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Physics is a seamless dialogue with Nature that transcends the divisions made
by practising physicists—often for convenience, often imposed by their own
limitations. It is difficult to sustain the notion that one branch of physics can
satisfactorily answer all the questions of Nature. | expand on this theme briefly,
and also technically, using the example of hydrodynamic turbulence.
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1. Introduction

At the Symposium I reported the properties of cryogenic turbulence, both
above and below the lambda-point. Much of that work has been published*,
so it is hard to justify another account of the same work. Since it is not
~ especially useful to write for these proceedings a paper on specialized de-
‘velopments that have occurred since then on the subject of my talk, I have
chosen to set down a few general remarks on the physics that is close to my
interests, and add a few technical details to justify them.

- Physics is about intelligent and rigorous dialogue with Nature; the aim
is to discover exact relationships between measurable quantities, and the
preferred language is mathematical. Agreement with experiments is essen-
but not in the way a lay person might imagine. Newton's first law, for
mple, is evidently not satisfied in our everyday experience (bodies set in
n motion do not stay in uniform motion forever), but one can seek
confirmation of the law in controlled circumstances. By successively de-
;reasing the friction between a moving body and its surroundings, one can
mably observe the body to remain in motion for longer and longer
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periods of time, leading us to infer that Newton's first law is correct in the
absence of friction.

Within the broad definition of physics mentioned above, its different
branches may have different characteristic approaches. One common ele-
ment, however, is the goal of discovering general laws that underlie Nature’s
myriad manifestations. Questions about these general laws have led 20th
century physics to inquire into the structure of increasingly smaller con-
stituents of matter?, culminating in modern particle physics and its more
recent developments such as superstrings.

The reductionist approach assumes that the world around us can be
understood in terms of the properties of a few small building blocks (parti-
cles or strings), and that everything can be understood from them, or the
“first principles”. The approach has worked well in some instances—for ex-
ample in characterizing the structure of the hydrogen atom from quantum
mechanics—but this “first principles” understanding is not quantitative for
anything but the simplest of problems. No one has yet deduced the structure
of macromolecules using the principles that were successful with respect to
the hydrogen atom. In general, one cannot connect hierarchies of physical
description without some empirical input; no effort has been made, for in-
stance, to compute the structure of organic molecules from particle physics,
and to go from these molecules to cells and living organisms. The question
is not simply one of logistics but one of principle: it is not clear, even in
principle, if one can understand the collective motion of a large number of
nonlinearly interacting scales from this bottom-up approach. Perhaps more
provocatively, it is not even clear if the knowledge organized at one level is
essential for a deep understanding of the knowledge at a distantly coarser
level.

Are there different fundamental laws that are applicable at different
levels of description, with broad generality of their own? For instance, is
self-organization, which is characteristic of living systems (among others),
subject to some fundamental laws that one cannot deduce even in principle
from particle physics?

A large body of scientists today thinks that reductionism, the cor-
nerstone of much of the 20th century physics, has limitations of princi-
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ple despite its enormous successes; that a deductive link does not exist
between the finest constituents of matter and phenomena that occur on
the human scale; that one needs an equally deep understanding of the
so-called emergent phenomena regulated by different organizing principles
(“the psychology of the lynch mob vanishes when you interview individual
participants”?); that these organizing principles are equally deep in content
and structure; that a knowledge of the constituent parts, however complete,
cannot describe the whole. Perhaps it is too much to say that physics at
the turn of the 21st century is undergoing a crisis similar to that at the
turn of the last, but physics is changing its landscape.

As mentioned already, physics looks for generality of laws. The question
is whether there are any such laws at all that describe a broad class of
systems with many nonlinearly interacting degrees of freedom. Here, I pose
the question at the quantitative level of rigor, not simply at a qualitative
one; for instance, it is not enough that daily variations in financial markets
look closely similar to gradients of the velocity field in a turbulent flow.
If quantitative laws do cut across seemingly unrelated problems, in what
form will they appear? Since it is known that nonlinear systems cannot be
predicted except for short periods of time, what form should comparisons
with experiment take? These questions are not new; equilibrium statistical
mechanics faced them in a certain way more than 100 years ago. The domain
of our consideration now is much broader and the urgency for the answer
far greater, because a multitude of problems in Nature that spill out of the
reductionist box are known not to obey the laws of equilibrium statistical
mechanics.

2. The case for hydrodynamic turbulence

If we are interested in discovering laws underlying systems with many
strongly interacting degrees of freedom and are far from equilibrium, it
is important to begin with a study a few of them with the same rigor and
control for which particle physics, say, is well known. Here, | make the case
that hydrodynamic turbulence, which arises in flowing fluids, is an ideal
paradigm. My first point is that the dynamical equations for the motion of
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fluids are known to great accuracy, which means that understanding their
analytic structure can greatly supplement experimental queries; in just the
same way, computer simulations—even if they require much investment of
time and money—can be far more useful here than for many other problems
of the condensed phase, in which the interaction potential among micro-
scopic parts is often simply an educated guess. When driven hard, fluids
develop irregular motion in time and space—this being the state of turbu-
lence. The stochasticity of turbulence (and of all systems that are driven
hard) means that one may discern only laws that concern statistical behav-
ior. If we are fortunate, these laws are universal in some well-understood
sense. This is the aspect I wish to address briefly.

To be specific, consider a jet of fluid emerging from an orifice. It is
immaterial if the fluid is air (emerging into air medium), water (emerging
into water medium) or mercury (emerging into mercury medium)—already
a great generalization. Let the jet velocity be V, the orifice diameter D
and fluid viscosity v. The Reynolds numbers Re = V D/v should be “high
enough" for our considerations to hold. The requirement of high Reynolds
number is no more constraining than one on the energy levels needed to
study elementary particles. Some forcing is essential to maintain the flow
steady, else it will grind to a halt eventually because of dissipation. The
forcing in this instance is provided by the momentum at the jet orifice;
typically the scale of forcing is of the order D, but not exactly so. Let us
call it L.

Further from the orifice there appear a range of motions much smaller
that L juxtaposed randomly in space and time. These scales are produced by
the nonlinearity of the equations of motion. It is believed that all important
properties of turbulence are contained in the Navier-Stokes equations for
the fluid motion which can be written for unit density as

vi+(v:-V)v=-Vp+f+vAv, (1)

supplemented by the incompressibility condition V - v = 0. Here v is the
velocity vector, p is the local pressure, f is the forcing and the suffix ¢
stands for time-derivative. In (1), f is a stochastic forcing term that suitably
abstracts the mechanism for sustaining turbulence.
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The production of smaller and smaller scales is supposed to proceed in
a cascade-like process®. The process is operational until viscous dissipation
truncates it at a characteristic scale n (which is proportional to the 3/4-
power of v) that is much smaller than L. The scales between L and 7,
which remain unaffected directly by forcing as well as viscosity, or by L as
well as 7, form the so-called inertial range. The kinetic energy injected at
scales of the order L is transferred through the inertial range and dissipated
eventually at scales of the order 7. Indeed, nonlinear energy transfer process
is a dominant feature in the inertial range.

Because neither L nor 7 is relevant in the inertial range, it is natural to
ask if some attributes of the inertial range are universal. Another question
of the universality problem concerns features that are common to differ-
ent non-equilibrium systems. The quest for universality is motivated by the
hope of identifying some general principles that govern far-from-equilibrium
systems, just as variational principles govern thermal equilibrium. As al-
ready mentioned, the dynamical features of turbulence are irregular, and
so the questions can be posed and answered only in terms of statistical
averages—computed for appropriate regions of space, intervals of time, or
suitably defined ensembles.

I wish to emphasize that there are many other interesting and important
problems in turbulence, especially when linked to practical applications.

3. The nature of the inertial range

The universality of the inertial-range is studied by constructing the so-
called structure functions, which are moments of velocity differences dv,
across a scale of size r. Structure functions of order n are defined as
Sp = ([(v(r, t) — v(0,1)) - r/r]") - <(60,-)"), with 7 = |r|. The angular
brackets indicate a suitable average. Generalization of structure functions,
which we will not consider here, are statistical correlations of velocity dif-
ferences at the vertices of more complex configurations such as triangles,
quadrilaterals, and so forth. The study of correlators of different types is
thus a study of different geometrical configurations.

The third-order structure function in the inertial range of scales can be
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related to the energy flux by an exact flux-constancy relation derived by
Kolmogorov® from (1):

Sy = —g{e)r. @)

This is known as the 4/5-ths law. Here (¢) = v(|Vv/|?) is the average rate
of energy dissipation per unit mass that can be identified with the energy
flux over scales.

A few comments are in order. The above result for the inertial range is
a direct consequence of the dynamical equations without any hypothesis.
The only requirement is that the Reynolds number must be “sufficiently
high”; further increase of the Reynolds number merely extends the inertial
range without altering its scaling. Lest this result be thought of as merely
mathematical, it should be stressed that measurements in real flows do
indeed obey the 4/5-ths law; see, e.g.,5. The interesting point is that the
law is valid for turbulence in all fluids, no matter what their molecular
structure: Water, mercury, nitrogen and liquid helium all follow the same
law. The nuclear structure of the molecules or atoms making up the fluid
makes no difference. Indeed, one can say that the atomic properties and
the behavior of turbulence are disconnected, in so far as we are concerned
with this law. It is thus impossible to say that one can work up towards
this law from the bottom, except in some generic fashion.

No one has been able to deduce theoretically moments of other orders.
Kolmogorov® assumed scale invariance and obtained a tidy result. Scale
invariance means that the symmetry broken by large-scale forcing is re-
stored when turbulence scales become small compared to the forcing scale,
L. Thus, the structure functions are thought to be universal power laws
containing neither L nor 7. This picture readily yields exponents (, that
depend linearly on the moment order, or S, o r¢* with {n=n/3.

4. Dissipation anomaly and anomalous scaling

The modern experimental evidence” is that the exponents depart from the
scale-invariant result, and the forcing scale L appears explicitly in char-
acterizing the inertial range. This non-restoration of scale invariance even
at small scales, is arguably an important feature of turbulence, and sets
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it apart from the usual critical phenomena®: One needs to work out the
behavior of each order moment independently without succumbing to di-
mensional analysis. Anomalous scaling in turbulence is such that (3, < n(s
so that S3,/S57 for n > 2 increases as r — 0. Relative growth of high mo-
ments means that strong fluctuations become more probable as the scales
become smaller. One practical consequence is that it limits our ability to
produce realistic models for small-scale turbulence.

We have already mentioned that scale invariance yields the explicit ex-
pression (, = n/3 for the scaling exponents. However, if scale invariance is
violated in fluid turbulence, what else can be used to determine the scaling
exponents? Conservation laws impose constraints on the dynamics, and so
conserved quantities (or their fluxes) play an essential role in addressing this
question. Conservation laws are broken in fluid turbulence by the large-scale
forcing (usually through boundary conditions) as well as the dissipation at
small scales (usually through fluid viscosity). Indeed, the basic dynamics
of the inertial range is not the conservation of energy (whose application
gives a drastically unrealistic result of equipartition) but of the energy flux
across scales from the large to the small. In the steady state, this flux of
energy equals the dissipation of the turbulent kinetic energy at small scales
of the order 7). For the first sight, it might appear from the definition of
(€) below equation (2) that the dissipation rate of turbulent energy would
vanish as v — 0 (or as Re — o0), but an important feature of turbulence is
that (¢) remains finite in this limit: no matter how wide is the scale-range
participating in the energy cascade, it carries the same flux.

The finiteness of energy dissipation even in the limit of vanishing vis-
cosity is probably the first example of what is called “anomaly” in modern
field-theoretical language: A symmetry of the inviscid equation (here, time-
reversal invariance) remains broken even as the symmetry-breaking factor
(viscosity) vanishes?. Recall from equation (2) that the third-order statistics
of turbulent velocity increments are determined completely by (€), whose
finiteness is a consequence of the breakdown of time-reversal symmetry
in the inertial range. Indeed, velocity changes sign under time reversal so
nonzero S; means time-irreversibility. Just as conservation of the kinetic
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energy is broken by viscosity (no matter how small), and this broken sym-
metry governs the third-order structure function, are there other candidate
integrals of motion whose broken symmetries yield other structure func-
tions? This is a fundamental question of turbulence—indeed, in a suitable
analogous fashion, of modern statistical physics as a whole.

5. Statistical conservation laws

I shall now briefly discuss laws which are conserved only on the average, yet
determine the statistical properties of strongly fluctuating systems. Since it
is always possible to find some averages that do not change in random sys-
tems, our question should be posed better: Is it possible to find quantities
that are expected to change on dimensional grounds yet remain constant
because they are governed by some statistical conservation laws? How to
build specific functions that are conserved on the average, and how to deter-
mine the scaling exponents from them? As fluid particles move in a random
flow, an n-particle cloud disperses and grows in size while fluctuations in
the shape of the cloud decrease in magnitude. Therefore, one may look for
suitable functions of size and shape that are conserved because the growth
of distances is compensated by the decrease of shape fluctuations.

For the simplest case of Brownian diffusion, the time derivative of the
mean of any function of distances between particles is the Laplacian of this
function. Harmonic polynomials turn Laplacian into zero (and can thus be
called zero modes of Laplacian), and so are conserved on the average. For
Laplacian diffusion, the zero modes are polynomials in R? or t so that the
scaling dimension of the n-particle mode is {, = 2n. The dependence on n
is linear because the particles move independently.

The zero modes governing the decrease of shape fluctuations exist for
turbulent diffusion as well. The question of how the statistical conserva-
tion laws lead to anomalous scaling has been analyzed quantitatively for
a model problem of advection of a passive scalar'®. A scalar is a quantity
such as temperature or concentration of an admixture that is advected by
the turbulent velocity field. The scalar is passive if it does not affect the
velocity field advecting it. For instance, if the scalar is the temperature, the
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heating must be small enough so as not to affect the dynamics. The model
of Ref. 1© considers the case of a passive scalar field that is advected by a
Gaussian velocity field that oscillates infinitely rapidly (the auto-correlation
is a delta function); however, its spatial correlation follows the power-law
characteristic of the real velocity field. For this model, it is shown that the
anomaly arises from the statistical conservation laws of geometric origin,
not by the dynamical conservation laws. The statistical conservation laws
break the scale invariance in the inertial range and scalar turbulence “knows
more” about forcing than just the value of the flux. For a summary of the
important developments on this problem, see Ref. 1.

6. Closing remarks

My main point here is that a number of systems of great practical inter-
est operate under conditions that are far from equilibrium and develop
seemingly common properties. It is unlikely that these properties can be
explained from the finest ingredients of matter. It would be most interesting
if these properties possess quantitative universality but this quest has not
yet been addressed satisfactorily. The first step in this direction requires
that we study at least a few such systems precisely, and understand their
structure well. Hydrodynamic turbulence is one of the best examples in this
category.

To make the case further, I discussed the anomalous scaling of the iner-
tial range in turbulence. The anomaly arises because the scale invariance is
broken. Under such circumstances, the scaling exponents are determined by
new types of statistical conservation laws. The solutions of the Kraichnan
model'® have elucidated this point quantitatively. The conserved quantities
involve the geometry of multi-point configurations carried by the flow. It is
possible that this lesson is of universal validity, i.e. for other nonlinear mul-
tiscale systems which possess statistical conservation laws and anomalous
scaling exponents.

A postscript may be appropriate. In part through direct and indirect in-
fluence of Professor Abdus Salam, the founding director of ICTP, Pakistan
has had a few excellent physicists in particle physics and related fields.
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However, it has not developed a similarly strong tradition in the science
of non-equilibrium and nonlinear physics. It is indeed high time that this
development occurred. My hope is that the National Centre for Physics in
Islamabad, which hosted this Symposium, will be able to develop and foster
such an activity.

Part of this note is based on a previous article with G. Falkovich!'2, I
thank Joe Niemela for reading a draft.
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