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Large fluctuations in complex systems from earthquakes to fi-

nancial markets, though infrequent, are particularly impo rtant be-
cause of their disproportionate impact. Our ability to forec ast
them is quite poor at present. Large fluctuations occur also

in intermittent features of turbulent flows. Some dynamical u n-
derstanding of these features is possible because the gover ning
equations are known and can be solved exactly on a computer.

Here we particularly study large-amplitude events of turbul entvor-
ticity using results from direct numerical simulations of i sotropic
turbulence in conjunction with the vorticity evolution equa tion.
We show that the advection of vorticity is the dominant proce Ss
by which an observer fixed to the laboratory frame perceives it

and that the growth of squared-vorticity during large excurs ions
is quadratic in time when normalized appropriately. This res ultis

extreme events. We find that advection dominates the dynamics for
short times, and that the Eulerian growth of extreme vorticity follows
a universal power-law with a single exponent when normalized by the
proper timescale. Strong viscous activity typically precedes intense
vorticity, and the advance time is given by a suitable combination of
viscosity and large-scale velocity. In particular, the knowledge of the
signs of the advective term and the vorticity determines in advance
the occurrence of a local extremum in the latter.

The rest of the paper is organized as follows. We first describe
the numerical simulations and the basic parameters that they employ.
The dynamics of large fluctuations of vorticity are studied in the next
section through the evolution equation. The timescales associated

consistent with the multifractal description but simpler fo r present
purposes. Computational data show that the peak in the visco us
contribution can act as the precursor for the upcoming peak i nvor-
ticity, forming a reasonable basis for forecasts on short i mescales
that can be estimated simply. This idea might apply more broa dly
to forecasting other extreme quantities, e.g., in seismolo ay.

with large events are discussed and precursors of large fluctuations
are presented. Finally, a summary and further outlook are offered.

Numerical method and simulation parameters

Our interest is in the time evolution of vorticity;, whose governing
forecasting | extreme events | turbulent vorticity equation
8wi/8t = —U;jWi,j + WjUs,j + VWi, jj, [1]

arge earthquakes, huge floods, intense tornadoes and hurricangsierived by taking the curl of the Navier-Stokes equations for an in-

big crashes in stock-market values, and a number of other expmpressible fluid. Herey,; represents the velocity components and
treme events, have much larger impact than might be reckoned by tfethe kinematic viscosity of the fluid. The equations are solved using
relatively low frequency of their occurrence. Forecasting suchtsveng massively parallel implementation of the pseudo-spectral method
is of obvious interest but of momentous challenge. By a forecasps [g]. Aliasing control by a combination of truncation and phase
we mean here the advance knowledge that a certain large event Wiitting methods is applied to compute all the terms in this equation,
occur with high probability within a known timescale following a suit- whjch implies double evaluations for the first two terms on the right.
able precursor. If successful predictions are possible in one cemplerhis adds a significant overhead to computational time. However,

system, something useful may be learnt about others as well. ~  since we are interested in large fluctuations which take place on short
Turbulence at high Reynolds numbers is replete with strong fluc-

tuations in vorticity, dissipation and other features characteristic of

small-scale motion. Extreme fluctuations of dissipation and vorticityraple 1. Basic parameters of the simulations: Tay-
can be hundreds or thousands of times the mean value [1, 2]. Iti§r Reynolds number Ry, grid resolution N, and different
technically important to understand these extremes because of thgihescale ratios at the beginning of the simulation (denoted
relevance to reacting flows [3] and dispersion problems [4]; they argy the subscript 0). Two = L/uj is the eddy-turnover time
also objects of intense mathematical inquiry [5] and the center of aff, being the large scale of turbulenceand  wj, the root-mean-
tention in intermittency theories [6, 7]. Our interest here is to explorgquare velocity), (to)o = (,,/<E>0)1/2 is the Kolmogorov time
empirically the extent to which an isolated extreme eventin turbulencecale, and (T,)o = v/ug is a characteristic timescale of ex-
can be predicted dynamically through a precursor. Such predictionfeme events (see text). () indicates long-time average.
are indeed difficult but we have here the luxury of well-posed dif-

ferential equations governing the motion of turbulence. Though the

equations are hard to understand analytically, it is reasonable to ex-

pect some success through their exact numerical solutions. Thisis the Ry 140 240 200
thrust of the paper. N 256 512 1024

The numerical database for our work comes from the exact or Teo/(ty)o 145 237 40.8
direct numerical simulation (DNS) of isotropic turbulence. We have Teo/(r,)o 459 1310 4244

performed three such simulations at Taylor microscale Reynolds num-
bers of 140, 240 and 400 to obtain all the terms in the vorticity equa-

tion [2]. We use the data to study the processes that dominate the time
variation of vorticity at a fixed location, and identify precursors of
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timescales, long simulations are not needed. In order to obtain a large

number of samples, we compute the terms on the right hand side of 2
. T . 50 ‘ 107 7 3
equatior] 1] and store them at a number of locations in physical space J 1
at every time step. Homogeneity assures that specific locations are @ [ (0) /] oL © |
unimportant, and we choose them to be sufficiently distant fromone 4L N I .
another so that they are effectively independent. ////" 1k o - |
The initial conditions are taken from stationary forced isotropic I i i T,
turbulence at the Reynolds numbers given in Table 1 and the resolu- 30 LA / ok o
tion is such that the conditiofy,..n =~ 1.5 holds (wherg, .. isthe  w? f / )
highest resolvable wavenumber apis the Kolmogorov scale repre-(w?) e }' 1l // | uilfe\u
senting nominally the smallest scale of dissipation). The simulations ~ 201 E 10 r /
were continued without forcing. Since the simulation time was short, L i / ol i
the final value of turbulent kinetic energy was always greater than half 10k : ,‘v , i }/ o
its initial value and the variation of the smallest timeseglevas less 1 T a7 i
than 40%. é/ ' i éﬁ)
The time step was controlled by a constant Courant number of o=~ L [ | B
about0.3 which is smaller than in common practice [9]. This required 85 9 95 88 9 92 88 9 92
t/{mn)o t/{rn)o t/{mn)o

the use of a time step that is two orders of magnitude smaller than the
mean Kolmogorov tim le. In we shall n
ean Kolmogorov timescale deed, as we shall see subseque Y—L)(g 2. Detailed view of a typical intense event at Ry ~ 400. (a) Squared vor-

capturing the strongest events requires such a fine resolution. ticity normalized by its space average at the beginning of the simulation. Dotted
line corresponds to 10¢/ (¢) , atthe same location (the factor 10 has been used for
clarity). (b) Squared vorticity on semi-log scale. (c) Velocity components during
the time interval. Times are normalized by the initial space-averaged Kolmogorov

Dynamics of large fluctuations
time scale (7). Circles delimit the fitting range.

Power-law behavior and timescales.  To discuss the dynamics of
large excursions in vorticity;, itis convenient to rewrite equati¢a ]

as
Owi /Ot = —Ci + Wi + Vi [2] is consistent with the qualitative suggestions in [10] and [11], would
' imply that
where Ow; |0t =~ —C; [4]
Ci=ujwij, Wi=wjui; and Vi =wvwjj, [3]  can approximate the dynamics of large fluctuations of vorticity.

. . ) . . Vortex-stretching, which is the main mechanism for generating vor-
representing the advective, vortex-stretching and viscous contribyzir, makes a secondary contribution to the instantaneous balance
tions, respectively. In Figure 1 we show a typical time serieswior  of |arge fluctuations observed in Figure 1. Indeed, the physical pic-
of all the terms in equatiof2]. The figure shows that the advective ¢ is that large vorticity is generated on a longer timescale dictated
termC; accounts for much of the variation of, especially when the mostly by vortex stretching and that, once created, itis advected by the
vorticity amplitudes are large. The Eulerian picture is thatlarge excuto, on shorter time scales; let us denote the instantaneous advection
sions of vorticity, perhaps related to vortical structures, are adveCt%locity bywv. Since viscous effects eventually prevent large spatial
by the local flow past the measuring location. This observation, which
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Fig. 1. Typical time series for the vorticity budget equation [ 2] at an arbitrary
location for Ry ~ 240. All quantities are normalized by the rms value of w; at
t = 0 and by the initial eddy turnover time T’ o = L/uy). Lines correspond to
Ow1 /Ot (dashed blue), —C1 (magenta), Wi (green) and V1 (black). The red
line is w1 multiplied by 10 for clarity.

2 | www.pnas.org ——

Fig. 3. The exponent a in equation [ 6] (filled symbols). Dashed line at 2 is
for comparison. Normalized time scale 7 /7, in equation [ 5] (unfilled symbols).
Circles, squares and triangles correspond to data at Ry =~ 140, 240 and 400,
respectively. Solid line is for 7/7, ~ 07949 Inset: the exponent as as a
function of the peak value of the corresponding large event.
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gradients from forming, it is natural to think that battandv willbe ~ over the same interval is substantial as can be seen in Figure 2(a).
the key variables for scaling the dynamics of large fluctuations. Dimensional analysis yields

Let us choose a particular spike. Singedominates the right-
hand-side of equatiof2], w; will have an inflection point at timé& T =T f(0) [7]
where the advection term has a local maximum. One can expand the
solution around’ which, to first order, i9w; /0t ~ c wherecisa  wheref = v'/%€'/2 /52 andf is some universal function. The DNS
constant (the local maximum @) taken asl /72 for convenience. results at different Reynolds numbers are included in Figure 3 (open
Integration yieldsv; ~ w;’ + (¢t — to)/7° wherew;’ is the vortic-  symbols). In spite of some scatter, the data in Figure 3 support the
ity at o, typically much smaller than the peak value. Therefore, ongcaling suggested by equatipr], and can be fitted to the expression
expects T/To ~ 0779 with 9 ~ 0.49. We have convinced ourselves that the

wi® ~ (t—to)* /7t [5] results do not change qualitativelyfiindr are defined through other
plausible averaging times.

during those interValS in Wh|Ch VOI‘tiCity grOWS faSt. The qua“ty of Each intense event is Sl|ght|y different since equati@:his 0n|y
this prediction is shown in Figure 2 for a typical intense event agn approximation that depends on the relative weights of advection,
R =~ 400. Equation[5] is seen to represent the data quite well foryortex-stretching and dissipation; the levelsif andV; would, in
a range of fluctuations of more than an order of magnitude; this is s@ct, be different in the neighborhood of different spikes givingsom
for all large peaks. what different values of the constant Nevertheless, the DNS data

In the multifractal formalism, different magnitudes of squared-fo|low the simple correlation with constant. In principle, it would
vorticity have different exponents [1], but equati] and the data  pe possible to account for fluctuations)of, andV; as random vari-
presented here yield an exponentdbr all large magnitudes. The aples on the right-hand-side of equatiat, which could lead to an
two views are, in fact, consistent if we note thaih [5] depends on  aqditive noise tor in equation[7]. The distribution ofr may be
the intensity of each peak. A fuller discussion of this point is giverye|ated to the scatter in Figure 3, and its statistical properties should

in the Appendix. then be expressible in terms of vortex-stretching and viscous contribu-
To test[5] further, we have obtained least-square fits of the extions. This effect, however, would weaken with increasing Reynolds
pression numbers because the intense events and advection effects would both
wi® = [oa (t — t0)]*2 [6] become stronger.

_ _ _ We emphasize that the scaling® ~ ¢ is simply a first order
to intense events ?t d_lfferent Re)_/nolds numbers. Thelr/ezsmging expansion around the local maximumda$; /dt. This general obser-
values are plotted in Figure 3 against the parameter(ve)/“/v%,  \ation applies to any function. What is particular to turbulence is that
with the overbar denoting the average over the duration of the pegKe {imescale associated with this growth can be related to a simple
vorticity. To be specific, we have used the averaging time to be theympination of parameters. This is mainly because a single process
interval between the circles in Figure 2, but plausible variants do nQj;minates the right-hand-side of equati@. If, for instance, ad-
affect the results significantly. The origin and interpretation of this e tion grows in time but viscous terms attain large negative values

parameter will be discussed momentarily. The inset of Figure 3 plotg, jy51ance advection, the proper timescale for the growtb; ofill
the same exponent as a function of the maximum value of vorticity e a more complex scaling.

attained in each intense event examined. It appearsithat 2 holds A further point is in order. From equatidi?] it may appear that

for fluctuations of all intensities (which span almost three decadegiense vorticity events are completely determined by local conditions.
here, see_ln_set)_ and fqr al. ) o This raises questions on the global organization observed in turbulent

The similarity scaling ofr is also shown in Figure 3. To under- qq,us - Our derivations for the behavior of contain the velocity
stand_ this scaling, recall our earlier remark thand the advection 4 the dissipation rate In terms of vorticity, the velocity field can
velocityv are our relevant parameters. We now note¢hat—u;wi;  pa \written asu(x) = —1/47 [, w(x — r) x v/|r[*d*r, whereA is

i — 6i) g L LT IA . ’ .

(see equatiopd]) and that ;i uiwr,; = €/v—2(uisi;).;, Wheresiji  the periodic domain. This equation makes it clear that the velocity at
is the aI'Fernatmg tensor ards the energy Q|SS|pat|0n rate. The laSt,a particular location contains information from vorticity everywhere,
expression shows that cross-terms involving components of Veloc'@specially from a neighborhood f (due to the factor/[r|?). A

and vorticity gradients are related in part to instantaneous dissipatiQi.ii5r integral relation can be obtained for velocity gradients and
kinematically. Moreover, it has been consistently found that intensg, ;s for. (see, e.g., [12]). Therefore, equatidied and[7] do not

enstrophy events aggeceded by intense dissipation events [10, 11]. yaan that only local information is adequate to address the scaling of
Therefore, in view of equatiopd], it is reasonable to assume that ;\+anse vortical events.

e is also a key parameter in determining the dynamics close to an
intense vortical event. On dimensional groundsp ande can be  Precursors of large fluctuations. The results in the previous
combined to form two timescales = v/o° andr, = (v/€)*/2and  section show that large fluctuations are approximated well by equa-
a non-dimensional parametér= /vé/o°. To get an appreciation tion [4]. Therefore, large values 6f lead to large time derivatives
for the order of magnitude af,, we list in Table 1 itgjlobal average  which will result in at> growth of squared vorticity. Of course, due
value, (.), by replacings® by the global mean-square velocity?.  to the integral relation betweefy andw;, there will be a time lag
Incidentally, one can show thét,)/(,) ~ R»~* which suggests between a large value of advective terms and a peak.inThis is
that a more stringent time resolution than the classicl4 poweris  clearly seen in Figure 1 where large (red line) appears later than a
required for highR, simulations and experiments [7]. large value of’; (magenta line). Furthermore, large advective terms
In Figure 2, it is clear that even when the vorticity varies by or-are preceded by local maxima of viscous terms (black line in the fig-
ders of magnitude, the velocity remains approximately constant (paatre). This feature can be understood if one writes the viscous term as
(c) of the figure). This is consistent with the well-known fact thatV; = v(9/0x;)(0w;/0x;) and replaced/dx; by (1/v)d/0t. This
vorticity and velocity gradients vary on shorter time scales than thieads toV; ~ (v/7)(9/0t)(0w;/dz;) which, to a first approxima-
velocity itself. On the other hand, the variation of the dissipatiortion, can be written from definitions3] asow; /dx; ~ C; /v within
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the short interval where vorticity peaks, so that also the case that the present argument lacks the connection to geo-
metrical aspects of the vectors and tensors involved. In particular, the
C; ~ ivi, [8] model does not consider the effect of alignments between the velocity
ot To vectoru and the gradierf?w; which make up the advective term (i.e.

showing thatr, is a natural timescale of the problem. Indeed, if oneC1 = u-Vwi = [u||Vwi | cos(u, Vwi)). These aspects can be taken
assumes that; is represented by a single Fourier mode with frequencynto account at the next level of refinement, presumably reducing the
@ and amplitude);, equationd 4] and[8] suggest thaV; arrives ~ scatter in Figure 4. Finally, as stressed in previous sections, equa-
earlier thanw; by the time interval oRr7, /w. In other words, the tion[4] contains in reality some contribution fromy and)V;, which

time intervalAt* between the local maxima fo; andw; (illustrated ~ may be different for each intense event. In this sense, the s¢&ing

in Figure 1 as the interval between the arrows on the curves{or C€an be regarded as an average result.
and))), is of the form To get some idea of the relation between the amplitude;of

At* ~ 1. [9] andV;, we may again resort to a single Fourier component for the
viscous term with amplitud®;. Equationq 4] and[8] then imply
We automate the search for scaling of equafi@h by firstfo- 5, /P, ~ 7, /2. Now, we use the previous resultt* ~ 7, /w to
cusing attention on values of greater than, say, 30 times the mean-find that the amplitude ratio scalesas/Vy ~ At*?/7,. Tocompare
square value for the time series obtained at one spatial location. TheRis prediction with the DNS resullts, the vorticity “amplitude” is taken
for each such peak, a prior local maximumafis identified within - as the difference between the maximum value and that at theltime
an interval of a few mean Kolmogorov time scales. Experience showseaks: this difference measures the actual growth. The results are
that the precise choice of this interval is not critical for the scalingshown in Figure 4 (inset) where the data follow the power-law trend
to be determined. This simple approach, however, does miss sorfhough the slope is smaller than the expected value of unity (0.53
spikes: in the chosen interval, there may be more than one maximugiym the best fit). This result as well as the greater scatter than in the
for V; or more than one; above the specified threshold. The datamain frame in Figure 4 are not unexpected because, although
presented here capture conditions properly for about 75% of the safe natural timescale for the problem, the dimensional scaling for the
ples above the threshold. We are interested in the time between th&io of amplitudes relies ob; behaving as a single sinusoid.
local maxima for); andw;, denoted here aAt™. The scaling of equatiop9] shown in Figure 4 was obtained by
We now empirically verify equatiof9] by measuringAt™ and  analyzing time series backwards: how far back in time with respect
7, independently. To capture the dynamics over the interval betwe&gd an intense vorticity event does a local extremurivjroccur? We
local maxima ofV; andw;, it is more convenient to average the ve- can now ask the more important question of forecast: how long after
locity v over the longer timeA¢™; the results to be discussed below ghserving a local maximum in the viscous event does it take for in-
are robust with respect to the use of this longer averaging time sincgynse vorticity to build up to its peak value? We first note that large
as seen in Figure 2, the velocity varies significantly only over an evep, will not always lead to larges;. An example is seen in Figure 1 at
longer time. In Figure 4 we see that the datafior ~ 140, 240 and ¢ /Ty, , ~ 0.326 whereC; attains a large value but; is negative for
400 follow along interval of time. Thus, the large positive time derivative is not
At & 2470, [10] enough by itself to make; grow to large positive values.

which is only slightly different from equatiof®]. The agreement in We now p_roceed to e>fp.'a'“ the_ Ias_t gte_lteme_n_t better. F|rst_, we find
he local maximum (or minimum) iw; if it is positive (or negative).

Figure 4 is good especially because this scaling is not of statistical.

nature but corresponds to individual trajectories in phase space. ItT nce we are primarily interested in large quctuatl_o_ns, we §|multa-
neously set a threshold oi. Let us denote a qualified maximum

(or minimum) byV; and the time at which it occurs U)& and let
the total number of such viscous events, both positive and negative,
observed for a given Reynolds number]lsigi. We now look for a

10 g o local extremum fot; in an interval of time given by x 247°° (see
i ] equation[ 10]) where the prefactor = 2 roughly accounts for the
107 i scatter observed in Figure 4. If alocal extremum exists, we increment
g 1 Ny, the total number of extrema fay; following an intense viscous
10_25 E
At "% ] Table 2. Intense viscous event as a precursor for the sub-
Ll ] sequent large vorticity event. The threshold for Viis (wi),.
10 E E See text for explanations of different quantities.
10_45 ‘ ‘ =
i 10" 10 10"
" ‘ L At*‘Q/T ‘ ‘ 7 R)\ 140 240 400
107 107 N\% 190 198 155
o= v/)T Pilvi) 071 071 0.72
P(sign(w;) = sign(V;)| Vi) 0.48 0.45 0.50

Fig. 4. The time interval At* between the arrivals of a peak in viscous P(sign(w;) = sign(]}i)ﬂ}i, (+++/---)) 100 100 1.00

)
terms and the subsequent peak in vorticity plotted against the time scale 7, P(si 5) = Si . ) _ o 82 1. 77
for Ry ~ 140 (O), 240 () and 400 (V). Dashed line: slope 1. Solid line: (SIgf‘(w% SIgI’(VL)|Vl, (+ +/ * )) 0.8 00 0

equation [ 10] which is the best fit to the data. Inset: scaling of the ratio of local P(sign(w;) = Sign(Vz')Wu (+ + _/ - _+)) 0.88 0.78 0.80
maxima for vorticity &1 and viscous terms V1.
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event. In Table 2 we show; andP(;|V;), the probability of find- ~ equations for many extreme events occurring in nature, we believe
ing a local extremum ab; knowing that there was an intense viscousthat knowledge from turbulence could prove valuable for them as
event (i.e. the ratiaV, /Nv,»): for different Reynolds numbers us- well. It has already been observed in [2] and theorized in [13, 14, 15]
ing a threshold fol; equal to<wf)0. The Table (third row) shows that some universal behavior may govern all extreme phenomena. |
that slightly more than 70% of intense viscous events are followed b§eismology, for instance, there is some evidence for the existence
the maxima in vorticity in the interval given by equatipto] for all  of precursory motion for earthquakes and after-shocks; se@xfor
Ry. Note that this result comprises of local extremadorof both ~ ample, [22]. In particular, measured displacement shows depsirture
signs. On the other hand, the probability with which a positive (negfrom long-term trends which will first be captured by changes in sec-
ative) sign of large); would lead to a large positive (negative) sign ond time-derivatives. It is conceivable that this precursor is related
of w; is close to 50% (fourth row of Table 2)—an essentially randonio some kind of dissipation. Even for non-Newtonian fluids, viscous
connection. contributions are determined by velocity gradients, so strong viscous

It is possible to use additional information about the state of€rms may serve as a precursor for intense events if space and time
the system aty; to predict more accurately when a strong vortic-can be related (as shown to be the case for vorticity events). A more
ity event will succeed a strong Viscosity event. To do this, we disrigOI'OLlS relation between fault dynamics and fluid mechanics is part
tinguish different cases based on the signsVaf —C; andw; at  Of our ongoing research.

t = ty;. A state of the system will be denoted Iy + +) if While our results do not depend qualitatively on averaging times
Sig”(Vi(it\z)) = 1, sign—Ci(ty;,)) = 1 and sigriwi(ty; ) = 1 and procedures, there are at least two limitations to our proposal on
or (+ — —) if sign(Vi(ty,)) = 1, sign—Ci(t;,)) = —1 and  precursors. First, the timescale over which “predictions" are possible
sign(wi(t; ) = —1. Now we look at the probability of finding is relatively short; itis unclear if forecasts over longer times would be

possible in practice. Second, it is not obvious that one can measure

that the configuration is given b + +). Other combinations can the second derivative of the signal with adequate accuracy. Itqisese
be defined similarly. Note thdt- + -+) and(— — —) are equivalent no problem in a clean system such as computational turbulence but,
asare+ — +)and(— + —). The equivalent states are also coIIectedin general, one has to apply some filtering to the signal without losing
together in Table 2. We see that, when —C; andw; all have the its substance. Work relating to such questions are also the subject of

same sign (i.e(+ + + or — — —)), an intense viscous event always a continuing study.
results in a local extremum fay; of the same sign, with the inten-
sity that may be related to the scaling shown in the inset of Figure Appendix

If either —Ci(t;,) or wi(ty;,) has a different sign, the probability is Here, we explore the connection between the present model of large
reduced as expected—to about 80% at all Reynolds numbers.  fiyctuations with other descriptions in the literature. Since equa-
Thus, we find that the viscous tef is a reasonable precursor tjon [5] represents large fluctuations one would expect that a model
for intense vorticity events on timescales of the orderof If this  pased on this functional form should be able to reproduce high-order
information is supplemented by the sign of the advective term angatistics from experimental and numerical data as well as the widely

vorticity itself at the instand; peaks, the precursor becomes moreysed multifractal (MF) models [7]. One can use a collection of power-
definitive. Although the conditional probabilities shown in Table 2|5 events of the form

appear to be independent of the Reynolds number, longer time series

an extreme; given that there was an intense viscous evwén@and

and a wider range of Reynolds numbers are needed to strengthen this D2 (1) ~ [(t —to_)/7)° /7% to- <t <t [11]
assertion. ! [(tor —t)/7)° )72 tp, <t < tos
Discussion and conclusions and zero otherwise, whetg is the time at whicl? attains its maxi-

_  A(72,\1/8 20y _
We have shown that large viscous contributions anticipate the arrivilum:@ tos = tp & 6t, anddt = 7(7 a)/" sothawi(ty) = a. In

of large vorticity events. This statement can be understood as fol-
lows. Since advection dominates, gradients in space and time are
related by a velocity. Therefore, gradients of vorticity gradients (i.e.,

viscous terms) may be treated as time derivatives of vorticity gradi- 18347
ents and therefore may “announce" large vorticity gradients or, for 102
quasi-constant velocity, large advective terms. The structure of tHe?") 10?27
fluid dynamic equations makes viscous terms (under the dominance 1810:
of advection) “look like" the second time derivative of vorticity and is 10*
capable of anticipating the arrival of large vorticity. This anticipation 10’2O

cannot be expected to hold true for a long period.

Allintermittent quantities of turbulence (such as squared vorticity
and dissipation) are governed by equations with similar structure to
equation 2], with the “sourcesW; andV; replaced suitably. When- w2n
ever the contributions from all these processes are small compared to
C, for intense events, equatigd] applies qualitatively. Therefore,
it is possible that the scaling laws proposed here may hold for all in-
termittent quantities. The physical picture would be that they would
all be advected by the flow on short timescales but different prosesse

would be responsible for building up large fluctuations on longer tim%ig 5. Scaling of moments according to MF [16] (CO). the theory of [7] (A)

scales. . . and equation [ 12] with effective parameters a* and 7 (). (a) Curves are for
Although we do not have the luxury of well-tested differential g, — 100, 500 and 1000. (b) Even moments from n = 6 to 14.
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this case, one obtains moments that scale as Using this result, we can determine the Reynolds number scaling of
o moments of different orders as
~2n 1/8~1+2/8
~2 —. 12
(@1") ~ 20! P [12]

We have tested this scaling for signals with a number of spikes with o B . . i
different amplitudes and times scale® and found thaf 12] is quite wherep = ya /(3 + (1 +2/65) — ~ar. This equation shows a loga

. . . rithmi rrection impl wer law at finite Reynolds numbers.
accurate if one uses “effective” parametetands* to fit the data. In thmic correction to a simple power law at finite Reynolds numbers

Figure 5(a), we show moments of squared vorticity according to the Another Zviy_gof recast thz_MF ntw_odel |25 o 2use Ioczzl iY?EageS:
MF formalism [16], the theory in [7] and equati§d2] with param- " {€) ~ (r/L)® for energy dissipation av;./ (w") ~ (r/L)
etersa” and#* chosen as best fit to the MF model for> 5 at three for squared-vorticity. We are now interested in the the limit> 0,

Reynolds numbers in the range of our simulations. As with some othéro_thab; I|es2W|th|n an |nt2ense event. _In the present model,_we could
models ([19, 17]), it is virtually impossible to distinguish our modelwm.e wr/ (W) ~ (r/rs) (se_e eq'uatlor[|5]),_where_r7 a suitably
from the others from such comparisons alone. The matter is somew flned scale (€.gir ~ v n this bel_ng a_functlon of time and_space).
more obscure: by using “exponential” spikes definedif > if This result suggests a S|mpler_object if scales are n20rmall22€7c1i2 by
t < t, andae—"~%) if ¢ > ¢,, one obtaing@>") ~ a™/(nc) instead ofZ. Infact, we could w_ntg,e;tgach IOCQat:Lij,:JT ~ (w)r
which is the same scaling §%2] for largen. Because the MF model anq compute mome”ts to Obtd(mf‘)r) )~ (W) (for H.O)'
and both power-law (for ang) and exponential spikes all give the T_hlsresult, which canzalso beapplledztn_an be_deduced from dimen-
same scaling for high-order moments, the conclusion is that little ca?]'onal arguments ofer, for example, if the important parameters
be said about the local structure of intense events from such globgfe<€> andr.
comparisons.

Nevertheless, it is of interest to explore the connection betwe
the present and the MF models. The fundamental assumption behi
the latter is that the total dissipation inledimensional box of size
scales a¥r, = fr € dr ~ r*~ 14 (a similar quantity can be defined
for W, = [ w?® dr ~ 7' ~1%9)_ In Ref. [21] this scaling was tested

<®%n> -~ RAmaerflogn/log Rx7 [13]

clye appreciate helpful collaboration with P.K. Yeung on timewdations. This
wark was supported by the National Science Foundation G&®-0553602
he University of Maryland.

for the dissipation surrogai@u/0t)* by plotting £, as a function ol A ‘ ]
of r. Their data are reproduced here in Figure 6(b) along with the 10° £ ]
approximate power law (dashed line) suggested by those authors. In 10‘; r 1
Figure 6(a), we show the scaling of the integf#l;); = fot oidt (W), 182 : ]
where®7 is composed of six spikes of the form of equatjdi ] with 10 r 1
differentt,, and amplitudea. Comparison of parts (a) and (b) reveals 10° [ ]
the same approximate power-law behavior. It is therefore not surpris 105 X — 5 s X —

ing that similar predictions are found for the scaling of moments. 10 o 10710 von

Becausen™ is a measure of the strongest fluctuations, it is of

interest to investigate its Reynolds number scaling. We found that. . N P ) .
the present model reproduces the MF predictions if one uses simgflg' 6. @he integral (W) = f-o widd" forasignal composed of six spikes
Fthe form equation [ 11]. Dashed line is a power-law for comparison. (b) Ex-

power lawsa™ ~ Ry, 7* ~ R)\"" andM ~ R,\"™ (wherelM is perimental data from [21] (figure 1c in their paper). Dashed line is the power-law
the number of spikes) with, =~ 1.60, v, ~ —0.84 and~yy ~ 1.75. fit from that reference. The two figures are in arbitrary units.
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