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Large fluctuations in complex systems from earthquakes to fi-
nancial markets, though infrequent, are particularly impo rtant be-
cause of their disproportionate impact. Our ability to forec ast
them is quite poor at present. Large fluctuations occur also
in intermittent features of turbulent flows. Some dynamical u n-
derstanding of these features is possible because the gover ning
equations are known and can be solved exactly on a computer.
Here we particularly study large-amplitude events of turbul ent vor-
ticity using results from direct numerical simulations of i sotropic
turbulence in conjunction with the vorticity evolution equa tion.
We show that the advection of vorticity is the dominant proce ss
by which an observer fixed to the laboratory frame perceives it ,
and that the growth of squared-vorticity during large excurs ions
is quadratic in time when normalized appropriately. This res ult is
consistent with the multifractal description but simpler fo r present
purposes. Computational data show that the peak in the visco us
contribution can act as the precursor for the upcoming peak i n vor-
ticity, forming a reasonable basis for forecasts on short ti mescales
that can be estimated simply. This idea might apply more broa dly
to forecasting other extreme quantities, e.g., in seismolo gy.
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L arge earthquakes, huge floods, intense tornadoes and hurricanes,
big crashes in stock-market values, and a number of other ex-

treme events, have much larger impact than might be reckoned by the
relatively low frequency of their occurrence. Forecasting such events
is of obvious interest but of momentous challenge. By a forecast,
we mean here the advance knowledge that a certain large event will
occur with high probability within a known timescale following a suit-
able precursor. If successful predictions are possible in one complex
system, something useful may be learnt about others as well.

Turbulence at high Reynolds numbers is replete with strong fluc-
tuations in vorticity, dissipation and other features characteristic of
small-scale motion. Extreme fluctuations of dissipation and vorticity
can be hundreds or thousands of times the mean value [1, 2]. It is
technically important to understand these extremes because of their
relevance to reacting flows [3] and dispersion problems [4]; they are
also objects of intense mathematical inquiry [5] and the center of at-
tention in intermittency theories [6, 7]. Our interest here is to explore
empirically the extent to which an isolated extreme event in turbulence
can be predicted dynamically through a precursor. Such predictions
are indeed difficult but we have here the luxury of well-posed dif-
ferential equations governing the motion of turbulence. Though the
equations are hard to understand analytically, it is reasonable to ex-
pect some success through their exact numerical solutions. This is the
thrust of the paper.

The numerical database for our work comes from the exact or
direct numerical simulation (DNS) of isotropic turbulence. We have
performed three such simulations at Taylor microscale Reynolds num-
bers of 140, 240 and 400 to obtain all the terms in the vorticity equa-
tion [2]. We use the data to study the processes that dominate the time
variation of vorticity at a fixed location, and identify precursors of

extreme events. We find that advection dominates the dynamics for
short times, and that the Eulerian growth of extreme vorticity follows
a universal power-law with a single exponent when normalized by the
proper timescale. Strong viscous activity typically precedes intense
vorticity, and the advance time is given by a suitable combination of
viscosity and large-scale velocity. In particular, the knowledge of the
signs of the advective term and the vorticity determines in advance
the occurrence of a local extremum in the latter.

The rest of the paper is organized as follows. We first describe
the numerical simulations and the basic parameters that they employ.
The dynamics of large fluctuations of vorticity are studied in the next
section through the evolution equation. The timescales associated
with large events are discussed and precursors of large fluctuations
are presented. Finally, a summary and further outlook are offered.

Numerical method and simulation parameters
Our interest is in the time evolution of vorticityωi, whose governing
equation

∂ωi/∂t = −ujωi,j + ωjui,j + νωi,jj , [1]

is derived by taking the curl of the Navier-Stokes equations for an in-
compressible fluid. Here,ui represents the velocity components andν
is the kinematic viscosity of the fluid. The equations are solved using
a massively parallel implementation of the pseudo-spectral method
of [8]. Aliasing control by a combination of truncation and phase
shifting methods is applied to compute all the terms in this equation,
which implies double evaluations for the first two terms on the right.
This adds a significant overhead to computational time. However,
since we are interested in large fluctuations which take place on short

Table 1. Basic parameters of the simulations: Tay-
lor Reynolds number Rλ, grid resolution N , and different
timescale ratios at the beginning of the simulation (denoted
by the subscript 0). TE,0 = L/u′

0 is the eddy-turnover time
(L being the large scale of turbulence and u′

0 the root-mean-
square velocity), 〈τη〉0 = (ν/〈ǫ〉0)1/2 is the Kolmogorov time
scale, and 〈τv〉0 = ν/u′2

0 is a characteristic timescale of ex-
treme events (see text). 〈.〉 indicates long-time average.

Rλ 140 240 400
N 256 512 1024

TE,0/〈τη〉0 14.5 23.7 40.8
TE,0/〈τv〉0 459 1310 4244
〈τη〉0/〈τv〉0 32 55 104
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timescales, long simulations are not needed. In order to obtain a large
number of samples, we compute the terms on the right hand side of
equation[1] and store them at a number of locations in physical space
at every time step. Homogeneity assures that specific locations are
unimportant, and we choose them to be sufficiently distant from one
another so that they are effectively independent.

The initial conditions are taken from stationary forced isotropic
turbulence at the Reynolds numbers given in Table 1 and the resolu-
tion is such that the conditionkmaxη ≈ 1.5 holds (wherekmax is the
highest resolvable wavenumber andη is the Kolmogorov scale repre-
senting nominally the smallest scale of dissipation). The simulations
were continued without forcing. Since the simulation time was short,
the final value of turbulent kinetic energy was always greater than half
its initial value and the variation of the smallest timescaleτη was less
than 40%.

The time step was controlled by a constant Courant number of
about0.3 which is smaller than in common practice [9]. This required
the use of a time step that is two orders of magnitude smaller than the
mean Kolmogorov timescale. Indeed, as we shall see subsequently,
capturing the strongest events requires such a fine resolution.

Dynamics of large fluctuations
Power-law behavior and timescales. To discuss the dynamics of
large excursions in vorticityωi, it is convenient to rewrite equation[1]
as

∂ωi/∂t = −Ci + Wi + Vi, [2 ]

where

Ci = ujωi,j , Wi = ωjui,j and Vi = νωi,jj , [3]

representing the advective, vortex-stretching and viscous contribu-
tions, respectively. In Figure 1 we show a typical time series, forω1,
of all the terms in equation[2]. The figure shows that the advective
termCi accounts for much of the variation ofωi, especially when the
vorticity amplitudes are large. The Eulerian picture is that large excur-
sions of vorticity, perhaps related to vortical structures, are advected
by the local flow past the measuring location. This observation, which
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Fig. 1. Typical time series for the vorticity budget equation [ 2 ] at an arbitrary
location for Rλ ≈ 240. All quantities are normalized by the rms value of ω1 at
t = 0 and by the initial eddy turnover time TE,0 = L/u′

0. Lines correspond to
∂ω1/∂t (dashed blue), −C1 (magenta), W1 (green) and V1 (black). The red
line is ω1 multiplied by 10 for clarity.
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Fig. 2. Detailed view of a typical intense event at Rλ ≈ 400. (a) Squared vor-
ticity normalized by its space average at the beginning of the simulation. Dotted
line corresponds to 10ǫ/〈ǫ〉0 at the same location (the factor 10 has been used for
clarity). (b) Squared vorticity on semi-log scale. (c) Velocity components during
the time interval. Times are normalized by the initial space-averaged Kolmogorov
time scale 〈τη〉0. Circles delimit the fitting range.

is consistent with the qualitative suggestions in [10] and [11], would
imply that

∂ωi/∂t ≈ −Ci [4 ]

can approximate the dynamics of large fluctuations of vorticity.
Vortex-stretching, which is the main mechanism for generating vor-
ticity, makes a secondary contribution to the instantaneous balance
of large fluctuations observed in Figure 1. Indeed, the physical pic-
ture is that large vorticity is generated on a longer timescale dictated
mostly by vortex stretching and that, once created, it is advected by the
flow on shorter time scales; let us denote the instantaneous advection
velocity byv. Since viscous effects eventually prevent large spatial
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Fig. 3. The exponent α2 in equation [ 6 ] (filled symbols). Dashed line at 2 is
for comparison. Normalized time scale τ/τv in equation [ 5 ] (unfilled symbols).
Circles, squares and triangles correspond to data at Rλ ≈ 140, 240 and 400,
respectively. Solid line is for τ/τv ∼ θ−0.49. Inset: the exponent α2 as a
function of the peak value of the corresponding large event.
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gradients from forming, it is natural to think that bothν andv will be
the key variables for scaling the dynamics of large fluctuations.

Let us choose a particular spike. SinceCi dominates the right-
hand-side of equation[2], ωi will have an inflection point at timet′

where the advection term has a local maximum. One can expand the
solution aroundt′ which, to first order, is∂ωi/∂t ≈ c wherec is a
constant (the local maximum ofCi) taken as1/τ2 for convenience.
Integration yieldsωi ≈ ωi

0 + (t − t0)/τ2 whereωi
0 is the vortic-

ity at t0, typically much smaller than the peak value. Therefore, one
expects

ωi
2 ∼ (t − t0)

2/τ4 [5]

during those intervals in which vorticity grows fast. The quality of
this prediction is shown in Figure 2 for a typical intense event at
Rλ ≈ 400. Equation[5] is seen to represent the data quite well for
a range of fluctuations of more than an order of magnitude; this is so
for all large peaks.

In the multifractal formalism, different magnitudes of squared-
vorticity have different exponents [1], but equation[5] and the data
presented here yield an exponent of2 for all large magnitudes. The
two views are, in fact, consistent if we note thatτ in [5] depends on
the intensity of each peak. A fuller discussion of this point is given
in the Appendix.

To test[5] further, we have obtained least-square fits of the ex-
pression

ωi
2 = [α1(t − t0)]

α2 [6 ]

to intense events at different Reynolds numbers. The resultingα2

values are plotted in Figure 3 against the parameterθ = (νǫ)1/2/v2,
with the overbar denoting the average over the duration of the peak
vorticity. To be specific, we have used the averaging time to be the
interval between the circles in Figure 2, but plausible variants do not
affect the results significantly. The origin and interpretation of this
parameter will be discussed momentarily. The inset of Figure 3 plots
the same exponentα2 as a function of the maximum value of vorticity
attained in each intense event examined. It appears thatα2 ≈ 2 holds
for fluctuations of all intensities (which span almost three decades
here, see inset) and for allRλ.

The similarity scaling ofτ is also shown in Figure 3. To under-
stand this scaling, recall our earlier remark thatν and the advection
velocityv are our relevant parameters. We now note thatc = −ujωi,j

(see equation[4]) and thatεijkuiωk,j = ǫ/ν−2(uisij),j , whereεijk

is the alternating tensor andǫ is the energy dissipation rate. The last
expression shows that cross-terms involving components of velocity
and vorticity gradients are related in part to instantaneous dissipation
kinematically. Moreover, it has been consistently found that intense
enstrophy events arepreceded by intense dissipation events [10, 11].
Therefore, in view of equation[4], it is reasonable to assume that
ǫ is also a key parameter in determining the dynamics close to an
intense vortical event. On dimensional grounds,ν, v andǫ can be
combined to form two timescalesτv = ν/v2 andτη = (ν/ǫ)1/2 and
a non-dimensional parameterθ =

√
νǫ/v2. To get an appreciation

for the order of magnitude ofτv, we list in Table 1 itsglobal average
value,〈.〉, by replacingv2 by the global mean-square velocityu′2.
Incidentally, one can show that〈τv〉/〈τη〉 ∼ Rλ

−1 which suggests
that a more stringent time resolution than the classical−3/4 power is
required for high-Rλ simulations and experiments [7].

In Figure 2, it is clear that even when the vorticity varies by or-
ders of magnitude, the velocity remains approximately constant (part
(c) of the figure). This is consistent with the well-known fact that
vorticity and velocity gradients vary on shorter time scales than the
velocity itself. On the other hand, the variation of the dissipation

over the same interval is substantial as can be seen in Figure 2(a).
Dimensional analysis yields

τ = τvf(θ) [7 ]

whereθ = ν1/2ǫ1/2/v2 andf is some universal function. The DNS
results at different Reynolds numbers are included in Figure 3 (open
symbols). In spite of some scatter, the data in Figure 3 support the
scaling suggested by equation[7], and can be fitted to the expression
τ/τv ∼ θ−γθ with γθ ≈ 0.49. We have convinced ourselves that the
results do not change qualitatively ifθ andτ are defined through other
plausible averaging times.

Each intense event is slightly different since equation[4] is only
an approximation that depends on the relative weights of advection,
vortex-stretching and dissipation; the levels ofWi andVi would, in
fact, be different in the neighborhood of different spikes giving some-
what different values of the constantc. Nevertheless, the DNS data
follow the simple correlation with constantα2. In principle, it would
be possible to account for fluctuations ofWi andVi as random vari-
ables on the right-hand-side of equation[4], which could lead to an
additive noise toτ in equation[7]. The distribution ofτ may be
related to the scatter in Figure 3, and its statistical properties should
then be expressible in terms of vortex-stretching and viscous contribu-
tions. This effect, however, would weaken with increasing Reynolds
numbers because the intense events and advection effects would both
become stronger.

We emphasize that the scalingωi
2 ∼ t2 is simply a first order

expansion around the local maximum of∂ωi/∂t. This general obser-
vation applies to any function. What is particular to turbulence is that
the timescale associated with this growth can be related to a simple
combination of parameters. This is mainly because a single process
dominates the right-hand-side of equation[2]. If, for instance, ad-
vection grows in time but viscous terms attain large negative values
to balance advection, the proper timescale for the growth ofωi will
have a more complex scaling.

A further point is in order. From equation[7] it may appear that
intense vorticity events are completely determined by local conditions.
This raises questions on the global organization observed in turbulent
flows. Our derivations for the behavior ofωi contain the velocityu
and the dissipation rateǫ. In terms of vorticity, the velocity field can
be written asu(x) = −1/4π

R

Λ
ω(x − r) × r/|r|3d3

r, whereΛ is
the periodic domain. This equation makes it clear that the velocity at
a particular location contains information from vorticity everywhere,
especially from a neighborhood ofx (due to the factorr/|r|3). A
similar integral relation can be obtained for velocity gradients and
thus forǫ (see, e.g., [12]). Therefore, equations[5] and[7] do not
mean that only local information is adequate to address the scaling of
intense vortical events.

Precursors of large fluctuations. The results in the previous
section show that large fluctuations are approximated well by equa-
tion [4]. Therefore, large values ofCi lead to large time derivatives
which will result in at2 growth of squared vorticity. Of course, due
to the integral relation betweenCi andωi, there will be a time lag
between a large value of advective terms and a peak inωi. This is
clearly seen in Figure 1 where largeωi (red line) appears later than a
large value ofCi (magenta line). Furthermore, large advective terms
are preceded by local maxima of viscous terms (black line in the fig-
ure). This feature can be understood if one writes the viscous term as
Vi = ν(∂/∂xj)(∂ωi/∂xj) and replaces∂/∂xj by (1/v)∂/∂t. This
leads toVi ≈ (ν/v)(∂/∂t)(∂ωi/∂xj) which, to a first approxima-
tion, can be written from definitions[3] as∂ωi/∂xj ≈ Ci/v within
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the short interval where vorticity peaks, so that

∂Ci

∂t
≈ 1

τv
Vi, [8 ]

showing thatτv is a natural timescale of the problem. Indeed, if one
assumes thatVi is represented by a single Fourier mode with frequency
̟ and amplitudêVi, equations[4] and [8] suggest thatVi arrives
earlier thanωi by the time interval of2πτv/̟. In other words, the
time interval∆t∗ between the local maxima forVi andωi (illustrated
in Figure 1 as the interval between the arrows on the curves forω1

andV1), is of the form
∆t∗ ∼ τv. [9 ]

We automate the search for scaling of equation[9] by first fo-
cusing attention on values ofω2

1 greater than, say, 30 times the mean-
square value for the time series obtained at one spatial location. Then,
for each such peak, a prior local maximum ofVi is identified within
an interval of a few mean Kolmogorov time scales. Experience shows
that the precise choice of this interval is not critical for the scaling
to be determined. This simple approach, however, does miss some
spikes: in the chosen interval, there may be more than one maximum
for Vi or more than oneωi above the specified threshold. The data
presented here capture conditions properly for about 75% of the sam-
ples above the threshold. We are interested in the time between the
local maxima forVi andωi, denoted here as∆t∗.

We now empirically verify equation[9] by measuring∆t∗ and
τv independently. To capture the dynamics over the interval between
local maxima ofVi andωi, it is more convenient to average the ve-
locity v over the longer time∆t∗; the results to be discussed below
are robust with respect to the use of this longer averaging time since,
as seen in Figure 2, the velocity varies significantly only over an even
longer time. In Figure 4 we see that the data forRλ ≈ 140, 240 and
400 follow

∆t∗ ≈ 24τ0.93
v , [10]

which is only slightly different from equation[9]. The agreement in
Figure 4 is good especially because this scaling is not of statistical
nature but corresponds to individual trajectories in phase space. It is
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equation [ 10 ] which is the best fit to the data. Inset: scaling of the ratio of local
maxima for vorticity ω̂1 and viscous terms V̂1.

also the case that the present argument lacks the connection to geo-
metrical aspects of the vectors and tensors involved. In particular, the
model does not consider the effect of alignments between the velocity
vectoru and the gradient∇ω1 which make up the advective term (i.e.
C1 = u ·∇ω1 = |u||∇ω1| cos(u,∇ω1)). These aspects can be taken
into account at the next level of refinement, presumably reducing the
scatter in Figure 4. Finally, as stressed in previous sections, equa-
tion [4] contains in reality some contribution fromVi andWi, which
may be different for each intense event. In this sense, the scaling[9]
can be regarded as an average result.

To get some idea of the relation between the amplitude ofωi

andVi, we may again resort to a single Fourier component for the
viscous term with amplitudêVi. Equations[4] and [8] then imply
ω̂1/V̂1 ∼ τv/̟2. Now, we use the previous result∆t∗ ∼ τv/̟ to
find that the amplitude ratio scales asω̂1/V̂1 ∼ ∆t∗2/τv. To compare
this prediction with the DNS results, the vorticity “amplitude” is taken
as the difference between the maximum value and that at the timeVi

peaks; this difference measures the actual growth. The results are
shown in Figure 4 (inset) where the data follow the power-law trend
although the slope is smaller than the expected value of unity (0.53
from the best fit). This result as well as the greater scatter than in the
main frame in Figure 4 are not unexpected because, althoughτv is
the natural timescale for the problem, the dimensional scaling for the
ratio of amplitudes relies onVi behaving as a single sinusoid.

The scaling of equation[9] shown in Figure 4 was obtained by
analyzing time series backwards: how far back in time with respect
to an intense vorticity event does a local extremum inVi occur? We
can now ask the more important question of forecast: how long after
observing a local maximum in the viscous event does it take for in-
tense vorticity to build up to its peak value? We first note that large
Ci will not always lead to largeωi. An example is seen in Figure 1 at
t/TE,0 ≈ 0.326 whereCi attains a large value butωi is negative for
a long interval of time. Thus, the large positive time derivative is not
enough by itself to makeωi grow to large positive values.

We now proceed to explain the last statement better. First, we find
the local maximum (or minimum) inVi if it is positive (or negative).
Since we are primarily interested in large fluctuations, we simulta-
neously set a threshold onVi. Let us denote a qualified maximum
(or minimum) byV̂i and the time at which it occurs bytV̂i

, and let
the total number of such viscous events, both positive and negative,
observed for a given Reynolds number beNV̂i

. We now look for a
local extremum forωi in an interval of time given byc× 24τ0.93 (see
equation[10]) where the prefactorc = 2 roughly accounts for the
scatter observed in Figure 4. If a local extremum exists, we increment
Nω̂i

, the total number of extrema forωi following an intense viscous

Table 2. Intense viscous event as a precursor for the sub-
sequent large vorticity event. The threshold for Vi is 〈ω2

1〉0.
See text for explanations of different quantities.

Rλ 140 240 400
NV̂i

190 198 155
P (ω̂i|V̂i) 0.71 0.71 0.72

P (sign(ω̂i) = sign(V̂i)|V̂i) 0.48 0.45 0.50
P (sign(ω̂i) = sign(V̂i)|V̂i, (+ + +/ −−−)) 1.00 1.00 1.00
P (sign(ω̂i) = sign(V̂i)|V̂i, (+ − +/ − +−)) 0.82 1.00 0.77
P (sign(ω̂i) = sign(V̂i)|V̂i, (+ + −/ −−+)) 0.88 0.78 0.80
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event. In Table 2 we showNV̂i
andP (ω̂i|V̂i), the probability of find-

ing a local extremum ofωi knowing that there was an intense viscous
event (i.e. the ratioNω̂i

/NV̂i
), for different Reynolds numbers us-

ing a threshold forVi equal to〈ω2
1〉0. The Table (third row) shows

that slightly more than 70% of intense viscous events are followed by
the maxima in vorticity in the interval given by equation[10] for all
Rλ. Note that this result comprises of local extrema forωi of both
signs. On the other hand, the probability with which a positive (neg-
ative) sign of largeVi would lead to a large positive (negative) sign
of ωi is close to 50% (fourth row of Table 2)—an essentially random
connection.

It is possible to use additional information about the state of
the system attV̂i

to predict more accurately when a strong vortic-
ity event will succeed a strong viscosity event. To do this, we dis-
tinguish different cases based on the signs ofVi, −Ci and ωi at
t = tV̂i

. A state of the system will be denoted by(+ + +) if
sign(Vi(tV̂i

)) = 1, sign(−Ci(tV̂i
)) = 1 and sign(ωi(tV̂i

)) = 1
or (+ − −) if sign(Vi(tV̂i

)) = 1, sign(−Ci(tV̂i
)) = −1 and

sign(ωi(tV̂i
)) = −1. Now we look at the probability of finding

an extremêωi given that there was an intense viscous eventV̂i, and
that the configuration is given by(+ + +). Other combinations can
be defined similarly. Note that(+ + +) and(−−−) are equivalent,
as are(+−+) and(−+−). The equivalent states are also collected
together in Table 2. We see that, whenVi, −Ci andωi all have the
same sign (i.e.,(+ + + or−−−)), an intense viscous event always
results in a local extremum forωi of the same sign, with the inten-
sity that may be related to the scaling shown in the inset of Figure 4.
If either−Ci(tV̂i

) or ωi(tV̂i
) has a different sign, the probability is

reduced as expected—to about 80% at all Reynolds numbers.
Thus, we find that the viscous termVi is a reasonable precursor

for intense vorticity events on timescales of the order ofτv. If this
information is supplemented by the sign of the advective term and
vorticity itself at the instantVi peaks, the precursor becomes more
definitive. Although the conditional probabilities shown in Table 2
appear to be independent of the Reynolds number, longer time series
and a wider range of Reynolds numbers are needed to strengthen this
assertion.

Discussion and conclusions
We have shown that large viscous contributions anticipate the arrival
of large vorticity events. This statement can be understood as fol-
lows. Since advection dominates, gradients in space and time are
related by a velocity. Therefore, gradients of vorticity gradients (i.e.,
viscous terms) may be treated as time derivatives of vorticity gradi-
ents and therefore may “announce" large vorticity gradients or, for
quasi-constant velocity, large advective terms. The structure of the
fluid dynamic equations makes viscous terms (under the dominance
of advection) “look like" the second time derivative of vorticity and is
capable of anticipating the arrival of large vorticity. This anticipation
cannot be expected to hold true for a long period.

All intermittent quantities of turbulence (such as squared vorticity
and dissipation) are governed by equations with similar structure to
equation[2], with the “sources”Wi andVi replaced suitably. When-
ever the contributions from all these processes are small compared to
Ci for intense events, equation[4] applies qualitatively. Therefore,
it is possible that the scaling laws proposed here may hold for all in-
termittent quantities. The physical picture would be that they would
all be advected by the flow on short timescales but different processes
would be responsible for building up large fluctuations on longer time
scales.

Although we do not have the luxury of well-tested differential

equations for many extreme events occurring in nature, we believe
that knowledge from turbulence could prove valuable for them as
well. It has already been observed in [2] and theorized in [13, 14, 15]
that some universal behavior may govern all extreme phenomena. In
seismology, for instance, there is some evidence for the existence
of precursory motion for earthquakes and after-shocks; see, forex-
ample, [22]. In particular, measured displacement shows departures
from long-term trends which will first be captured by changes in sec-
ond time-derivatives. It is conceivable that this precursor is related
to some kind of dissipation. Even for non-Newtonian fluids, viscous
contributions are determined by velocity gradients, so strong viscous
terms may serve as a precursor for intense events if space and time
can be related (as shown to be the case for vorticity events). A more
rigorous relation between fault dynamics and fluid mechanics is part
of our ongoing research.

While our results do not depend qualitatively on averaging times
and procedures, there are at least two limitations to our proposal on
precursors. First, the timescale over which “predictions" are possible
is relatively short; it is unclear if forecasts over longer times would be
possible in practice. Second, it is not obvious that one can measure
the second derivative of the signal with adequate accuracy. It presents
no problem in a clean system such as computational turbulence but,
in general, one has to apply some filtering to the signal without losing
its substance. Work relating to such questions are also the subject of
a continuing study.

Appendix
Here, we explore the connection between the present model of large
fluctuations with other descriptions in the literature. Since equa-
tion [5] represents large fluctuations one would expect that a model
based on this functional form should be able to reproduce high-order
statistics from experimental and numerical data as well as the widely
used multifractal (MF) models [7]. One can use a collection of power-
law events of the form

ω̃2
1(t) ≈



[(t − t0−)/τ̃ ]β/τ̃2 t0− ≤ t < tp

[(t0+ − t)/τ̃ ]β/τ̃2 tp ≤ t < t0+
[11]

and zero otherwise, wheretp is the time at which̃ω2
1 attains its maxi-

mum,a, t0± = tp ± δt, andδt = τ̃(τ̃2a)1/β so thatω2
1(tp) = a. In
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Footline Author PNAS Issue Date Volume Issue Number 5



this case, one obtains moments that scale as

〈ω̃2n
1 〉 ∼ 2a1/β τ̃1+2/β an

1 + βn
. [12 ]

We have tested this scaling for signals with a number of spikes with
different amplitudesa and times scales̃τ and found that[12] is quite
accurate if one uses “effective” parametersa∗ andτ̃∗ to fit the data. In
Figure 5(a), we show moments of squared vorticity according to the
MF formalism [16], the theory in [7] and equation[12] with param-
etersa∗ andτ̃∗ chosen as best fit to the MF model forn ≥ 5 at three
Reynolds numbers in the range of our simulations. As with some other
models ([19, 17]), it is virtually impossible to distinguish our model
from the others from such comparisons alone. The matter is somewhat
more obscure: by using “exponential” spikes defined byaec(t−tp) if
t ≤ tp andae−c(t−tp) if t > tp, one obtains〈ω̃2n

1 〉 ∼ an/(nc)
which is the same scaling as[12] for largen. Because the MF model
and both power-law (for anyβ) and exponential spikes all give the
same scaling for high-order moments, the conclusion is that little can
be said about the local structure of intense events from such global
comparisons.

Nevertheless, it is of interest to explore the connection between
the present and the MF models. The fundamental assumption behind
the latter is that the total dissipation in ad-dimensional box of sizer
scales asEr =

R

r
ǫ dr ∼ rα−1+d (a similar quantity can be defined

for Wr =
R

r
ω2 dr ∼ rα′−1+d). In Ref. [21] this scaling was tested

for the dissipation surrogate(∂u/∂t)2 by plottingEr as a function
of r. Their data are reproduced here in Figure 6(b) along with the
approximate power law (dashed line) suggested by those authors. In
Figure 6(a), we show the scaling of the integral(W̃1)t =

R t

0
ω̃2

1dt
whereω̃2

1 is composed of six spikes of the form of equation[11] with
differenttp and amplitudesa. Comparison of parts (a) and (b) reveals
the same approximate power-law behavior. It is therefore not surpris-
ing that similar predictions are found for the scaling of moments.

Becausea∗ is a measure of the strongest fluctuations, it is of
interest to investigate its Reynolds number scaling. We found that
the present model reproduces the MF predictions if one uses simple
power lawsa∗ ∼ Rλ

γa , τ̃∗ ∼ Rλ
γτ andM ∼ Rλ

γM (whereM is
the number of spikes) withγa ≈ 1.60, γτ ≈ −0.84 andγM ≈ 1.75.

Using this result, we can determine the Reynolds number scaling of
moments of different orders as

〈ω̃2n
1 〉 ∼ Rλ

nγa+ρ−log n/ log Rλ , [13]

whereρ = γa/β + γτ (1 + 2/β)− γM . This equation shows a loga-
rithmic correction to a simple power law at finite Reynolds numbers.

Another way to recast the MF model is to use local averages:
ǫr/〈ǫ〉 ∼ (r/L)α−1 for energy dissipation orω2

r/〈ω2〉 ∼ (r/L)α′−1

for squared-vorticity. We are now interested in the the limitr → 0,
so thatr lies within an intense event. In the present model, we could
write ω2

r/〈ω2〉 ∼ (r/rτ )2 (see equation[5]), whererτ a suitably
defined scale (e.g.,rτ ≈ v τ , this being a function of time and space).
This result suggests a simpler object if scales are normalized byrτ

instead ofL. In fact, we could write, at each location,r2
τω2

r ∼ 〈ω2〉r2

and compute moments to obtain〈(r2
τω2

r)n〉 ∼ 〈ω2〉nr2n (for r → 0).
This result, which can also be applied toǫ, can be deduced from dimen-
sional arguments onr2

τ ǫr, for example, if the important parameters
are〈ǫ〉 andr.
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