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Abstract

We study the effects of severe non-Boussinesq conditions on thermal convection at the
moderate Rayleigh numbers of Ra = 2 x 108 and 2 x 10° by resorting to direct numerical
computations of the full governing equations. We illustrate the effects by considering low
temperature gaseous helium. The properties of helium are allowed to depend on the
temperature around the mean of 5.4 K. The Nusselt number is shown to decrease as the system
departs from the Boussinesq approximation. For the Rayleigh numbers chosen here, the role
of viscosity in thermal convection is limited to smudging the plume generation at the bottom
surface, whereas the thermal expansion coefficient is demonstrated to have a larger impact on

heat transport.

PACS numbers: 47.27.te, 47.55.P—, 47.55.pb, 47.27.ek

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The Rayleigh—Bénard system is a celebrated paradigm for
convection in a variety of geophysical and engineering
circumstances, such as the convection due to terrestrial
heating by the Sun and convection in heat exchangers. In
laboratory realizations of the Rayleigh—Bénard convection,
the apparatus consists of a heated bottom horizontal plate and
a cooled top horizontal plate, with the sidewalls essentially
non-conducting. The aspect ratio is the relative size of
the horizontal dimension of the apparatus with respect
to the vertical distance between the horizontal plates. In
applications, this ratio is often larger than unity.

The natural occurrence of thermal convection
associated with high Rayleigh number, defined as

is

aAOgH?
a=—),
VK

(1

where « is the isobaric thermal expansion coefficient (or
expansivity) of the fluid, A® the temperature difference
across the vertical distance H between the top and bottom
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plates, g the acceleration due to gravity, v the kinematic
viscosity and « the thermal diffusivity of the fluid. The heat
transport is measured by the Nusselt number, Nu, which
is the ratio of the measured value to that possible only by
thermal conduction. The Nusselt number is equal to unity in
the absence of convection and increases with the Rayleigh
number because of the onset of convection and, subsequently,
of turbulence. At high enough Ra, it is generally assumed that
Nu varies according to a power law in Ra: Nu = ARa” [1],
or, sometimes, as a combination of power laws [2].

Existing theory for Rayleigh-Bénard convection is
usually associated with the so-called Boussinesq conditions,
according to which the density of the fluid is regarded
as a constant except in so far as it affects the buoyancy
term. In particular, fluid properties such as viscosity, thermal
expansivity, thermal conductivity and specific heats are
considered constants. The approximation is never perfectly
true but is reasonably satisfactory when the temperature
difference between the horizontal plates is small (in the
sense that needs to be made more precise) [3]. It is a great
simplification for both analytical theories (such as upper
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bound estimates) and the numerical solutions of the governing
equations.

The use of low-temperature helium gas in experiments
has enabled very high Rayleigh numbers to be reached [4, 5].
Unfortunately, at the high end of Rayleigh number ranges
covered by these experiments, the measured Nusselt
numbers differ between experiments beyond measurement
uncertainties. It has been argued that one possible explanation
of this difference is the degree to which the Boussinesq
approximation is valid. While some broad arguments were
presented in [6], quantitative details have not yet been
established.

This paper is devoted to quantitative considerations
of the non-Boussinesq effects. We will attempt to
understand the implications of Boussinesq approximation
in Rayleigh—Bénard convection at moderate Ra by solving
the full equations, and taking into account changes of fluid
properties with temperature, for conditions that correspond to
experiments with cryogenic helium gas. In keeping with the
experimental situations, we consider a cylindrical domain.
A notable effect of the departure from the Boussinesq
approximation is the asymmetric temperature drop in the top
and bottom boundary layers [7], though the related effect on
Nu is speculative.

The following previous work on this topic must be
mentioned. In [6], qualitative estimates were made to suggest
that non-Boussinesq effects could be quite important. Ahlers
et al [8] measured the Nu and center temperature, Te,, for
non-Boussinesq liquids. The corresponding measurements for
gaseous thermal convection appeared in [9] with ethane as
working fluid. The authors found that T, increases for liquids
and decreases for gases, and reported that heat transport
for gases increases considerably for severe non-Boussinesq
condition: for ethane gas Nuy, (where subscript ‘nb’ stands
for non-Boussinesq) was found to be larger than Nuy (the
suffix ‘b’ standing for Boussinesq) by some ~20% for ¢« A®
of 0.3. However, for water [8], the decrease in Nusselt number
was marginal (~1%). In [8], it was reported that the sum of
thermal boundary layer thickness at top and bottom plates
was approximately equal to twice the thermal boundary layer
thickness obtained from Boussinesq conditions. Sujiyama
et al [10] conclude from a two-dimensional non-Boussinesq
computation for glycerol that this ‘thickness sum rule’ is
applicable only to water.

2. Governing equation and computational method

The computational method used in the present paper is
explained in detail in [11] and references cited there for a
Boussinesq thermal convection. Only the changes made to
accommodate non-Boussinesq effects are briefly described
here. The governing equations in non-dimensional form under
the low Mach number approximation read as

dp
v vy =0, 2
m V) (2)
apV . \ 2
P-4y, = _Vp+aTi+(—) Vv
ot oVV) pratz (Ra)
x 2uS — %M(V~ i), (3)
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where S is the symmetric part of velocity gradient
tensor. Here, we note that non-Boussinesq equation requires
the physical properties to be temperature-dependent. The
dynamic viscosity (u), the density (p), the coefficient of
thermal expansion («), the constant pressure specific heat
(Cp) and thermal conductivity (1), appearing in the governing
equation, are all non-dimensionalized by respective values at
the mean temperature, ®,. The Rayleigh and Prandtl numbers
are defined through values at ®. As already remarked, we fix
®¢ = 5.4K for all our computations.

The equations are non-dimensionalized by the free fall
velocity U = /ga AOH . The non-dimensional temperature
is T =(0—0,)/A0, where © is dimensional temperature
of the convection system at any given point in space and
time; 0 < 7 < 1. The actual time-averaged temperature in the
bulk is called T.., which is different from the mean, 7, =
(Tw+T.)/2, due to the non-Boussinesq effect. The bottom
plate is heated and kept at a constant temperature 7;, and the
top plate kept at 7. The cylinder aspect ratio I is 1/2. The
sidewall is taken to be adiabatic.

The equations are discretized on a staggered mesh by
central second-order accurate finite-difference approximation,
solved by a fractional-step procedure, with pressure equation
inverted using trigonometric expansion in azimuthal direction
and FISHPACK package [12] in the other two directions.
The time marching is done with a third-order Runge—Kutta
scheme [13, 14]. It should be noted that the velocity field is
not divergence-free and that the compressibility of the gas is
not accounted for. The vectors and scalars are staggered on
space and time coordinates.

The time-discrete form for the temperature equation
yields

T =T"— At(BG"+CG" )
1\ 4At
+ K VZ(Tn-H + Tn)7 (5)
RaPr 2
where
_ VA" . VT"
G'=V.-VI" — —,
prCy

and A, B and C are coefficients of the time integration
scheme, « being the coefficient of thermal diffusion. The
staggered time discretization will require ¥ at ¢"*!, which
is extrapolated from ¢” and ¢"~! at the same time as 77,
to compute G”. The implicitly treated diffusive term of
the equation requires the values of thermal diffusivity at
t"*1/2 which is also extrapolated from values at ¢ and "~
Once the temperature field is computed, all properties are
corrected using state equations. The momentum equation is
discretized as

g =q" — At(BH"+CH"™ ") — AAtV p"

1/2 * n
+ ﬁ AAIMVZ 4,9 ,
Ra 2 p p"

(6)
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Figure 1. Properties computed from HEPACK (solid). The best-fit functions (dash-square) are used to evaluate the properties for the
pressure and temperature ranges shown. The diffusivity variation in the bottom-right panel is from HEPAK calculations.

where

H"=V(q"V")—aTz—1uvV(V- V")
—28" - Vu+3(V- V"V

Since the pressure at the latest time step is not known,
we assume a surrogate momentum vector g, with the error
between ¢! and ¢x* being given as ¢""! — gx = —AAtV ¢,
where the scalar ¢ is computed from

1 ap
Vip=—-(V-g"+—);
¢ AAt( 1 E)t)

dp/dt is evaluated at ¢"*! from extrapolation of values
computed from the continuity equation at " and ¢"~'. The
pressure is updated and the scheme is repeated for a new time
step.

Simulations for Ra =2 x 10% and 2 x 10° reported here
correspond to grid sizes of 97 x 49 x 193 and 129 x 65 x
257, respectively. These computational meshes can resolve
the relevant smallest scales, as discussed in [11]. Nu is
computed from the mean heat flux at the hot and cold plates as
Nu = A0T /0z|y, where the suffix w represents the derivative
computed at the wall and the overbar represents average over
time and a fixed horizontal plane.

The fluid under consideration is gaseous helium, whose
properties are compiled by Cryodata Inc., in the package
called HEPACK [15]. Table 1 shows the computed Prandtl
number and Boussinesq parameter « A® for various operating
pressures for Rayleigh number of 2 x 10 at ©y = 5.4 K. For
each pressure, the properties are computed for a range of
temperatures on either side of ®( and the best-fit curve thus

(M

Table 1. Computed values of Prandtl number and Boussinesq
parameter using HEPACK for ®; = 5.4 K evaluated for
Ra =2 x 108,

P(Pa) Pr AOK) aA®
80  0.6776 57073  1.05
90  0.6776 45104  0.83

110 06775 3.0176  0.56

180 0.6778 1.1264 0.0

obtained is used as the temperature-dependent function of the
corresponding property. The results for a sample pressure are
shown in figure 1.

One of the most commonly used parameters to determine
Boussinesq condition is ¢ A®. For ®¢=5.4K, various
pressures produce different values of « A®. The code is
validated for the Boussinesq case, by fixing « A® =0 for
Ra =2 x 108, The computed Nu = 40.53 + 3.2 matches well
with the previous Boussinesq computation of Nu =41.32 +
2.3 in [11]. For validating a non-Boussinesq case, we try
to reproduce a case from [5] for Ra = 5.8 x 10% and Pr =
0.7 for tA® = 1.11 (one of the largest in the experiment),
®y=4.555K, po =0.108 kg m~>. The experimental Nusselt
number was 38.9. We could not quite reach « A® =1.11
because of numerical stability and limitation of available CPU
time, but the comparison given in table 2 shows that the
extrapolated result matches reasonably well with experiments.

3. Results and discussions

Figure 2 shows the variation of Nusselt number with respect
to «A®. There is a decrease in heat transport when the
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Figure 2. (a) Nusselt numbers variation against the non-Boussinesq
parameter  A®. (b) The Nusselt number ratio of the
non-Boussinesq value to the Boussinesq value.

system departs from Boussinesq approximation. The decrease
is more evident when the non-Boussinesq to Boussinesq ratio
is plotted against « A® (figure 3(b)). Nusselt numbers for
moderate to severe non-Boussinesq cases for these Rayleigh
numbers are not studied systematically in the literature, except
for a few data points from [5]. In figure 3, the experimental
values of [5] are plotted, segregating (arbitrarily) those
with ¢ A® < 0.4 from larger values, roughly treating them
as representative of ‘large’ and ‘moderate’ non-Boussinesq
effects. The computed values of the present DNS are shown as
diamonds for Ra =2 x 10% and 2 x 10°. The Nusselt number
falls as the Boussinesq parameter increases. A heuristic
explanation for this behavior is discussed below. At present,
it is unclear if this decrease in Nu is “universal’; in particular,
it is not clear if the behavior can be sustained at much higher
Rayleigh numbers.

Wu and Libchaber [7] demonstrated that an asymmetry
in boundary layers between top and bottom walls will be
generated due to non-Boussinesq conditions. The Tg., will
then be different from the algebraic mean of top and bottom
temperatures. Figure 4 shows that there is a reduction in the
T.en With increase in the Boussinesq parameter, « A®. This is
consistent with the experiments of [8, 9].

The thermal boundary layer thickness is plotted in
figure 5. The figure shows that thermal boundary layer at the

Table 2. Nusselt number comparison of present computation
with [5]. The experimental data correspond to Ra = 5.38 x 108,
Pr=0.7foraA® =1.11,®y =4.555K and p = O.lOSkgm’3.

aA® 0 011 033 067 1.0
Nu 58 565 54 503 45

100 — -
@@ 0AO< 0.4 (Chavanne et al) [5]

B 0AO®>0.4 (Chavanne et al) [5]
& DNS

12408

Figure 3. Comparison of the computed Nu with experimental
values from [5]. The diamonds are the present DNS values whose
a A® increases as the symbols move down in the ordinate (see
table 1).

top is thinner than that at the bottom. In figure 6, we show
the viscous boundary layer thickness against the Boussinesq
parameter. The boundary layer thickness is defined here to
be the distance of the peak root-mean-square value from the
wall [11]. The sum of boundary layers of top and bottom are
shown with square symbols, which is approximately equal to
twice boundary layer thickness from Boussinesq computation:

26,

——~L ®)
5top + 8bottom

where the subscript ‘b’ stands for Boussinesq case, as before.
At present, an explanation for this behavior is not known.

As shown in figure 5, the sum of top and bottom
thermal boundary layer thickness increases with « A®. This
is consistent with two-dimensional computation of Sugiyama
et al (see figure 5 of [10]) for glycerol: the sum decreases
for low Rayleigh numbers (~10%) and increases for high
Rayleigh numbers (>107). Note that this sum rule does not
apply as well to thermal boundary layers.

The obvious question is why the heat transport decreases
with « A® for the Rayleigh numbers considered here. It
is already known that there is large-scale circulation (the
‘wind’) for these Ra [11]. Consider Ra = 2 x 108, In figure 7,
the isosurfaces of temperature are shown for three different
non-Boussinesq parameters. The contour values shown in the
figure are 0.9 (red), 0.5 (green) and 0.1 (blue). From left to
right they correspond to « A® =0, 0.56 and 1.05. The bulk
flow in the Boussinesq case shows the wind with two counter
rotating cells. As ¢ A® increases, a big roll filling the entire
height of the cell becomes more prominent. We infer that this
is a manifestation of reduced heat transport and lower Nu.
Figure 8 shows isosurfaces of axial velocity. The mixing of the
fluid, thus the heat transfer, for t A® = 0 (leftmost panel) is
larger than that for  A® = 1.05 (rightmost panel). To find the
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Figure 4. The average vertical temperature profile for various ¢« A®
for Ra =2 x 10% and ©, = 5.4K.
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Figure 5. Temperature boundary layer thickness for Ra =2 x 108
and ©®) = 5.4K.
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reason for the decrease in mixing, we examine the generation
of plumes.

At moderate Ra, our computations show major variations
in conductivity, expansivity, viscosity and density within the
thermal boundary layers. Of these quantities, conductivity and
viscosity of helium increase with the temperature. This results
in the bottom thermal boundary layer being thicker than that at

5 .

0.56 1.05

0.0

Figure 7. Instantaneous temperature isosurfaces for 7 = 0.9, 0.5
and 0.1, fora A® =0, 0.56 and 1.05.

! I # l lolii a

Figure 8. Instantaneous axial velocity isosurfaces for v, = —0.1
and 0.1, for  A® =0, 0.56 and 1.05. The effective mixing
decreases with increase in ¢ A®.

Figure 9. Instantaneous temperature isosurfaces (near the
hot-bottom plate) for 7 = 0.8. From left to right, t A® = 0.0, 0.56
and 1.05.

the top plate. We conjecture that the thermal plumes generated
on the lower plate are smeared out by the larger viscosity in
the vicinity. This means that fewer plumes from the lower
plate rise all the way to the top (figure 9). In effect, the
heat transport to the bulk is hindered by the highly viscous
and conducting bottom thermal boundary layer. The reverse
happens in the top boundary layer and convection through
jets dominates the heat transfer, but, since the temperature at
mid-height is lower than T, the heat transport by jets is not
large enough to compensate the reduction from the bottom
plate.

To further elucidate the roles of various fluid properties
on global heat transport, we repeat the calculations as follows.
The dominance of property X can be identified by computing
with X = f(T), while holding all other properties constant.
Table 3 shows the computed Nusselt numbers for such
hypothetical cases. It is clear that expansivity has the largest
effect on heat transport. In figures 10 and 11, temperature
isosurfaces near top and bottom plates are shown for t A® =
1.05, while only p and « are individually allowed to vary.
As mentioned earlier, the role of viscosity is to smear out
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Table 3. Contribution of each property variation to heat transport.
First column is the Nusselt number obtained from the Boussinesq
computation, and second column from full non-Boussinesq
computation. Nusselt numbers calculated when each property, X, is
alone allowed to depend on the temperature are also shown.

Bouss Non-B X=u X=a X=C, X=1 X=p

Nu 4053 331 385 336 404 392 38
e M g ™

L ! 7 \./"K/ S

\i}/g N .

Figure 10. Temperature isosurfaces for 7 = 0.8. The leftmost
panel is for the non-Boussinesq case when all properties are allowed
to depend on temperature; the middle panel corresponds to viscosity
alone being a function of temperature; the right panel corresponds
to the case for which the expansivity alone is a function of
temperature.

4 ‘x \w—U;:““ > o }x._ — j
” 1 : 24 v ‘\ e % 7 \ -’
LN WD e Y B < -

Figure 11. Same as figure 10 but with isosurface values 0.2.

the plume generation, but the Nusselt number is reduced only
marginally. However, when only the expansivity is allowed
to depend on the temperature, the Nusselt number is reduced
dramatically, even though the plumes generated are about the
same as the Boussinesq case. Thermal expansivity determines
the volume increase of a parcel of fluid due to temperature
changes. Since expansivity has a negative dependence on
temperature, a parcel of fluid moving up from the bottom
will increase in volume dramatically in comparison to the
Boussinesq case. This will lead to an increase in the surface
area available for conduction, thus promoting local exchange
while reducing transport to the top plate. In effect, this reduces
the Nusselt number.

4. Conclusions

The non-Boussinesq effect in thermal convection is
investigated by direct numerical simulation of the full
governing equations. The non-dimensional heat transport, or
the Nusselt number, is found to decrease nearly 20% for the
severely non-Boussinesq case of « A® = 1. The conclusion
of [9] that for gases Nu increases with increase in ¢ A®
is thus not general. We have shown that viscosity plays a
moderately important role in diminishing the movement of
plumes to the interior of convection domain by smearing out
the generation at the hot plate. The coefficient of thermal
expansion, because of negative dependence on temperature,
subjugates thermal convection by increasing the effective
surface area available for conduction. This enhances the

local heat transfer, reduces the amount transmitted to the
top wall, and thus the Nusselt number. These conclusions
are specific to gaseous helium and the conditions chosen,
since a qualitatively different property variation may lead
to a different conclusion. For example, near the critical
point, where most high Rayleigh numbers are experimentally
achieved, the specific heat is highly sensitive to temperature,
which can make the global heat transport dramatically
different. In particular, the results will depend on the path by
which one approaches the critical point. At present, we are
not in a position to comment generally on all non-Boussinesq
effects, especially at very high Rayleigh numbers.
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