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Abstract

We present a personal view of the state of the art in turbulence research. We summarize first the main achievements of the recent past, and then
point ahead to the main challenges that remain for experimental and theoretical efforts.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

“The problem of turbulence” is often hailed as one of
the last open problems of classical physics. In fact, there is
no single “problem of turbulence”; rather, there are many
inter-related problems, some of which have seen significant
progress in recent years, and some are still open and inviting
further research. The aim of this short review is to explain
where fundamental progress has been made and where, in the
opinion of the present writers, there are opportunities for further
research.

There are many ways to set a fluid into turbulent motion.
Examples include creating a large pressure gradient in a channel
or a pipe, pulling a grid through a fluid, moving one or more
boundaries to create a high shear and forcing a high thermal
gradient. Customarily the vigor of forcing is measured by the
Reynolds number Re, defined as Re ≡ U L/ν where L is
the scale of the forcing, U is the characteristic velocity of the
fluid at that same scale, and ν is the kinematic viscosity. The
higher the Reynolds number the larger is the range of scales
involved in the turbulent motion, roughly from the scale L
itself (known as the “outer” or “integral” scale) down to the
so-called “viscous” scale η which decreases as Re−3/4 [1]. For
large Re a turbulent flow exhibits an erratic dependence of the
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velocity field on the position in the fluid and on time. For this
reason it is universally accepted that a statistical description
of turbulence is called for, such that the objects of interest
are almost invariably mean quantities (over time, space or an
ensemble, depending on the application), fluctuations about
the mean quantities, and correlation functions defined by these
fluctuations; precise definitions will be given below. The crucial
scientific questions thus deal typically with the universality of
the statistical objects, universality with respect to the change of
the fluid, or universality with respect to the change of forcing
mechanisms. We will see that this universality issue binds
together the various aspects of turbulence to be discussed below
into a common quest – the quest for understanding those aspects
of the phenomenon that transcend particular examples. We will
strive to underline instances when this quest has been successful
and when doubts remain.

The structure of this review is as follows: in Section 2 we
discuss the statistical theory of homogeneous and isotropic
turbulence and focus on the anomalous scaling exponents
of correlation functions. For a part of the community this
represented the important open problem in turbulence, and
indeed great progress has been achieved here. In Section 3 we
address homogeneous but anisotropic turbulence and present
recent progress in understanding how to extract information
about isotropic statistical objects, and how to characterize the
anisotropic contributions. Section 4 deals with wall-bounded
turbulence where both isotropy and homogeneity are lost (this
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being the norm in practice, rather than the exception). We
focus on the controversial issue of the log versus power-
laws, clarifying the scaling assumptions underlying each of
these approaches and replacing them by a universal scaling
function; we show that this achieves an excellent modeling of
channel or pipe flows. In Section 5 we consider turbulence
with additives (like polymers or bubbles) and review the
progress in understanding drag reduction by such additives.
Section 6 discusses problems in thermal convection, with
emphasis on recent work. Finally, Section 7 provides a
selective account of the problems that have come to the fore
in superfluid turbulence, sometimes bearing directly on its
classical counterpart. The article concludes with a summary of
the outlook.

2. Anomalous scaling in homogeneous and isotropic
turbulence

A riddle of central interest for more than half a century
to the theorist and the experimentalist alike concerns the
numerical values of the scaling exponents that characterize
the correlation and structure functions in homogeneous and
isotropic turbulence. Before stating the problem one should
note again that strictly homogeneous and isotropic state of
a turbulent flow is not achievable in experiments; typically
the same forcing mechanism that creates the turbulent flow
is also responsible for breaking homogeneity or isotropy.
Nevertheless, some reasonable approximations have been
created in the laboratory. To get an even closer approximation,
one has to resort to numerical simulations. For a long time,
the Reynolds number of simulations was limited by numerical
resolution and by storage capabilities, but this situation has
improved tremendously in the past few years. Indeed, as an
idealized state of turbulence which incorporates the essentials
of the nonlinear transfer of energy among scales, homogeneous
and isotropic turbulence has gained a time-honored status in
the history of turbulence research, since its introduction by
Taylor [2].

Consider then the velocity field u(r, t) which satisfies the
Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇ p + ν∇
2u + f , (1)

where p is the pressure and f the (isotropic and homogeneous)
forcing that creates the (isotropic and homogeneous) turbulent
flow. Defining by 〈. . .〉 an average over time, we realize that
〈u〉 = 0 everywhere in this flow. On the other hand, correlations
of u are of interest, and we define the so-called “unfused” nth-
order correlation function Tn as

Tn(r1, t1, r2, t2, . . . rn, tn) ≡ 〈u(r1, t1)u(r2, t2) . . . u(rn, tn)〉.

(2)

When all the times ti are the same, ti = t , we get the equal-
time correlation function Fn(r1, r2, . . . rn) which, for a forcing
that is stationary in time, is a time-independent function of the
n(n − 1)/2 distances between the points of measurements, due
to homogeneity. An even more contracted object is the so-called
“longitudinal structure function” Sn ,

Sn(R) ≡ 〈{[u(r + R, t) − u(r, t)] · R/R}
n
〉, (3)

which can be obtained by sums and differences of correlation
functions Fn , together with some fusion of coordinates [3].
On the basis of evidence from experiments and simulations,
it has been stipulated (although never proven) that Sn is a
homogeneous function of its arguments when the distance R
is within the so-called “inertial range” η � R � L in the sense
that

Sn(λR) = λζn Sn(R). (4)

A central question concerns the numerical values of the “scaling
exponents” ζn and their universality with respect to the nature
of the forcing f . Even if we set aside questions about the form
of Sn(R), the question on exponents poses serious difficulties
since it is impossible to derive a closed-form theory for the
general structure function Sn , since any such theory involves
higher-order unfused correlation functions with integrations
over the time variable [4,5].

A closely related question with lesser theoretical difficulties
pertains to other fields that couple to the velocity field, with
the “passive scalar” case drawing most attention during the
nineties. A passive scalar φ(r, t) is a field that is advected by a
turbulent velocity which itself is unaffected by it. For example,

∂φ

∂t
+ u · ∇φ = κ∇

2φ + f. (5)

If u and f are homogeneous and isotropic, and Re → ∞ and
κ → 0, the structure functions Sn ≡ 〈[φ(r + R) − φ(r)]n

〉 are
stipulated to be homogeneous functions of their arguments with
scaling exponents ξn .

Dimensional considerations predict ζn = ξn = n/3, with
ζ3 = 1 being an exact result from fluid mechanics, going back
to Kolmogorov [6]. Experimental and simulations data deviated
from these predictions (except, of course, for n = 3), and a
hot pursuit for an example where these exponents could be
calculated theoretically was inevitable. The first example that
yielded to analysis was the Kraichnan model [7], in which u is
not a generic velocity field, but rather a random Gaussian field
whose second-order structure function scales with a scaling
exponent ζ2 as in Eq. (4), but is δ-correlated in time. This
feature of the advecting field leads to a great theoretical
simplification, not as much as to provide a closed-form theory
for Sn , but enough to allow a derivation of a differential
equation for the simultaneous 2nth-order correlation function
F2n = 〈φ(r1) . . . φ(r2n)〉, having the symbolic form [7]

OF2n = RH S(F2n−2). (6)

Guessing the scaling exponent of F2n by power counting
and balancing the LHS against the RHS yields dimensional
scaling estimates which, in this case, are ξ2n = (2 − ζ2)n. The
crucial observation, however, is that the differential equation
(6) possesses, in addition to the inhomogeneous solution that
can be guessed by power counting, also homogeneous solutions
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of the equation OF2n = 0 [8–10]. These “zero modes” are
homogeneous functions of their arguments but their exponent
cannot be guessed from power counting; the scaling exponents
are anomalous – i.e., ξ2n < (2 − ζ2)n – and therefore dominant
at small scales. As the scaling exponents appear in power-laws
of the type (r/Λ)ξ , Λ being some typical outer scale and r � Λ,
the larger the exponent, the faster the decay of the contribution
as the scale r diminishes. The exponents could be computed in
perturbation theory around ζ2 = 0, demonstrating for the first
time that dimensional scaling exponents are not the solution to
the problem. For a further review see [11].

An appealing interpretation of the physical mechanism for
anomalous exponents of the Kraichnan model was presented
in the framework of the Lagrangian formulation [12]. In this
formulation an nth-order correlation function results from
averaging over all the Lagrangian trajectories of groups of
n fluid points that started somewhere at t = −∞ and
ended their trajectories at points r1 . . . rn at time t = 0.
Analyzing this dynamics revealed that the Richardson diffusion
of these groups did not contribute to anomalous scaling.
Rather, it is the dynamics of the shapes (triangles for 3
points, tetrahedra for 4 points, etc.) that is responsible for the
anomaly. In fact, the anomalous scaling exponents could be
related to eigenvalues of operators made from the shape-to-
shape transition probability [13]. The zero modes discussed
above are distributions over the space of shapes that remain
invariant to the dynamics [14]. It appears that these findings
of the importance of shapes rather than scales in determining
anomalous exponents is a new contribution to the plethora of
anomalous exponents in field theory, and it would be surprising
if other examples where shapes rather than scales are crucial
will not appear in other corners of field theory, classical as well
as quantum-mechanical.

The finding of distributions that remain invariant to the
dynamics meant that there must be such distributions in the
Eulerian frame as well, since the change from Lagrangian to
Eulerian is just a smooth change of coordinates. Indeed this
was the case; and this provided the clue to generalizing the
results of the non-generic Kraichnan model to the generic
case represented by Eq. (5) with a generic velocity field that
stems from the Navier–Stokes equations. The central comment
is that the decaying passive scalar problem, i.e. Eq. (5) with
f = 0, is a linear problem for which one can always define a
propagator from Fn at t = 0 (i.e. 〈φ(r1, t = 0) · · · φ(rn, t =

0)〉) to the same object at time t (note that for the decaying
problem this is no longer a stationary quantity) [15]. This
propagator possesses eigenfunctions of eigenvalue 1 which are
homogeneous functions of their arguments, characterized by
anomalous exponents. They are the analogs of zero modes
of the Kraichnan model, and are responsible for anomalous
exponents in the generic case [16,17]. Thus the general
statement that can be made is that the anomaly for the
passive scalar, generic or otherwise, is due to the existence of
“statistically preserved structures”; the structures can change in
every single experiment, but remain invariant on the average.
This is a novel notion that pertains to nonequilibrium systems
without a known analog in equilibrium problems.
At present it is still unclear whether the insight gained from
linear models might have direct relevance to the nonlinear
velocity problem itself. Some positive indications in this
direction can be found in [18], but much more needs to be done
before firm conclusions can be drawn.

3. Statistical theory of anisotropic homogeneous turbulence

As mentioned above, the agents that produce turbulence tend
to destroy its homogeneity and isotropy. In this section we are
concerned about the loss of isotropy and review the extensive
work that has been done to come to grips with this issue in
a systematic fashion. Since this subject has been reviewed
extensively [19], we limit this section to only a few essential
comments.

The need for rethinking the issue of loss of isotropy
was underlined by the appearance of several papers where
anisotropic flows were analyzed disregarding anisotropy, and
exponents were extracted from data assuming that the inertial
range scales were isotropic. The results were confusing: scaling
exponents varied from experiment to experiment, and from one
position in the flow to another. If this were indeed the case, the
notion of universality in turbulence would fail irreversibly. In
fact, it can now be shown that all these worrisome results can
be attributed to anisotropic contributions in the inertial range,
as explained below.

The basic idea in dealing with anisotropy is that the
equations of fluid mechanics are invariant to all rotations.
Of course, these equations are also nonlinear, and therefore
one cannot foliate them into the sectors of the SO(3)
symmetry group. The equations for correlation functions are,
however, linear (though forming an infinite hierarchy). Thus
by expanding the correlation functions in the irreducible
representations of the symmetry group, one gets a set of
equations that are valid sector by sector [20]. The irreducible
representations of the SO(3) symmetry group are organized by
two quantum numbers j, m with j = 0, 1, 2, . . . and m =

− j, − j +1, . . . j . It turns out that the m components are mixed
by the equations of motion, but the j components are not.
Accordingly one can show that an n-point correlation function
admits the expansion

Fn(r1, r2, . . . rn) =

∑
q jm

Aq jm(r1, r2, . . . , rn)

× Bq jm(r̂1, r̂2 . . . r̂n), (7)

where r̂ is a unit vector in the direction of r, and Aq jm is a
homogeneous function of the scalar r1 . . . rn ,

Aq jm(λr1, λr2, . . . , λrn) = λζ
( j)
n Aq jm(r1, r2, . . . , rn). (8)

Here ζ
( j)
n is the scaling exponent characterizing the j-

sector of the symmetry group for the nth-order correlation
function. Bq jm(r̂1, r̂2 . . . r̂n) are the n-rank tensorial irreducible
representations of the SO(3) symmetry group, and the index q
in Eq. (7) is due to the fact that higher-order tensors have more
than one irreducible representation with the same j, m [20].
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It was shown that this property of the nth-order correlation
functions is inherited by the structure functions as well [21].
Since these are scalar functions of a vector argument they get
expanded in standard spherical harmonics φ jm(R̂)

Sn(R) =

∑
jm

a jm(r)φ jm(R̂), (9)

with

a jm(λr) = λζ
( j)
n a jm(r). (10)

The main issue for research was the numerical values of this
plethora of scaling exponents.

Of considerable help in organizing the scaling exponents in
the various sectors of the symmetry group were the Kraichnan
model and related models (like the passive vector model with
pressure), where the exponents could be computed analytically
in the Eulerian frame in any sector of the symmetry group.
The central quantitative result of the Eulerian calculation is the
expression for the scaling exponent ξ

(n)
j which is associated

with the scaling behavior of the nth-order correlation function
(or structure function) of the scalar field in the j th sector of the
symmetry group. In other words, this is the scaling exponent of
the projection of the correlation function on the j th irreducible
representation of the SO(d) symmetry group, d being the space
dimension, with n and j taking on even values only, n =

0, 2, . . . and j = 0, 2, . . . [23]:

ξ
(n)
j = n − ε

[
n(n + d)

2(d + 2)
−

(d + 1) j ( j + d − 2)

2(d + 2)(d − 1)

]
+ O(ε2).

(11)

The result is valid for any even j ≤ n, and to O(ε). In the
isotropic sector ( j = 0) we recover the result of [8]. It is
noteworthy that for higher values of j the discrete spectrum
is a strictly increasing function of j . This is important, since
it shows that for diminishing scales the higher-order scaling
exponents become irrelevant, and for sufficiently small scales
only the isotropic contribution survives. Recall that the scaling
exponents appear in power-laws of the type (r/Λ)ξ with Λ a
typical outer scale and r � Λ; the larger the exponent, the
faster the decay of the contribution as the scale r diminishes.
This is precisely how the isotropization of small scales takes
place, with the higher-order exponents describing the rate of
isotropization. Nevertheless, for intermediate scales or for finite
values of the Reynolds and Peclet numbers, the lower-lying
scaling exponents will appear in all the measured quantities,
and understanding their role and disentangling their various
contributions cannot be avoided.

For Navier–Stokes turbulence the exponents cannot be com-
puted analytically, but the results obtained from experiments
[21] and simulations [22] indicate that the picture obtained for
the Kraichnan model repeats itself. The isotropic sector is al-
ways leading (in the sense that scaling exponents belonging
to higher sector are numerically larger). There is growing ev-
idence of universality of scaling exponents in all the sectors,
but this issue is far from being settled, and more experiments
and simulations are necessary to provide decisive evidence. It
is noteworthy that the issue of universality of the exponents in
the isotropic sector is here expanded many-fold into all the sec-
tors of the symmetry group, and is certainly worth further study.

4. Wall-bounded turbulence

Turbulent flows of highest relevance for engineering
application possess neither isotropy nor homogeneity. For
example, turbulent flows in channels and pipes are strongly
anisotropic and inhomogeneous; indeed, in a stationary plane
channel flow with a constant pressure gradient p′

≡ −dp/dx
the only component of the mean velocity V, the streamwise
component Vx ≡ V , depends strongly on the wall normal
direction z; the derivatives of Vx with respect to z and
the second-order quantities such as mean-square-fluctuations
similarly depend only on z. A long-standing challenge is the
description of the profiles of the mean velocity and second-
order fluctuations throughout the channel or pipe at relatively
high but finite Reynolds numbers.

To understand the issue, focus on a channel of width 2L
between its parallel walls, where the incompressible fluid
velocity U(r, t) is decomposed into its mean (i.e., average over
time) and a fluctuating part

U(r, t) = V(r) + u(r, t), V(r) ≡ 〈U(r, t)〉. (12)

Near the wall, the mean velocity profiles for different
Reynolds numbers exhibit data collapse once presented in wall
units. Here in “data collapse” we mean that data obtained at
different experimental conditions can be collapsed on the same
curve by re-plotting in different units (see Fig. 4 for example).
The ‘wall units’ are obtained by defining the Reynolds number
Reτ , the normalized distance from the wall z+ and the
normalized mean velocity V +(z+) (for channels) by

Reτ ≡ L
√

p′L/ν, z+
≡ z Reτ /L , V +

≡ V/
√

p′L.

The classical theory of Prandtl and von Kármán for infinitely
large Reτ is based on dimensional reasoning and on the
assumption that the single characteristic scale in the problem is
proportional to the distance from the (nearest) wall (see below
for details). It leads to the celebrated von Kármán log-law [1]

V +(z+) = κ−1 ln(z+) + B , (13)

which serves as a basis for the parametrization of turbulent
flows near a wall in many engineering applications. On the face
of it, this law agrees with the data (see, e.g. Fig. 1) for relatively
large z+, say for z+ > 100, giving κ ∼ 0.4 and B ∼ 5. The
range of validly of the log-law is definitely restricted by the
requirement ζ � 1, where ζ ≡ z/L (channel) or ζ ≡ r/R
(pipe of radius R). For ζ ∼ 1 the global geometry becomes
important leading to unavoidable deviations of V +(ζ ) from the
log-law (13), known as the wake.

The problem is that for finite Reτ the corrections to the
log-law (13) are in powers of ε ≡ 1/ ln Reτ [24,25] and
definitely cannot be neglected for the currently largest available
direct numerical simulation (DNS) of channel flows (Reτ =

2003 [26,27] or ε ≈ 0.13). Even for Reτ approaching 500,000
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as in the Princeton superpipe experiment [28], ε ≈ 0.08. This
opens a Pandora box with various possibilities to revise the log-
law (13) and to replace it, as was suggested in [24], by a power-
law

V +(z+) = C(Reτ )(z
+)γ (Reτ ) . (14)

Here both the coefficients C(Reτ ) and the exponents γ (Reτ )

were represented as asymptotic series expansions in ε. The
relative complexity of this proposition compared to the
simplicity of Eq. (13) resulted in a mixed response in the
fluid mechanics community [29], leading to a controversy.
Various attempts [24,28–32] to validate the log-law (13) or the
alternative power-law (14) were based on extensive analysis of
experimental data used to fit the velocity profiles as a formal
expansion in inverse powers of ε or as composite expansions in
both z+ and ζ .

Recently a complementary approach to this issue was
proposed on the basis of experience with critical phenomena
where one employs scaling functions rather than scaling
laws [33]. The essence of this approach is the realization that
a characteristic scale, say ˜̀, may depend on the position in the
flow. The simple scaling assumption near the wall, ˜̀+

= κz+,
leads to the log-law (13). The alternative suggestion of [24],˜̀+

∝ (z+)α(Reτ ), leads to alternative power-law (14). But there
is no physical reason why ˜̀ should behave in either manner.
Instead, it was shown that ˜̀/L should depend on ζ = z/L ,
approaching κζ in the limit ζ → 0 (in accordance with the
classical thinking). However, for ζ ∼ 1, ˜̀ should saturate
at some level below κL due to the effect of the other wall.
We recall now the recent analysis of DNS data that provides
a strong support to this idea, allowing one to get, within
the traditional (second-order) closure procedure, a quantitative
description of the following three quantities: the mean shear,
S(z) = dV (z)/dz, the kinetic energy density (per unit mass),
K (z) ≡ 〈|u|

2
〉/2, and the tangential Reynolds stress, W (z) ≡

− 〈ux uz〉. This is achieved in the entire flow and in a wide
region of Reτ , using only three Reτ -independent parameters.

The first relation between these objects follows from the
Navier–Stokes equation for the mean velocity. The resulting
equation is exact, being the mechanical balance between the
momentum generated at distance z from the wall, i.e. p′(L −

z), and the momentum transferred to the wall by kinematic
viscosity and turbulent transport. In physical and wall units it
has the form

νS + W = p′(L − z) ⇒ S+
+ W +

= 1 − ζ. (15)

Neglecting the turbulent diffusion of energy (known to be
relatively small in the log-law region), one gets a second
relation as a local balance between the turbulent energy
generated by the mean flow at a rate SW , and the dissipation
at a rate εK ≡ ν〈|∇u|

2
〉: εK ≈ SW . For stationary conditions

εK equals the energy flux toward smaller scales from the
outer scale of turbulence, ˜̀

K . Thus, the flux is estimated as
γK (z)K (z), where γK (z) is the typical eddy turnover inverse
time, estimated as

√
K (z)/˜̀K (z). This gives rise to the other
(now approximate) relations:

S+W +
≈ ε+

K
, ε+

K
= γ +

K
K +

= K +
√

K +/˜̀+

K
. (16)

The third required relationship can be obtained from the Navier
Stokes equation, similar to Eq. (16), as the local balance
between the rate of Reynolds stress production ≈SK and its
dissipation εW : εW ≈SK . The main contribution to εW comes
from the so-called Return-to-Isotropy process and can be
estimated [34], similarly to εK , as γW W with γW =

√
K/˜̀W ,

involving yet another length scale ˜̀
W which is of the same order

of magnitude as `K . Thus one has, similarly to Eq. (16),

S+K +
≈ ε+

W
, ε+

W
= γ +

W
W +

= W +
√

K +/˜̀+

W
. (17)

Now we show that the source of ambiguity is the assumption
that the length scales can be determined a priori as `+

K ,W
∝

(z+)α with α = 1 or α 6= 1. In reality we have another
characteristic length scale, i.e. L , that also should enter the
picture when ζ = z/L is not very small. The actual dependence˜̀

W and ˜̀
K on z and L can be found from the data. Consider

first ˜̀
W , defined by Eq. (17), and introduce a new scale `W ≡˜̀

W rW (z+)/κW such that

`+

W
≡

W +(z+, Reτ ) rW (z+)

κW S+(z+, Reτ )
√

K +(z+, Reτ )
. (18)

Here, rW (z+) is a universal i.e. Reτ -independent dimensionless
function of z+, chosen such that new scale `W /L = `+

W
/Reτ

becomes a Reτ -independent function of only one variable ζ =

(z/L) = (z+/Reτ ). The dimensionless constant κW ≈ 0.20 is
chosen to ensure that limz�L `+

W
(ζ ) = z+. Note that if rW were

a constant, `W would have started near the wall quadratically,
i.e. as z × z+. Later `+

W
would have become ∝ z+ for 50 �

z+
� Reτ [34]. Thus to normalize it to slope 1 we need

the function rW (z+) that behaves as 1/z+ for z+
� 50 and

approaches unity (under a proper choice of κW ) for z+
� 50.

A choice that leads to good data collapse is

rW (z+) =

[
1 +

(
`+

buf/z+
)6

]1/6
, `+

buf ≈ 49, (19)

where `+

buf is a Reτ -independent length that plays a role of
the crossover scale (in wall units) between the buffer and log
regions. The quality of the data collapse for this scaling function
is demonstrated in Fig. 2.

The second length scale, ˜̀+

K
, is determined by Eq. (16):

˜̀+

K
≡

(K +(z+, Reτ ))
3/2

ε+
K
(z+, Reτ )

= κK `+

K
, κK ≈ 3.7. (20)

In Fig. 2 we demonstrate that this simple scaling function leads
to good data collapse everywhere except perhaps in the viscous
layer. We will see below that this has only negligible effects on
our results.

Solution and velocity profiles: Solving Eqs. (16) and (17) and
accounting for Eqs. (18) and (20) we find

W +
=

(
κS+`+

)2
r−3/2

W , (21)
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Fig. 1. Color online. Comparison of the theoretical mean velocity profiles (red solid lines) at different values of Reτ with the DNS data for the channel flow [26,
27] (left panel, grey squares; model with `buf = 49, κ = 0.415, `s = 0.311) and with the experimental superpipe data [28] (right panel, grey circles; model with
`buf = 46, κ = 0.405, `s = 0.275). In orange dashed line we plot the viscous solution V +

= z+. In green dashed dotted line we present the von Kármán log-law.
Note that the theoretical predictions with three Reτ -independent parameters fits the data throughout the channel and pipe, from the viscous scale, through the buffer
layer, the log-layer and the wake. For clarity different plots are shifted vertically by five units.

Fig. 2. Color online. The scaling function `+

W
(ζ )/Reτ (left panel), `+

K
(ζ )/Reτ (middle panel) and the final scaling function `+(ζ ) (right panel), as a function of

ζ ≡ z/L , for four different values of Reτ , computed from the DNS data [26,27]. Note that the data collapse everywhere except at ζ → 1 where W+
∼ S+

� 1
and accuracy is lost. The green dash line represents ζ̃ = ζ (1 − ζ/2) with a saturation level 0.5; in orange solid line we show the fitted function Eq. (24) with
`sat = 0.311.
where we have defined the von Kármán constant and the crucial
scaling function `+(ζ ) as

κ ≡ (κ3
W κK )1/4

≈ 0.415, `+
≡ [`+

W
3
(ζ ) `+

K (ζ )]1/4. (22)

The convincing data collapse for the resulting function
`+(ζ )/Reτ is shown in Fig. 2, rightmost panel. Substituting
Eq. (21) in Eq. (15) we find a quadratic equation for S with the
solution

S+
=

√
1 + (1 − ζ )[2κ`+(ζ )]2/rW (z+)3/2 − 1

2[κ`+(ζ )]2/rW (z+)3/2 . (23)

To integrate this equation and find the mean velocity profile
for any value of Reτ we need to determine the scaling function
`+(ζ ) from the data. A careful analysis of the DNS data allows
us to find a good one-parameter fit for `+(ζ ),

`+(ζ )

Reτ

= `s

{
1 − exp

[
−

ζ̃

`s

(
1 +

ζ̃

2`s

)]}
, (24)

where ζ̃ ≡ ζ(1 − ζ/2) and `s ≈ 0.311. The quality of the fit
is obvious from the continuous line in the rightmost panel of
Fig. 2.
Finally the theory for the mean velocity contains three
parameters, namely `s together with `+

buff and κ . We
demonstrate now that with these three parameters we can
determine the mean velocity profile for any value Reτ ,
throughout the channel, including the viscous layer, the buffer
layer, the log-law region and the wake. Examples of the
integration of Eq. (23) are shown in Fig. 1. We trust that,
irrespective of the reader’s own preference to the log-law or
the power-law, he would agree that these fits are very good.
It remains now to estimate, using (23), the conditions under
which we expect to see a log-law and those when deviations
due to finite Reτ would seem important. In addition, our theory
yields the kinetic energy and Reynolds stress profiles which are
in qualitative agreement with the DNS data; for W profiles see
Fig. 3.

To show that the present approach is quite general, we apply
it now to the experimental data that were at the center of the
controversy [24], i.e., the Princeton superpipe data [28]. In
Fig. 1 right panel we show the mean velocity profiles measured
in the superpipe compared with our prediction using the same
scaling function `+(ζ ). Note that the data spans values of
Reτ from 5050 to 165,000, and the fits with only three Reτ -
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Fig. 3. The Reynolds stress profiles (solid lines) at Reτ from 394 to 2003 (in
channel) and from 5050 to 165,000 (in pipe) in comparison with available DNS
data (dots) for the channel.

independent constants are excellent. Note the 2% difference in
the value of κ between the DNS and the experimental data; we
do not know at this point whether this stems from inaccuracies
in the DNS or the experimental data, or whether turbulent
flows in different geometries have different values of κ . While
the latter is theoretically questionable, we cannot exclude this
possibility until a better understanding of how to compute κ

from first principles is achieved.
So far we discussed turbulent channel and pipe flows and

demonstrated the existence and usefulness of a scaling function
`+(ζ ) which allows us to get the profiles of the mean velocities
for all values of Reτ and throughout the channel. While this
function begins near the wall as z+, it saturates later, and its
full functional dependence on ζ is crucial for finding the correct
mean velocity profiles. The approach also allows us to delineate
the accuracy of the log-law presentation, which depends on z+

and the value of Reτ . For asymptotically large Reτ the region
of the log-law can be very large, but nevertheless it breaks
down near the mid channel and near the buffer layer, where
corrections were presented.

The future challenge is to apply this idea to other examples
of wall-bounded flows, including time-developing boundary
layers, turbulent flows with temperature gradients or laden with
particles. There may be more typical “lengths” in such systems,
and it is very likely that turning these lengths into scaling
functions will provide new insights and better models for a
variety of engineering applications. Such efforts are not entirely
new; see, for example, [35].

5. Drag reduction by additives

One severe technological problem with turbulent flows is
that they cost a lot to maintain; the drag that the fluid exerts
on the wall increases significantly when turbulence sets in. It
is therefore important that there exist additives, in particular
polymers and bubbles, that can reduce this drag significantly.
Over the last few years there has been great progress in
understanding these phenomena, and here we provide a short
review of this progress.
5.1. Drag reduction by polymers

The addition of few tens of parts per million (by weight)
of long-chain polymers to turbulent fluid flows in channels
or pipes can bring about a reduction of the friction drag by
up to 80% [36–39]. This phenomenon of “drag reduction”
is well documented and is used in technological applications
from fire engines (allowing a water jet to reach high floors)
to oil pipes. In spite of a large amount of experimental
and simulations data, the fundamental mechanism for drag
reduction has remained under debate for a long time [39–
41]. In such wall-bounded turbulence, the drag is caused by
momentum dissipation at the walls. For Newtonian flows (in
which the kinematic viscosity is constant) the momentum flux
is dominated by the so-called Reynolds stress, leading to the
logarithmic (von-Kármán) dependence of the mean velocity on
the distance from the wall [34]. However, with polymers, the
drag reduction entails a change in the von-Kármán log-law such
that a much higher mean velocity is achieved. In particular, for
high concentrations of polymers, a regime of maximum drag
reduction is attained (the “MDR asymptote”), independent of
the chemical identity of the polymer [37], see Fig. 4. During the
last few years the fundamental mechanism for this phenomenon
was elucidated: while momentum is produced at a fixed rate
by the forcing, polymer stretching results in a suppression of
the momentum flux from the bulk to the wall. Accordingly
the mean velocity in the channel must increase. It was shown
that polymer stretching results in an effective viscosity that
increases linearly with the distance from the wall. The MDR
asymptote is consistent with the largest possible such linear
increase in viscosity for which turbulent solutions still exist. In
other words, the MDR is an edge solution separating turbulent
from laminar flows. This insight allowed one to derive the MDR
as a new logarithmic law for the mean velocity with a slope
that fits existing numerical and experimental data. The law is
universal, explaining the MDR asymptote.

5.2. Short review of the theory

The riddle of drag reduction can be introduced by a
juxtaposition of the effect of polymers with respect to the
universal Newtonian law (13). In the presence of long chain
polymers the mean velocity profile V +(y+) (for a fixed value of
p′ and channel geometry) changes dramatically. For sufficiently
large concentration of polymers V +(y+) saturates to a new
(universal, polymer independent) “law of the wall” [37],

V +(y+) = κV
−1 ln

(
e κV y+

)
for y+ & 10. (25)

This law, which was discovered experimentally by Virk (and
hence the notation κV ), is also claimed to be universal,
independent of the Newtonian fluid and the nature of the
polymer additive, including flexible and rigid polymers [38].
Previous to our work in this network, the numerical value of the
coefficient κV was known only from experiments, κV

−1
≈ 11.7,

giving a phenomenological MDR law in the form [37]

V +(y+) = 11.7 ln y+
− 17. (26)
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For smaller concentration of polymers the situation is as
shown in Fig. 4. The Newtonian law of the wall (13) is the black
solid line for y+ & 30. The MDR asymptote (25) is the dashed
red line. For intermediate concentrations the mean velocity
profile starts along the asymptotic law (25), and then crosses
over to the so-called “Newtonian plug” with a Newtonian
logarithmic slope identical to the inverse of von-Kármán’s
constant. The region of values of y+ in which the asymptotic
law (25) prevails was termed “the elastic sublayer” [37]. The
relative increase of the mean velocity (for a given p′) due to the
existence of the new law of the wall (25) is the phenomenon
of drag reduction. Thus the main theoretical challenge is to
understand the origin of the new law (25), and in particular its
universality, or independence of the polymer used. A secondary
challenge is to understand the concentration-dependent cross
over back to the Newtonian plug. In our work we argue that
the phenomenon can be understood mainly by the influence of
the polymer stretching on the y+-dependent effective viscosity.
The latter becomes a crucial agent in carrying the momentum
flux from the bulk of the channel to the walls (where the
momentum is dissipated by friction). In the Newtonian case the
viscosity has a negligible role in carrying the momentum flux;
this difference gives rise to the change of Eq. (13) in favor of
Eq. (25) which we derive below.

The equations of motion of polymer solutions are written
in the FENE-P approximation [42,43] by coupling the fluid
velocity u(r, t) to the tensor field of “polymer conformation
tensor” R(r, t). The latter is made from the “end-to-end”
separation vector as Rαβ(r, t) ≡ 〈rαrβ〉, and it satisfies the
equation of motion

∂ Rαβ

∂t
+ (uγ ∇γ )Rαβ =

∂uα

∂rγ

Rγβ + Rαγ

∂uβ

∂rγ

−
1
τ

[
P(r, t)Rαβ − ρ2

0δαβ

]
,

P(r, t) = (ρ2
m − ρ2

0)/(ρ2
m − Rγ γ ) (27)

ρ2
m and ρ2

0 refer to the maximal and the equilibrium values of
the trace Rγ γ . In most applications ρm � ρ0

P(r, t) ≈ (1/(1 − αRγ γ )),

where α = ρ−2
m . The equation for the fluid velocity field gains

a new stress tensor:

∂uα

∂t
+ (uγ ∇γ )uα = −∇α p + νs∇

2uα + ∇γ Tαγ (28)

Tαβ(r, t) =
νp

τ

[
P(r, t)

ρ2
0

Rαβ(r, t) − δαβ

]
. (29)

Here νs is the viscosity of the neat fluid, and νp is a viscosity
parameter which is related to the concentration of the polymer,
i.e. νp/νs ∼ cp.

We shall use the approximation

Tαβ ∼
νp

τ

P

ρ2
0

Rαβ .

Armed with the equation for the viscoelastic medium
we establish the mechanism of drag reduction following the
standard strategy of Reynolds. Eq. (15) changes now to another
exact relation [44] between the objects S and W which includes
the effect of the polymers:

W + νS +
νp

τ
〈P Rxy〉(y) = p′(L − y). (30)

On the RHS of this equation we see the production of
momentum flux due to the pressure gradient; on the LHS we
have the Reynolds stress, the Newtonian viscous contribution
to the momentum flux, and the polymer contribution to the
momentum flux. A second relation between S(y), W (y), K (y)

and R(y) is obtained from the energy balance. In Newtonian
fluids the energy is created by the large scale motions at a rate
of W (y)S(y). It is cascaded down the scales by a flux of energy,
and is finally dissipated at a rate ε, where ε = ν〈|∇u|

2
〉. In

viscoelastic flows one has an additional contribution due to the
polymers. Our calculation [44] showed that the energy balance
equation takes the form:

aν
K

y2 + b
K 3/2

y
+

A2νp

2τ 2 〈P〉
2(〈Ryy〉 + 〈Rzz〉) = W S. (31)

We note that contrary to Eq. (30) which is exact, Eq. (31) is not
exact. We expect it, however, to yield good order of magnitude
estimates as is demonstrated below. Finally, we quote the
experimental fact [37] that outside the viscous boundary layer

W (y)

K (y)
=

{
c2

N
, for Newtonian flow,

c2
V

, for viscoelastic flow.
(32)

The coefficients cN and cV are bounded from above by unity.
(The proof is |c| ≡ |W |/K ≤ 2|〈ux u y〉|/〈u2

x+u2
y〉 ≤ 1, because

(ux ± u y)
2

≥ 0.)
To proceed, one needs to estimate the various components

of the polymer conformation tensor. This was done in [45] with
the final result that for cp large (where P ≈ 1), and Deborah
number De ≡ τ S(y) � 1 the conformation tensor is highly
anisotropic,

R(y) ' Ryy(y)

2De2(y) De(y) 0
De(y) 1 0

0 0 C(y)

 .

The important conclusion is that the term proportional to
〈Ryy〉 in Eq. (31) can be written as νp〈Ryy〉(y)S(y). Defining
the “effective viscosity” ν(y) according to

ν(y) = ν0 + νp〈Ryy〉(y). (33)

The momentum balance equation attains the form

ν(y)S(y) + W (y) = p′L . (34)

It was shown in [44] that also the energy balance equation can
be rewritten with the very same effective viscosity, i.e.,

ν(y)

(
a

y

)2

K (y) +
b

√
K (y)

y
K (y) = W (y)S(y). (35)

In the MDR region the first term on the RHS in Eqs. (34) and
(35) dominate; from the first equation ν(y) ∼ 1/S(y). Put
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in Eq. (35) this leads to S(y) ∼ 1/y, which translates to the
new logarithmic law which is the MDR. We will determine the
actual slope momentarily. At this point one needs to stress that
this results means that ν(y) must be proportional to y in the
MDR regime. This linear dependence of the effective viscosity
is one of the central discoveries of our approach. Translated
back, it predicts that 〈Ryy〉 ∼ y outside the boundary layer.
This prediction is well supported by numerical simulations.

The crucial new insight that explained the universality of the
MDR and furnished the basis for its calculation is that the MDR
is a marginal flow state of wall-bounded turbulence: attempting
to increase S(y) beyond the MDR results in the collapse of the
turbulent solutions in favor of a stable laminar solution W = 0.
As such, the MDR is universal by definition, and the only
question is whether a polymeric (or other additive) can supply
the particular effective viscosity ν(y) that drives Eqs. (34) and
(35) to attain the marginal solution that maximizes the velocity
profile. We predict that the same marginal state will exist in
numerical solutions of the Navier–Stokes equations furnished
with a y-dependent viscosity ν(y). There will be no turbulent
solutions with velocity profiles higher than the MDR.

To see this explicitly, we first rewrite the balance equations
in wall units. For constant viscosity (i.e. ν(y) ≡ ν0), Eqs.
(34) and (35) form a closed set of equations for S+

≡

Sν0/(P ′L) and W +
≡ W/

√
P ′L in terms of two dimensionless

constant δ+
≡ a

√
K/W (the thickness of the viscous boundary

layer) and κK ≡ b/c3
V (the von Kármán constant). Newtonian

experiments and simulations agree well with a fit using δ+
∼ 6

and κK ∼ 0.436 (see the black continuous line in Fig. 4 which
shows the mean velocity profile using these very constants).
Once the effective viscosity ν(y) is no longer constant we
expect cV to change and consequently the two dimensionless
constants will change as well. We will denote the new constants
as ∆ and κC respectively. Clearly one must require that for
ν(y)/ν0 → 1, ∆ → δ+ and κC → κK . The balance equations
are now written as

ν+(y+)S+(y+) + W +(y+) = 1, (36)

ν+(y+)
∆2

y+2 +

√
W +

κC y+
= S+. (37)

where ν+(y+) ≡ ν(y+)/ν0. Substituting now S+ from Eq.
(36) into Eq. (37) leads to a quadratic equation for

√
W +. This

equation has as a zero solution for W + (laminar solution) as
long as ν+(y+)∆/y+

= 1. Turbulent solutions are possible
only when ν+(y+)∆/y+ < 1. Thus at the edge of existence
of turbulent solutions we find ν+

∝ y+ for y+
� 1. This is

not surprising, since it was observed already in previous work
that the MDR solution is consistent with an effective viscosity
which is asymptotically linear in y+ [46,47]. It is therefore
sufficient to seek the edge solution of the velocity profile with
respect to linear viscosity profiles, and we rewrite Eqs. (36)
and (37) with an effective viscosity that depends linearly on
y+ outside the boundary layer of thickness δ+:

[1 + α(y+
− δ+)]S+

+ W +
= 1 , (38)
[1 + α(y+
− δ+)]

∆2(α)

y+2 +

√
W +

κC y+
= S+ . (39)

We now endow ∆ with an explicit dependence on the slope
of the effective viscosity ν+(y), ∆ = ∆(α). Since drag
reduction must involve a decrease in W , we expect the ratio
a2 K/W to depend on α, with the constraint that ∆(α) → δ+

when α → 0. Although ∆, δ+ and α are all dimensionless
quantities, physically ∆ and δ+ represent (viscous) length
scales (for the linear viscosity profile and for the Newtonian
case, respectively) while α−1 is the scale associated to the
slope of the linear viscosity profile. It follows that αδ+ is
dimensionless even in the original physical units. It is thus
natural to present ∆(α) in terms of a dimensionless scaling
function f (x),

∆(α) = δ+ f (αδ+). (40)

Obviously, f (0) = 1. In [48] it was shown that the balance
equations (38) and (39) (with the prescribed form of the
effective viscosity profile) have a nontrivial symmetry that
leaves them invariant under rescaling of the wall units. This
symmetry dictates the function ∆(α) in the form

∆(α) =
δ+

1 − αδ+
. (41)

Armed with this knowledge we can now find the maximal
possible velocity far away from the wall, y+

� δ+. There the
balance equations simplify to

αy+S+
+ W +

= 1, (42)

α∆2(α) +

√

W +/κC = y+S+. (43)

These equations have the y+-independent solution for
√

W +

and y+S+:

√

W + = −
α

2κC

+

√(
α

2κC

)2

+ 1 − α2∆2(α),

y+S+
= α∆2(α) +

√

W +/κC . (44)

By using Eq. (44) (see Fig. 5), we obtain that the edge solution
(W +

→ 0) corresponds to the supremum of y+S+, which
happens precisely when α = 1/∆(α). Using Eq. (41) we find
the solution α = αm = 1/2δ+. Then y+S+

= ∆(αm), giving
κ−1

V
= 2δ+. Using the estimate δ+

≈ 6 we get the final
prediction for the MDR. Using Eq. (25) with κ−1

V
= 12, we

get

V +(y+) ≈ 12 ln y+
− 17.8. (45)

This result is in close agreement with the empirical law (26)
proposed by Virk. The value of the intercept on the RHS of
Eq. (45) follows from Eq. (25) which is based on matching
the viscous solution to the MDR log-law in [46]. Note that
the numbers appearing in Virk’s law correspond to δ+

= 5.85,
which is well within the error bar on the value of this Newtonian
parameter. Note that we can easily predict where the asymptotic
law turns into the viscous layer upon the approach to the wall.
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Fig. 4. Mean normalized velocity profiles as a function of the normalized
distance from the wall during drag reduction. The data points from numerical
simulations (green circles) [52] and the experimental points (open circles) [53]
represent the Newtonian results. The black solid line is the universal Newtonian
line which for large y+ agrees with von-Kármán’s logarithmic law of the
wall (13). The red data points (squares) [54] represent the Maximum Drag
Reduction (MDR) asymptote. The dashed red curve represents our theory for
the profile which for large y+ agrees with the universal law (25). The blue
filled triangles [54] and green open triangles [55] represent the cross over, for
intermediate concentrations of the polymer, from the MDR asymptote to the
Newtonian plug. Our theory is not detailed enough to capture this cross over
properly. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. The solution for 10
√

W+ (dashed line) and y+S+ (solid line) in the
asymptotic region y+

� δ+, as a function of α. The vertical solid line
α = 1/2δ+

= 1/12 which is the edge of turbulent solutions; Since
√

W+

changes sign here, to the right of this line there are only laminar states. The
horizontal solid line indicates the highest attainable value of the slope of the
MDR logarithmic law 1/κV = 12.

We can consider an infinitesimal W + and solve Eqs. (36) and
(37) for S+ and the viscosity profile. The result, as before, is
ν+(y) = ∆(αm)y+. Since the effective viscosity cannot fall
bellow the Newtonian limit ν+

= 1 we see that the MDR cannot
go below y+

= ∆(αm) = 2δ+. We thus expect an extension of
the viscous layer by a factor of 2, in very good agreement with
the experimental data.

5.3. Non-universal aspects of drag reduction by polymers

When the concentration of polymers is not large enough, or
when the Reynolds number is too low, the MDR is attained only
up to some value of y+ that depends in a non-universal manner
on the Reynolds number and on the nature of the polymer [49].
These non-universal turn-backs to the so-called “Newtonian
plug” can be understood theoretically, and we refer the reader
to [44,50] for further details.

5.4. Drag reduction by micro-bubbles

Finally, we should mention that drag reduction by polymers
is not the solution for many technologically pressing problems,
the most prominent of which is the locomotion of ships. Here
a more promising possibility is the drag reduction by bubbles,
a subject that is much less developed than drag reduction by
polymers. For some recent papers on this subject, see, for
example [51] and the references therein; we stress that this
subject is far from being exhausted by these papers, and expect
more work to appear in the near future.

6. Thermal convection

Convection in Nature often occurs in conjunction with
other physical effects such as rotation, magnetic field and
particulate matter, so the knowledge of the subject is relevant
to several closely related fields. The complexity of the
underlying equations has precluded much analytical progress
for circumstances of practical interest, and the demands of
computing power are such that routine simulations have not
yet been possible. Thus, the progress in the field has depended
more on input from experiment, which has limitations of its
own in terms of accessible parameter ranges. The progress in
the subject, such as it is, has been possible only through strong
interactions among theory, experiment and simulation. This is
as it should be.

The paradigm for thermal convection is the Rayleigh–Bénard
problem in which a thin fluid layer of infinite lateral extent is
contained between two isothermal surfaces with the bottom sur-
face maintained slightly hotter. When the expansion coefficient
is positive (as is the case usually), an instability develops be-
cause the hot fluid from below rises to the top and the colder
fluid from above sinks to the bottom. The applied driving force
is measured in terms of a Rayleigh number, Ra,

Ra = gα∆T H3/νκ, (46)

which emerges [56] as the appropriate non-dimensional
measure of the imposed temperature difference across the fluid
layer. Here, g is the acceleration due to gravity, H is the
vertical distance between the top and bottom plates, α, ν and
κ are, respectively, the isobaric thermal expansion coefficient,
the kinematic viscosity and the thermal diffusivity of the fluid.
Physically, the Rayleigh number measures the ratio of the rate
of potential energy release due to buoyancy to the rate of its
dissipation due to thermal and viscous diffusion.

The second important parameter is the Prandtl number

Pr = ν/κ, (47)

which is the ratio of time scales due to thermal diffusion
(τθ = H2/κ) and momentum diffusion (τv = H2/ν), and
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Table 1
Values of the combination of fluid properties α/νκ for air, water and
helium [66]; SVP = saturated vapor pressure

Fluid T (K) P (Bar) α/νκ

Air 293 1 0.12
Water 293 1 14
Helium I 2.2 SVP 2.3 × 105

Helium II 1.8 SVP –
Helium gas 5.25 2.36 6 × 109

Helium gas 4.4 2 × 10−4 6 × 10−3

determines the ratio of viscous and thermal boundary layers on
the solid surfaces. With increasing Ra the dynamical state of
the Rayleigh–Bénard system goes from a uniform and parallel
roll pattern at the onset (Ra ∼ 103) to turbulent state beyond
Ra of 108, say.

For purposes of theoretical simplification, it is customary to
assume that the thermal driving does not affect the pressure
or the incompressibility condition, and that its only effect is
to introduce buoyancy. This is the Boussinesq approximation.
How closely the theoretical results correspond to observations
depends on how closely the experiments obey the Boussinesq
approximation. It is also not clear if small deviations from the
ideal boundary conditions produce only small effects.

6.1. Experiments using cryogenic helium

Since many examples of convection occur at very high
Rayleigh numbers [57], it is of interest to understand the heat
transport characteristics in that limit. It is also necessary to
be able to cover a large range of Ra in order to discover
the applicable scaling laws. Cryogenic helium has been
used successfully for the purpose. Though experiments in
conventional fluids have been valuable [58,59], the Rayleigh
number has been pushed to the limit only through the use of
cryogenic helium. The same properties that make helium a
suitable fluid for convection studies also makes it suitable for
creating flows with very high Reynolds numbers [60].

Historically, a small “superfluid wind tunnel” was con-
structed [61] with the idea of exploiting the superfluid prop-
erties of helium II for obtaining very high Reynolds numbers.
Potential flow was observed for low velocities, with no mea-
surable lift on a pair of fly wings hanging in the tunnel, but
the inevitable appearance of quantized vortices (see Section 7
on superfluid turbulence) altered that picture for higher flow
speeds. Threlfall [62] recognized the advantages of using low
temperature helium gas to study high-Ra convection. The later
work by Libchaber and co-workers [63] brought broader aware-
ness to the potential of helium. The work of Refs. [64,65] is a
natural culmination of this cumulative effort. It is regrettable,
though understandable, that the drive towards higher Rayleigh
numbers has occurred in all these experiments at the sacrifice
of the lateral extent of the apparatus (so the connection to the
ideal Rayleigh–Bénard problem needs some justification).

The specific advantage of using helium for convection is the
huge value of the combination α/νκ near the critical point. This
can generate large Ra (see Table 1). For a fluid layer some 10 m
Fig. 6. Log–log plot of the Nusselt number versus Rayleigh number. The line
through the data is a least-square fit over the entire Ra range, and represents a
d log Nu/d log Ra slope of 0.32.

tall and a reasonable temperature difference of 0.5 K, Rayleigh
numbers of the order 1021 are possible. Table 1 also shows that
α/νκ is quite small at pressures and temperatures sufficiently
far away from the critical value. In fact, the range shown in the
table covers a factor of 1012, so any experiment of fixed size
H can yield about 12 decades of the control parameter Ra by
this means alone. However, if H is chosen to be large enough,
this entire range of Ra can be shifted to a regime of developed
turbulence where well-articulated scaling relations might be
observed. This tunability is essentially impossible for air and
water, especially because one cannot use more than modest
temperature difference to increase Ra (due to the attendant non-
Boussinesq effects, Section 6.3). For other advantages of using
helium, see [66].

6.2. The scaling of the heat transport

The heat transport in convection is usually expressed in
terms of the Nusselt number Nu

Nu =
q

qcond
=

q H

k f ∆T
, (48)

where q is the total heat flux, qcond is the heat flux in the
absence of convection, given by Fourier’s law, and k f is the
thermal conductivity of the fluid. Nu represents the ratio of the
effective thermal conductivity of the fluid due to its turbulent
motion to its molecular value. One goal of convection research
is to determine the functional relation Nu = f (Ra, Pr). This
relation is at least as fundamental as the skin friction relation in
isothermal flows.

Fig. 6, reproduced from Ref. [66], illustrates the enormous
range of Ra and Nu that is possible in low temperature
experiments of modest physical size (1 m height). The Nusselt
numbers have been corrected here for sidewall conduction and
also for finite thermal conductivity of the plates (and both
corrections are small, see [66]). That Nusselt numbers attain
values as high as 104 in these measurements is a testimony to
the great practical importance of turbulence.

We have shown this figure partly because it represents the
highest Ra achieved so far under laboratory conditions and also
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the largest range of Ra in the turbulent scaling regime, both
of which represent the fulfilment of the promise of cryogenic
helium gas. The average power-law exponent over 11 decades
is 0.32, close to 1/3. We show this figure also because one
might have hoped that such an unusual straight line spanning
many decades in Ra might have a finality to it. Perhaps it
does. However, experiments of Chavanne et al. [65], and by
Niemela and Sreenivasan [67] for a different aspect ratio,
have found a scaling exponent rising beyond 1/3 towards the
very highest Ra. The plausible conclusions of Niemela and
Sreenivasan [67,68] were that those data corresponded to large
non-Boussinesq conditions and to variable Prandtl number
(which occur when one operates close to the critical point), but
it is important to test these plausible conclusions directly. We
shall momentarily discuss the current work in this direction. If
we ignore the apparently non-Boussinesq regime, it has been
argued in Refs. [67,68] that the scaling exponent from existing
data is most likely consistent with a value close to 1/3.

As already mentioned, computations have not yet ap-
proached experiments in terms of high Ra, but their advantage
is that Pr can be held constant and the Boussinesq approxi-
mation can be enforced strictly. The available computational
ability has recently been pushed by Amati et al. [69], who have
reached Rayleigh numbers of 2×1014. Even though this number
is still about three orders of magnitude lower than the highest
experimental value, it has become quite competitive with re-
spect to many other experiments. This work suggests that the
one-third exponent is quite likely, reinforcing the conclusion
of Refs. [67,68]. Computational simulations have also explored
the effects of finite conductivity, sidewall conduction and non-
Boussinesq effects [70,71].

In spite of the limitations of Ra attainable in simulations,
much of the details we know about boundary layers and
fluctuations come from them. If one were to desire more
of simulations (apart from nudging the ranges of Rayleigh
and Prandtl numbers), it is that they should test the limits
of resolution better. Direct knowledge of the velocity is
most desirable in understanding the dynamics of plumes
and boundary layers, and also the importance of the mean
wind. Experiments in convection have limited themselves to
measuring the mean wind and temperature at a few points,
but not the spatial structures. The conventional techniques
of velocity measurements and flow visualization are fraught
with difficulties when considered for thermal convection in
cryogenic helium, as has been discussed in [66].

We should now comment on the contributions of the theory
to the heat transport problem. Two limiting cases for the scaling
of Nu have been considered. The first scenario imagines that
the global flux of heat is determined by processes occurring
in the two thermal boundary layers at the top and bottom of
the heated fluid layer. Then the intervening fluid, being fully
turbulent and “randomized”, acts as a thermal short circuit
and therefore its precise nature is immaterial to the heat flux.
We can then determine by dimensional arguments the relation
to be Nu ∼ Ra1/3 [72]. This scaling assumes that the heat
flux has no dependence on H . In the limit in which molecular
properties are deemed irrelevant in determining heat transport
– that is, when boundary layers cease to exist – an exponent
of 1/2 (modulo logarithmic corrections) has been worked
out phenomenologically [73]. There has been an alternative
theory [63] that obtains the 2/7th scaling through intermediate
asymptotics, but this aspect of the experimental result that
motivated the work has not been sustained by more recent work.

The upperbound theory, though quite old (see Refs. [72,74]),
has been taken to new levels through the efforts of Constantin
and Doering (e.g., Ref. [75]), as well as by others more recently,
and has contributed the following valuable hints on the heat
transport law:

1. Arbitrary Prandtl number: Nu < Ra1/2 uniformly in
Prandtl number, Pr [75]. This result rules out dependencies
such as Pr1/2 [76,77] and Pr−1/4 [73]. In particular, [73]
was written when the boundary layer structure was
understood much less than now, and there is a need
to reconstruct its arguments afresh, in particular for the
reassessment of the Rayleigh number at which the so-called
“ultimate regime” with an exponent of 1/2 is supposed to
prevail for Prandtl numbers of the order unity.

2. Large but finite Prandtl numbers: The largeness of the
Prandtl number is prescribed by the condition Pr > cRa,
where c is a constant of the order unity. Under this condition,
the upperbound is given by Nu ≤ Ra1/3(lnRa)2/3 [78]. For
higher Rayleigh numbers the upperbound is still given by (1)
above.

3. Infinite Prandtl number: The latest result due to Doering
et al. [79], is Nu ≤ C Ra1/3(lnRa)1/3. Robust calculations
by Ireley et al. [80], which still seem to fall short of
mathematical proof, is Nu ≤ a Ra1/3, where a is a constant
of the order unity.

Thus, as far as the upperbound theory is concerned, the
Ra1/2 result is permissible for Prandtl numbers of the order
unity, though some semi-analytical results on Prandtl number
dependencies are ruled out as noted in (1) above. Simulations
suggest that the Nusselt number is independent of the Prandtl
number above values of the order unity, so it is possible that the
infinite Prandtl number limit already operates for unity values.
The half-power seems likely when there are no boundary layers
(such as in vertical pipes with no bottom and top boundaries),
but there is also the continuing (though dwindling) hope of
finding this behavior for “very large” Rayleigh numbers in
a closed container. Exactly how large is “very large”? The
notion that boundary layers will become irrelevant at very high
Rayleigh numbers seems misconstrued to us.

Finally, we mention the effect of rough surfaces on the
global heat transfer rate [81,82] and the presence of a weakly
organized mean wind [83–86]. The studies just mentioned have
added to our understanding of turbulent convection. The wind
phenomenon has had a rather broad reach; e.g., quantitative
observations of occasional reversals of the mean wind flow
direction have been related to simple models of self-organized
criticality [87]. Furthermore, the lifetimes of the metastable
states of the bi-directional mean flow have intriguing analogies
with reversals of the Earth’s magnetic field polarity, a
phenomena arising from turbulent convection within the outer
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core [88]; there is also a quantitative statistical analogy with the
lifetime of solar flare activity driven by turbulent convection in
the Sun’s outer layer [89]. This latter conclusion may indicate
the existence of an underlying universality class, or a more
direct physical similarity in the convective processes that lead
to reshuffling of the magnetic footprints and to flare extinction.

6.3. Non-Boussinesq effects

One possible constraint for the Boussinesq condition to hold
is that the fractional change in density across the layer,

∆ρ

ρ
= α∆T, (49)

must be small. On the basis of a comparison to the Boussinesq
problem at the onset of convection, it is generally assumed that
values of α∆T < 0.2, or less than 20% variation of density
across the flow thickness, is acceptable. In the experiments
this criterion is indeed satisfied up to very high values of
Ra (up to 1015 for one set of data [67] and up to 1016 for
another [64]), although there is no assurance that asymmetries
of this magnitude are irrelevant at such high Ra. In fact, a more
stringent requirement by a factor of 4 was adopted in Ref. [67].

Owing to the importance of non-Boussinesq effects, as
discussed in Ref. [67], recent attention has been focused on
them. An early exploration was by Wu and Libchaber [90],
who reported top-bottom asymmetry in boundary layers as a
main characteristic of non-Boussinesq effects, and observed,
with increasing Ra, a reduction in the ratio of temperature drop
across top boundary layer to that across the bottom boundary
layer. Velocity profiles measured in a follow-up paper [91], at
lower Ra, using glycerol, also showed an asymmetry. Ahlers
and collaborators [92] showed that non-Boussinesq effects
depend on the fluid, as one could readily expect. For water, Nu
showed a modest decrease with increase in ∆T . For ethane,
they found larger Nu than in the Boussinesq case, nearly 10%
higher when α∆T = 0.2.

As there are many possible non-Boussinesq effects and their
relative importance depends on the fluid and its operating
conditions, it is difficult to study these effects systematically
in experiments. A numerical computation by [93] in two
dimensions, using glycerol as the working fluid, showed that
effects on Nu were marginal, with some decrease in Nu with
α∆T for Ra > 107. In [71], these effects have been explored
in three-dimensional convection, also computationally. The
finding is that – at least for conditions corresponding to
cryogenic helium gas at moderate Rayleigh numbers – while
viscosity plays an important role in diminishing the movement
of plumes to the interior of convection, it is the coefficient of
thermal expansion that affects heat transport most.

6.4. Whither helium experiments?

While thermal convection has been studied for quite some
time, the recent surge of interest – even in theory and
simulations – has been triggered by helium experiments.
Indeed, these experiments were ahead of theory and simulations
about two decades ago. Since then, theory has been making
its presence felt slowly and simulations have been making
considerable inroads. Experiments have surely extended the
parameter ranges, but, just as surely, they have not kept up the
pace of sophistication. A major step in the understanding of the
problem will occur only if accompanied by major improvement
in experimental sophistication. It is therefore useful to take
stock of the situation briefly. It is perhaps useful even to raise
the question as to whether the promise of helium is realizable
in its entirety anytime soon.

It has been recognized abundantly that the problem is with
instrumentation and with probes of the desired temporal and
spatial resolution. It is not clear to us that smaller probes
based on the principles of standard thermal anemometry are the
solution to the problem, part of which is that the use of helium
raises the Reynolds number of the probe itself to higher values
than in conventional fluids, leading to unfavorable (and poorly
understood) heat transfer characteristics.

In thermal convection flows, where some direct knowledge
of the velocity would be most desirable even at scales much
larger than the Kolmogorov length, the use of hot and cold wires
is further complicated by the fact that they require a steady flow
– and the mean wind is effective only near the boundaries and
also becomes weaker with Ra. Complications arise because the
probe is sensitive simultaneously to temperature and velocity
fluctuations in the environment.

Even if single-point measurements were successful, the need
to measure the entire velocity field in a turbulent flow remains
to be addressed. While a number of hot wires at several points
can be used to obtain some spatial information, there is a limit
to how far this procedure can be escalated. Particle Image
Velocimetry (PIV) has been applied recently to liquid helium
grid turbulence at 4.2 K [94,95], in counterflow turbulence [96]
and in helium II turbulence [97]. However, the information has
been obtained only in the form of two-dimensional sections,
and time evolution of the flow cannot be assessed because of
constraints of data acquisition. The PIV images do little justice
to the three-dimensionality of the flow and to the enormous
range of scales present at high Rayleigh numbers.

Particle selection and injection remain a fundamental hurdle
for PIV measurements at low temperatures. Liquid helium
has a relatively low density, and this makes it harder to find
suitably buoyant particles that are also not too large. The use of
hydrogen particles that match the density of helium has been the
most promising step in this direction [97], but refined control
of the particle generation is needed to render the technique
routinely usable.

The seeding of helium gas for thermal convection
experiments is probably even more difficult owing to the large
variation of the density, and its nominally small value, which at
best is less than half that of the liquid phase. As noted above,
the liquid flow can be seeded to some level of adequacy but
the price to pay is that the large range of Rayleigh numbers is
attainable only in the gaseous phase.

Flow visualization can focus experimental – and even
theoretical – efforts, and yet this domain has not been well
developed for cryogenic helium. We believe that there is a
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huge pay-off here because most existing flow visualizations in
water and other room-temperature fluids are at low to moderate
Rayleigh numbers, and the intuition that one derives from
low Ra cannot easily be extended to high Ra. There are
no technological barriers to perfecting the present efforts –
only one of integrating various components together. We may
also remark that it is not easy to test new particles in the
actual low temperature environment. In experimental phase,
White et al. [94] had resorted to testing in a pressurized SF6
environment, where the density could be matched to that of
liquid helium.

Where density gradients exist in the flow, visualization can
occur in the absence of tracer particles, using shadowgraphy
(which depends on the density gradient) or schlieren technique
(which depends on the second derivative of the density). It
has been demonstrated [98] that shadowgraphy can be used in
helium I to visualize even weak flows near the convective onset.
A light beam reflected from the cell displays intensity variations
resulting from the convergence or divergence due to gradients
in refractive index. Note that the technique does not give local
information, but can be used to visualize only global flows. In
the case of large apparatus, installing an optically transparent
and thermally conducting plates is a nontrivial task.

For the case of turbulence under isothermal conditions,
it would be possible to use helium 3 as a marker for
shadowgraphs.

Scattering of ultrasound is another method that can in
principle be used for velocity measurements in helium. It can
be used in the gas phase which makes it a plausible candidate
for cryogenic convection experiments. However, there would
be substantial problems in achieving sufficiently high signal-
to-noise ratio resulting from a mismatch of acoustic impedance
between the sound transducers and the helium. The work in
this direction [99,100] has not yet been adopted for cryogenic
helium.

In summary, one part of the promise of helium (namely
large values and ranges of the control parameters) has been
delivered; flows with huge values of Ra and Re have indeed
been generated in laboratory-sized apparatus. However, the
second part of the promise (of being able to develop versatile
techniques for precise measurements of velocity and vorticity)
has lagged behind substantially, despite some impressive
efforts. This is the aspect that needs financial investment and
intellectual focus.

Once the instrumentation issues are clearer, we need to
seriously consider an experiment that can combine moderate
aspect ratio (say, 4) with high Ra, constant Pr , and
Boussinesq conditions. Such an experiment is probably not
without considerable technical difficulties. A large scale low
temperature apparatus could be constructed, say at a facility
like CERN or BNL, where there is adequate refrigeration
capacity. Having a horizontal dimension of, say, 5 m or more
would probably require some type of segmentation of the
plates with multiplexing of the heating and temperature control.
Fundamentally, this is no more complicated than the mirror
arrays used in astrophysical observation. The bottom plate,
which has a constant heat flux condition imposed, can be
arbitrarily thick since it can be supported from below. The
temperature control of the plate would probably be more
difficult. Estimates for the cooling power required for cells of
the size just mentioned seem well within the capacity of the
existing refrigeration plants [66].

7. Superfluid turbulence

We now review some phenomenological aspects of liquid
helium below the lambda point, called helium II. Helium II
has a normal component and a superfluid component whose
relative fractions depend on the temperature. The superfluid
is frictionless at low flow velocities but enters, beyond a
critical velocity, a state in which thin vortex lines are formed
spontaneously. These line vortices align themselves with the
axis of rotation if the container as a whole rotates, but otherwise
form self-sustained tangles. The vortex lines move about in
the background of elementary excitations or “quasi-particles”
(which, in fact, form the normal component). The vortices
scatter the excitations when there is relative velocity between
them, thus generating the so-called mutual friction [101]. It
was recognized by Onsager [102] that quantum mechanics
constrains the circulation around the vortices to be nκ/m,
where κ is Planck’s constant and m is the mass of the helium
atom; the integer n = 1 normally. However, the irrotational
flow away from the core of the vortices, whose diameter is
estimated to be of the order of an angstrom, is thought to be
classical [103]. The motion produced by a vortex tangle, which
can be quite complex because of the tangle’s complex geometry,
is called superfluid turbulence [104,105].

7.1. The −5/3 law and analogies to classical turbulence

One of the recent findings [106] is that turbulence in helium
II has the Kolmogorov form for the spectral density with a well-
defined −5/3 power, independent of whether the fraction of the
superfluid is negligible or dominant. This result may not seem
surprising if one takes the view that any nonlinearly interacting
dissipative system of many scales will behave similarly to
the classical Kolmogorov turbulence in the inertial range [1]:
What is needed is merely the existence of mechanisms of
excitation at some large scale and dissipation at the small scale,
with no further detail mattering in the inertial range. However,
several problems come to the fore when one examines possible
scenarios for these mechanisms.

First the dissipation mechanism: Feynman [103] proposed
a scenario by which vortex reconnections generate smaller
and smaller loops in a cascade-like fashion, carrying energy
away from larger scales. Vinen [107] suggested that the short
wavelength Kelvin waves, which are created presumably by
impulses associated with the reconnection of vortices, act
as mediators of dissipation. For temperatures of 1 K and
above, the Kelvin waves are damped out by the background
excitations thus providing the dissipation mechanism. For
lower temperatures, for which the normal fluid is negligible,
the energy is radiated away as sound at sufficiently small
wavelengths. There is follow-up work on the Kelvin-wave
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mechanism for dissipation and on the nature of energy spectrum
at very high wavenumbers (e.g., [108–110]; see also [105,111])
but the details are not yet fully understood. In particular, for
energy loss by radiation to be effective, one needs very high
velocities and short wavelengths: Modest motion of vortices
will not do. Higher velocities are possible very close to the
vortex core because of the inverse power-law of the potential
velocity field – and also because of reconnection events,
which produce cusp-like local structures with sharply repelling
velocities.

Regarding the forcing scale, in experiments with a pull-
through grid in helium II [112], it is conceivable that the forcing
is produced very similarly to that in classical turbulence, and
is related to the mesh length and the time of evolution of
the turbulence. In simulations, on the other hand, the forcing
scale cannot be defined unambiguously. For instance, in the
important foray into superfluid turbulence that was made by
Schwarz [113], it appears at first sight that the forcing scale
was the size of the computational box, as also in the case of the
simulations of the Taylor–Green problem by Nore et al. [114]
and Araki et al. [115]. However, it appears that reconnections
play an important role in determining this scale (or range of
scales).

As another perspective on the same issue, the occurrence of
the −5/3 spectrum in superfluid turbulence may be regarded
as surprising if one takes the stand that the key mechanism
for energy transfer across scales in hydrodynamic turbulence,
namely vortex stretching, is absent in superfluid turbulence:
No intensification and break-up due to vortex stretching is
possible. It is the vortex break-up due to reconnections, not
vortex stretching, that appears to be the key to the spectral
distribution here. If this is true, it is interesting to speculate
about the central importance attached to vortex stretching in
classical turbulence.

To be sure, one should look closely at the veracity of
claims about the −5/3 power-law. Our view is that the
available evidence is too fragile to sustain the claim on the
existence of the −5/3 spectrum in experiment or simulations. In
experiments, the only real piece of evidence comes from [106],
but at least to us it is not exactly clear what is being measured
at the low end of the temperature (below 1 K), despite a good
assessment in [104]. At slightly higher temperatures than 1 K,
for which the available evidence for the −5/3 law also comes
from [106], the data concern different fractions of superfluid
and normal helium making it hard to disentangle the two. The
measurements of [112], though intrinsically exciting in addition
to having instigated the recent interest in the problem, are only
indirectly supportive of the −5/3 law. Here, one measures
the decay of superfluid vorticity (with certain caveats which
are partially resolved by [116]) and notes that the behavior
is similar to that of the classical vorticity. From this one can
compute the energy dissipation rate and infer the classical
Kolmogorov spectrum.

In simulations of superfluid turbulence, the result is
unconvincing because the computational box size is still small.
Here, we make a strong case for pushing the computational size
to those that are currently the norm for classical turbulence.
Our conclusion is not that the −5/3 power is ruled out, but
that the evidence is soft at present; one needs to produce more
direct and convincing evidence.

There is another interesting wrinkle. If one assumes that the
wavelength of the Kelvin waves which dissipate or radiate the
energy are very small compared to the Kolmogorov scale, it
is plausible to infer the spectral amplitude of fluctuations of
superfluid velocity in the sub-Kolmogorov range. Presumably,
the only relevant parameter in that range is the strain rate at
the Kolmogorov scale, quite like the situation of the passive
scalar spectrum at high Schmidt numbers. It then follows from
dimensional reasoning that one should expect a −1 power for
the spectrum in that region (see also [110]). On the other hand,
decay data of superfluid vorticity were analyzed in [117] to
suggest that the energy spectrum is consistent with a −3 power-
law. This behavior is poorly understood at present.

7.2. Visualization of quantized vortex lines

An exciting development of recent few years is the
visualization of quantized vortices and their reconnection using
small neutral particles [97,118]. These particles are made by
the in situ freezing of mixtures of hydrogen and helium. While
these visualization studies have confirmed some interesting
aspects of quantized vortices such as rings and reconnections,
the particles are still too large compared with the diameter of
the vortices (by a factor of about 104). Thus, while it is easy
to convince oneself that the particles get attracted to vortex
cores and decorate them, it is obvious that the particles are not
always passive. One can calculate conditions under which the
inertia of the particles has marginal influence on vortex lines,
but there is no controlled means to ensure that this happens
always: One would have to devise smaller particles before one
can be confident of the fine details.

7.3. Concluding remarks on superfluid turbulence

At least in the initial stages when the study of
superfluid turbulence was brought closer to classical turbulence
community, one of the hopes was that it might be possible to
create enormous Reynolds numbers in modest-sized facilities
using helium II. However, it has turned out that the situation is
no better than what is possible with helium I. The bottleneck
is that the superfluid vorticity introduces an effective kinematic
viscosity which is of the same order as the kinematic viscosity
of helium I [104,111,112]. There indeed is a lot to learn and
understand about superfluid turbulence as a subject of intrinsic
interest. It is also likely that such knowledge offers new insights
on classical turbulence.

A new direction of superfluid turbulence concerns helium 3
at much colder temperatures [119].

8. Final remarks

If we are interested in discovering laws underlying systems
with many strongly interacting degrees of freedom and are far
from equilibrium, it is important to begin with a study a few
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of them with the same rigor and control for which particle
physics, say, is well known. We can probably make the case
that hydrodynamic turbulence, which arises in flowing fluids,
is an ideal paradigm. Our first point is that the dynamical
equations for the motion of fluids are known to great accuracy,
which means that understanding their analytic structure can
greatly supplement experimental queries; in just the same way,
computer simulations – even if they require much investment
of time and money – can be far more useful here than for many
other problems of the condensed phase, in which the interaction
potential among microscopic parts is often simply an educated
guess. The stochasticity of turbulence (and of all systems that
are driven hard) means that one may discern only laws that
concern statistical behavior. If we are fortunate, these laws are
universal in some well-understood sense. This is the way we
regard the “problem of turbulence”.

While we have not yet reached a state when we can declare
victory (perhaps that may never happen in a strict sense),
the “problem of turbulence” is being slowly chipped away by
understanding, albeit partially, its several aspects. This review
has touched a few aspects of the problem in which considerable
progress has been made recently. There is, of course, much to
do, and one needs to understand the richness of the problem and
possess the discipline and focus needed to make a dent in one
of its nontrivial aspects.
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