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Existing experimental and numerical data suggest that the turbulence energy dissipation and
enstrophy �i.e., the square of vorticity� possess different scaling properties, while available theory
suggests that there should be no differences at sufficiently high Reynolds numbers. We have
performed a series of direct numerical simulations with up to 20483 grid points where advanced
computational power is used to increase the Reynolds number �up to 650 on the Taylor scale� or to
resolve the small scales better �down to 1 /4 of a Kolmogorov scale�. Our primary goal is to assess
the differences and similarities between dissipation and enstrophy. Special attention is paid to the
effects of small-scale resolution on the quality and reliability of the data, in view of recent
theoretical work �V. Yakhot and K. R. Sreenivasan, “Anomalous scaling of structure functions and
dynamic constraints on turbulence simulations,” J. Stat. Phys. 121, 823 �2005�� which stipulates the
resolution needed to obtain a moment of a given order. We also provide error estimates as a function
of small-scale resolution. Probability density functions of dissipation and enstrophy at high
Reynolds number reveal the presence of extreme events several thousands times of the mean. The
extreme events in dissipation and enstrophy fields appear to scale alike, substantially overlap in
space, and are nearly statistically isotropic, while fluctuations of moderate amplitudes, at least for
the present Reynolds numbers, show persistent differences. Conditional sampling shows that intense
dissipation is likely to be accompanied by similarly intense enstrophy, but intense enstrophy is not
always accompanied by intense dissipation. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2907227�

I. INTRODUCTION

The energy dissipation rate ��� and enstrophy ��,
squared vorticity� represent, respectively, the intensity of lo-
cal straining and rotation of turbulence, and are both impor-
tant descriptors of small-scale motion. In homogeneous tur-
bulence, � and �� �where � is the kinematic viscosity� have
the same average value, which is also nearly true in regions
of approximate homogeneity such as the inertial sublayers in
wall-bounded flows. However, other moments may differ.
Indeed, almost all sources of available data �e.g., Refs. 1–10�
suggest that enstrophy is more intermittent or exhibits more
intensely localized fluctuations. Specifically, in both simula-
tion and experiment, local averages of enstrophy, taken over
subdomains in the inertial range, possess probability density
functions �PDFs� that exhibit a greater propensity, as the sub-
domain volume decreases, for wider tails than similarly av-
eraged dissipation; the corresponding intermittency exponent
is also larger for enstrophy. In contrast, plausible theoretical
arguments11–13 as well as a recent model of velocity gradient
evolution14 have advanced the view that these differences
arise from the low Reynolds numbers considered and that
they would vanish at higher Reynolds numbers. This issue is
worthy of attention, at least to avoid ambiguities in the

choice of the variable used to represent small scales15 and to
clarify the roles of local straining and rotation in the model-
ing of turbulent dispersion.16 Recent advances in computing
power have made possible direct numerical simulations
�DNS� of homogeneous turbulence at Reynolds numbers
large enough to clarify the question above. The principal
theme of the present paper is to analyze data from such simu-
lations, giving detailed and careful consideration to the ef-
fects of finite grid resolution.

Obviously, our general interest is to achieve the highest
possible Reynolds numbers by taking advantage of the most
powerful computers available. If we aim at resolving the
small scales to within a constant multiple �1 of the Kolmog-
orov scale � and use a computational box whose linear size
is a multiple �2 of the integral length scale, L, then one can
relate the Reynolds number �Re or R�, based on the integral
or the Taylor scale, respectively� and the number of grid
points �N in each direction� to the computational work re-
quired. The first relation of interest is

N �
�2

�1
�L

�
� � 0.4��2

�1
�Re3/4 � 0.052

�2

�1
R�

3/2, �1�

where we have used standard local isotropy relations and the
phenomenological result17,18 in DNS that ��	�0.4u�3 /L;
here u� is the root-mean-square �rms� velocity and the inte-
gral scale L is defined from the energy spectrum E�k� asa�Electronic mail: pk.yeung@ae.gatech.edu.
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L =
�

2u�2

0

� E�k�
k

dk . �2�

The second relation to immediately follow arises from the
fact that the computational work varies as N3M �to within
ln2 N for Fourier pseudospectral methods�, where M is the
number of time steps needed for reliable averaging over a
period of time �T� in a stationary state. Assuming that the
latter is at least five eddy-turnover times �TE=L /u��, and
using a Courant number of about 0.5, we have

W �
10

��1/�2�4�L
�
�4

	
R�

6

��1/�2�4 . �3�

While the coefficients in the equations above are not
precise, it is clear that the computational work increases with
grid refinement according to the fourth power of the reso-
lution: resolving � /2 takes 44=256 times more CPU effort
than resolving 2�. In most published work aimed at reaching
highest possible Reynolds numbers �1 is about 2, while �2 is
about 5 �see, e.g., Refs. 19–23�. This “standard” resolution is
usually adequate for computing second-order quantities such
as the energy spectrum E�k� �because it falls off rapidly for
wavenumbers k
1 /��, but is known to underestimate high-
order moments of velocity gradients, hence of energy dissi-
pation rate, and enstrophy. Recognition of the dynamical sig-
nificance of scales smaller than � �e.g., in reacting flows24�
has led to recent theoretical work25–27 which shows that a
stricter resolution criterion than commonly practiced must be
adopted for capturing all relevant scales. In particular,
Yakhot and Sreenivasan25 proposed that the finest scale that
needs to be resolved varies as �Re−1/4, which poses increas-
ing difficulties as the Reynolds number increases. While this
stringent requirement may not be mandatory when our goals
are limited to getting second-order moments to within a
specified accuracy, it is important to assess, in the light of the
considerations stated above, the degree to which the conclu-
sions from simulation of more modest resolution remain
valid for high-order moments. The most direct test is to com-
pare simulations at the same Reynolds number but different
degrees of resolution.10,27–29

Thus, we have two main objectives for this paper. First,
we examine resolution effects on the statistics of dissipation
and enstrophy as well as velocity gradients. Second, we ob-
tain a new understanding of the Reynolds number scaling of

� and � using a DNS database9 for R� up to about 650, with
due recognition of resolution effects and extreme fluctua-
tions; in particular, we discuss similarities and differences
between � and �. For these purposes, simulations of up to
20483 in size have been performed using a massively parallel
implementation of the pseudospectral algorithm of
Rogallo,30 for which the highest resolvable wavenumber is
given by kmax=�2N /3. For a domain of linear size 2� the
grid spacing �x is simply 2� /N so that

�x

�
=

�2

3

2�

kmax�
�

2.96

kmax�
, �4�

which relates the resolution parameter kmax� to the grid spac-
ing. The time stepping is second-order Runge–Kutta and the
viscous term is exactly treated via an integrating factor.30

Aliasing errors are carefully controlled by a combination of
truncation and phase shifting techniques. The turbulence is
maintained stationary by stochastic forcing at large scales.19

Table I provides a listing of the basic parameters of simula-
tions, including those where increasing computational power
was used for resolving small scales better instead of increas-
ing the Reynolds number. The best small-scale resolution
achieved �kmax��11, at R��140� is similar to that in a new
study31 of strain rate and vorticity alignment where such res-
olution is shown to make more rigorous results possible. En-
semble averaging over a number �Nr� of instantaneous snap-
shots of archived velocity fields is taken in the same manner
as in past publications.18,32,33 Our present focus on strong but
short-lived events at small scales allows us to take realiza-
tions closer in time than otherwise, without compromising
the desired statistical independence among different datasets.
Nevertheless, since samples of the most intense fluctuations
are inherently few in number, a clear distinction between
errors or uncertainties due to finite resolution and finite sam-
pling is not always possible.

The results to be presented show that there is a system-
atic need for finer grid resolution as the order of the moment
of small-scale properties, or the Reynolds number, increases.
Traditional resolution of �x�2� is adequate for accurate
results in the mean values of � and �, but not for high-order
moments or for mean squares of second derivatives of the
velocity. In Sec. II we examine the data at R��140 and 240
over a range of grid resolutions and conclude that an accept-
able resolution for fourth-order moments at these Reynolds

TABLE I. DNS parameters: Taylor-scale Reynolds number R�=u�� /�, number of grid points N3, viscosity �,
resolution expressed in kmax� and �x /�, mean energy dissipation rate ��	 �equal to ���	�, number of instanta-
neous snapshots �Nr� processed as independent realizations, and simulation time period T normalized by eddy-
turnover time TE �L /u��.

R� 140 140 140 140 240 240 240 390 390 650

N3 2563 5123 10243 20483 5123 10243 20483 10243 20483 20483

� �10−3� 2.8 2.8 2.8 2.8 1.1 1.1 1.1 0.437 0.437 0.1732

kmax� 1.41 2.82 5.72 11.15 1.42 2.84 5.35 1.37 2.77 1.39

�x /� 2.10 1.05 0.52 0.27 2.08 1.04 0.55 2.15 1.07 2.12

��	 1.18 1.22 1.14 1.25 1.14 1.12 1.42 1.28 1.24 1.23

Nr 11 16 18 11 13 12 14 16 21 15

T /TE 10.0 7.2 8.5 6.0 9.4 5.4 5.4 6.9 3.7 6.2
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numbers is kmax��3 or, according to Eq. �4�, �x /��1. We
use a Taylor-series approach to develop an estimate of the
error incurred with coarser resolutions and compare the re-
quirements with recent theory.25 In Sec. III we investigate
whether dissipation and enstrophy statistics tend to scale
similarly as the Reynolds number increases. The PDFs of �
and � are found to almost coincide in the range of fluctua-
tions as large as a few thousand times the mean. Conditional
sampling used in conjunction with decompositions of � and
� into the longitudinal, transverse, and cross-term contribu-
tions suggests that extreme events tend to occur close to each
other in space, and the relative sizes of contributions from
longitudinal and transverse velocity gradients are consistent
with statistical isotropy. A summary of conclusions is given
in Sec. IV. The Appendix contains a short derivation relevant
to Sec. III, based on fourth-order isotropic tensor properties
in incompressible turbulence.

II. EFFECTS OF RESOLUTION

A. The DNS data

A basic diagnostic of resolution effects is the behavior of
the longitudinal velocity increments �ru as the spatial sepa-
ration approaches the smallest value allowed in a simulation
�which is the grid spacing �x�. Figure 1 shows the longitu-
dinal structure functions, or the moments ���ru�p	, for in-
creasing even orders p, from p=2 to 16, from a simulation at
R��140, which at kmax��11.2 ��x /��1 /4, on a 20483

grid� resolves down to a scale that is about an eighth of that
used in standard practice. �Solid-square symbols are from the
theory of Ref. 25, to be discussed below.� The structure func-
tions are divided by rp, such that analytic behavior is indi-
cated by asymptotic plateaus corresponding to ���u /�x�p	
�shown by dashed horizontal lines, computed using the finest
resolution in Table I� in the limit of vanishing r. As expected,
the minimum r /� needed to observe such behavior decreases
with increasing the order p. It is clear that the analytic be-
havior for orders of 8 and upward requires resolution of sub-
Kolmogorov scales ��x�� or kmax�
3, see Eq. �3��.

In addition to moments of different orders, it is also use-
ful to examine the tails of the PDF of velocity increments
over a range of scale sizes. Transverse gradients provide a
stricter test: if they are adequately resolved, the longitudinal
gradients are also expected to be satisfactorily resolved �in
fact, slightly better�. Figures 2�a� and 2�b� show such data for
transverse increments from the same simulation as in Fig. 1,
under two different normalizations. In �a� we have normal-
ized velocity increments by their rms values and show the
standardized PDFs over a wide range of r. It is clear that the
increment at small r is highly non-Gaussian with wide tails,
while at large r the increment becomes the difference be-
tween two independent, Gaussian random variables and
hence Gaussian. On the other hand, for a resolution check �at
relatively small values of r�, it is useful to normalize �rv by
the product of r and the rms of transverse velocity gradients,
i.e., ��2 /15���	 /�. In this normalization, shown in Fig. 2�b�,
the PDFs should converge for r in the analytic range. It can
be seen that results for r /��2 are significantly different
from those at other values of r /� ��1, 1 /2, and 1 /4�. This
figure confirms that, for this Reynolds number, the standard
resolution of kmax��1.5 is inadequate for the tails of the
velocity gradient PDF, while the results with the resolution
of kmax��3 �or �x /��1� converge reasonably well to those
of smaller �x /�.
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FIG. 1. Scaling of even-order longitudinal structure functions ���ru�p	 /rp

for p=2, 4, 6, 8, 10, 12, 14, and 16 �bottom to top�, from a highly resolved
simulation at R��140 �20483, kmax��11.2, �x /��1 /4�. The horizontal
dashed lines indicate limits of analytic range behavior. Solid squares denote
�p /� �Eq. �6�� as proposed by Yakhot and Sreenivasan �Ref. 25�.
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FIG. 2. PDFs of transverse velocity increments in different normalizations
�as written under the coordinate axes�, from the same highly resolved R�

�140 simulation as in Fig. 1, with arrows in the direction of increasing
scale size r. The dashed lines correspond to the smallest scale available in
the simulation �r /��1 /4, which almost coincides to data at r /��1 /2�. In
�a� we show data for r /�x=1, 2, 4, 8, 16, 32, 64, 128, and 256 and a
standard Gaussian �dotted curve� for comparison. In �b� we show data at the
four smallest r, i.e., r /�x=1, 2, 4, and 8 �r /��1 /4, 1 /2, 1, and 2, with
kmax��11�.
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The next test is one of statistical convergence. We note
that statistical convergence alone without adequate resolution
does not guarantee the accuracy of moments because the data
could converge to incorrect quantities. For transverse incre-
ments which are statistically symmetric, we consider the
quantity

Cp�z� = 

−z

z

�z��pf�z��dz�, �5�

with z denotes the normalized velocity increment
�rv / �r��2 /15���	 /�� and f as its PDF. By definition, Cp�0�
=0, Cp���= ���rv /r�	p / ���2 /15���	 /��p for any p
0. Fig-
ure 3 shows the data, for p=4, 6, 8, 10, and 12, and r /�
�1 /4, 1, and 2 at R��140 from the same highly resolved
simulation, as discussed in Figs. 1 and 2. �Data for r /�
�1 /2 are, as in Fig. 2�b� above, indistinguishable from
r /��1 /4 and omitted for clarity.� Statistical convergence is
indicated if the curves reach asymptotic values in the limit of
large z. This convergence is attained reasonably well up to
order of 8, but less so for higher orders and for smaller scales
where stronger intermittency effects are present. By using
local isotropy relations, we can show that in the limit of
r
� the value of Cp��� should be equal to
�2 /15�p/2���v /�x�p	 / ���v /�x�2	p/2, which strongly increases
with p.

We also examine the accuracy of statistical results
on dissipation and enstrophy. Recently, Yakhot and
Sreenivasan25 proposed a theory for the small scales, accord-
ing to which the pth order moment of dissipation can be
accurate only if the resolution is adequate to resolve analytic
behavior in velocity structure functions of order 4p. The con-
nection between velocity differences and energy dissipation
arises because the velocity gradients that contribute to dissi-
pation can be regarded as the limits of appropriate velocity
increments as the separation distance tends to zero. This re-
quirement suggested in Ref. 25 differs from Kolmogorov’s
refined similarity hypothesis �K62�,34 which may be inter-
preted to require analytic ranges in moments of order 3p.

Furthermore, the theory implies that the smallest scale that
needs to be resolved for the pth order structure function is

�p/� � �R�
2/15�3/4+dp, �6�

where dp=1 / ��p−�p+1−1� and �p is the inertial-range scaling
exponent of structure functions of order p. The ratios �p /�
are included in Fig. 1 as solid squares which can be used to
assess the adequacy of the resolution of our simulations ac-
cording to Ref. 25. Note that to resolve all orders, i.e., as
p→�, the theory suggests that the smallest scale that needs
to be captured is

�min � LR�
−2. �7�

This estimate, in fact, agrees with the multifractal prediction
of the smallest relevant scale governed by the strongest sin-
gularities �see, e.g., Ref. 35�.

A full comparison of the Yakhot–Sreenivasan theory and
Kolmogorov refined similarity is not yet available, but pre-
liminary tests in Ref. 27 mildly favor the former. If the
former theory does prevail upon more rigorous examination,
it is clear that we should view our fourth moment of dissi-
pation with caution—since it would then require accurate
structure functions of order of 16, which are rarely obtained
in practice. Since both theoretical scenarios correspond to
infinitely large Reynolds numbers and are conservative in
this sense, we shall evaluate below dissipation moments up
to order of 4 and independently assess their accuracy—
thereby also contributing new information to the current dis-
cussion on resolution requirements.

In our simulations, the mean dissipation rate ��	 �and
also ��	= ��	 /�� are determined by the large scales that are
subject to stochastic forcing and are insensitive to small-
scale resolution. It is therefore convenient to normalize dis-
sipation and enstrophy by their mean values, i.e., to define
���� / ��	 and ���� / ��	 and to examine moments of these
normalized quantities for orders p�2. The moments �����p	
and �����p	 for p=2, 3, and 4 are shown in Figs. 4�a� and
4�b� and Table II for different grid resolutions, with the Rey-
nolds numbers kept nominally fixed at R��140 and 240 �see
Table I�. It is clear that finite resolution underestimates these
moments, especially those at higher orders. However, differ-
ences among simulations with kmax�
3 ��x /��1� appear
to be within the 90% confidence intervals, and are, in any
case, relatively small.

To check statistical convergence for the dissipation and
enstrophy moments given above, we can examine the inte-
grands ��pf����� �and similarly for ��, contributing to each
moment of order p, where f���� is the PDF of �. In Fig. 5 we
show these integrands for p=4 at different resolutions with
R��140. The area under each curve gives the normalized
fourth-order moment, which is considered statistically con-
verged if the curve falls to nearly zero in the limit of the
largest sampled �� and ��. This condition is met by all the
curves shown, suggesting satisfactory convergence, yet the
figure also clearly shows that the resolution kmax��1.41
misses many samples of large �� or ��. The inadequate res-
olution does not appear to affect samples of � or � close to
the mean: curves for dissipation and enstrophy show little
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FIG. 3. Convergence test of contributions to moments of z
=�rv / �r��2 /15���	 /�� through Cp�z� �see Eq. �5�� at r /��1 /4 �solid line�,
1 �dashed line�, and 2 �dash-dotted line�, from the same highly resolved
R��140 simulation as in Figs. 1 and 2. The arrow points in the direction of
increasing p �4, 6, 8, 10, and 12�.
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difference for �� up to about 7 and �� up to about 10, though
both the location and the height of the peak are underesti-
mated in simulations at resolution kmax��1.41.

It is of some interest to note from Table II that normal-
ized moments of the form ��4	 / ��2	2 are less sensitive to
resolution than “unnormalized” moments of the same order.
This behavior can be understood by noting that some partial
cancellation occurs in ratios of moments of orders close to
each other. Another interpretation is that although finite res-
olution changes the shape of the dissipation and enstrophy
PDFs by failing to capture the farthest tails, the actual PDFs
obtained may—as will be seen in Sec. III—still retain the
correct functional form, though with different values of pa-
rameters or coefficients involved.

A further issue relevant to resolution effects on dissipa-
tion and enstrophy statistics is the behavior of ratios between
their respective normalized moments �����p	 / �����p	. Such
data for orders p=2, 3, and 4 are shown in Table III and seen
to be less sensitive to resolution than moments of �� and ��
separately considered �as in Table II earlier�. Likewise, res-
olution effects on the ratio

��4	/��2	2

��4	/��2	2

are weaker than on each quantity separately taken. The value
of 4.8 for this ratio from our least-resolved simulation at
R��240 in Table III is not far from 5.26 reported by Chen
et al.6 in simulations at R�=216 with kmax��2 on a 5123

grid.
Since results of the type shown in Table III are less sen-

sitive to resolution, we have included data in this table from
our two high-Reynolds-number simulations despite the mod-
est degree of resolution in both. At R��390, we see some
difference between results at kmax��1.37 and 2.77 which, as
will be seen later on, is related to the change of shape of the
PDF of dissipation.

B. Error estimates

Analytic behavior in the limit of small r means that the
longitudinal and transverse structure functions behave, re-
spectively, as

���ru�p	/rp = ���u/�x�p	, ���rv�p	/rp = ���v/�x�p	 . �8�

In practice, since exact equality is not possible because of
finite resolution, it is important to estimate deviations due to
finite resolution, for each order p and a chosen value of r
�i.e., the grid spacing �x�.

A Taylor expansion of ��rv� /r for small r is

�rv
r

= vx +
r

2
vxx +

r2

6
vxxx + O�r3� , �9�

where, for brevity, coordinate subscripts are used to denote
differentiation. Taking the pth power and assembling terms
in ascending powers of r gives

0 2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

10
5

(a) (b)

〈(ε
′ )

p
〉,
〈(Ω

′ )
p
〉

kmaxηkmaxη

} p = 2

}
p = 3

⎫⎬
⎭ p = 4

} p = 2

}
p = 3

⎫⎬
⎭ p = 4

FIG. 4. Ensemble averaged moments of normalized dissipation rate and enstrophy: ���p	 ��� and ���p	 ��� for orders p=2, 3, and 4 at different resolutions
for �a� R��140 and �b� R��240, as listed in Table I. Vertical bars �partly hidden� indicate the extent of 90% confidence intervals.

TABLE II. Ensemble averaged moments of dissipation and enstrophy at
R��140 �top� and 240 �bottom� and different grid resolutions, with 90%
confidence intervals.

R��140

kmax� 1.41 2.82 5.72 11.15

�����2	 2.53�0.04 2.85�0.07 2.77�0.06 2.82�0.08

�����3	 14.1�0.6 21.5�1.6 19.9�1.4 20.7�2.1

�����4	 153�14 388�58 341�48 364�81

��4	 / ��2	2 23.9 47.8 44.5 45.8

�����2	 4.52�0.09 5.19�0.18 5.07�0.19 5.20�0.23

�����3	 63.0�3.1 100.0�9.3 94.2�9.9 97.6�13.1

�����4	 2022�179 5315�989 4920�965 4751�1200

��4	 / ��2	2 99.2 197.1 191.3 175.9

R��240

kmax� 1.42 2.84 5.35

�����2	 3.07�0.05 3.17�0.07 3.15�0.06

�����3	 25.3�1.3 29.1�1.8 28.8�1.7

�����4	 488�53 696�83 697�89

��4	 / ��2	2 51.9 69.3 70.4

�����2	 5.81�0.13 5.99�0.18 5.93�0.12

�����3	 133�8 150�14 142�9

�����4	 8364�1017 11222�1869 10211�1503

��4	 / ��2	2 247.7 312.8 290.6
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��rv
r
�p

− vx
p = r

p

2
vx

p−1vxx + r2p

��1

6
vx

p−1vxxx +
p − 1

8
vx

p−2vxx
2 � + O�r3� .

�10�

We note the identities

vx
p−1vxx =

1

p
�vx

p�x �11�

and

vx
p−1vxxx = �vx

p−1vxx�x − �p − 1�vx
p−2vxx

2 �12�

which imply that some of the contributions on the right of
Eq. �10� vanish by homogeneity when averaged in space. We
then obtain


��rv
r
�p� − �vx

p	 = −
1

24
p�p − 1�r2�vx

p−2vxx
2 	 + O�r4� .

�13�

Because �vx
p−2vxx

2 	 is positive for all even integers p, this
result is consistent with the observation that finite resolution
underestimates high-order even moments. We also see that,
to leading order, the error involved decreases as r2 for struc-
ture functions of all orders p, but increases with p through
the factor p�p−1� as well as the quantity �vx

p−2vxx
2 	.

Equation �13� can be rewritten as

�vx
p	 − ���rv/r�p	

�vx
p	

=
p�p − 1�

24
Qp

T� r

�
�2

+ O�r4� , �14�

where the effects of small-scale intermittency appear through
the dimensionless quantity

Qp
T �

�vx
p−2vxx

2 	
�vx

p	/�2 . �15�

The analogous quantity Qp
L can also be defined for longitu-

dinal velocity gradients. The numerator of Qp
T �and Qp

L� is
subject to Cauchy–Schwarz inequality for the covariance be-
tween two random variables �vx

p−2 and vxx
2 �, whereas the de-

nominator �vx
p	 can be modeled using lognormal or multi-

fractal concepts. These quantities are readily extracted from
our DNS database, although since second derivatives and
higher powers of first derivatives are involved, we use only
the best-resolved simulation at each Reynolds number.

Figure 6 shows DNS data on both Qp
L and Qp

T at R�

�140 �kmax��11.2, �x /��1 /4�. Since transverse gradi-
ents are statistically symmetric, we present only even-order
results for Qp

T. Although there is some scatter, there appears
to be no clear dependence for p
4 or so. An average from
p=4 through 12 for both Qp

L and Qp
T is of the order of 0.05,

with a weak increase at higher Reynolds numbers �not
shown�. Conclusions on the numerical value just cited and
the weak dependence on the Reynolds number are both ten-
tative, for stronger statements would require a closer study of
resolution effects on second-order derivatives. In any case,

TABLE III. Ratios of moments of dissipation and enstrophy. The numbers here may slightly differ from those obtained using data in Table II since ensemble
averaging is performed after taking the ratios for each realization.

R� 140 140 140 140 240 240 240 390 390 650

kmax� 1.41 2.82 5.72 11.15 1.42 2.84 5.35 1.37 2.77 1.39

�����2	 / �����2	 1.8 1.8 1.8 1.8 1.9 1.9 1.9 2.0 2.0 2.0

�����3	 / �����3	 4.5 4.6 4.7 4.6 5.2 5.1 4.9 4.1 4.7 3.5

�����4	 / �����4	 13.3 13.8 14.1 12.7 17.2 15.7 14.5 4.7 9.2 4.5

���4	 / ��2	2� / ���4	 / ��2	2� 4.2 4.2 4.2 3.7 4.8 4.4 4.1 1.2 2.4 1.2
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FIG. 5. Convergence test of contributions to fourth-order moments via integrands of PDFs of �a� normalized dissipation ���� / ��	 and ���� / ��	, from
several simulations at R��140 with different resolutions: kmax��1.41 ���, 2.82 ���, 5.72 ���, and 11.2 ���, corresponding to �x /��2, 1, 1 /2, and 1 /4,
respectively.
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the main observation of near constancy for Qp
L and Qp

T at
sufficiently large p is also supported by a simple scaling
argument for the second derivative, i.e.,

vxx � c
vx

�
, �16�

where �following Ref. 36� c may be taken to be a random
coefficient of order unity. This estimate is consistent with the
so-called p-model of intermittency37 and leads to the result

Qp
T =

�vx
p−2vxx

2 	
�vx

p	/�2 �
�c2	�vx

p−2vx
2	/�2

�vx
p	/�2 = �c2	 , �17�

which is independent of p but can retain a dependence on the
Reynolds number.

The near constancy of Qp
T suggests a p�p−1� scaling for

the normalized error in Eq. �14�. This can be checked by
computing the left hand side of Eq. �14� from the best-
resolved simulation available at a given Reynolds number
and comparing to the leading term O�r2� on the right hand
side using the quasiconstant value of Qp

T averaged over the
range p=4–12. Figure 7 shows such a comparison at two
Reynolds numbers R��140 and 240, with the estimated er-
ror evaluated for values of r corresponding to kmax��1.4,

2.8, and 5.4 �see Table I�. For all three levels of resolution
very good agreement occurs between the actual �symbols�
and estimated errors �lines� for orders up to 4, say. Agree-
ment is less close for higher orders, which may be due to
greater statistical uncertainty or a need to retain more terms
in the Taylor series expansion in Eq. �9�.

Using Eq. �14� and data of Fig. 6 on Qp, it is possible to
obtain a quantitative estimate of the value of r /� needed to
capture structure functions of a chosen order p within a
specified error tolerance. If the fractional error allowed at
each order p is e, then Eq. �14� gives

�r/��1−e � � 24e

p�p − 1�Qp
�1/2

�18�

as an estimate of the smallest scale size that must be re-
solved. As a working definition, we shall take e=0.05, i.e.,
accept a 5% error and denote the pertinent scale as �r /��95;
however, other reasonably small choices of e will not have a
material effect on the discussions below.

Figure 8 shows, at two Reynolds numbers, a comparison
of �r /��95 computed from two different methods, as well as
the theoretical estimate �p /� �Eq. �6�� of Ref. 25. As ex-
pected from discussions of Figs. 6 and 7, results from errors
directly based on the left hand side of Eq. �14� using the
best-resolved simulations at each Reynolds number �circles
and diamonds� are in close agreement with estimates based
on Eq. �18� using quasiconstant values of Qp

T from Fig. 6
�solid and dashed lines�, except for the highest two orders
�p=10 and 12� shown. It is clear that the smallest scale that
must be resolved is a decreasing fraction of � as the
moment-order increases; the conclusion on resolution ap-
plies, though less strongly, as the Reynolds number in-
creases. These comparisons also suggest that, while the res-
olution requirements proposed by Yakhot and Sreenivasan
may be overly restrictive for low orders, they become more
accurate at higher orders.

A comment on the Reynolds number dependence of Eq.
�18� from the perspective of Ref. 25 may be in order here. It
may be noted that according to Eq. �6�, �2 �the scale needed

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

Qp

p

FIG. 6. Variation of Qp
T �triangles� defined by Eq. �15� and its longitudinal

counterpart �Qp
L, circles� with order p, from the same highly resolved R�

�140 simulation, as in Figs. 1–3.

10
0

10
1

10
−3

10
−2

10
−1

10
0

[〈v
p x
〉 −

〈(∆
r
v
/r

)p
〉] /

〈v
p x
〉

p

FIG. 7. Normalized departures from analytic behavior of transverse struc-
ture functions computed from DNS data, at R��140 with kmax��11.2
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to estimates based on Eq. �14� with quasiconstant values of Qp

T. Circles,
triangles, and squares denote data points at r /��0.5, 1, and 1.6, respec-
tively. The dashed lines represent result from Eq. �14� for R��140; the solid
lines for R��240.
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FIG. 8. Normalized scale size �r /��95 for 5% deviation from analytic be-
havior for different orders of moments of transverse velocity increments.
DNS data from simulations at R��140 with kmax��11.2 �circles� and 240
with kmax��5.35 �diamonds� are compared to results from Eq. �18� at R�

�140 �solid line� and 240 �dashed line�. Also included are the scales �p /�
�Eq. �6�� for R��140 ��� and 240 ��� as a continuous function of order p.
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to resolve second-order structure functions� is the same as �
if �2=2 /3 as in the K41 theory �and �3=1 exactly�, but not if
intermittency corrections for the second order are taken into
account. Consistency with Ref. 25 then requires that � in Eq.
�16� be replaced by �2, which in turns leads to Qp

T��c2	
��� /�2�2 in place of Eq. �17�. Substitution of this relation
into Eq. �18� then yields

�r/��1−e � � 24e

p�p − 1��1/2

�c2	−1/2�R�
2

15
�d2+3/4

, �19�

where d2=1 / ��2−2� in terms of the inertial-range scaling
exponent of the second-order structure function. In K41 phe-
nomenology, with d2=−3 /4, the Reynolds number depen-
dence in this expression vanishes. However, by using �2

=0.7, which is now believed to be correct �see Ref. 25�, the
resulting weak Reynolds number dependence can be ex-
pressed as R�

−� with �=0.038. Equation �19� can also be
inverted to show that the relative error e scales as �p�p
−1�R�

2�. Computations from the data appear to be consistent
with these conclusions even though highly resolved simula-
tions �kmax�
3� are at present available only at R��140
and 240, for which a wide inertial range is not yet attained.

III. REYNOLDS NUMBER SCALING

A. PDFs of dissipation and enstrophy

Past studies38–40 have suggested that the dissipation PDF
f� can be fitted well by a stretched exponential of the form

f����� � exp�− b�����c�� . �20�

A similar form for the enstrophy PDF, f�, has also been
proposed,41 with prefactor and exponent denoted by b� and
c�, respectively. Our interest here concerns the systematic
effects of Reynolds number and grid resolution on the pref-
actors and the exponents.

Table IV gives the values of parameters which provide
the best fits for the DNS data on the PDF normalized dissi-
pation and enstrophy ��� and ��� in the range of 5–100,
which captures the stretched-exponential behavior up to the
largest fluctuations usually reported in experiments. The ef-
fects of Reynolds number and grid resolution are mainly
evident in the exponents c� and c�, which have a stronger

role than the algebraic prefactors b� and b� in Eq. �20�. Con-
sistent with other results in the figures discussed in Sec. II,
the resolution effect for data at R��140 is especially pro-
nounced between kmax��1.4 and 2.8. On the other hand, for
R��240, resolution effects are shifted toward the tails and
less significant in parameters applicable to the range of
5���, ���100.

Table IV shows that, at both R��140 and 240, the ex-
ponents converge to about 0.25, in contrast with the past
findings8,40,42 which supported an exponent of about 1 /2. In
Fig. 9 we show the PDFs of dissipation and enstrophy from
our datasets at R��140 and 240 and the highest resolutions
available �kmax��11.2 and 5.4, respectively�. Very good
agreement is seen with fits of the form �dashed lines�

f����� � exp�− b������1/4� , �21�

where the Reynolds number dependence is now expressed
solely through the alternative algebraic prefactor b��. The
closeness of fit in this figure is virtually the same as that
obtained using Eq. �20� and Table IV, at least for fluctuations

TABLE IV. Best-fit coefficients for Eqs. �20� and �21� in the range of 5��� ,���100.

R� kmax� b� b� c� c� b�� b�� b�� /b��

140 1.41 5.23 6.04 0.29 0.33 7.11 10.54 0.67

140 2.82 7.04 8.27 0.24 0.25 6.42 8.51 0.75

140 5.72 6.46 9.54 0.25 0.23 6.54 8.51 0.77

140 11.15 7.25 8.79 0.23 0.25 6.44 8.57 0.75

240 1.42 6.96 6.75 0.23 0.28 6.14 8.41 0.73

240 2.84 7.40 8.55 0.22 0.24 6.07 7.92 0.77

240 5.35 6.78 8.62 0.24 0.24 6.12 7.91 0.77

390 1.37 8.29 8.96 0.20 0.22 5.59 7.20 0.78

390 2.80 8.89 10.74 0.19 0.19 5.47 6.76 0.81

650 1.39 8.96 8.63 0.18 0.22 5.32 6.65 0.80
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FIG. 9. PDFs of dissipation and enstrophy, at R��140 with kmax��11.2
��� and R��240 with kmax��5.35 ���. The dashed lines represent
stretched-exponential fits in the form of Eq. �21�, which provides almost
perfect agreement with the DNS data.
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of moderately large magnitude which are typical of most
laboratory measurements reported in the past. Both b�� and
b�� decrease with increasing Reynolds number, as shown on
the right in Table IV. There is also an asymptotic decrease
with increasing grid resolution at R��140, although, as sug-
gested in the paragraph above, the corresponding resolution
effects at R��240 may be obscured by the choice of the
fitting range. In addition, we note that the ratio between b��
and b�� is much less sensitive to Reynolds number than b��
and b�� separately. This suggests that the trend for f� and f�

to approach each other at increasing Reynolds number is
very slow.

The higher the Reynolds numbers, the wider the tails of
f� and f�; for these tails, there is no a priori reason for the
functional forms suitable for the range of 5���, ���100 to
continue to apply. In Fig. 10 we compare the PDFs at R�

�390 and 650. Despite the fact that our simulations are not
highly resolved �kmax� between 1.4 and 2.8�, it is clear that
the PDF tails are very wide, extending to several thousand
times the mean. This is a regime of extreme events which,
except perhaps in reacting flows,43 has not been reported in
detail in the literature before. However, the existence of such

extreme fluctuations is expected on theoretical grounds.
Nelkin,44 for instance, examined the scaling of extreme
events in terms of local averages of energy dissipation rate �r

and the ratio

�r
��� � lim

n→�

��r
n+1	

��r
n	

.

Whereas an essential feature is that �r
��� may scale as r−2/3

according to Ref. 45, a scaling of the form r−1 was also
suggested as a possibility. These two possible scaling rela-
tions imply that, at the smallest scale given by Eq. �7�, one
has ��min

��� �R�
4/3 and �R�

2, respectively. Although it is not

possible to directly obtain �r
��� from simulations, one could

take the �-norm �i.e., the maximum value observed� as a
measure of the most intense events. For example, the maxi-
mum values of �� and �� from R��240 simulations at
kmax��6 are O�500� and O�700�. Extrapolation using even
the weaker estimate ��min

��� �R�
4/3 would suggest the occur-

rence of fluctuations of O�1800� and O�2600� at R��650.
Although these simple calculations are only a rough estimate
due to the statistical difficulty in obtaining the �-norm of any
quantity, they are consistent with fluctuations in the range
observed in our simulations �as in Fig. 10�.

Unlike the situation at moderate Reynolds numbers, the
extreme tails discussed above are not well described by fits
of the forms of Eqs. �20� and �21�. However, we find a uni-
formly good fit for essentially all values of �� in the form of
a double stretched exponential,

f����� � s1 exp�− t1����1/4� + s2 exp�− t2����1/4� �22�

�and similarly for f������. The best-fit coefficients corre-
sponding to the dashed lines in Fig. 10 are shown in Table V.
It is apparent from the contrast between the magnitudes of
these parameters that the second exponential is significant
primarily at the far tails. However, the most remarkable fea-
ture is that the PDFs of � and � appear to virtually coincide
in the limit of extreme �� and �� �of order of 1000 or
greater�. The feature is observed in our data at both R�

�390 and 650 but not at lower Reynolds numbers, even in
those simulations with very good resolution. This observa-
tion suggests the possibility of identical scaling of extreme
events—which in turn can lead to similar scaling of high-
order moments of energy dissipation and enstrophy, while
differences could remain at lower orders for finite Reynolds
numbers.
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FIG. 10. PDF of dissipation �lower curves� and enstrophy �upper curves�
from simulations at the highest two Reynolds numbers: R��390 at 10243

��� and R��650 at 20483 ���, both with kmax� in the of range of 1.3–1.4.
The dashed and unmarked solid lines �partly hidden� represent fits according
to Eq. �22� for dissipation and enstrophy, respectively. The inset shows data
from a more highly resolved simulation at R��390, with kmax��2.77 ���
in comparison to kmax��1.4 ���.

TABLE V. Best-fit coefficients for Eq. �22� for data at R��390 �5���, ���2000� and 650 �5���, ��
�3000�.

R� kmax� Variable s1 t1 s2 t2

390 1.37 �� 27.9 5.41 9.38�10−6 2.19

390 1.37 �� 429.6 7.17 6.95�10−6 2.19

390 2.77 �� 13.1 5.10 10.4�10−6 2.28

390 2.77 �� 81.7 6.37 0.17�10−6 1.78

650 1.39 �� 12.9 4.99 2.70�10−6 1.93

650 1.39 �� 131.7 6.44 0.54�10−6 1.73
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As a check for possible resolution effects, we have in-
cluded in Fig. 10 an inset which shows a direct comparison
between simulations at R��390 using 10243 and 20483 grid
points. The qualitative behaviors observed at these two reso-
lutions are evidently very similar at the extreme tails of their
PDFs, which virtually coincide. There is a difference at in-
termediate values of dissipation, where the dissipation PDF
obtained from the lesser-resolved simulation lies appreciably
above the PDF from the better-resolved simulation. While
this difference may be in part statistical, it is also consistent
with the expectation that lesser resolution would lead to local
smoothing of some of the most intense velocity gradient
fluctuations, with the possible consequence that the number
of samples of moderately large �instead of extremely large�
dissipation would be increased. We also note that normalized
ratios at this Reynolds number in the last two rows of Table
III appear to follow a trend of resolution effects different
from those at R��140 and 240. However, we have exam-
ined the spread in numbers among all the realizations pro-
cessed and have found also substantial variability in these
results.

As an aside, we note that although the present DNS data,
as well as past studies, are consistent with Eq. �21� in pro-
viding a good fit for low R� �or Eq. �22� for higher R��, these
fits are different from the functional forms derived either
from the Yakhot’s theory46 or multifractal concepts.47 We
cannot, of course, be entirely certain as to how an even finer
resolution might change the picture.

Since two random variables with the same PDFs can be
unrelated to each other, we now ask whether the extreme
values of �� and �� of the order 103 discussed above indeed
occur in spatial proximity to each other. We note that the
single-point correlation between dissipation and enstrophy is

positive and increases with the Reynolds number �see, e.g.,
Refs. 48 and 49; or Refs. 50 and 51, for data inferred from
Lagrangian cross-correlation functions�. Since correlation
coefficients are second-order quantities, they are not much
affected by resolution: e.g., in our present data at R��140
the dissipation-enstrophy correlation varies only between
0.50 and 0.51 for kmax��1.41–11.15. The increase with
Reynolds number is also relatively mild, from 0.51 at R�

�140 to 0.56 at R��650. These observations may suggest
only a modestly increased coincidence of extreme events in
dissipation and enstrophy. This tendency can be quantified
by considering conditional statistics: in particular, if extreme
�� and �� are collocated in space, the PDF of the ratio �� /��
given large �� or large �� should show a peak close to unity
in the sample space.

In Fig. 11, we show data at R��650 on the conditional
PDF of �� /��, given a range of values of �� chosen in geo-
metric progression. In general, as the conditioning value of
�� increases, larger values of �� /�� become more likely, and
the conditional PDF shifts to the right. However, as �� in-
creases beyond the mean, the right tail of the PDF ceases to
increase �lines D to G� and eventually drops back �lines H
and I�. Furthermore, for very large �� �lines H and I, in inset�
the conditional PDF is seen to form a peak in the neighbor-
hood of �� /���1. These observations indicate that the mod-
erately large dissipation is not usually accompanied by small
enstrophy �which would make the ratio �� /�� large�, while
very large values of dissipation are likely to be accompanied
by similarly large enstrophy �which makes the ratio �� /��
close to 1�.

The converse of the result above is examined in Fig. 12,
which shows the effects of conditioning on ��. As expected,
the ratio �� /�� tends to be smaller as the conditioning en-
strophy increases, and the PDF shifts to the left �as shown in
lines A to G�. For conditioning enstrophy that is equal to the

ε′/Ω′

f
(ε

′ /
Ω

′ |ε
′ )

FIG. 11. Conditional PDF of the ratio �� /�� given �� in the R��650 simu-
lation. Lines A-I correspond to ��=2n with n=−12, −9, −6, −3, 0, 3, 6, 9,
and 12 �note that lines H and I are seen more clearly in the inset, plotted in
different scales�. The dashed lines correspond to the unconditional PDF.
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FIG. 12. Same as Fig. 11, but conditioned on ��.
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unconditional mean �line E�, the likelihood for �� /���1 is
very close to that in unconditional data �dashed curve�. This
implies that in regions of average enstrophy, there is no ten-
dency for stronger-than-average dissipation to develop.
However, a different trend �lines H and I, in inset� is seen at
very large enstrophy values, with the PDF shifting back to
the right and small values of �� /�� eventually becoming less
likely. For the most intense enstrophy �line I, ���4�103�
most samples for � /�� are apparently between 0.5 and 1.
This indicates that events of most intense enstrophy are often
accompanied by fairly large but less intense dissipation. Al-
ternatively, we can infer that the mechanisms causing ex-
treme enstrophy either contribute less to dissipation or are
subject to some partial cancellation by competing effects.

Additional information on the duality above can be ob-
tained from the conditional averages of either � and � given
the other, as shown in Fig. 13. For low � or low �, the
conditional dependencies are relatively weak: i.e., there is no
strong correlation between dissipation and enstrophy in re-
gions of relative quiescence. A dashed line of slope 1 is
drawn to indicate the limiting condition of large � and �
being coincident. For �
 ��	 the behavior of �� ��	 is close
to this limit: i.e., large dissipation is most likely accompanied
by large enstrophy, as inferred above from conditional PDFs
in Fig. 11. On the other hand, �� ��	 falls below the line of
slope unity for �� between 10 and 1000, which indicates that
enstrophy values in this range are quite often accompanied
by smaller dissipation. However, �� ��	 appears to return to-
ward the line of slope of 1 �though slightly on the low side�
when �� exceeds 1000, indicating that the extreme events of
high enstrophy may be accompanied by extreme dissipation
as well. These trends are also consistent with the uncondi-
tional PDFs shown in Fig. 10: i.e., dissipation and enstrophy
scale differently for �� and �� roughly in the range of 10–
1000, but similarly for extreme fluctuations exceeding about
1000 times the mean. Similar trends are also evident in the
inset of Fig. 13 which shows data at the lower R� of 390 but

higher resolution. Resolution effects are generally much
weaker in statistics conditioned upon a highly intermittent
variable such as dissipation or enstrophy fluctuations, as re-
ported in Ref. 10 �see also later in Sec III B�.

Although the filamentlike nature of intense vortical
structures is well known,52,53 the connection between regions
of high dissipation and enstrophy in their topologies and spa-
tial distribution is difficult to quantify. A recent study by
Moisy and Jiménez54 shows results for moderate fluctuations
consistent with ours, in that the enstrophy is found to be
more intermittent and that high activity regions appear in
clusters rather than as random distributions in space. How-
ever, their Reynolds numbers were lower than ours and pre-
sumably not sufficiently high to observe the collapse be-
tween the tails of dissipation and enstrophy PDFs suggested
in our Fig. 10. For the present data, while single-point sta-
tistics indicate that large dissipation and enstrophy do not
coincide except for extreme values, a significant overlap in
space is still possible. A simple but direct test of such a
possibility is to examine the coordinate locations of either ��
or �� exceeding a chosen threshold h. Figure 14 shows a
typical cluster of points above a normalized threshold h
=800 �which incidentally is much higher than those used by
other researchers to define “intense” events�, in an instanta-
neous velocity field taken from the 20483 simulation �R�

=650�. Points of high �� and high �� are indicated by aster-
isks and open circles, respectively, and a color map is used to
illustrate the intensity. A substantial overlap is indicated by
the presence of asterisks placed in a circle, especially in the
core of the cluster shown.

Despite the qualitative nature of Fig. 14, it is clear that
the size of the clusters shown here decreases with increasing
threshold. We can estimate the average size of the cluster by
identifying a subdomain that just completely encloses the
cluster �as in Fig. 14�. A volume Vh can be defined by mul-
tiplying the number of samples with ��
h within the sub-
domain by the volume of a grid cell �which is ��x�3�. With-
out making specific assumptions on the topology of each
cluster, a rough measure of linear size can be obtained as
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���h�=Vh
1/3, and similarly as ���h� for regions of high en-

strophy. Our results suggest power-law dependencies of the
forms ���h��h−0.54 and ���h��h−0.68 for threshold levels
in the extreme range. While these relations involve propor-
tionality factors which increase with the Reynolds number,
the exponents deduced from simulations at R��390 and 650
are nearly the same, suggesting a robust degree of
asymptotic behavior. Similar results are obtained also for an
alternative �and larger� estimate of linear size as the maxi-
mum distance between any two points with ��
h or �
h
within the same cluster, with the best-fit exponents being
about −0.8 and −0.9, respectively.

A final note on resolution effects and the detection of
flow structures is appropriate here. Regions of high � or �
are likely to have at least one linear dimension significantly
shorter than the estimates considered above. For example,
�� /� and �� /� lie typically in the range of 10–50 for h
=1000 in simulations R��650—and so can be detected
easily—while the shortest linear dimension is much smaller
and harder to resolve. In other words, a simulation with the
“standard” grid resolution kmax��1.5 ��x�2�� can capture
only some of the characteristics of high intensity clusters.

B. Conditional sampling of velocity
gradient contributions

Since fluctuations in both dissipation and enstrophy are
the result of velocity gradient fluctuations in the flow, it is
useful to examine the properties of different groupings of
velocity gradient fluctuations associated with high intensity
events. In shorthand, we may write

�/� = L + T + C, � = T − C , �23�

where, without using the standard summation convention,

L = 2 �
i=1,3

ui,i
2 , T = �

i,j=1,3

i�j

ui,j
2 , and C = �

i,j=1,3

i�j

ui,juj,i.

�24�

Longitudinal gradients contribute to term L only, and both
longitudinal and transverse terms �L and T� are always posi-
tive, whereas the cross-term C may be of either sign depend-
ing on how the off-diagonal velocity gradient components
are correlated with each other. A positive C tends to contrib-
ute to higher dissipation, whereas a negative C may lead to
higher enstrophy. We use conditional sampling below to
characterize the relative roles of the terms L, T, and C in
regions of high dissipation or enstrophy, in comparison to
unconditional statistics averaged over the entire flow do-
main.

The standard local isotropy relation ��	=15��u1,1
2 	 for

incompressible homogeneous turbulence readily leads to the
result

�L	 = �2/5���	/� , �25�

while the other two contributions can be written as

�T	 = 2�L	, �C	 = − �L	/2. �26�

One possible scenario for large dissipation and enstrophy to
scale similarly is for these two relations to be generalized to
conditional averages given large dissipation and enstrophy,
e.g.,

�L��	 =
2

5

�

�
, �27�

or at least show a trend toward this behavior in the limit of
very large �. A second possibility is for transverse gradients
to dominate the largest fluctuations of � and � overwhelm-
ingly, such that

T � �L, �C�� . �28�

This is a conjecture motivated by the fact that transverse
gradients are generally more non-Gaussian and have a
greater tendency to exhibit larger fluctuations.55,21 Condi-
tional sampling is expected to reveal which of these two
scenarios correctly represent the data.

Basic results including a resolution check on the aver-
ages of L, T, and −C conditioned upon the local dissipation
rate are given in Fig. 15, using data from simulations at R�

�240 with three different values of the resolution parameter
kmax�. Since �C ��	 is found to be negative for all �, we have
plotted �−C ��	 instead. Except for better capture of samples
at large �, the effect of grid resolution on these quantities is
apparently weak �which is true for conditional statistics in
other contexts as well, e.g. see Ref. 10�. A dashed line of
slope of 1 on logarithmic scales shows that the conditional
average of longitudinal gradients behaves in almost the same
way as the unconditional result of Eq. �25�, i.e., Eq. �27�. It is
perhaps remarkable that this result holds literally for all val-
ues of �; in the Appendix we provide some theoretical sup-
port for this result. A similar scaling is also evident for the
other terms, �T ��	 and �C ��	 for ��
4. On the other hand, in
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the limit of low �, both �T ��	 and �C ��	 are of nearly the
same magnitude but opposite signs. This effect can be under-
stood by noting that the strain rates, both off-diagonal and
diagonal, must become small as �→0. For example, �→0
implies s12

2 = �u1,2
2 +u2,1

2 +2u1,2u2,1�→0 which, upon summa-
tion of different components and conditional averaging, leads
to �C ��	�−�T ��	.

Figure 16 shows corresponding data on conditional av-
erages from our highest Reynolds number simulation �R�

�650�. Although many features are broadly similar to those
at lower Reynolds number �see the preceding figure�, there
are significant differences in the behavior of �−C ���	 in the
range of ��
1000 and in comparisons among L, T, and C
for extremely large dissipation. To understand this property,
we note that as �� increases in level from small to moderate,
and from moderate to extreme, the conditional distribution of
C changes from having only negative samples to having a
small number of positive samples, and finally to having a
wide range of both positive and negative samples, with the
conditional mean remaining negative. The “kink” seen in
�−C ��	 at �� around 300 is the result of partial cancellation
between positive and negative samples, which also leads to
increased noise that persists to very large dissipation. How-
ever, despite this uncertainty, it can be seen that the ratio of
T :L :C becomes closer to the isotropic value of 2 :1 :−1 /2
from ���103 and upward. This suggests that, within the lim-
its of sampling uncertainties, motions contributing to events
of extreme dissipation are nearly isotropic in their statistical
properties. Furthermore, as can be seen from Eq. �23�, such a
ratio also implies similar scaling for extreme dissipation and
enstrophy.

To consider regions of high enstrophy, we show the re-
sults from high Reynolds number again in Fig. 17, this time
conditioned on enstrophy instead of on dissipation. Since
��T−C, it is not surprising that �C ��	 is positive for low
� �solid line with circles� and negative for high � �dashed

line�. For very low �, we observe T�C, which can again be
explained by kinematics as �→0, while L, which contrib-
utes only to �, is nearly constant. In a narrow range of ��
around unity the ratio between �T ��	 and −�C ��	 is close to
4, as suggested by Eq. �26�. Larger values of �� up to about
400 are seen to be the result of C and −T approaching each
other as they increase in magnitude. Remarkably, however,
as �� approaches about 1000, the ratio between �T ��	 and
−�C ��	 becomes close to 4 again. In other words, these re-
sults suggest that the local flow structure is close to statisti-
cally isotropic in regions of extreme enstrophy, as already
noted for extreme dissipation. This result is consistent with a
trend toward identical scaling of extreme events in dissipa-
tion and enstrophy, which was suggested earlier in this paper
via the PDFs in Fig. 10.

IV. DISCUSSION AND CONCLUSIONS

We have used data from DNS of isotropic turbulence
with up to 20483 grid points to examine the scaling with
increasing Reynolds number of dissipation and enstrophy
fluctuations. To establish the veracity of results, we have
studied the effects of numerical resolution on small-scale sta-
tistics, keeping in mind the recent resolution criteria25 advo-
cated for attaining accurate data. We have obtained data at
different resolutions and Reynolds numbers and examined, in
particular, if large fluctuations of dissipation and enstrophy
tend to scale in the same way at high Reynolds number.

Results at Taylor-scale Reynolds number R��140 indi-
cate that moments of dissipation and enstrophy are accurate
up to fourth order if the product of the highest resolvable
wavenumber �kmax� and Kolmogorov length scale ��� is at
least 3, or, equivalently, the grid spacing is equal to � or
smaller. The constraint becomes stronger with increasing R�

and increasing order of the moment. A Taylor-series expan-
sion is used to quantify the degree of departure from the
analytic range in structure functions of different orders and
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as a function of the Reynolds number. This analysis leads to
error estimates for finite resolution and finite Reynolds num-
bers. Although the use of the standard resolution of kmax�
�1.5 leads to underestimation of high-order moment and the
tails of PDFs of dissipation and enstrophy, statements com-
paring relative behaviors of these quantities appear to be
qualitatively correct.

A common indicator of intermittency in dissipation and
enstrophy is in the behavior of wide tails of their PDFs,
which are well represented by stretched-exponential fits up
to 100 times the mean. However, data at the two highest
Reynolds numbers available �R��390 and 650� reveal ex-
treme fluctuations as large as several thousands times the
mean. We find that the tails of such PDFs can be described as
sums of two �stretched� exponentials. This is a qualitative
change of behavior from the low-Reynolds-number case. For
extreme values of �� and ��, the PDFs appear to coincide
within statistical error, suggesting a common behavior of ex-
treme fluctuations even if low order statistics may still differ.
These extreme fluctuations seem to approach a state of local
isotropy. Results from conditional averaging indicate that re-
gions of extreme dissipation and enstrophy possess a signifi-
cant degree of overlap; but, while intense dissipation is often
accompanied by intense enstrophy, intense enstrophy is less
often accompanied by intense dissipation. The dimensions of
clusters of points with dissipation or enstrophy above a cer-
tain threshold suggest that their presence can be readily de-
tected even with kmax��1.5, but some details will not be
captured.

The nature of extreme fluctuations is studied further by
decomposing both dissipation and enstrophy into longitudi-
nal �L�, transverse �T�, and cross-term �C� contributions. In
general, C is positive in strain-dominated regions, negative
in rotation-dominated regions, and small compared to L and
T whenever large dissipation and enstrophy occur simulta-
neously. The relative sizes of the terms L, T, and C associ-
ated with extreme events in dissipation and/or enstrophy ap-
pear to be consistent with a state of local isotropy. In the
future it would be useful to re-examine the related issue of
scalings of longitudinal versus transverse statistics �e.g.,
Refs. 55 and 56�, accounting for resolution effects.

An important consideration for turbulence research as
ever more powerful computer available is to recognize situ-
ations where more computer power needs to be directed at
resolution effects in the numerical results. Extensions of this
work are of interest for the passive scalar transport, where
scalar gradient fluctuations contributing to the scalar dissipa-
tion are generally accepted as more intermittent and more
demanding, depending on the Schmidt number, in terms of
resolution requirements.
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APPENDIX: A LOCAL ISOTROPY RESULT
FOR LONGITUDINAL VELOCITY GRADIENTS

We present a theoretical derivation for Eq. �27� which is
supported by the observed behavior of the quantity �L ��	 as
in Figs. 15 and 16. The starting point is that local isotropy
requires the fourth-order tensor �ui,juk,l	 to take the form
�e.g., Pope57�

�ui,juk,l	 = ��ij�kl + ��ik� jl + ��il� jk, �A1�

where the scalar coefficients �, �, and � can, with the use of
incompressibility, be expressed in terms of longitudinal and
transverse velocity gradient variances ��u1,1�2	 and ��u1,2�2	.
We propose that the same basic relation applies to condi-
tional averages given a scalar variable which is itself statis-
tically homogeneous in space. Accordingly, we write

�ui,juk,l��	 = �����ij�kl + �����ik� jl + �����il� jk, �A2�

but henceforth for simplicity, we will omit the functional
dependence of �, �, and � on � in our notation. As for
unconditional statistics incompressibility requires

3� + � + � = 0. �A3�

For longitudinal gradients setting i= j=1 gives

��u1,1�2��	 = � + � + � , �A4�

whereas for transverse gradients setting i=1 and j=2 gives

��u1,2�2��	 = � . �A5�

By solving the above for �, �, and �, and using the
simple local isotropy results �L ��	=6��u1,1�2 ��	, �T ��	
=6��u1,2�2 ��	 �where L, T, and C are defined as in Eq. �23��,
we can rewrite Eq. �A2� as

�ui,juk,l��	 = −
�L��	
12

��ij�kl − 3�il� jk�

+
�T��	

6
��ik� jl − �il� jk� . �A6�

For the cross terms, therefore, we have

�u1,2u2,1��	 = 1
4 �L��	 − 1

6 �T��	 , �A7�

and hence

�C��	 = 3
2 �L��	 − �T��	 . �A8�

Since by definition �L ��	+ �T ��	+ �C ��	=� /�, substitution
from Eq. �A8� now produces the result � /�= �5 /2��L ��	 and
hence Eq. �27� for the behavior of �L ��	, which has been
confirmed �Fig. 15� in our data to within sampling uncer-
tainty.

It should be noted that an exact result as shown here is
available only for �L ��	 but not �T ��	 or �C ��	 separately
�which would have to involve additional assumptions not
well supported by the numerical data�. Furthermore, whereas
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conditioning by the enstrophy leads to a relation similar to
Eq. �A8�, since the contributions of T and C to � are differ-
ent, no corresponding result applies for �L ��	.
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