positive feedback seems to occur after about 6 to 12 months and
it decays to reach an equilibrium. This decay could be interpreted as the delayed
negative feedback provided by the ocean to the ENSO phenomenon.

Exercises

1. Assume a mean wind stress distribution along the equator:

τx = 0 for lon ≤ 170 E

τx = −0.06 N/m2 for 170 E ≤ lon ≤ 240 E

τx = 0 for lon ≥ 240 E

(193)

Using the approximation 191, calculate the thermocline distribution along the
equator, assuming that the thermocline depth at the western edge is 150 m.
What is the total change in height between 170 E and 240 E?

2. Calculate the oceanic Kelvin wave speed of (using the reduced gravity approx-
imation) of an ocean with a mean thermocline depth of 100 m.
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Figure 22: Sea Surface Temperature Anomalies in winter 2015/2016.
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Figure 23: Some known ENSO teleconnections. Note that not all teleconnections
are shown, only the most robust ones. Source: NOAA
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Figure 24: Sketch of a parcel in an environment that is warmed from below.
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Figure 25: Sketch how the environment is favorable or unfavorable for convection
and may be influenced by surface conditions.

60



Figure 26: Foehn effect mechanism.
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Figure 27: Large-scale adjustments to diabatic convective heating.
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Figure 28: Large-scale adjustments to diabatic convective heating induced by ENSO.
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Figure 29: Composite sea surface temperature anomaly for an El Nino condition.
Units are K.

Figure 30: Composite of response to an El Nino forcing. Shading Precipitation in
mm/day, vectors 925 hPa wind.
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Figure 31: Illustration response to equatorial heating according to the gill model.
Equatorial rossby waves shape the response to the west and Kelvin waves shape the
response to the east

Figure 32: Zonal wind stress forcing. Units are N/m2.
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Figure 33: Thermocline response to anomalous zonal wind stress forcing of Fig. 32.
a) after 1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after
12 months. f) stationary response. Units are m.
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Figure 34: SST response to anomalous zonal wind stress forcing of Fig. 32. a) after
1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after 12 months.
f) stationary response. Units are K.
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7 (Atmospheric) Planetary Boundary Layer Processes

Figure 35: Mean DJF Sea Level Pressure (SLP) and surface winds in the North
Pacific from observations (NCEP-NCAR re-analysis). Units are m/s for wind and
hpa for SLP.

Figure 35 shows the winter mean (DJF) climatology of Sea Level Pressure (SLP)
and surface winds in the North Pacific. As we expect for geostrophy, winds are
mainly parallel to the isobars (lines of constant pressure). However, there seems to
be a systematic tendency for a component of the winds towards the low pressure.
In this section we will try to understand this systematic departure from geostrophy.
Do you have a guess why this departure exists?

So far we have ignored the effect of friction on the flows. However, in order to
understand climate dynamics it is important to consider the effects of friction, par-
ticularly the one provided by the planetary boundary layer, which covers roughly the
lowest kilometer(s) of the atmosphere. The boundary layer frictional processes are
ultimately induced by the molecular viscosity. However, this effect is only relevant
in the few millimeters closest to the surface. In the largest part of the planetary
boundary layer turbulent eddies take over the role of molecular friction. This is part
of the energy cascade, meaning that in the large-scale flow ever smaller eddies are
embedded that carry energy to ever smaller scales until finally molecular viscosity
takes over. As for all sections, a whole lecture course could be devoted to this topic.
Therefore we will concentrate on the features that are most relevant and essential
to understand climate dynamics.

7.1 The Boussinesq Approximation

The density in the lowest part of the Atmosphere varies little (about 10 % of its
mean value). The flow may be considered as essentially incompressible if only the

68



momentum equation is considered. Therefore, for simplicity we assume the density
to be constant. Let us consider therefore horizontal momentum equations 132 and
133, in which ρ is considered to be a constant

du

dt
= −1

ρ

∂p

∂x
+ fv (194)

dv

dt
= −1

ρ

∂p

∂y
− fu . (195)

and the continuity equation for incompressible flows 142

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (196)

This set of equations is equivalent to the barotropic shallow water equations intro-
duced and used several times already. However, the Boussinesq approximation goes
beyond this, because it also involves an approximation to the vertical momentum
equation that is different from the hydrostatic equation and allows for buoyancy
effects there (as has been used in the EST course of the last term). Here we do not
need to consider this equation.

7.2 Reynolds Averaging

In order to simulate the effect of the smaller scale eddies on the larger scale (“re-
solved”) flow, is it useful to apply an averaging operator to the equations. The idea
is that the total flow can be divided into a slow evolving large scale field and into
small-scale eddy fluctuations

u = u+ u′, v = v + v′ . (197)

Formally, the operator could be a temporal and/or spatial average. For the total
derivative of a quantity A

dA

dt
=

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
A+A

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (198)

where we have added a zero according to the incompressibility condition 196. Ther-
feore we may write the total derivative (for incompressible flow!) as

dA

dt
=

(
∂A

∂t
+
∂Au

∂x
+
∂Av

∂y
+
∂Aw

∂z

)
, (199)

Application of the averaging operator yields

dA

dt
=

(
∂A

∂t
+
∂(Au+A′u′)

∂x
+
∂(Av +A′v′)

∂y
+
∂(Aw +A′w′)

∂z

)
, (200)
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because
ab = (a+ a′)(b+ b′) = ab+ ab′ + a′b+ a′b′ = ab+ a′b′ ,

and a′ = b′ = 0. Therefore application of the averaging operator to Eqs. 194 and
195 yields

du

dt
= −1

ρ

∂p

∂x
+ fv − ∂u′u′

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
(201)

dv

dt
= −1

ρ

∂p

∂y
− fu− ∂v′u′

∂x
− ∂v′v′

∂y
− ∂v′w′

∂z
, (202)

where
d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(203)

is the rate of change following the large-scale (or resolved) flow. Applying the zonal
average to the continuity equation leads to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (204)

If we compare Eqs. 201 and 202 with 195 and 195 we see that extra terms emerge if
we follow a particle with the average large-scale flow. These can be interpreted as the
effects of the small-scale eddies on the large-scale flow, and are called convergence
of eddy momentum fluxes. Obviousely, in order to solve Eqs. 201 and 202 for the
large-scale flow, the additional terms have to be parameterized in terms of mean flow
properties. This is big topic in fluid dynamics, and is called closure problem. Note
that a very similar problem occurs when we write down the Navier-Stokes equations
for numerical models which intrinsically have a grid (and time) spacing. Turbulence
theories give some clues how such parameterizations should look like. One of the
simplest one is the flux-gradient theory, which states that the effect of small-scale
eddies on the large-scale flow is similar to the effect of molecular viscosity on smaller
scale flow. The effect of viscosity on the small scale flow is to bring the flow into
equilibrium, that is to reduce contrasts or gradient. Also note that the geometry
(horizontal surface) means that changes in the vertical direction are much larger than
in the horizontal direction (horizontal homogeneity). We have parameterizations of
the type:

u′w′ = −Km
∂u

∂z
(205)

v′w′ = −Km
∂v

∂z
, (206)

where Km can be a function of the vertical coordinate z. All other momentum fluxes
can be approximated to be close to zero in Eqs. 201 and 202.
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7.3 The Ekman Layer

The Ekman layer is the layer that connects a layer very close to the surface to the
free atmosphere where we have near geostrophic equilibrium. Using the geostrophic
wind (note that we can consider for the current analysis f = f0 = const)

ug = − 1

fρ

∂p

∂y
, vg =

1

fρ

∂p

∂x
,

with this and Eqs. 205-206, the stationary (equilibrium) approximation to Eqs. 201
and 202 are

Km
∂2u

∂z2
+ f(v − vg) = 0 (207)

Km
∂2v

∂z2
− f(u− ug) = 0 , (208)

where we have dropped the overbar for average quantities for convenience (only
average quantities appear). Note that also the mean vertical advection term has
been dropped because of smallness compared to the other terms. The horizontal
advection terms are dropped because of the horizontal homogeneity condition. If we
assume ug = const., and vg = const. with height, then we can substitute u∗ = u−ug
and v∗ = v − vg. to get a system of the type

Km
∂2

∂z2

(
u∗
v∗

)
+

(
0 f
−f 0

)(
u∗
v∗

)
= 0 . (209)

We assume a solution of the type u∗ = Aeimz, v∗ = Beimz, then it follows(
−Kmm

2 f
−f −Kmm

2

)(
A
B

)
= 0 . (210)

Following basic algegra, non-trivial solutions of such a linear are found by setting
the determinant of the 2x2 matrix to zero

K2
mm

4 + f2 = 0 . (211)

The four solutions are for positive f (northern hemisphere; otherwise we have to use
negative f for southern hemisphere)

m1 =
√
i

√
f

km
, m2 = −

√
i

√
f

km
, m3 =

√
−i
√

f

km
, m4 = −

√
−i
√

f

km
. (212)

With
√
i = (1 + i)/

√
2, we have

m1 = (1+ i)

√
f

2km
, m2 = −(1+ i)

√
f

2km
, m3 = (i−1)

√
f

2km
, m4 = (1− i)

√
f

2km
.

(213)
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The boundary conditions are geostrophy (u = ug, v = vg) as z goes to infinity,
therefore u∗ = v∗ = 0 and u = v = 0 or v∗ = −vg, u∗ = −ug at z=0. The boundary
condition as z goes to infinity excludes solutions that grow, therefore the solutions
with negative i (m2 and m4) are excluded. If we insert the solutions m1 and m3

back into the original system 210, we can determine the two eigenvectors, which are

x1 =

(
1
i

)

and

x3 =

(
1
−i

)
The two eigenvectors are complex conjugate and therefore not independent. There-
fore the solution simply given by m1 ,

u∗ = aeim1z = a[cos(γz) + i sin(γz)]e−γz (214)

v∗ = iaeim1z = ia[cos(γz) + i sin(γz)]e−γz , (215)

where we have used γ =
√
f/(2Km). Let a = b+ic, then the real part of the solution

is

u∗ = b cos(γz)e−γz − c sin(γz))e−γz (216)

v∗ = −b sin(γz)e−γz − c cos(γz)e−γz (217)

and with z = 0: u∗(z = 0) = −ug = b, v∗(z = 0) = −vg = −c or

u = ug − [ug cos(γz) + vg sin(γz)]e−γz (218)

v = vg + [ug sin(γz)− vg cos(γz)]e−γz , (219)

The height of the boundary layer may be defined where the wind is for the first
time parallel to the geostrophic wind, which is at De = π/γ = π

√
2Km/f . We

can use this formula to estimate the value of the eddy viscosity Km. Observations
of the mean boundary layer height in mid-latitudes give De ≈ 1 km, therefore
Km = 1/2f(De/π)2 ≈ 5 m2 s−1. An important application of the Ekman solutions
218 and 219 is that we can calculate the vertical velocity at the top of the Ekman
Layer induced by the action of turbulent eddies.

Let us calculate the divergence of the winds in the Ekman Layer

∂u

∂x
+
∂v

∂y
=

(
∂ug
∂x

+
∂vg
∂y

) (
1− cos(γz)e−γz

)
(220)

−
(
∂vg
∂x
− ∂ug

∂y

)
sin(γz)e−γz

= −ξg sin(γz)e−γz.

This equation states that the divergence in the Ekman layer is proportional to the
negative geostrophic vorticity, a very important effect of the boundary layer. Positive
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Figure 36: Idealized and observed Ekman Layer velocities Source:
http://oceanworld.tamu.edu/resources/ocng textbook/chapter09/chapter09 02.htm.

(cyclonic vorticity) leads to convergence! Accorgdng to the continuity equation 196,
this will lead to vertical motion, which is on top of the Ekman Layer

w(De) = −
∫ De

0

(
∂u

∂x
+
∂v

∂y

)
dz (221)

= ξg
e−γz

2γ
[sin(γz)− cos(γz)]

∣∣∣∣∣
De

0

=
ξg
2γ

(
1 + e−π

)
≈ ξg

2γ
= ξg

√
Km

2f
,

where we have assumed that the geostrophic wind is independent of height within the
Ekman Layer. This is again an important result, a positive vortivity leads to upward
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motion through Ekman effets on top of the boundary layer. This is called boundary
layer pumping or Ekman pumping. It may be used to explain vertical motions
and therefore rainfall anomalies induced by the Gill responses in tropical regions as
derived in Section 6.3. It states that whenever we calculate a flow response that
has (geostrophic) vorticity, this will lead to vertical motion and therefore a rainfall
response. Given that geostrophy is valid from approximately 10 degrees away from
the equator, this rule can be used for many flow responses. Remember that we have
shown in chapter 5 that even the zonal winds in the close equatorial Kelvin waves
are in exact geostrophic equilibrium. We can estimate the typical magnitude of the
vertical velocity 221 by inserting ξg = 10−5s−1, De = 1km or γ = 3 × 10−3 m−1

to be w(De) ≈ 10−5/(2 × 3 × 10−3) m s−1 or 2 × 10−3 m s−1. This a substantial
vertical velocity, comparable to the one induced by a heating anomaly of about Q/cp
1 k/day in the tropical regions, if we use equation 174 and Sp ≈ 5 × 10−4 K Pa−1

to estimate the vertical velocity:

w ≈ Q

cp

1

Spρg
.

Also in the Ocean Ekman Layers exist (have you discussed them?). Clearly at the
bottom of the ocean very similar processes take place as discussed here. Even at the
top of the oceans we have an Ekman Layer (have you discussed this?). However,
the main change is the boundary condition at the surface, which is given by the
atmospheric winds that drive the ocean, in the interior the boundary condition
can be assumed to be geostrophic again. Otherwise we can use the above derived
methodology also to derive the ocean surface Ekman Layer.

Exercises

1. Verify that the Ekman solution 218 and 219 is indeed a solution of the original
system of equations 207 and 208.

2. Calculate the scalar product between the pressure gradient and the wind within
the Ekman layer given by Eqs. 218 and 219. Is the wind directed into or out
of a low pressure system?

3. Write a fortran code that uses the Eqs. 218 and 219 and plot the solution as
as phase space diagram (u,v) as in Fig 36. Also, solve the original equations
207 and 208 numerically by keeping the local time derivative in the Ekman
equations:

∂u

∂t
= Km

∂2u

∂z2
+ f(v − vg) (222)

∂v

∂t
= Km

∂2v

∂z2
− f(u− ug) . (223)

For both analysical and numerical solutions use Km = 5 m2 s−1, the coriolis
parameter at 45◦N, ug = 10 m s−1, vg = 0. The vertical domain should be [0
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m , 3000 m]. Use as initial condition u = ug, v = 0. Compare the numerical
stationary with the analytical solution. How long does it take for the solution
to become approximately stationary?
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8 Mechanisms for tropical rainfall responses to equa-
torial heating

More reading:

1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving
Precipitation anomalies in Response to Equatorial Heating, Clim Dyn, DOI:
10.1007/s00382-018-4169-4

In section 6.2 we have discussed the basic large-scale circulation adjustment
mechanisms to a localized SST anomaly. In this section mechanisms for regional
rainfall responses to a localized equatorial sea surface temperature (SST)-induced
heating anomaly will be discusses (e.g. ENSO-induced as shown in Fig. 23). It is
mainly based on the paper Hamouda and Kucharski (2018) and references therein.
This is an important topic as rainfall modifications due to, for example, ENSO can
have substantial positive and negative effects and the understanding of the physical
mechanisms for such responses is important to assess seasonal predictability. In the
literature, several mechanisms have been proposed for rainfall responses to ENSO
and other tropical SST-induced heating anomalies (e.g. see Fig. 23). These include:

a) Destabilization in the region with strong SST anomalies, stabilization of the
atmosphere in the surrounding regions. This leads to increased convective
rainfall in the regions with substantial SST anomalies, and to reduced convec-
tive rainfall outside. The stabilization is induced by the upper-level tropical
wave propagations (equatorial Rossby and Kelvin waves) discussed in section
5, which spread the signal in the tropical belt.

b) Upper-level convergence in the region surrounding the heating, which compen-
sates for the upper-level divergence in the heating region. This may, according
to the continuity equation in pressure coordinates, 44, induce vertical velocities
driven from the upper-levels.

c) Flow induced by the heating in remote regions which may be forced to rise
because of orography.

d) Ekman pumping induced by remote atmospheric responses (e.g. Gill response
discussed in section 6.3) to the heating.

e) Changes of the tropical meridional temperature gradients induced by land
masses that drive monsoons. These changes are also communicated from re-
gion with the SST perturbation to other tropical regions by equatorial wave
propagation.

There are more mechanisms which have been proposed in the scientific litera-
ture for rainfall responses to an SST anomaly, but the above list contain the most
commonly used hypothesis. Here we will use an idealized aquaplanet (explain!)
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modelling approach that eliminates the hypothesis c) and e), and leaves the hypoth-
esis a), b) and d). Such an aquaplanet setting has the advantage that some of the
complexities in the real world (e.g. land-surface interactions) that make understand-
ing of the responses very difficult, are removed, while the basic dynamical feedbacks
are retained. Fig. 37 shows the ICTPAGCM (SPEEDY) models climate in such an
aquaplanet setting. All fields shown are annual means.

Figure 37: Aquaplanet annual mean climatologies of a) precipitation [mm/day], b)
mean sea level pressure [hPa], c) surface winds [m/s] and d) 200 hPa zonal winds
[m/s]

Now, the response to a gaussian Gill-type SST anomaly is analysed. For this
purpose an additional experiment is performed in which such an anomaly is added
to the aquaplanet SST field (Fig. 38). The responses of mean surface pressure,
zonal wind, 200 hPa velocity potential, 200 hPa eddy streamfunction, precipitation
and 850 hPa pressure vertical velocity are shown in Fig. 39. This response may
be interpreted as the Gill-type response reproduced by an Atmospheric General
Circulation Model (AGCM). Indeed, in the surface pressure we can identify off-
equatorial Rossby-gyres to the west and high pressure at the equator resembling the
Kelvin-wave type response. The precipitation and 850 hPa pressure vertical velocity
response match each other quite closely, which may not be surprising because on
one hand upward motion will lead to condensation (remember lecture course on
EST). On the other hand, as discussed in section 6.2, in the tropics there is an
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approximate equilibrium between the diabatic heating (cooling) and the adiabatic
cooling (warming) term (see equation 173)

−Spω ≈
Q

cp
. (224)

Figure 38: Aquaplanet annual mean SST distribition and Gill-type SST perturba-
tion. Units are K.

Also this leads to a good agreement between precipitation (e.g. vertical in-
tegrated heating) and the vertical velocity field. Note, however, that in the Gill
solution there is no precipitation, and the vertical velocity field is very different
from the one shown in Fig. 39 (there we have sinking motion everywhere outside
the heating region). These differences are a weakness of the simplified equations
used in the Gill solution (essentially modified shallow water equations) rather than
a weakness of the AGCM solution, which essentially solves the full Navier-Stokes
equations. Another important difference with respect to the traditional Gill solution
is that there is an infinite zonal domain is assumed, whereas in reality it is periodic.
This leads to differences in the atmospheric adjustments to the heating. For exam-
ple, to the east of the heating, we do find off-equatorial anticyclonic Rossby gyres in
the surface pressure, which resemble the cyclonic ones to the west. We may interpret
these as response to the upper-level convergence (maximum in velocity potential)
at around 60W to 30W. However, we do note that in the regions with the imposed
SST anomaly (around 180E), we get increased rainfall (heating) due to the desta-
bilization of the atmosphere. The rainfall structure appears to be related to the
meridional zonal wind gradient (main component of vorticity), which is cyclonic in
the off-equatorial regions to the west, and anticyclonic in the off-equatorial regions
to the east of the heating (explain!), which should, according to the section 7, induce
rising and sinking motion respectively (e.g. from Eq. 221). However, since we are
using a numerical model to simulate the effects of Ekman pumping, it is best to use
the model’s boundary-layer parameterization, which is slightly different. Using the
definition

|v0| =
√
u2 + v2 + V 2

gust (225)
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Figure 39: Response to Gill-type SST perturbation of a) mean sea level pressure
[hPa], b) surface zonal wind [m/s], c) 200 hPa velocity potential [106 m/s2], d) 200
hPa eddy streamfunction [106 m/s2], e) precipitation [mm/day] and d) omega at
850 hPa [10−3 Pa/s].

where u, v are near surface winds (representative for the mean wind in the whole
depth of the boundary-layer of the model), Vgust = 5ms−1 is representing the effect
of sub-grid scale gusts, the equations equivalent to Eqs. 207 become for the AGCM:

−Cu
√
u2 + v2 + V 2

gust + f(v − vg) = 0 (226)

−Cv
√
u2 + v2 + V 2

gust − f(u− ug) = 0 (227)

where C = CD
h , CD = 1.8 × 10−3 is the drag coefficient over sea, h = 1000m is the

depth of the boundary layer, and the geostrophic wind is ug, vg. Also, the AGCM
is posed in the pressure coordinate system, and since we want to assess solutions
including the equator it is convenient to use the geostrophic forcing in terms of
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geopotential height gradients using the geostrophic relation:

vg = f−1k×∇Φ (228)

in pressure coordinates. Since Eqs. 226 and 227 are nonlinear, they are solved
numerically for the near surface winds, given the geopotential at 850 hPa (by re-
introducing the time derivative as in the exercise 3) of section 7). Note that in Eqs.
226 and 227 the near surface winds are non-zero. Once the solutions are found,
the divergence of the near surface wind is calculated and the continuity equation in
pressure coordinates, 44, is vertically integrated (assuming the near surface winds
are constant) to find the vertical velocity, ωek, induced by Ekman pumping in the
model (1000 m corresponds according to the hydrostatic equation approximately
to a pressure change of 100 hPa). The resulting Ekman vertical velocity is shown
in Fig. 40, and shows very good agreement with the vertical velocity field at 850
hPa shown in Fig. 39 outside the region where the SST perturbation is present.
This indicates that Ekman pumping is indeed a very powerful mechanism to induce
vertical motion outside the heating region. Also, the upper-level convergence field
is calculated for comparison (Fig. 41). There is also some correspondence of this
field with 850 hPa vertical velocity and thus rainfall, but it should be noted that
the upper-level convergence field and the ωek field are not independent (e.g. Ekman
pumping could induce vertical velocity, this induces convection and thus upper-level
divergence). The thermodynamic mechanism a) turns out to be relevant only in the
region with SST perturbation and seems to be largely irrelevant outside that region.

Figure 40: Ekman pumping induced ωek [10−3 Pa/s].
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Figure 41: Response in 200 hPa divergence [1/s].
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9 The general circulation

The general circulation of the atmosphere is usually considered to include the to-
tality of motions that characterise the global-scale atmospheric flow. Climate dy-
namics is one if the main topics of the study of the general circulation. Here we
are interested in the temporally (i.e. monthly) averaged fields of wind, temperature,
humidity, precipitation, and other meteorological variables and their long-term vari-
ations (also called low-frequency variability). For example, monsoon systems are
a very important feature of the general circulation. For example, on the web-page
http://users.ictp.it/∼ kucharsk/speedy8 clim.html we find some features relevant to
the general circulation.

Figure 42: Schematic of some features of the general circulation.

9.1 Zonally averaged circulation

The aim of this section is to analyse the zonal mean circulation. The basis for the
following analysis are the thermo-hydrodynamic equations in pressure coordinates
Eqs. (36, 37, 44 and 47)

We apply in the following an averaging operator to these equations

A ≡ 1

2πrcosφ

∫ 2π

0
A rcosφdλ . (229)

All quantities are then expressed as the zonal mean plus a deviation from the zonal
mean A = A+A′ (see Figure 7).

For the total derivative of a quantity A

dA

dt
=

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p

)
A+A

(
∂u

∂x
+
∂v

∂y
+
∂ω

∂p

)
, (230)
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where we added zero on the rhs according to the continuity equation. Therefore we
may write the total derivative (in pressure coordinates!) as

dA

dt
=

(
∂A

∂t
+
∂Au

∂x
+
∂Av

∂y
+
∂Aω

∂p

)
, (231)

Application of the zonal operator (229) yields (as in section 7)

dA

dt
=

(
∂A

∂t
+
∂(Av +A′v′)

∂y
+
∂(Aω +A′ω′)

∂p

)
, (232)

because ∂()∂x = 0 and

ab = (a+ a′)(b+ b′) = ab+ ab′ + a′b+ a′b′ = ab+ a′b′ ,

because the quantities () are independent of x and a′ = b′ = 0. Applying the zonal
average to the continuity equation leads to

∂v

∂y
+
∂ω

∂p
= 0 . (233)

Note that with Eq. 233 we can define a streamfunction:

Ψ =

∫ p

0
vdp , (234)

so that

v =
∂Ψ

∂p
;ω = −∂Ψ

∂y
. (235)

To show 235 will be an Exercise! From Eq. (232) we can also derive

dA

dt
=

d

dt
A+

∂A′v′

∂y
+
∂A′ω′

∂p
, (236)

where
d

dt
=

∂

∂t
+ v

∂

∂y
+ ω

∂

∂p
(237)

is the rate of change following the mean motion. Averaging the zonal component of
the momentum equation 36 and the thermodynamic equation 47 leads to

∂u

∂t
− f0v = −∂u

′v′

∂y
(238)

∂T

∂t
− Spω = −∂v

′T ′

∂y
+
Q

cp
(239)
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Here several further approximations have been introduced which are all consistent
with quasi-geostrophic scaling. A similar scaling shows that the meridional momen-
tum equation is in quasi-geostrophic balance. For the zonal averaged meridional
momentum equation, the first order geostrophic approximated balance is

f0u = −∂Φ

∂y
. (240)

Together with the zonal average of the hydrostatic equation 37 this leads to the
thermal wind equation for zonal averaged motion

∂u

∂p
=

R

f0p

∂T

∂y
. (241)

This equation is similar to equation (53), but for zonal averages. Equations (238)
and (239) tell us that in order to get a steady-state meridional, vertical circulation
cell (v, ω) we must have the balances

Coriolis force f0v ≈ divergence of eddy momentum fluxes

Adiabatic cooling ≈ diabatic heating plus convergence of eddy heat fluxes

Also note that any v and ω separately induces the other due to continuity 233.
Analysis of observations shows that outside the tropics these balances appear to

be approximately true above the boundary layer. Close to the equator we have that
the heating is mainly balanced by mean vertical motion, driving the Hadley Cell,
whereas in the extratropics the meridional, vertical circulations are mainly driven
by the convergence of eddy momentum and eddy heat fluxes. These cells are called
Ferrell Cells. Discuss that the (angular) momentum fluxes should be toward the
extratropics because of the absolute (angular) momentum loss af the atmosphere in
the extratropics and gain in the tropics (Fig. 44, upper panel). Also discuss effect
of tilt of waves, and the fact that Rossby waves radiate energy away from the jet
(baroclinic zone), means at the same time that they carry momentum towards the
jet (see Fig. 45) One can use the radiation condition considering the meridional
energy propagation Eq. 78, suggesting kl > 0 (and l > 0) north and kl < 0 (and
l < 0) south of jet, implying k > 0 in both cases)! Also discuss how the shear
induced by the jet as well as β(y) may modify the tilt of the phases of waves, with
the latter one responsible for the dominance of poleward eddy momentum transport
south of the jet.

Exercises

1. Show that with the streamfunction definition Eq. 234, the relationships 235
are fulfilled.
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Figure 43: Illustration of the Hadley cell by a (v,−ω) vector plot. left panel: Boreal
winter, right panel: boreal summer.
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Figure 44: Upper panel: u (contours), and u′v′, middle panel: T (contour) and v′T ′,
lower panel v.
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Figure 45: Sketch of why the eddy momentum flux is always towards the Jet.
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10 Tropical zonal and meridional circulations

More reading:

1. Rodwell MJ, Hoskins BJ (2001) Subtropical Anticyclones and Summer Mon-
soons. J Clim, 14, 3192–3211

2. Chao WC, Chen B (2001) The origin of Monsoons. J Atmos Sci, 58, 3497–350

3. Kucharski, F, Bracco, A, Barimalala, R, Yoo, J-H (2011) Contribution of the
east–west thermal heating contrast to the South Asian Monsoon and conse-
quences for its variability, Clim Dyn, 37, 721–735, DOI 10.1007/s00382-010-
0858-3

Let’s have a look at the global June-to-September rainfall distribution in Fig. 46.
We can clearly identify the Intertropical Convergence Zone (ITCZ), identified by the
rainfall maximum north of the equator that can reach 30◦N in some land region. We
also see that this strip of large rainfall in not zonally homogeneous, but is stronger
in some locations than in others. Some of the features may be explained by the
distributions of sea surface temperatures (SSTs) in Fig. 47. Note that the rainfall
is the column integrated −Llv dmv

dt and therefore related to the column integrated
diabatic heating due to condensation according to Eqs. 171 and 46.

The western Pacific rainfall maximum is related to high SSTs in that region, as we
have already discussed several times. Also, the land-sea contrast are likely important
due to different heat capacities. As we have already discussed regarding the ENSO
phenomenon, the distribution of SSTs, rainfall and atmospheric circulations in the
tropical Pacific provide positive feedbacks between them, so that its difficult to say
what is cause and what is effect (chicken-egg problem). The mean zonal circulation
in the tropical regions is called Walker circulation (see also Fig. 20). Note that
this circulation is not a strict closed circulation cell as we could derive for the zonal
mean circulation (Hadley Cell). A good measure of this zonal tropical circulation is
the upper-level velocity potential, χ, for which we have the relation to the divergent
wind

vχ = ∇χ (242)

The distribution of the 200 hpa velocity potential χ is shown in Fig. 48a (which
height is this, approximatively). According to the definition 242, a minimum means
divergent wind. The centre of upper-level divergence (rising motion, why?) is in the
western Pacific region, and the centers of upper-level convergence (sinking motion,
why?) are located in the eastern Pacific (that is the classical Walker circulation)
and in the tropical South Atlantic region.

Fig. 48 b) shows the streamfunction, ψ, which is related to the rotational flow
in the following way (see, e.g. Eq. 16)

vψ = k×∇ψ . (243)
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It is clear that there is a systematic relationship between upper-level velocity po-
tential and upper-level streamfunction, they are in ’quadrature’, that is the extreme
values of one lie in the gradient regions of the other. Can we propose an explanation
for this behaviour? The solution is an approximate version of the vorticity equation
67 for the tropics

dgξg
dt

= −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg . (244)

It turns out that in the tropical regions relative vorticity changes and advections
are relatively small, mainly because of approximate geostrophy and small pressure
gradients. We may estimate it to be one order of magnitude smaller than in the
extratropics. Therefore, the left hand side is Eq. 244 may be set to zero. This leaves
us with the approximation

βvψ = −f0

(
∂uχ
∂x

+
∂vχ
∂y

)
, (245)

where we have used that the geostrophic wind is the rotational wind defined in Eq.
243 (note that according to the quasigeostrophic vorticity definition 66, ψ = Φ/f
is the streamfunction as long as we are not too close to the equator), and the
ageostrophic wind is the divergent wind defined in Eq. 242. Eq. 245 is called Sver-
drup balance. If we take a divergence field as given (e.g. the field that corresponds
to Fig. 48a; we can imagine is has been caused by the dominance of the west Pacific
heating), then according to the Sverdrup balance, this will cause rotational winds.
An upper level divergence maximum will lead to southward rotational motion in
the northern hemisphere, an upper-level convergence maximum will lead to north-
ward rotational motion. This is consistent with the streamfunction distribution in
Fig. 48b, and explains why velocity potential and streamfunction are in quadrature
(exercise!). Note that the interpretation of the Asian monsoon high to be partially
forced by Sverdrup balance from the heating differences between the western Pacific
and the Atlantic Ocean is a relatively new one. The conventional point of view is
that the Asian monsoon high (Tibetan high) is forced exclusively by the land sea
contrast between the Asian land mass (including importance of Himalayas) and the
Indian Ocean. We also note that all the structures that we have considered for upper
levels should be reversed for low levels, thus a part of the low-level monsoon trough
can be attributed to the western Pacific/Atlantic heating differences. Keep in mind
that secondary vertical motions can be induced then by surface friction, because the
streamfunction centres that we can derive are fields with vorticity, which according
to equation 221 induces vertical motion (see section 8). Positive (negative) verti-
cal motion, in turn, leads to increased (decreased) rainfall (why?). These effects
have been analysed with idealized numerical experiments in the paper cited in the
beginning of the section (see also Figs. 49, 50, 51).
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Exercises

1. Let the velocity potential distribution in zonal direction at latitude 30◦N be

χ = Acos(λ) ,

where λ is longitude. Calculate using the Sverdrup balance 245 to derive the
zonal distribution of the streamfunction at the same latitude.
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Figure 46: Mean JJAS rainfall and surface winds a) from observations
(CMAP,NCEP-NCAR re-analysis), b) from the ICTPAGCM. Units are mm/day
for rainfall and m/s for wind.
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Figure 47: Mean JJAS sea surface temperature distribution a) observed, b) and c)
idealized distribution for numerical experimentation.
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Figure 48: Mean JJAS distributions at 200 hPa of a) observed velocity potential χ,
c) modeled observed velocity potential χ, b) observed streamfunction ψ, d) modeled
streamfunction ψ Units are 106 m2 s−2.
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Figure 49: Response in rainfall to zonal (a, d)) and zonal with removed African and
Americal continents (b, e). Units are mm/day.

94



Figure 50: Response in velocity potential χ to zonal (a, d)) and zonal with removed
African and Americal continents (b, e). Units are 106 m2 s−2.
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Figure 51: Response in eddy streamfunction ψ to zonal (a, d)) and zonal with
removed African and Americal continents (b, e). Units are 106 m2 s−2.
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11 Energetics of the general circulation

Suggested textbooks, reading:

a) Lorenz, E. N.; 1955: Available Potential Energy and the maintainence of the
General Circulation. Tellus, 7, 157-167

b) Tailleux, R.; 2013: Available Energy and Exergy in Stratified Fluids. An-
nual Review of Fluid Mechanics, 45, 35-58, doi: 10.1146/annurev-fluid-011212-
14620

c) Marquet, M.; 1991: On the concept of Exergy and availabale enthalpy: appli-
cation to atmospheric energetics. Q. J. R. Meteorolog. Soc., 117, 449-475

d) Kucharski, F.; 1997: On the concept of exergy and available potential energy.
Q. J. R. Meteorolog. Soc., 123, 2141-2156

We go back to the full (unapproximated) momentum equation 23

ρ
dv

dt
= −∇p− 2ρΩ× v − ρ∇φ−∇ · F , (246)

where F is the frictional tensor. Multiplying with the velocity gives

ρ
dk

dt
= −∇ · (pv + F · v) + p∇ · v − ρv · ∇φ+ F : ∇v , (247)

where k = 1/2(v · v) is the kinetic energy. We can reformulate equation 247 as
equation

ρ
d(k + φ)

dt
= −∇ · (pv + F · v) + p∇ · v + F : ∇v . (248)

The equation for internal energy is

ρ
du

dt
= −∇ · J− p∇ · v − F : ∇v . (249)

J can contain the radiative flux vector and the diffusive (molecular) heat flux and
these only heating terms for a one-component system in which no phase transitions
are possible. The addition of condensational heating is an approximation to a one-
component system and strictly possible only if more components are considered (dry
air, water vapour and liquid water). The pressure work term p∇·v may therefore be
interpreted as reversible conversion term between kinetic plus potential and internal
energy. The dissipational heating, F : ∇v, is just transferring energy into the
internal energy reservoir. The other terms are energy fluxes into the climate system.
If we for the time being assume a closed system, then these terms vanish after
an integration over the this system. In this case, we may assume that reservoirs of
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internal, potential and kinetic energy can only change by exchanging energy between
them.

Imagine an initial situation with a given temperature distribution, but without
motion (this is, for example, the typical initial condition of ICTP AGCM). How
much kinetic energy could the climate ’gain’ in such a situation? A naive estimation
would be u = cvT ≈ 2 · 105 J/kg as typical local value. However, experience tells
us that typical values of specific kinetic energy are about 102 J/kg, so that there
is an overestimation of a factor of about 1000 in this simple (an naive) approach.
Clearly, only a small portion of the large internal energy reservoir can be released
into kinetic energy. It is obvious that we have to consider differences with respect
to some reference state in order to define the proper amount of internal energy that
is available for conversion into kinetic energy. An approach like ∆u = cv∆T , where
∆T = T − Tr, with Tr some reference temperature, leads still to overestimations,
but has the even more severe problem of not being positively definite. Note that the
above arguments also apply to the potential energy, because of the proportionality
of their total amounts in the atmophere (P = R/cvU ; Exercise!). The problem
of identifying the energy available for conversion into kinetic energy is a classical
one. For the atmosphere, Lorenz (1955) has developed a new energy concept, called
Available Potential Energy. We can re-write the equations in a more suitable form:

ρ
dk

dt
= −∇ · (F · v)− v · (∇p+ ρ∇φ) + F : ∇v . (250)

ρ
d(u+ φ)

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + Tρ

ds

dt
. (251)

s is the specific entropy, governing all irreversible processes (for an ideal gas we
have s = cplnθ). From these equations we see that in a hydrostatic atmosphere
(∇p = −ρ∇φ), there is no reversible conversion from the internal plus potential to
kinetic energy.

11.1 On Dry and Moist Static Energy

Before we move on to discuss the problem of the available potential energy, it is
useful to derive from these exact equations the (approximate) conservation law for
Dry Static Energy = h+φ (DSE; Eq. 132 from the lecture course on Earth System
Thermodynamics). Please note that

−∇ · (pv) = −ρ d
dt

(p/ρ) +
∂p

∂t
. (252)

With this adding Eq. (250) and Eq. (251) we get

ρ
d(k + u+ p/ρ+ φ)

dt
= ρ

d(k + h+ φ)

dt
=
∂p

∂t
−∇· (F ·v) +F : ∇v +Tρ

ds

dt
. (253)

This demonstrates that the DSE is approximately conserved for adiabatic-reversible
flow, for which kinetic energy changes are small compared to changes of enthalpy and
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potential energy, and for which the local pressure tendency is also sufficiently small.
These last approximations go along with the hydrostatic approximation which has
been made when deriving the dry static energy conservation (Eq. 132 of EST lecture
course).

If we consider a system with moisture, we may approximate it’s effect on the
thermodynamic energy equation 249 according to 171 by adding the term −Llv dmv

dt
on the rhs of Eq. 253. This, using the good approximation of Llv = const. leads to
the moist version of Eq. 253, Moist Static Energy = h+φ+Llvmv (MSE) equation:

ρ
d(k + h+ φ+ Llvmv)

dt
=
∂p

∂t
−∇ · (F · v) + F : ∇v + Tρ

ds

dt
. (254)

The conservation of MSE requires the same approximate conditions as the con-
servation of the DSE.

Let’s go back to derive the available potential energy. If in Eq. 251 we define a
function that just depends on entropy, T0(s), then it is possible to remove from the
internal plus potential energy a part that merely depends on entropy:

ρ
d(u+ φ− q0(s))

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + (T − T0(s))ρ

ds

dt
, (255)

where q0(s) =
∫ s
sB
T0(s′)ds′. Note that for isothermal processes, T0(s) = T , then

q0(s) = Ts+const. and u+φ−q0(s) = u−Ts+φ, and (u−Ts) is the Free Energy (
a famous quantity for available energy for isothermal processes). The interpretation
is that we can remove from the internal plus potential energy amounts a portion
that is not available for conversion into kinetic energy. However, the problem of the
positive definiteness of the useful energy u + φ − q0(s) remains. We have to use a
transformation of thermodynamic variables that guarantees positive definiteness in
the end.

11.2 Exergy transformation

The exergy transformation is usually applied to the internal energy u to provide a
positive quantity with properties of a thermodynamic potential (see Figure 52).

Application of this transformation to the energy u+ φ− q0 results in

eape = ∆u−∆q0 + pR∆α , (256)

where ∆ψ = ψ−ψR, where the subscript R indicates the reference state that depends
only on z. The quantity eape is the available potential energy first introduced by
Lorenz (1955) in a globally integrated form. It is a positive quantity the for a
closed volume and the only reversible production/destruction term is the conversion
to/from kinetic energy. This quantity therefore has all the required properties.
The reference state is arbitrary at this point, but following our idea of eape being
the available energy, it should be derived from a variational principle, minimizing
the volume integral of eape. However, for practical purposes, determination of the
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Figure 52: The convex internal energy, u, as a function of specific entropy, s, and
specific volume, α, in phase space. The exergy transformation is just the (always
positive) difference between u the tangente at the reference point.

reference state by, for example, horizontal averaging of temperature is sufficient.
All other reference state variables can be determined by vertically integrating the
hydrostatic equation for an ideal gas. Note that eape according to Eq. 256 becomes
the classical exergy in case of an isothermal reference temperature T0(s) = const. =
TR. Finally, for an ideal gas, the lowest order approximation of eape is

eape ≈
1

2

[
g2

N2
R

(
∆θ

θR

)2

+RTR
cv
cp

(
∆p

pR

)2
]

, (257)

where

N2
R :=

g

cp

dsR
dz

=
g2

c2
p

[
TR
cp
− dTR

dz

(
dsR
dz

)−1
]−1

. (258)

From Eq. 258 follows that eape is positive if the stratification of the reference state
is statically stable (N2

R > 0). For application of this concept to the general circula-
tion of the atmosphere this condition is certainly fulfilled (just look at a potential
temperature cross section in meridional and height direction, e.g. Fig. 3). However,
to a system where the stratification is unstable even in the horizontal average, the
available potential energy concept cannot be applied, and we have to return to other
methods of identifying useful energy. The balance equation for eape can be derived
by noting that

deape
dt

= (T − T0(s))
ds

dt
−∆p

dα

dt
+ ∆α

dpR
dt

(259)

The energy equations 250 and 251 can be reformulated in the following form

ρ
dk

dt
= −∇ · (∆pv + F · v) + ∆p∇ · v + ρ

∆α

αR
v · ∇φ+ F : ∇v (260)
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ρ
deape
dt

= −∆p∇ · v − ρ∆α

αR
v · ∇φ+ ρ

T − To(s)
T

q , (261)

where the abbreviation for diabatic processes Tds/dt = q has been used. The factor
(T − T0(s))/T = η may be interpreted as Carnot factor controlling the efficiency of
the energy gain for a given heating. It can be approximated to the first order as
(exercise!)

η ≈
(

g2

cpN2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)
1

T
. (262)

The interpretation is then that the volume integrated generation of eape is de-
pendent of the correlation of η and q. It’s not the heating per se that is important,
but the differential heating has to be correlated with potential temperature pertur-
bations (dominant part in Eq. 262). On the other hand, frictional dissipation is the
main process that destroys kinetic energy. A few remarks are appropriate here. If
we forget for the time being about the approximative expressions given for an ideal
gas, eAPE , and its evolution equation are really very general for a stably stratified
one-component system. For example consider a simple solid body. We know from
experience that even if a differential heating is applied, the only process that may
result is heat diffusion (diabatic process), but certainly no kinetic energy can be
gained. Indeed, in case of a solid body the function q0(s) can chosen as the internal
energy u plus the constant potential energy, because T = T (s), therefore we can
define T0(s) = T . In case of a simple incompressible fluid, we can also identify
T0(s) = T and q0(s) can be chosen to equal to the internal energy, but the potential
energy may not be constant, because of fluctuations of surface height, and could
therefore provide the available potential energy.

To derive a slightly different formulation that has been derived by Lorenz (1955),
equation has to be integrated over the systems volume

∫
τ

deape
dt

dτ =

∫
τ

{
−pdα

dt
+ pRα∇ · v −

α

αR
v · ∇φ+

dφ

dt
+
T − To(s)

T
q

}
dτ , (263)

where dτ = ρdxdydz is a mass element. Using

p
dα

dt
=

d

dt
(pα)− αdp

dt

where α = 1/ρ. With P = R/cvU (see exercise 1!), it follows∫
τ

deape
dt

dτ =

∫
τ

{
RT

p
ω +

T − To(s)
T

q

}
dτ , (264)

where the orographic term from the exercise has been ignored. This is the integral
available potential energy balance for a hydrostatic atmosphere that was first de-
rived by Lorenz (1955). Apart from the diabatic production term, which can be
reformulated for an idealized gas to get a formulation identical to Lorenz, this form
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is highlighting the conversion term to kinetic energy −ωRT/p, which states that
energy is converted into kinetic energy by rising of warm air and sinking of cold air.
This makes the conversion term positive on average. This process is lowering the
centre of mass of the atmosphere, thus releasing kinetic energy. In baroclinic waves,
warm air is typically moving northward, and cold air southward. This together with
the tendency for motions to be adiabatic, thus following lines of contant potential
temperature (see Fig. 3), means that the warm air moving to the north tends to rise
and the cold air moving to the south tends to sink, thus providing the conditions
for conversion of available potential energy into kinetic energy.

Figure 53: Distribution of classical Exergy and extended Exergy (local available
potential energy). Units are J/kg.

It is further possible to decompose the kinetic and available potential energy
in their zonal mean and eddy components (see Section 9.1), and to derive their
evolution equations. If we identify the global volume averages of k and eape and
their mean and eddy components as EK , E′K and EP , E′p then the resulting global
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Figure 54: Distribution of Carnot factors of Exergy and extended Exergy (local
available potential energy).

energy cycle according to Peixoto and Oort (1983) is shown in Fig. 55. As can be
seen most production going into Ep, but also a considerable part into E′P . These
are related to heating in equatorial regions and cooling in polar regions for EP , and
diabatic heat release in cyclones in case of E′P . The energy is then transformed
into eddy kinetic energy, E′K , from where most of the dissipation occurs. A smaller
part is transferred into mean kinetic energy EK , and eventually dissipated and also
transformed back into EP .

For the ocean we have a much simpler picture, mainly driver by atmospheric
winds and friction:

Exercises

1. Show that for a hydrostatic atmosphere the volume integral of potential energy
is proportional to the volume integral of internal energy, i.e. P = R/cvU .
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Figure 55: The global atmospheric energy cycle for the global integrals of mean and
eddy available potential and kinetic energies (EP , E′P , EK , E′K), respecitvely.

(Hint: Use a partial integration!)

P =

∫ ∫
A

∫ ∞
Zs

ρgzdzdxdy =
R

g

∫ ∫
A

∫ ps

0
Tdpdxdy +

∫ ∫
A

Φsps
g

dxdy

2. Show that

T − T0(s) ≈
(

g2

cpN2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)
in first order by developing T (s, p) and T0(s) in taylor series around a reference
state sR, αR. Hint: Note that ∂T/∂s = T/cp, ∂T/∂p = α/cp and

dT0

ds
(sR) =

dTR
dz

(
dsR
dz

)−1

.
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Figure 56: The global oceanic energy cycle therefore the global integrals of available
potential and kinetic energies.
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12 Moisture budget equation and application to Sahel
Drought

a) de Groot and Mazur, Non-Equilibrium Thermodynamics, Dover Publications,
Inc., New York, 501 pp.

b) Charney, J.G., 1975: Dynamics of deserts and drought in Sahel. Q J Roy
Meteorol Soc, 101, 193–202

c) Zeng N., Neelin J.D., Lau K.-M., Tucker C.J., 1999: ’Enhancement of inter-
decadal climate variability in the Sahel by vegetation interaction. Science,
286, 1537-1540

d) Xue, Y., et al., 2016: ’West African monsoon decadal variability and surface-
related forcings: second West African Monsoon Modeling and Evaluation
Project Experiment (WAMME II).’ Climate Dynamics, 47, 3517-3545.

e) Kucharski, F., Zeng, N., Kalnay E., 2012: A further assessment of vegetation
feedback on decadal Sahel rainfall variability. Climate Dyn., DOI:10.1007/s00382-
012-1397-x

Let us consider the general equation for conservation of the water mass in an
infinitesimal volume of air (de Groot and Mazur)

ρ
dmv

dt
= −∇ · Fmv − Smv , (265)

where mv is the mass fraction of water vapour mv = ρv/ρ (or specific humidity),
Fmv is the diffusive water vapour flux, and Smv are the local sinks or sources of
water vapour (e.g. local precipitation, or evaporation in the air). A typical near-
surface specific humidity distribution is shown in Fig. 57. Discuss the distribution!
Why do we see maximum values in some specific regions?

Using the continuity equation 135, Eq. 265 can be reformulated as (Exercise!)

∂ρv
∂t

= −∇ · (ρvv + Fmv)− Smv . (266)

If we vertically integrate this equation, we get

∂
∫∞

0 ρvdz

∂t
= − |ρvw|∞0 −

∣∣F zmv

∣∣∞
0
−
∫ ∞

0
∇h · (ρvvh + Fmv)dz −

∫ ∞
0

Smvdz . (267)

The first term on the rhs vanishes, because w(z = 0) = 0 and ρv(z = ∞) = 0.
Furthermore, assuming F zmv

(z =∞) = 0, and F zmv
(z = 0) = E (surface evaporation

flux),
∫∞

0 Smvdz = P (precipitation). Assuming further a stationary state (or rate
of change in time to be small), as well as the horizontal specific humidity diffusion
to be negligible, the vertically integrated moisture budget becomes

P = E −
∫ ∞

0
∇h · (ρvvh)dz . (268)

106



This is an important equation, which is often used in the analysis of the origin of
precipitation. It tells us that any local precipitation must come from either local
evaporation or the vertical integrated moisture flux (horizontal) convergence, and
obviously we have P = E for global integrals of it. Equation 268 can be further split
for a more detailed interpretation

P = E −
∫ ∞

0
(ρv∇h · vh + vh · ∇hρv)dz . (269)

The first term of the integral may be interpreted in the way that any horizontal
convergence (or almost equivalently positive vertical motion, why?) in the presence
of moisture will lead to a precipitation increase. This is interesting, because it
combines nicely with the fact that a parcel that rises high enough will necessarily
reach supersaturation and therefore water vapour will condense. The second term in
the integral may be interpreted as moisture advection from wetter regions to dryer
regions. This second term is less important that the first one, but plays sometimes
also an important role. Note also that often Eq. 268 or 269 are evaluated in pressure
coordinates using

∫
ρψdz = −

∫
ψdp/g, leading to

P = E −
∫ ps

0
∇h · (mvvh)dp/g . (270)

Fig. 58 shows the annual mean distribution of evaporation and precipitation.
Discuss the important features of these distributions. Where is evaporation maximal
and where is precipitation maximal?

12.1 An application to Sahel drought

The Sahel Drought is one of the most important and most studied climatic events
in the 20th century. Fig. 59 shows the worlds desert regions and clearly identifies
the Sahara as the largest and brightest desert regions.

The Sahel region is the region at the southern edge of the Sahara Desert, and
has the characteristics of modest, but highly variable rainfall as indicated by mean
rainfall, decadal standard deviation and Coefficient of Variation (Figs 60 and 61a,c).

If we concentrate now on Sahel rainfall (averaged rainfall in the region 15◦ W to
37.5◦ E, 12.5◦ to 17.5◦ N), then we see striking decadal rainfall variations compared
to interannual variations (Fig. 62).

As can be seen from the time series in the 1970s to the 1990s prolonged drought
periods have been observed, but a much wetter period in the 1950s and 1960s. An
intriguing feature for scientists (but problematic for the Sahel population) is the long
duration of the dry periods, with sometimes nearly 10 years of continuous negative or
positive anomalies (note that no filtering has been applied to this time series, only in
the red smooth curve). As said above, many scientific studies have been performed
to address the physical mechanisms for the Sahel drought from the 1970s to the
1990s. A general consensus is now that it is induced by sea surface temperature
variations, but enhanced by land-surface feedbacks. Also human-induced land-use
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changes and aerosols may have played a role (e.g. Xue et al, 2016 for a review).
In order to highlight these decadal changes further, we show in Fig. 63 the rainfall
difference 1980 to 1994 minus 1950 to 1964, roughly representing the core periods for
dry and wet conditions, respectively. It is seen that the drying is a very large-scale
phenomenon, but it can also be seen that there are slightly wet conditions to the
south of the Sahel.

Here we will focus on the role that interactive vegetation may have played.
In order to assess this we will show some results from the analysis of Kucharski
et al. (2012), where the vegetation impact on Sahel rainfall variability has been
investigated using an AGCM coupled to a dynamic interactive vegetation model
(see Fig. 64).

An equation for the dynamic vegetation may be formulated as (Zeng et al., 1999)

dV

dt
= aβveg(W )(1− e−κL)− V

τ
, (271)

where V is the vegetation cover, a is a coefficient, βveg(W ) is the soil moisture
W dependence of vegetation growth (which could be linear), κ is the extinction
coefficient of photosynthesis, L is the leaf area index, τ is the vegetation time scales
(set to 1 year; Discuss the solution for small L and L = 0). There is assumed
also a linear relation between L and V , i.e. L = LmaxV . Obviously, there is also
an equation for W , which will tell us essentially that soil moisture will grow when
precipitation is large, and so further. For us its important to note the main impact
for the atmosphere will be the relation between albedo and vegetation cover (or L),
which is parameterized empirically as

A = 0.38− 0.3(1− e−κL) (272)

Between what values varies the albedo (reflectivity) according to this equation?
Obviously, with this the vegetation cover modified strongly the atmospheric radiative
balance.

The first question that has to be addressed is whether the model can reproduce
the mean climate in the regions in terms of rainfall and vegetation. Fig. 60, lower
panel, shows the modeled rainfall and LAI climatologies. The model represents at
least the gross regional characteristics.

Also the model decadal standard deviation and COV (Fig. 61, b,d) show overall
spatial characteristics similar to observations. Does the model reproduce the Sahel
drought?

Fig. 65 compares the models response for the Sahel drought rainfall difference
when vegetation is interactively coupled and prescribed to be constant. Clearly
the interactive vegetation version of the model gives a response that is much closer
in magnitude compared the the non-interactive version, even though the overall
drought signal is present in both simulations.

Let’s investigate the feedback mechnism that the interactive vegetation model
can provide for drought/wet conditions. Fig. 66 shows several components of the
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positive feedback mechanism involved when dynamic vegetation coupling is present
in the response. Panel (a) shows the vegetation cover response, and indicates that
there is a reduction in vegetation when the precipitation is reduced (see Eq.271).
This is leading to an increase in albedo (surface reflectivity) as shown in panel (b)
(see Eq. 272). This means that more solar radiation at the surface is reflected (c).
The feedback loop is closed by the impact of the reduced net surface radiation on
the circulation. Charney (1975) suggested that the reduced surface net radiation
will lead to less surface warming, thus inducing high pressure, Ekman divergence,
and sinking motion (e.g. moisture flux divergence according to Eq. 269) and thus
reduced rainfall. On the other hand, the model without interactive vegetation can-
not produce this feedback (panel d). Fig. 67 summarises the Charney feedback
mechanism.

We will see however, that the feedback mechanism is slightly more complex
than initially suggested by Charney, and involves more components, also non-local
feedbacks. Fig. 68a and b shows the moisture flux convergence and the evaporation
terms of Eq. 268. As can be seen, in the Sahel region local evaporation plays a
substantial role in the moisture budget. However, the moisture flux convergence term
plays the dominant role, supporting Charney’s hypothesis. The reduced evaporation
means, however, that at least part of the reduced surface heating is compensated by
reduced surface latent heatflux. Panels b) and d) show the moisture flux convergence
and evaporation for the model with fixed vegetation. Both are substantially weaker.

Fig. 69a shows the corresponding surface pressure and low-level wind responses
for the Sahel. As hypothesised by Charney there is high pressure and low-level
divergent response. However, in particular the high pressure response is shifted to
the north, so that the advection of dry air from the Sahara will also contribute to the
drying (e.g. second term in the moisture flux convergence of Eq. 269). It can also
be noted that the dynamic feedback is much stronger in the case with interactive
vegetation compared with the non-interactive vegetation (Fig. 69b).

Finally, we compare the model Sahel rainfall time series with the observed (Fig.
70). Whereas the time series from the interactive vegetation run has characteristics
similar to the observed rainfall (but slightly weaker magnitude; Fig. 70b), the model
without interactive vegetation (Fig. 70c) has much more power at interannual time
scales and less persistent anomalies as well as smaller magnitudes.

Exercises

1. Show with help of the full continuity equation that Eq. 266 follows from Eq.
265.
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Figure 57: Near surface distribution of specific humidity (vapour mass fraction).
Units are g/Kg.
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Figure 58: Annual mean observed evaporation (top) and precipitation (bottom).
Units are mm/day (note that mm/day is equivalent to kg/(m2 day).
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Figure 59: Vegetations and brightness of the Earth.
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Figure 60: Precipitation in mm/day and Leaf Area Index (LAI; leaf area/ground
area in m2/m2) of observations (upper panel) and model (lower panel).
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Figure 61: Observed (a, c )and model (b,d) precipitation standard deviations in
mm/day and Coefficient of Variation (COV), defined as rainfall standard deviation
divided by mean rainfall.
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Figure 62: Sahel rainfall anymalies in mm/day.

Figure 63: Rainfall difference 1980 to 1994 minus 1950 to 1964 in mm/day.
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Figure 64: Model set-up.
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Figure 65: Modeled rainfall difference 1980 to 1994 minus 1950 to 1964 in mm/day.
Left: with interactive vegetation, right: without interactive vegetation). of observa-
tions and model.
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Figure 66: Features of the Charney Feedback mechanism responsible for the re-
sponses 1980 to 1994 minus 1950 to 1964 in the model with dynamics vegetation: a)
Vegetation cover change [%], b) Albedo change [%], c) net surface radiation change
[W/m2], d) as c) but without vegetation feedback [W/m2].
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Figure 67: Schematic of the Charney feedback mechanism.
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Figure 68: Moisture budget terms in mm/day. a) Moisture flux convergence term of
the interactive vegetation, b) moisture flux convergence term of the fixed vegetation
model, c) evaporation on the interactive vegetation, d) evaporation of the fixed
vegetation
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Figure 69: Response of surface pressure [hPa] and low-level winds [m/s] for a) in-
teractive vegetation model, b) non-interactive vegetation model and c) difference
between a) and b).

121



Figure 70: Sahel rainfall anymalies in mm/day. a) Observations, b) model with
interactive vegetation, c) model without interactive vegetation.
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13 Analysis of Climate Variability: EOF/PCA Analysis

Suggested textbooks:

a) Statistical Methods in the Atmospheric Sciences. D. S. Wilks, Second Edition,
International Geophysics Series, Academic Press, 2006

b) Statistical Analysis in Climate Research. H. von Storch and F. W. Zwiers,
Cambridge University Press, 1999

c) Analysis of Climate Variability. H. von Storch, A. Navarra (Eds.), Springer,
1995.

d) Or simply look things up on Wikipedia...............

13.1 Motivation

The problem and necessity of the analysis of climate variability becomes clear if we
consider the series of 500 hPa winter mean anomaly fields shown in Fig. 71. Lacking
a precise theory of what we are seeing (apart from the fact that we know that what
we see are solutions of the complex Navier-Stokes equations), how can we try to find
some order in the chaos that we are confronted with? One way to tackle this problem
is the Empirical Orthogonal Function (EOF) analysis (guess who introduced this in
climate analysis?) or Principle Component Analyisis (PCA).

13.2 What does the EOF analysis do?

The EOF analysis solves our problem (how, see below) by finding orthogonal func-
tions (EOFs) to represent a time series of horizontal fields in the following way:

Z ′(x, y, t) =
L∑
l=1

PCl(t)EOFl(x, y) . (273)

Z ′(x, y, t) is the original (anomaly) time series as a function of time (t) and (hori-
zontal) space (x,y), for example the fields that are displayed in Fig. 71. EOFl(y, x)
show the spatial structures of the major factors that can account for the tempo-
ral variations of Z ′. PCl(t) are the principal components that tell you how the
amplitude of each EOF varies with time. In practice, time and space dimensions
are discretized (as in the Numerical Methods Course!). Therefore, dealing with
Z ′(x, y, t) and EOFl(y, x) means to deal with matrices.

13.3 Some useful specific definitions and notations

In the following, matrices will be denoted by capital boldface roman letters (A,B,
Y, etc.). Vectors will be denoted by a lowercase boldface letters. Let’s consider the
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data matrix:

Z =


z11 z12 . . . z1k

z21 z22 . . . z2k
...

...
...

zn1 zn2 . . . znk

 (274)

In the following we assume that time and space are discretized and time is rep-
resented by the columns of this matrix, whereas space is represented by the rows
(space (x,y) is just discretized a one vector, i.e. order f(i, j) as one long vector
f(i, 1), f(i, 2), ..., f(i,M), i = 1, N, with N ×M = k). EOF analysis is based on
anomalies, therefore anomaly data has to be defined. In order to define anomalies,
a mean has to be defined. This is done in time, meaning a k-dimensional vector of
means can be defined by averaging along the columns of the matrix of Eq. 274 (i.e.
the time mean at every grid point). This mean has to be subtracted at every time
and gridpoint in order to define the anomaly matrix. The mean subtracted is in
general different at different gridpoints, but must be the same at a fixed gridpoint.
An elegant way to write this is:

Z′ = Z− 1

n
1 Z , (275)

where 1 is a n×n matrix that contains 1 everywhere which is multiplied with Z (to
confirm, simply try this procedure with a 2x2 matrix!).

With these notations Equation 273 may be re-written in (discretized) matrix
notation as

Z′ =
k∑
l=1

pcl el
T , (276)

where pcl is a nx1 vector and el is a kx1 vector, therefore the transponse el
T is a

1xk vector. Note that the product of an arbitrary nx1 vector a and a 1xk vector
bT is results in

abT ≡


a1

a2
...
an


[
b1, b2, . . . , bk

]
≡


a1b1 a1b2 . . . a1bk
a2b1 a2b2 . . . a2bk

...
...

...
anb1 anb2 . . . anbk

 (277)

If we demand the vectors el to be orthogonal unit vectors, such that eTi ej = 0
for i 6= j, and eTl el = 1, then we have

Z′em =
k∑
l=1

pcl el
Tem =

k∑
l=1

pcl δlm = pcm , (278)

where δlm = 1 if l=m and zero otherwise. We call Z′em the projection (or in climate
analysis sometimes called regression) of the data matrix onto the subspace defined
by the EOF em. Thus the principle components corresponding the mth EOF can
simply be derived by projection of the data matrix Z′ onto the mth EOF. The vector
pcm has therefore n components.
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13.4 Minimum criterium leading to EOF definition

EOF analysis can be interpreted as a recursive process, we start to determine the
first EOF (e1), then the second, and so on. The criterion to determine the first EOF
is the minimization of the residual

ε1 =‖ Z′ − Z′e1e
T
1 ‖2 , (279)

with respect to the k dimensional vector e1 designing the first EOF in our notation.
Here, if Y is any matrix,

‖ Y ‖2=
1

(nk)
YT : Y ≡ tr

(
1

(nk)
YTY

)
=

1

(nk)

n∑
i=1

k∑
j=1

y2
ij . (280)

This means first the matrix product of YT and Y, then the trace of the resulting
matrix by summing up the diagonal elements and this is the total variance of Y.
The normalization by (nk) is arbitrary, but represents the natural definition of the
total variance. In some cases you may find that the normalization is just done by n,
meaning in time. The final results is however independent of this. The meaning of
Eq. 279 is that we are searching for a k- dimensional subspace e1 to represent the
data such that the residual (279) is minimal.

Note that Z′e1 is a n-dimentional vector to be matrix multiplied by the k-
dimentional vector eT1 to give a kxn matrix according to Eq. 277. Also note that
Z′e1 is just the definition of the vector of (discretized) Principle Components corre-
sponding to the first EOF in Eq. 276. Some further manipulation leads to:

ε1 =‖ Z′ ‖2 − ‖ Z′e1 ‖2 , (281)

which means that minimizing ε1 according to Eq. 279 with respect to e1 is equivalent
to maximizing the principle component projections

εproj =‖ Z′e1 ‖2 (282)

with respect to e1 (see, e.g. Wikipedia). This leads to the often used 2-dimensional
example of the geometrical interpretation of EOFs shown in Fig. 73, where samples
of 2-dimensional data vectors are considered and we search for the unit vector (EOF)
that maximizes the variance of the projection of the data on this vector (straight
line).

The minimization (a lot of matrix calculus) leads to the eigenvalue problem

Se1 = λe1 , (283)

where λ is the largest eigenvalue and S = 1
nkZ′TZ′ is the kxk variance-covariance

matrix of the anomalies. Therefore the first EOF e1 becomes the eigenvector of the
matrix S corresponding to the largest eigenvalue. The other EOFs are found by
simply iteratively minimizing the reduced residual

ε2 =‖ Z′ − Z′e1e
T
1 − Z′e2e

T
2 ‖2 ′ (284)
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and
εl =‖ Z′ − Z′e1e

T
1 − Z′e2e

T
2 − ...− ele

T
l ‖2 , (285)

and the results is that e2 is the eigenvector of S that corresponds to the second
largest eigenvalue, and el is the eigenvector of S that corresponds to the lth largest
eigenvalue. Since S has k eigenvectors we can continue this until l=k.

13.5 Some further properties

Note that also the principal components are orthogonal, that is pci · pcTj = 0 for
j 6= j. For practice purposes, we hope that a good approximation for the data
matrix is given by

Z′ ≈
N∑
l=1

pcl el
T , (286)

with N � k.
A further property is

k∑
l=1

λl =
1

(nk)
Z′T : Z′ =

1

(nk)

n∑
i=1

k∑
j=1

z′2ij , (287)

which means that the sum of all eigenvalues gives the trace of the variance-covariance
matrix S which is the total variance of Z′ . To evaluate the importance of EOFs it
is useful to consider the portion of variance explained by it:

expl var of λi =
λi∑k
l=1 λl

(288)

A further property of eigenvalues of a matrix is of importance for the practical
implementation of the EOF analysis, and is indeed used in the fortran program that
you will use in the exercises of this section: If λ is an eigenvalue of the variance-
covariance matrix kxk Z′TZ′ (we drop the scaling 1/(nk) for here because it is just
a factor), then it is also an eigenvalue of the nxn matrix Z′Z′T . In this case the
variance-covariance matrix is defined as by the spatial variances and covariances.
Thus if n � k, then we may prefer to find the eigenvalues of Z′Z′T . If there are
m independent eigenvectors (e1, e2, ..., es) of Z′TZ′ the eigenvectors of Z′Z′T are
Z′e1,Z

′e2, ...,Z
′es, which are the projections of the data matrix on the EOFs es

which are therefore the (normalized) principal components of the original prob-
lem. This means that EOFs and principal components are exchangable. Instead of
calculating the eigenvectors of Z′TZ′, we may calculate the eigenvectors of Z′Z′T ,
interpret the eigenvectors as the principal components and calculate the EOFs as
projections of the transpose data matrix Z′T onto the eigenvectors: el = Z′Tpcl.
In this case the principal components are normalized (that is standard deviation =
1), whereas the EOFs are not. In the approximation 286 it does not matter if the
principle component or the EOF is normalized, because they are multiplied with
each other.
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As stated above EOFs are found by determining the eigenvalues and eigenvectors
of the variance-covariance matrix. Do you remember how to find these? You have
to demand that the determinant of the variance-covariance matrix vanishes, this
leads to an equation, the characteristic equation that contains kth-order polynomials
and has at most k roots. There are standard techniques to find eigenvalues and
eigenvectors, you may have learned some in your Numerical Methods course?

13.6 Geometric interpretation of PCs and EOFs

The geometric interpretation of the principle components mentioned before is as
follows: The eigenvectors empirical orthogonal function (EOF) define a new coordi-
nate system in which to view the data. This coordinate system is oriented such that
each new axis is aligned along the direction of the maximum joint variability of the
data, consistent with that axis being orthogonal to the preceding one.

The goal is to account for the variation in a sample in as few variables as possible.
In the example here, the data is essentially 1-dimensional in the new coordinate
system defined by the EOFs.

13.7 Interpretation of EOFs

As we have learned by now, EOFs may be useful to compress the information con-
tained in complex data sets and to structure the data (according to the largest
variances). As for the physical interpretation of EOFs, it is tempting to try to give
physical explanations to the first few EOFs of a complex data set. Indeed, we expect
that if the variability of our fields are governed by a strong low-dimensional physical
mechanism (e.g. ENSO in the Pacific region), then one of the first EOFs will reflect
this mechanism (indeed in case of EOFs of the interannual variability in the tropical
Pacific, we find that the first EOF reflects the canonical ENSO pattern). Unfortu-
nately, the opposite is not true: Not every first (or second or third, ...) is related to
a simple and unique physical mechanism! Furthermore it is often even misleading
to try to provide a physical mechanism for higher EOFs (e.g. EOF4, EOF5, etc.),
because of the orthogonality of the EOFs. This constraint may make higher EOFs
less ’physical’ than the first or second EOF! The EOF analysis applied to the fields
in Fig. 71 gives as first 2 EOFs the maps displayed in Fig. 74. Do you have ideas
about possible ’physical’ explanations of these EOFs? They are at least well know
patterns, do you know their names?

13.8 Related Methods of Climate Analysis

The EOF analysis is probably the most basic of all analysis methods of climatic
fields. For example a different question could arise considering 500 hPa geopotential
height fields and sea surface temperature fields together. We may ask the question
are the 500 hPa fields and the sea surface temperature (SST) fields we see related?
This could be due to the fact that one is forcing the other. We may get some idea
performing an EOF analysis on both fields separately and then try to connect the
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emerging EOFs by a physical interpretation (e.g. similar to what we will do in the
exercise in this section). We could go one step further and compare (e.g. correlate)
the principle components (pcs) of the first EOFs, etc. If we are lucky and the pcs are
highly correlated, then there is likely some physical connection between the two first
EOFs. However, it could also be that the first pc in geopotential height is a little
correlated with the first pc in SSTs and also a little with the second, and so on. This
means our interpretation of the connections between 500 hPa geopotential height
and SST fields are not much easier after the EOF analysis. There are methods
to address this question systematically. For example, the Canonical Correlation
Analysis (CCA) or Maximum Covariance Analysis (MCA) provide tools to address
the question stated above in a systematic way.

Exercises

1. Using the fortran programme provided, calculate the (winter-mean: DJF)
EOFs of a) surface temperature and b) 200 hPa geopotential height in the
tropical Pacific. Display the covariance of the resulting principal components
related to the first EOF with the global surface temperature and 200 hPa
geopotential height fields and interpret the results. How much variance does
the first EOF explain in each case? Are the first EOFs of surface temperature
and 200 hPa geopotential height related? If yes, what could be the physical
mechanism?
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Figure 71: Anomalies of winter 500 hPa height fields for several years. Units are m.
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Figure 72: A typical example of the distribution of eigenvalues.

Figure 73: A sample of n observations in the 2-D space x = (x1, x2).
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Figure 74: EOFs of the 500 hPa fields presented in Fig . 71
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14 Modes of Variability in the Climate System
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14.1 Mechanisms for low-frequency variability: The Hassel-
mann model

Hasselmann (1976) suggested a simple model (derived from Damped Brownian
Motion) of how atmospheric white noise forcing could generate low-frequency
variability through interaction with a static Ocean layer:

ρcH
dT

dt
= N − λT , (289)

where N is the weather noise. ρ = 1000kg/m3 is the density of water, c =
4186J/kg the specific heat capacity of water and H = 50m the thickness
of the layer considered, λ = 15W/(m2K) is a damping coefficient, and also
represents damping through longwave radiation from the ocean layer. T are
temperature anomalies with respect to a reference value (e.g. 290K). Solutions
of this simple system are already quite complicated, since N is an arbitrary
function of time in principle, and therefore Eq. 289 is non autonomous. If we
assume N = Nνe

iνt, and T = Tνe
iνt then

Tν =
Nν

λ+ iνρcH
, (290)

which leads to the power spectrum

|Tν |2 =
N2
ν

λ2 + (νρcH)2
. (291)
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This means that for high frequency noise the resulting amplitude is small, but
for low frequency noise the temperature amplitude is larger.

Hasselmann Model
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Figure 57: Definition of often used indices to define ENSO time series. Source:
http://www.cpc.ncep.noaa.gov/products/analysis monitoring/lanina/enso evolution-
status-fcsts-web.pdf

12.4 North Atlantic Oscillation (NAO)

12.5 Atlantic Multidecadal Oscillatiion/Atlantic Multidecadal Vari-
ability (AMO/AMV)

Exercises

1. Show the validity of 291.

2. Given the values in Eq. 289, what is the resulting damping time scale associ-
ated with the values of �.

3. Integrate Eq. 289 for N = N⌫(sin ⌫1t + sin ⌫2t), where ⌫ = 2⇡/180days�1

days, ⌫2 = 2⇡/20days�1 and N⌫ = 50W/m2. You may use T = 0K as initial
condition. Use a time step of 86400 s = 1 day. Plot the solution and the
forcing for 2 years.
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Figure 54: Response in velocity potential � to zonal (a, d)) and zonal with removed
African and Americal continents (b, e). Units are 106 m2 s�2.

105

Figure 75: Power spectrum 291 as a function of frequency. Taken from presentation
of Ed Schneider at the ICTP workshop on Hierachical modelling.

14.2 ENSO

The ENSO phenomenon and its mechanisms have been extensively discussed
in section 6. This section provides some further information, and in partic-
ular its link with other climate modes of variability. Fig. 76 shows the SST
anomalies of the ongoing El Nino event. Fig. 77 shows the regions often used
to define ENSO time series. Different regions may capture different flavors
of the ENSO phenomenon. For example, the maximum SST anomaly can be
in different locations. Maximum anomalies are topically located in the Nino3
region, but ENSO impacts are typically larger in the maximum anomalies are
located in the Nino3.4 region (discuss why). The time series for the Nino3.4
index is presented in Fig. 78. All major El Nino events in the recent history
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can be clearly identified, namely 1983, 1998, and 2016. As we can see, also
2023 is on its way to become a major El Nino event, whereas in the last 3
years, La Nina conditions were prevailing. Typical pattern for El Nino and
La Nina events are shown in Fig. 79. It can be seen that El Nino events are
typically with larger magnitude and further to the east compared to La Nina
events (discuss!). An important aspect of ENSO is its relation with global
mean surface temperatures. Overall, an El Nino events releases heat to the
atmosphere, and this leads to a slow overall warming of other ocean basins
as well as land surfaces. In contrast, less than normal heat is released to the
atmosphere during La Nina events. As a consequence, the global mean surface
temperature shows a clear relation with ENSO, particularly what the global
temperature is lagging by about one year (Fig. 80). This relation has let to a
lot of discussion in the scientific community, e.g. concerning the slight global
cooling in the early 2000s. What is the period of the ENSO phenomenon?

Did you note the SST dipole anomaly (Indian Ocean Dipole or IOD) in the
Indian Ocean? It has been recently recognised that a wave train emanating
from the Indian Ocean in early winter can generate an important response
in the European region. Figure 81 shows a sketch of the response to ENSO
and IOD in early and late winter. Whereas in late winter we see a wave
train directly induced by ENSO heating anomalies, in early winter the direct
ENSO wave train is still weak, but we do see a strong signal coming from
the Indian Ocean. This is demonstrated in the composite for IOD events
in Fig. 82, left panel, where the stationary wave from the Indian Ocean in
December impacts the European region with corresponding precipitation and
temperature anomalies (Fig. 83). The ENSO response in February instead is
shown in Fig. 82, right panel.

14.3 Pacific Decadal Oscillation/Pacific Decadal Variability (PDO/PDV)

The Pacific Decadal Oscillation (PDO) or its very close relative, the Inter-
decadal Pacific Oscillation, are basin-wide modes of variability in the Indo-
Pacific region. They may be defined through statistical methods, like Princi-
ple Component Analysis (PCA; discuss) or indices applied to SSTs (sometimes
low-pass filtered). A classical definition for the PDO would be the Pacific SSTs
North of 20◦N. Fig. 84, top panel shows the pattern and time series of the PDO
(derived from an PCA). The lower panel shows the ENSO pattern and time
series (again derived from a PCA). As can be seen, pattern and time series are
rather similar, with the PDO being lower frequency than ENSO, and PDO pat-
tern more pronounced in the North Pacific. This points to the possible ’null’
hypothesis: Let’s say ENSO is a given and well explained phenomenon, with
its well established teleconnections from the tropical to extra-tropical regions.
Could it be that it provides the noise in Eq. 289 (with periods from 4-7 years)
and the ocean provides a reddening of the spectrum? This is one hypothesis,
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Figure 76: SST anomaly on 12 Nov 2023. Source:
https://www.ospo.noaa.gov/data/cb/ssta/ssta.daily.current.png.

but it is likely that more than just one process is relevant for the PDO, and
also North Pacific Ocean dynamics may play a role to generate a stronger
response there, and also in the equatorial parts. For example, it has been
suggested that decadal SST variability in the equatorial Pacific could be gen-
erated though atmospheric teleconnections to the extratropical Pacific, which
modify the Pacific Ocean gyre circulation, thus providing a negative feedback
to the initial equatorial Pacific SST signal and leading to a reversal of these
anomalies, and thus initiating an oscillation (see Capotondi et al., 2023). For
example, Fig. 85 shows how strongly ocean flow convergence and SSTs are
related, suggesting an important role of Ocean dynamics in the PDO. Also
other Ocean basins (e.g. Indian and Atlantic Oceans) may impact the Pacific
and lead to PDO-type variations. A very similar phenomenon compared to
the PDO is the Interpacific Decadal Oscillation (IPO). The IPO is also usually
defined though a PCA applied to low-pass filtered (e.g. 11-years), detrended
SST in the whole Indo-Pacific region (e.g. 11-years). The PDO/IPO have
widespread climatic impacts, particularly in the North American continent,
but also for Asian monsoons.
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Figure 77: Definition of often used indices to define ENSO time series. Source:
http://www.cpc.ncep.noaa.gov/products/analysis monitoring/lanina/enso evolution-
status-fcsts-web.pdf

14.4 North Atlantic Oscillation (NAO)

The North Atlantic oscillation (NAO) is a dominant pattern of atmospheric
variability in the North Atlantic region. It is a pressure see-saw between
Iceland and the Azores. I can be defined either in terms of indices or as
strongest variability pattern resulting from an PCA. Fig. 86 shows the NAO
pattern in Sea Level Pressure and the associated time series. The NAO has
important impacts particularly on European winter climate (see Fig. 87 for the
surface temperature anomalies associated with the positive NAO phase). The
last really cold winters in Europe coincide with strong and persistent negative
NAO phases around 2010.

The mechanism for the NAO is rather complicated. It is mainly an inter-
nal atmospheric variability mode, but some feedbacks from local and also
remote SST forcing may exist. The most prominent theory for the NAO is
an eddy-mean state interaction. Rossby wave breaking (e.g. the classical case
of breaking of shallow water waves is shown in Fig. 88 and is related that the
phase speed of these waves is a function of the height of the fluid) is thought
to be responsible for generating positive and negative NAO phases. In case
of Rossby waves, the breaking occurs because of meridional variations of the
zonal wind (jet). Then there is a positive feedback between the wavebreak-
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Figure 78: Nino3 SST anomaly timeseries. https://stateoftheocean.osmc.noaa.gov/sur/pac/nino3.php

ing and the NAO, because the NAO changes the jet, which causes more wave
breaking that favour the same NAO phase, and so on.

14.5 Atlantic Multidecadal Oscillatiion/Atlantic Multidecadal
Variability (AMO/AMV)

The AMO/AMV is the leading mode of variability at decadal time scales in the
North Atlantic region. As PDO/PDV it can be defined through PCA, but the
more commonly used method is though an SST index covering the whole North
Atlantic. The SST field is low-pass filtered and detrended before the analysis,
or, alternatively, the global mean SST are subtracted from the time series.
Fig. 89a shows the AMO pattern, and Fig. 90 the associated time series. The
AMO impacts climate around the Atlantic region and beyond on decadal time
scale. Several mechanisms have been proposed for the AMO variability, and
there is a heated scientific debate on which is the most relevant. The first
one, the ’null’ hypothesis, is again an application of the Hasselmann model
289. The (negative) NAO SST imprint (Figs. 89b and 87 show characteristic
pattern in SST (also referred to as SST tripole). This pattern does indeed
show similarities to the AMO pattern Figs. 89a). However, in the AMO
pattern the cooling in the centre is missing. Nevertheless, several studies have
argued that the atmospheric forcing from the NAO, plus reddening of the
spectrum through the Hasselmann model 289 can largely explain the AMO
(e.g. Clement et al., 2015). The second hypothesis is also related to NAO

137



Figure 79: Composites of 10 strongest El Nino and La Nina events.

forcing, but involves dynamically more complicated processes. A positive NAO
can lead to an enhanced Atlantic Meridional Overturning Circulation (AMOC;
see Riccardo’s lectures) though enhances ocean convection close to Labrador
Sea. An increased AMOC leads to a warming in the North Atlantic subpolar
gyre region. This warming forces in turn the negative phase of the NAO,
which then weakens the AMOC, and so on, leading to an oscillation. All
the above processes involve delays of several years, and therefore multidecadal
oscillations, as shown in Fig. 90 can be explained. The third hypothesis
proposed is ’external’ forcing, mainly aerosols. This explanation has been
proposed because, quite surprisingly, the multimodel ensemble mean of the
recent models used for the IPCC reports (e.g. AR5 and AR6) show AMO
variability similar to observations, but with much reduced amplitude. The
explanation must be external forcing, because a mean of many models would
remove internally atmosphere-ocean generated variability, and only the forcing
common in each simulation should be visible. It is possible that all 3 process
are relevant, and dominate in different time intervals. The observed record
of atmospheric and particular Ocean data is not long enough to really decide
which is the most important mechanism. Note, that the first 2 mechanisms
involve interactions with the NAO, and lead-lag relations between NAO and
the AMO can be used to distinguish the two. For the first, it is expected that
there is a negative correlation between the NAO and AMO, with the NAO
leading by several years. For hypothesis 2 it is expected that the correlations
between NAO and AMO are positive when NAO is leading and negative when
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Figure 80: Monthly global surface temperature for January 1950–May 2023 com-
pared to the 20th-century average, colored by monthly ENSO values. NOAA NCEI
image. https://www.climate.gov/news-features/blogs/enso/how-do-noaa-scientists-
predict-annual-global-temperature-ranking-ahead

the AMO is leading. Using a proper definition of indices, there is a clear
evidence that hypothesis 2 is strongly supported by observations (see Fig.
91).

Exercises

(a) Show the validity of 291.

(b) Given the values in Eq. 289, what is the resulting damping time scale
associated with the values of λ.

(c) Integrate Eq. 289 for N = Nν(sin ν1t+sin ν2t), where ν1 = 2π/180days−1

days, ν2 = 2π/20days−1 and Nν = 50W/m2. You may use T = 0K as
initial condition. Use a time step of 86400 s = 1 day. Plot the solution
and the forcing for 2 years.
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Figure 81: Sketch of early (left) and late winter (right) ENSO and IOD-induced
teleconnections.

F��. 2. (a) Regression map of December re-analysis (ERA5) 200⌘%0 geopotential height anomalies (<) onto

the corresponding IODA4B SST anomalies index (east box: 10�(�0� and 90� �110�, ; west box: 10�(�10�#

and 50� � 70�,) fixed in October for the period 1981-2019. (b) As in (a) but with the average over the 25

ensemble members of the ECMWF re-forecast dataset (SEAS5). (c) Regression map of December re-analysis

(ERA5) 200⌘%0 geopotential height anomalies (<) onto the corresponding total IOD SST anomalies index fixed

in October for the period 1981-2019. (d) As in (c) but with the average over the 25 ensemble members of the

ECMWF re-forecast dataset (SEAS5). Stippling denotes statistical significance at the 95% confidence level.
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F��. 2. (a) Regression map of December re-analysis (ERA5) 200⌘%0 geopotential height anomalies (<) onto

the corresponding IODA4B SST anomalies index (east box: 10�(�0� and 90� �110�, ; west box: 10�(�10�#

and 50� � 70�,) fixed in October for the period 1981-2019. (b) As in (a) but with the average over the 25

ensemble members of the ECMWF re-forecast dataset (SEAS5). (c) Regression map of December re-analysis

(ERA5) 200⌘%0 geopotential height anomalies (<) onto the corresponding total IOD SST anomalies index fixed

in October for the period 1981-2019. (d) As in (c) but with the average over the 25 ensemble members of the

ECMWF re-forecast dataset (SEAS5). Stippling denotes statistical significance at the 95% confidence level.
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Early winter

Late winter

F��. 1. (a) Regression map of February re-analysis (ERA5) 200⌘%0 geopotential height anomalies (<) onto

the corresponding Nino3.4 SST anomalies index (5�(�5�# and 170� �120�,) fixed in October for the period

1981-2019. (b) As in (a) but with the average over the 25 ensemble members of the ECMWF re-forecast dataset

(SEAS5). (c) As in (a) for the early winter (December) case in ERA5. (d) As in (c) but with the average over the

25 ensemble members of the ECMWF re-forecast dataset (SEAS5). Stippling denotes statistical significance at

the 95% confidence level.
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Figure 82: Composite response of 200 hPa geopotential height to October IOD
perturbations for December (left) and to ENSO perturbations for February (right).
Units are m.
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F��. 4. (a) Regression map of December re-analysis (ERA5) total precipitation anomalies (<</30H) onto the

corresponding IODA4B SST anomalies index (east box: 10�(�0� and 90� �110�, ; west box: 10�(�10�# and

50� � 70�,) fixed in October for the period 1981-2019. (b) Regression map of December re-analysis (ERA5)

low-level (925hPa) temperature anomalies (�⇠) onto the corresponding IODA4B SST anomalies index fixed in

October for the period 1981-2019. (c) As in (a) considering the regression onto the total IOD SST anomalies

index. (d) As in (c) considering the low-level (925hPa) temperature anomalies (�⇠). Stippling denotes statistical

significance at the 95% confidence level.
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Figure 83: Composite response European precipitation (left) and surface tempera-
ture (right) to IOD perturbations. Units are mm/day and K.

141



Figure 84: Global expression of the PDO (top left) and ENSO (bottom left), ob-
tained by linearly regressing monthly SST anomalies at each grid box upon the
leading Principal Component time series based on the domains outlined in the black
boxes. The PDO and ENSO time series, defined by their corresponding PCs, are
shown in the top right and bottom right, respectively. Based on the HadISST data
set (Rayner et al., 2003) for the period 1870-2014. Adapted from Deser et al. (2010).
(Contributed by C. Deser) https://climatedataguide.ucar.edu/climate-data/pacific-
decadal-oscillation-pdo-definition-and-indices.
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phenomenon, whose growth and phase transitions rely on coupled 
feedbacks, it is not clear whether the same is true for TPDV. Although 
there are indications that low-frequency equatorial heating121 or indi-
vidual ENSO events43 induce off-equatorial winds favourable for a 
TPDV phase reversal, there is still uncertainty about the origin and 

nature of the winds involved. Internally generated wind anomalies in 
the subtropical/tropical regions create equatorial SST anomalies21, 
which then reinforce the subtropical wind anomalies through atmos-
pheric teleconnections, increasing their persistence to enhance 
lower-frequency variability110. Decadal timescale SST anomalies in 
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Fig. 4 | Assessment of the v T′  hypothesis.  
a, Observed mean zonally integrated interior 
meridional pycnocline transports at 9° N and  
9° S, computed over 1956–1965, 1970–1977, 
1980–1989 and 1990–1999. b, Observed mean 
meridional transport convergence across 9° N 
and 9° S (pink), computed as the difference 
between Southern and Northern Hemisphere 
transports, and sea surface temperature (SST) 
anomalies averaged over the central and eastern 
equatorial Pacific (black line; 9° N–9° S, 90° 
W–180° W). Error bars represent one standard 
deviation error. c, Reanalysis meridional 
transport convergence anomalies165 (seasonal 
cycle removed) across 9.5° N and 9.5° S in the 
Pacific (black), and SST anomalies averaged over 
9.5° N–9.5°S, 90° W–180° W (red). Meridional 
velocity anomalies used to compute transports, 
and SST anomalies are linearly detrended. The 
value in the top left indicates correlation at zero 
lag between the time series. d, Same as panel c 
but for 7-year low-pass-filtered anomalies. 
Values indicate mean decadal transport and  
SST anomalies between vertical dashed lines.  
e, Correlations between transport convergence 
at 9° N and 9° S and equatorial SST anomalies  
in 4 ocean reanalyses163,164,166,167 and 12 CMIP6 
historical simulations. Error bars represent the 
95% confidence interval. f, Standard deviation of 
equatorial SST anomalies versus the standard 
deviation of transport convergence at 9° N and 
9° S for the ocean reanalyses and the historical 
CMIP6 simulations in zonally averaged 
pycnocline transport convergence (panel e) and 
equatorial SST anomalies are highly correlated 
in observations, ocean reanalyses and climate 
models. STC, subtropical cell. Panels a and b are 
adapted, with permission, from ref. 25, panels c 
and d from ref. 26 and panels e and f from ref. 88.

Figure 85: Reanalysis meridional transport convergence anomalies(seasonal cycle
removed) across 9.5 N and 9.5 S in the Pacific (black), and SST anomalies averaged
over 9.5 N–9.5S, 90 W–180 W (red). Meridional velocity anomalies used to compute
transports, and SST anomalies are linearly detrended. Figure from Capotondi et al,
2023
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Figure 86: The principal component (PC) time series of the leading EOF of DJF
SLP anomalies over the Atlantic sector (20-80N, 90W-40E) serves as an alternative
index. The DJF PC timeseries is shown below in color, and the station based index
is given by the thick black line. The correlation between the two is 0.88 over the
period 1899-2022. The black dots on the EOF panel show the location of the stations
used in the DJF station-based index. (Climate Data Guide; A. Phillips).
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Figure 87: The surface temperature and other impacts associated with the positive
phase of the NAO. Figure from Visbek et al., 2001
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Figure 88: Breaking of shallow water waves. Source:
https://www.coolgeography.co.uk/GCSE/AQA/Coastal%20Zone/Processes/waves.htm
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Figure 89: (a) Observed AMO SST pattern, derived by regressing detrended North
Atlantic annual mean SST anomalies on the observed AMO index (Figure 1), using
HadISST dataset (Rayner et al. 2013) for the period 1870-2015. The regression
corresponds to 1 standard deviation of the observed AMO index. (b) Observed
NAO SST pattern (inverted), derived by regressing detrended North Atlantic annual
mean SST anomalies (HadISST dataset) on the inverted detrended observed winter
NAO index (Hurrell Station-Based DJFM NAO Index) for the period 1870-2015.
The regression corresponds to 1 standard deviation of the inverted observed NAO
index. (Created by Dr Rhong Zhang for the Climate Data Guide)
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Figure 90: Observed AMO index, defined as detrended 10-year low-pass filtered
annual mean area-averaged SST anomalies over the North Atlantic basin (0N-65N,
80W-0E), using HadISST dataset (Rayner et al. 2003) for the period 1870-2015.
(Created by Dennis Shea and Dr Rhong Zhang for the Climate Data Guide)
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Figure 91: Lead-Lag correlations between the NAO and AMO indices for the 2 first
hypothesis. Figure taken from Rob Will’s talk at the 4th summer school on Climate
dynamic, in Trieste
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15 Predictability Basics

15.1 A Model of Convecting Fluids: The Lorenz Model

Essentially from the textbook: Chaos and Nonlinear Dynamics. Robert C.
Hilborn, Oxford University Press, 1994.

The set of nonlinear equations (discuss linear oscillator, and exponential de-
cay!) derived in this section is a highly simplyfied model of a convecting fluid.
The model was introduced in 1963 by MIT meteorologist Edward Lorenz, who
was interested in modelling convection in the atmosphere. What Lorenz set out
to demonstrate was that even a very simple set of equations may have solutions
whose behaviour is essentially unpredictable. Unfortunately for the develop-
ment of the science of chaos, Lorenz published his results in the respectable,
but little read Journal of the Atmospheric Sciences, where they languished
essentially unnoticed by mathematicians and scientists in other fields until the
1970s (about 10 citations until 1972, then 3000 in one year.......). Now that
chaos is more widely appreciated, a minor industry studying the Lorenz model
equations has developed.

Here, the Lorenz equations will not be derived, we will just say enough to give
a feeling for what the equations tell us. In simple physical terms, the Lorenz
model treats the fluid system (say the atmosphere) as a fluid layer that is
heated at the bottom (due to the sun’s heating the earth’s surface, for example)
and cooled at the top. The bottom of the fluid is maintained at a temperature
Tw (the ’warm’ temperature), which is higher than the temperature Tc (the
’cold’ temperature) at the top. We will assume that the temperature difference
Tw − Tc is held fixed. (This type of system was studied experimentally by
Benard in 1900. Lord Rayleigh provided a theoretical understanding of some
basic features in 1916. Hence, this configuration is now called Rayleigh-Benard
cell.) Fig. 92 shows the principle set-up.

If the temperature difference δT = Tw − Tc is not too large, the fluid will re-
main stationary. Heat is transferred from bottom to top by means of thermal
conduction. The tendency of warm (less dense) fluid to rise is counterbalanced
by a loss of heat from the warm fluid ’packet’ to the surrounding medium. The
damping due to the fluid viscosity prevents the packet from rising more rapidly
than the time required for it to come to the same temperature as its neigh-
bours. Under these conditions the temperature drops linearly with the vertical
position from Tw at the bottom of the layer to Tc at the top. However, if the
temperature difference becomes large enough, the buoyant forces eventually
become strong enough to overcome viscosity and steady circulation currents
develop. In this situation heat is transferred from the bottom to the top by
the process of convection, the actual mass motion of the fluid. In simple terms,
when the warm packet of fluid reaches the top of the layer, it looses heat to
the cool region and then sinks to the bottom, where its temperature goes up
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Figure 92: Setting of Rayleigh-Benard convection.

again. The net result is a circulation pattern that is stable in time.

With a further increase in temperature difference δT , the circulation currents
and the resulting temperature differences within the fluid start to vary in time.
This never occurs for a linear system with frictional forces included. If a linear
system is subject to steady forces, (after an initial transition period) will be
steady in time.

15.2 The Lorenz Equations

The Lorenz model is based on a gross simplification of the fundamental Navier-
Stokes equations for fluids (explain the approach to insert fixed spatial depen-
dencies of solutions into the Navier-Stokes equations, then look for solutions of
the time-dependent amplitudes). The fluid motion and resulting temperature
differences can be expressed in terms of these three variables, conventionally
called X(t), Y (t) and Z(t). These are not spatial variables. X is related to
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the time-dependence of the so-called fluid stream function. The variables Y
and Z are related to the time dependence of the temperature deviations away
from the linear temperature drop from bottom to top, which one obtains for
the nonconvective steady-state situation. In particular, Y is proportional to
the temperature difference between the rising and falling parts of the fluid
at a given height, while Z is proportional to the deviation from temperature
linearity as a function of vertical position.

Using these variables, we may write the Lorenz model equations as three cou-
pled differential equation

Ẋ = p(Y −X) (292)

Ẏ = −XZ + rX − Y
Ż = XY − bZ .

p, r, b are adjustable parameters: p is the so-called Prandtl number, which is
defined to be the ratio of kinetic viscosity of the fluid to its thermal diffusion
coefficient. r is proportional to the Rayleigh number, which is a dimensionless
measure of the temperature difference between the bottom and top of the fluid.
As the temperature difference increases, the Rayleigh number increases. The
final parameter b is related to the ratio of the vertical height h of the fluid layer
to the horizontal size of the convection rolls. It turns out that for b = 8/3, the
convection begins for the smallest value of the Rayleigh number, that is for the
smallest value of the temperature difference δT . This value is usually chosen
to study the Lorenz model. p is then chosen for the particular fluid under
study. Lorenz (LOR63) used the value p = 10 (which corresponds roughly
to cold water), a value that had been used in a previous study of Rayleigh-
Benard convection by Saltzman (SAL62). We let r, the Rayleigh number, be
the adjustable control parameter. The Lorenz model, although based on what
appears to be a very simple set of differential equations, exhibits very complex
behaviour. The equations look so simple that one is led to guess that it would
be easy to write down their solutions. In fact, it is now believed that it is in
principle impossible to give the solutions in analytical form. Thus, we must
solve the equations numerically (explain possible discretization!). Here we will
discuss a few results of those integrations.

15.3 Behaviour of Solutions to the Lorenz Equations

For small values of the parameter r, that is, for small temperature differences,
δT , the model predicts that the stationary, nonconvecting state is the stable
condition. In terms of the variables X,Y, Z, this state is described by the val-
ues Xs1 = 0, Ys1 = 0, Zs1 = 0. For values of r greater that 1, steady convection
sets in (is is actually quite easy to perform a linear stability analysis of this
stationary point at zero, and it is left to you as an exercise, if you wish.....).
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There are two possible convective states: one corresponding to clockwise rota-
tion, the other to counterclockwise rotation (discuss calculation of stationary
points: Xs2,3 = ±

√
b(r − 1), Ys2,3 = ±

√
b(r − 1), Zs2,3 = r − 1, solutions

2,3 only exist for r > 1). Some initial conditions lead to one state, other
initial conditions to the other state. For p > b + 1, this steady convection is
unstable for large enough r and gives way to more complex behaviour. As r
increases, the behaviour has regions of chaotic behaviour intermixed with re-
gions of periodic behaviour and regions of intermittency, which cycle back and
forth, apparently random, between chaotic and periodic behaviour. Solutions
are shown in Fig. 93 for different values of r (discuss dependence of solutions
on initial conditions for all cases).

Note that even though the Lorenz equations strictly only apply to the Rayleigh-
Benard convection experiment (and even here they are crude approximations
to the full equations), these equations are applied to study the behaviour of
many complex systems. For example, there is a vast literature on application
to Indian monsoon intraseasonal variability, extratropical flow regimes, etc.

15.4 Kinds of predictability

It is the dependence of the solutions on small variations (uncertainties) in
the initial conditions of our nonlinear system (Navier-Stokes equations), that
leads us to the introduction of the concepts of predictability. Adrian Tompkins
will in his lecture on Numerical Weather Prediction (NWP) discuss what the
sources of uncertainties in the initial conditions are (obviousely related to
measurement errors). There are other sources of uncertainties related to model
imperfections that may also be included in the treatment, but are excluded
here at the moment.

From Lorenz system we can understand the two principle kinds of predictabil-
ities. The first kind is the (atmospheric) initial condition predictability, which
can be illustrated looking at the development of an initial condition ensem-
ble (this means many different initial conditions that have to be considered
because of our uncertainties in the initial conditions). Fig. 94 illustrates the
time development of such an initial condition ensemble in the Lorenz system.
Predictability that results from the atmospheric initial conditions is the sub-
ject of NWP, and the limit turns out to be a few days. The NWP problem
will be discussed by Adrian Tompkins in depth.

The more general case also including model uncertainty is illustrated in Fig.
95, which again illustrates the principle of growth in time of the differences
between the different simulations, which could be interpreted as measure of
uncertainty.

The predictability is usually measured using the ensemble method, meaning
that several realizations of a prediction are performed from only slightly dif-
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ferent initial conditions.

Fig. 96 shows the mean (root-mean-sqare) difference of the near surface air
temperature at one gridpoint in Europe (upper panel) and equatorial Africa
(lower panel) from the ECMWF seasonal hindcast ensemble (15 members)
for slightly different initial conditions (we will discuss later what exactly this
system is). As can be seen the error grows quickly in the first few days (even
faster for equatorial Africa), then saturates more or less around 15-20 days
for Europe, but already after 2-3 days in equatorial Africa, and at a much
smaller saturation value. This feature has important implications for seasonal
predictability in extratropical and tropical regions!

Usually, initial condition predictability of the atmosphere (particularly in the
extratropics) is limited by a typical error growth time scale of a few days,
which effectively means that no reasonable prediction can be made after a
week or so (see Fig. 96). This initial condition predictability is also referred to
as predictability of the first kind. The predictability of the second kind results
from the fact that the solutions of nonlinear systems (like e.g. the Lorenz
system) stay in any case relatively close to the unstable stationary points,
or Attractors. If any external forcing changes these stationary points, the
solutions will change systematically with the changing stationary points. We
can imagine that such a situation occurs, for example, in the atmosphere in the
case of a large El Nino event. The atmospheric weather or noise will be chaotic
and unpredictable on a seasonal time-scale (see Fig. 96), but the (imaginary)
stationary state around which the atmosphere evolves may be shifting far
enough that we can predict the average climate in this situation. This is what
is referred to as predictability of the second kind (for the atmosphere). This
is the usual situation we consider in seasonal forecasts. It is interesting for
this to consider the differences in the saturation errors seen in Fig. 96, which
is much larger in extratropical regions compared with tropical regions. This
indicates potentially more predictability of the second kind in the tropics, even
if predictability of the first kind is less. We will see in the following sections
that this is indeed generally the case.

Note, however, that the separation between predictability of first and second
kind is a little arbitrary and we need to specify exactly for which system.
In all above reference to predicability of first and second kind I have added
atmosphere. Indeed, seasonal forecasts are performed with coupled ocean-
atmosphere models. For the ocean-atmospheric system, we are looking again
at the initial condition predictability, or predictability of the first kind even for
seasonal forecasts. The predictability relies then on the fact that some parts of
the oceans evolve on much longer time-scales compared to the atmosphere (e.g.
ENSO has a period of 2-7 years!). The same argument may apply to other
’external’ forcing, for example, carbon dioxide may be considered as external
forcing in many standard models, but if our model includes a carbon cycle,
then it is part of the dynamical system itself. As a note, some researchers have
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also argued that an external forcing may not necessarily shift the attractor,
but may express itself as a change of probability of the system to be close to
one or the other stationary state (see Fig 97 from paper by Corti, Molteni and
Palmer), which may make it difficult to identify, e.g. Climate change from
observations.
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Figure 93: Solutions of the Lorenz equations for different parameters r.
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Figure 94: Illustration of time evolution of an initial condition ensemble in the
Lorenz system.

Figure 95: Illustration of the predictability problem.

157



Figure 96: The mean (root-mean-square) difference of the near surface air temper-
atureat one gridpoint in Europe (15E, 50N) and equatorial Africa (20E, 0N) from
the ECMWF seasonal hindcast ensemble (15 members) for slightly different initial
conditions. Units are K.
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Figure 97: Illustration of frequency of occurence changes in a Lorenz system from
paper Corti, S. , F. Molteni and T. N. Palmer, 1999: Signature of recent climate
change in frequencies of natural atmospheric circulation regimes. Nature, 398, 799-
802
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16 Predictability Measures

16.1 Measures of model-derived predictability

Before we formally introduce the concepts of signal and noise in the seasonal
prediction context, let us first consider an example of a seasonal prediction in
Fig. 98.

Let xij be a model variable (e.g. near-surface temperature or rainfall) at a
certain gridpoint at a discretized time i = 1, ..., N for the ensemble member
j = 1, ...,M . The noise in weather and climate is then usually defined as the
variance of the deviations from the ensemble mean

NO =
1

NM

N∑
i=1

M∑
j=1

(xij − [x]i)
2 , (293)

where [x]i is the ensemble mean

[x]i =
1

M

M∑
j=1

xij . (294)

We can obviously define these values at every gridpoint of the model and
thus define maps of e.g. NO. The meaning of this definition becomes clear
if we imagine that the results of an ensemble of 2 (or more) simulations are
identical. In this case the noise NO is zero. The ensemble mean of an ensemble
is supposed to define the signal, thus

SI =
1

N

N∑
i=1

(
[x]i − [x]

)2
, (295)

where [x] is the time mean of the ensemble mean

[x] =
1

N

N∑
i=1

[x]i . (296)

It should be noted that the ensemble mean usually contains a noise residual,
particularly if the ensemble size is small, and provides therefore a biased esti-
mate of the signal. Imagine we have just 2 simulations, then it is clear that
the mean of these 2 simulations will not be effective to identify the signal
(unless they are identical, and therefore the noise is zero). There are ways to
correct/improve this, but we will not deal with this here. Discuss this using
ensemble Nino3.4 forecasts! With this the signal-to-noise ratio S−N is simply

S −N =
SI

NO
. (297)
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In principle, S−N can become infinity, if NO is zero. In practise this is usually
not the case, although values can become quite large (in which case we are
lucky!!!). A useful threshold to be considered could be S −N = 1, for which
the signal has the same variance as the noise, indicating some predictability.
In practical applications to important variables such as surface temperatures,
precipitation or geopotential height in seasonal forecasts, S −N turns out to
be typically small for precipitation and other variables outside the tropical
Pacific regions (see Fig. 99).

A useful transformation of the S−N is called theoretical limit of predictability

Rlimit =

√
SI/NO

SI/NO + 1
=

√
SI

SI +NO
=

√
SI

T
, (298)

where T = SI + NO is the total variance. By definition Rlimit lies between
0 and 1. It may be interpreted as maximum expected correlation skill if we
were to correlate the ensemble mean with the observations (correlation skill
will be introduced in the next section). Zero means there is no predictability,
1 means there is perfect predictability. A value of S−N of 1 translates into a
value of Rlimit of about 0.7. There are many more indicators of predictability,
that are related to information theory (e.g. relative entropy), but we will
restrict ourselfs here to just the basic ones. Fig. 100 shows the Rlimit for
seasonal mean (September-to-November) precipitation over land points. As
we can see, unfortunately the seasonal mean theoretical limit of Predictability
is typically low over land points. Another global assessment of Rlimit for
surface temperature, mean sea level pressure and precipitation for the DJF
season is shown in Fig. 101

Another, purely model derived predictability measure is the potential correla-
tion skill. The idea is to calculate some kind of mean correlation derived from
the model that may be compared with the correlation of an ensemble mean
with an observation. We may treat every single ensemble member of an en-
semble of realizations as observation (it contains internal and forced variability
components). We can correlate each ensemble member with an ensemble mean
of the remaining simulations. For example, we use xi1 and correlate this with
the ensemble mean

[x]no1i =
1

M − 1

M∑
j=2

xij . (299)

This is because if xi1 were included in the ensemble mean calculation then
we get trivial correlations due to this. Then we can calculate M correlation
coefficients

ρj =

1
N

∑N
i=1

(
[x]

noj
i − [x]

noj
)

(xij − xj)
σ[x]nojσxj

(300)
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where the standard deviations in time are defined as

σxj =

√√√√ 1

N

N∑
i=1

(xij − xj)2 (301)

and

σxnoj =

√√√√ 1

N

N∑
i=1

(
[x]

noj
i − [x]

noj
i

)2
. (302)

Now one should average the correlations ρj . However, we should not just
average these correlations since they are limited by [-1,1]. Instead, we may
average them after applying a FischerZ-transformation

rj =
1

2
ln

(
1 + ρj
1− ρj

)
, (303)

to get

[r] =
1

M

M∑
j=1

rj . (304)

After this, in order to get the average correlation, we have to transform back
using the inverse transformation

[ρ] =
e2[r] − 1

e2[r] + 1
. (305)

Note that, in practise, this potential correlation skill [ρ] is very similar numer-
ically to the theoretical limit of predictability, Rlimit. The reason for this is
that the square of a correlation is the explained variance, which applied to our
case is the explained variance fraction by the ensemble mean or by the signal.
An example if a Potential Correlation Skill calculation is shown in Fig. 102.

16.2 Predictability from comparison with observations

Of course, in order to investigate the ’goodness’ or skill of a model simulation,
we should compare the model output with observations. There are a number
of quality measures of a model simulation. The most basic one, perhaps, is
the bias of the model. If the model has several realizations, that is, ensemble
members, the (time-mean) bias is best evaluated by comparing the ensemble
mean of a field, [x]i, with the corresponding observation, oxi

bias =
1

N

N∑
i=1

([x]i − oxi) . (306)
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If an ensemble is not available, but just a single simulation, the single simu-
lation can be used to assess the bias. One of the most commonly used mea-
sures of error that takes variability into account is the Root-mean-square error
(RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

([x]i − oxi)2 . (307)

Again, a single realization may be also used to evaluate the RMSE of a model.
The problem with the RMSE is that we need to know what is an acceptable
value of it, which can be quite tricky. In a forecast for a week, is a RMSE of
1 K acceptable? A more generically comparable predictability measure is the
Correlation Skill

ρ =
1
N

∑N
i=1(oxi − ox)([x]i − [x])

σoxσ[x]
. (308)

Such a measure may be somewhat simpler to evaluate as is has values between -
1 and 1 and we may simply pick a generic threshold of, e.g. 0.5, for any variable.
On the other hand, physically me may prefer the RMSE error measure (for
example if your model has variations that are a factor of 1000 smaller than
the observations, the Correlation Skill may still be 1, but the RMSE would
be large). In order to better evaluate the RMSE we should compare it with
some kind of trivial forecast without real skill. Such a forecast could be a
climatological forecast or a persistence forecast. The Brier Skill Score uses
this idea to define skillful forecasts

BS = 1− RMSE2

RMSE2
cl

, (309)

where RSMEcl is the base-line RMSE of, for example a climatological fore-
cast. A forecast is skillfull (compared to the base-line forecast) is the BS is
positive.

An advantage of the Correlation Skill measure, ρ, is that we can directly
compare it with the model-derived potential correlation skill [ρ] (Eq. 305)
or the theoretical limit of predictability, Rlimit (Eq. 298). Fig. 103 shows
an example of real seasonal prediction skill from a multimodel ensemble of
seasonal hindcasts

16.3 Some other useful and simple techniques

A very useful technique in climate research is the regression analysis. Assume
we want (in a model or in observations) investigate what is the influence of
ENSO (or any other phenomenon) on rainfall. Assuming that we can char-
acterize ENSO by a single time-series (i.e. the Nino3.4 SST index), then the
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influence of ENSO on rainfall at a certain location may be determined by a
linear regression of rainfall at time i, ri onto the Nino3.4 index (Ii)

ri = a+ bIi . (310)

In the linear regression we are looking now for the coefficients a and b that
minimize the sum of the squared differences between the linear model, Eq.
(310), and the observational (or numerical model) counterpart roi

ε =
1

N

N∑
i=1

(roi − ri)2 (311)

The theory of the linear regression tells us now how to determine (exercise!)
the coefficients a and b (see Fig. 104). The mostly used coefficient b can be
expressed as

b =
1
N

∑N
i=1(roi − ro)(Ii − I)

σ2
I

. (312)

Thus b can be interpreted as covariance between the index Ii and roi, divided
by the variance of Ii.

Note that this formulae can be evaluated at every gridpoint, leading to a map
of regression coefficients. The map of the coefficients b would tell us what is
the typical linear response to a 1 K Nino3.4 SST anomaly in global rainfall
(the dimension is mm/day per K). Also note that sometimes a different scaling
is used

b∗ =
1
N

∑N
i=1(roi − ro)(Ii − I)

σI
, (313)

so that the dimension of b∗ is simply mm/day. This would be the result if we
had taken from the beginning a normalized index I∗i = (Ii − I)/σI which has
standard deviation 1 by definition. Thus b∗ is simply the covariance between
the normalized index Ii and roi. This may be interpreted as the response
to a normalized index Ii or the response to one standard deviation of the
regression coefficient. One may interpret this also as a composite map based on
linear regression. If we have an ensemble of simulations we could, for example,
compare the ENSO regression map of the ensemble mean onto global rainfall
with the observed regression map and try to identify if there are errors in the
ENSO teleconnections.

A comparision between observations and an AGCM for the b∗ regression coef-
ficients for the Nino3.4 index regression onto winter (December-to-February)
mean precipitation is shown in Fig. (105).
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Figure 98: An exampe of Nino3 and Nino3.4 SST index prediction to illustrate the
Signal-to-Noise ratio concept.
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Figure 99: Signal-to-Noise ratio for winter (December-to-February) mean derived
from an AGCM ensemble. Upper panel: Precipitation, lower pane: 200 hPa geopo-
tential height. From paper: Ehsan et al., 2013: A quantitative assessment of changes
in seasonal potential predictability for the 20th century. Clim Dyn, 41, 2697-2709,
doi: 10.1007/s00382-013-1874-x.
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Figure 100: Theoretical limit of predictability, Rlimit for September-to-November
mean precipitation derived from an AGCM ensemble. From paper: Bahaga et al.,
2015: Potential predictability of the sea-surface forced Equatorial East African short
rains interannual variability in the 20th century. Q. J. R. Meteorol. Soc., 141, 16-26,
doi: 10.1002/qj2338.
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Figure 101: Theoretical limit of predictability, Rlimit for December-to-Februar mean
a) surface temperature, b) mean sea level pressure and c) precipitation for the DJF
season derived from an AGCM ensemble. From Thesis: Bianca Mezzina, 2016:
Seasonal influences of SST variability on European climate. University of Trieste
Master thesis. 168



Figure 102: Potential Correlation Skill of near-surface temperature for winter
(December-to-February) mean derived from an AGCM ensmemble. From paper:
Ehsan et al., 2013: A quantitative assessment of changes in seasonal potential pre-
dictability for the 20th century. Clim Dyn, 41, 2697-2709, doi: 10.1007/s00382-013-
1874-x.

Figure 103: Correlation Skill of seasonal mean (September-toNovember) precipita-
tion from a multimodel seasonal forecast enssemble. From paper: Bahaga et al.,
2015: Assesment of prediction and predictability od short rains over equatorial East
Africa using a multi-model ensemble. Theor. Appl. Climatol. , doi: 10.1007/s00704-
014-1370-1.
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Figure 104: Linear regression method.
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Figure 105: Regression coefficients b∗ of the Nino3.4 index onto winter (Dececmber-
to-February) mean precipitation. a) Obseravtinos, b) AGCM. Units are mm/day.
From paper: Kucharski et al., 2015: On the need of intermediate complexity
General Circulation Models: A “SPEEDY” Example. BAMS, 94, 25-30, DOI:
10.1175/BAMS-D-11-00238.1.
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