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We consider the telegraph approximation (TA) of turbulent signals by ignoring their
amplitude variability and retaining only their ‘zero’-crossing information. We establish
a unique relationship between the spectral exponent of a signal and that of its TA,
whenever the signal possesses a Gaussian PDF and a spectral shape in which the high-
frequency cut-off is sufficiently sharp. The velocity signals in most turbulent flows away
from the wall satisfy these conditions approximately, so that the Kolmogorov spectral
exponent of −5/3 for the turbulent velocity spectrum corresponds to a −4/3 spectral
exponent for its TA. By introducing a new scaling exponent to characterize the tendency
of small-scale fluctuations to cluster, we show that the velocity and passive scalar signals
display a finite tendency to cluster even in the limit of Re → ∞. We advance the notion,
on the basis of the properties of the TA, that turbulent processes belong to one of two
classes—either the ‘white noise’ type or the ‘Markov-Lorentzian’ type.
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1. INTRODUCTION

Understanding scaling laws of turbulence is still a challenging problem. Basic
properties such as spectral distribution in the scaling region of the turbulent
energy have not yet been obtained from the Navier-Stokes equations analytically.
For instance, one does not yet know, analytically, if the cornerstone of turbulence
theory, namely Kolmogorov’s −5/3 spectral law in the inertial range of scales,(13)

is correct or needs profound modifications. Inertial range is the range of scales
that are not affected directly either by the injection of energy by forcing or its
removal by dissipation. The invariant in that range of scales is the average flux of
energy across scales, which, in the steady state, equals the injection rate as well as
the dissipation rate.

1 International Center for Theoretical Physics, Strada Costiera 11, I-34100 Trieste, Italy
2 ICAR, P.O. Box 31155, Jerusalem 91000, Israel

1145

0022-4715/06/1200-1145/0 C© 2006 Springer Science+Business Media, Inc.



1146 Sreenivasan and Bershadskii

The situation with respect to intermittency is arguably even more acute.
Intermittency means that small-scale quantities, such as the energy dissipation, are
distributed unevenly in space—perhaps also in time. It is thought that this property
of turbulence (also surmised to be true for other nonlinear dynamical systems)
introduces a powerful shift from critical phenomena. The empirical observation
of multiscaling, thought to be the manifest property of intermittency, begs one
to discover, potentially, a multiplicity of broken symmetries of the governing
equations.(8)

These broad issues are beyond the scope of the present paper, which is meant
as a contribution to a specific aspect of intermittency. The original aspect of the
contribution is the proposed simplification of the problem using the so-called tele-
graph approximation to the measured velocity signals, as described below. As we
shall show using data from experiments and numerical simulations, the telegraph
approximation can effectively separate two main components of intermittency—
one related to the amplitude of small-scale fluctuations, and another to the local
frequency of oscillations. Usually, an underlying multifractal distribution exists
for the former while the latter is associated with a monofractal tendency of events
to cluster together.

In this paper, we regard time traces of turbulent quantities such as velocity
and temperature as equivalent to one-dimensional spatial cuts. This so-called Tay-
lor’s hypothesis has a long and venerable history in the turbulence literature.(17)

This hypothesis states that the intrinsic time dependence of the velocity or tem-
perature field can be ignored when the turbulence is convected past the probes at
nearly constant speed. With this hypothesis, the temporal dynamics should reflect
the spatial one. Small-scale and high-frequency fluctuations are then regarded
interchangeably.

We first generate the telegraph approximation (TA) of turbulent signals,
which, as mentioned above, assists us in separating the clustering tendency from
amplitude effects. TA ignores the variation of amplitude from one excursion of
the signal to another and replaces the experimental signal of the type shown in the
upper part of Fig. 1 by that shown in its lower part. This approximation is generated
from the measured signal by setting the magnitudes to 1 or 0 depending on whether
the actual magnitude exceeds the mean value (marked as zero without any loss of
generality and shown by the dashed line in the top part of Fig. 1). Formally, for
a measured quantity υ(t) (with zero mean), the telegraph approximation u(t) is
constructed as

u(t) = 1

2

(
υ(t)

|υ(t)| + 1

)
.

By definition, TA can only assume either 1 or 0.
We shall show that the spectral scaling of TA can give significant information

about the spectral scaling of the full signal in the inertial range (Sec. 2). We
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Fig. 1. Example of the velocity fluctuations signal (upper part) and its telegraph approximation.

characterize the clustering properties of TA in Sec. 3 and discuss their applications
in Sec. 4. Section 5 examines the probability density function for time intervals
between pulses. Concluding remarks are presented in Sec. 6.

2. SPECTRA

We show in Fig. 2a the power spectral density for the velocity measured
in the atmospheric surface layer at a Taylor microscale Reynolds number Reλ =
19, 000.(24) The microscale Reynolds number is proportional to the square-root
of the large-scale Reynolds number. The straight line is the “−5/3” Kolmogorov
spectral form in the inertial range.(17) Figure 2b shows the spectrum of the TA
of the signal, and the straight line there shows the “−4/3” scaling. We verified
from turbulent velocity signals measured at different Reynolds numbers that all
their TAs show the “−4/3” slope (though, of course, the range of applicable scales
increases with the Reynolds number). In all the cases examined, we observed a
more extensive scaling in the TA than in the full signal itself.

To examine the correspondence between the spectral slope of the full signal
and that of its TA, we numerically generated several stochastic signals with various
spectral roll-off rates and obtained the spectral scaling of their TAs. Because
turbulent velocity fluctuations measured away from a solid wall possess roughly
Gaussian probability density function (PDF), and the numerical signals possessed a
Gaussian distribution of amplitudes and their high-frequency part decayed rapidly
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Fig. 2. Spectrum of (a) the velocity fluctuations and (b) of its telegraph approximation. The velocity
data are obtained in slightly unstable atmospheric surface layer; the microscale Reynolds number
Rλ = 19, 000. The non-scaling low frequency part of the spectrum is not shown (simply because the
finite FFT length used for these calculations did not contain enough large scales). It has been shown
in(24) that the low-frequency part flattens out which, in this loose sense, is similar to white noise. kd is
the Kolmogorov wavenumber.

(as it does for turbulence, see Fig. 2a), we observed a unique relationship between
the spectral exponent, n, of the full signal and that of its TA, m (say). The relation
is

m = n + 1

2
. (1)

This relation is based on numerical results but should be provable analytically for
certain a classes of stochastic processes. In the Appendix, we present a heuristic
proof.(6) It should, however, be noted that the class of stochastic processes for
which this relation is valid is still undefined and rigorous definition of this class
can be a difficult problem.(3,9,16) Incidentally, the result holds numerically for
passive scalars as well.

We may speculate about one possible usefulness of this result. We suppose
that it is easier to obtain (perhaps using symbolic dynamics or similar methods)
certain types of analytical results for TA for the Navier-Stokes velocity, rather than
for the velocity itself. From such exercises, if the inertial-range scaling exponent
for TA of the velocity can be shown to be −4/3 (or a close approximation to
it), it would mean that the Kolmogorov spectral exponent of −5/3 (or a close
approximation to it) for the Navier-Stokes velocity would be one step closer to
being an analytical result.
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Fig. 3. Standard deviation of the running density fluctuations against τ for white noise.

3. THE CLUSTER EXPONENT

We now turn to the clustering information that can be extracted from TA.
Let us count the number of ‘zero’-crossing points of TA (the same as the ‘zero’-
crossing points of the full signal) in a time interval τ and consider their average
density nτ . Let us denote fluctuations of the running density as δnτ = nτ − 〈nτ 〉,
where the brackets mean the average over long times. We are interested in the
variation of the standard deviation of the running density fluctuations 〈δn2

τ 〉1/2

with τ .
For reference, Fig. 3 shows the result for the white noise signal, which,

presumably, has no clustering. The straight line is the scaling relation

〈
δn2

τ

〉1/2 ∼ τα, (2)

with α = 1/2. This result for white noise can be derived analytically.(2,14,16)

In Fig. 4 we show results from analogous calculations for the turbulent
velocity signals obtained in a wind-tunnel experiment(19) for different Reynolds
numbers. Two scaling intervals of the type (2) appear, and the straight lines show
the two values of the exponent α. The scaling interval to the left covers dissipative
and inertial ranges, and that to the right covers scales larger then the integral scale
of the flow. The latter has an exponent of 1/2. This is not surprising because the
large scales behave like white noise. We can therefore regard the large scales as
having no clustering properties, and shall ignore them further. On the other hand,
the scaling on the left (with α < 1/2) indicates the tendency of small scales to
cluster. The cluster exponent α for small scales decreases with increasing Reλ,
which means an increasing tendency to cluster (as was expected from visual
inspection). There is no analytical proof for this result for turbulence.
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Fig. 4. As in Fig. 3 but for velocity signals obtained in a wind tunnel experiment(19) at different values
of Reynolds numbers. τd is the timescale equivalent to the Kolmogorov length scale.

4. APPLICATIONS OF THE CLUSTER EXPONENT

An intriguing question concerns the limiting value of α as Reλ → ∞. It is
natural to consider the functional relation α = α(ln Reλ). We have explored in
some detail elsewhere(23) the question of why logarithmic expansions such as this
are relevant to turbulence; we have also shown that in circumstances governed by
vortex instabilities, the use of ln Reλ is the appropriate expansion parameter instead
of Reλ itself. The idea was earlier explored in wall flows in Ref. 1. Expanding α

for large Reλ in power series as

α(ln Reλ) = α∞ + a1

ln Reλ

+ a2

(ln Reλ)2
+ . . . , (3)

and, keeping only the first two terms, we show in Fig. 5 the calculated values
of α against 1/ ln Reλ for velocity signals in the range 200 < Reλ < 20000. The
straight line given by

α(ln Reλ) � 0.1 + 3/2

ln Reλ

(4)
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Fig. 5. The cluster exponent α (circles) against 1/ ln Reλ for velocity signal in the Reynolds number
range 200 < Reλ < 20, 000; α∞ ≈ 0.1; α1 ≈ 3

2 . The scaling exponents αε (triangles) are for the

dissipation fluctuations computed from the full signals; αε∞ ≈ 0; αε1 ≈ 3
2 .

fits the data very well. In particular, we have

lim
Reλ→∞

α ≡ α∞ � 0.1. (5)

The finiteness of α∞ supports the notion that the limiting case of Reλ → ∞ is
qualitatively no different from the case of finite Reynolds numbers with respect to
its clustering properties.

For comparison we also show in Fig. 5 the scaling exponents calculated for
the dissipation rate computed from the full velocity signals

〈
δε2

τ

〉1/2 ∼ ταε , (6)

where we have used

ετ =
∫ τ

0 ε(t) dt

τ
. (7)

This local average was introduced by Obukhov(18) to describe intermittency. We
have also added four data points for αε for a mixing layer(20) and the atmospheric
surface layer.(24) One can see that for the dissipation, the limit is close to trivial:
limRe→∞ αε ≈ 0 (cf. Refs. 1, 4, 15).

It is worth emphasizing that the scaling exponent αε of Fig. 5 corresponds
to the dissipation rate computed from the full velocity signals. Therefore, the
similarity of cluster exponent α and αε is remarkable. This means, in particular,
that, at least for Reλ > 200, we have the simple relationship

αε(Reλ) = α(Reλ) + c, (8)
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where c � −0.1 is independent of Reλ. The implication is that there is simple
splitting of the intermittency exponent αε between αn(Reλ), which is connected
with clustering properties, and the component c which is independent of Reλ and
the flow, hence perhaps deserves the designation of being ‘universal.’ Therefore,
to within this universal constant, the clustering of small-scale velocity fluctuations
alone determines the Reynolds number dependence of intermittency.

One can also use Eq. (4) to obtain a bound Re(c)
λ on the Reynolds number at

which a non-trivial exponent would begin to appear. The bound can be obtained
from the equation

α(ln Re(c)
λ ) � 0.1 + 3/2

ln Re(c)
λ

= 1/2, (9)

which gives us

Re(c)
λ � 42. (10)

The value seems reasonable because it is roughly equal to the minimum Reynolds
number at which a flow begins to attain other characteristics of fully developed
turbulence.(21)

The clustering tendency of small scales of the passive scalar in turbulent
flows can also be characterized by the cluster-exponent, as can be seen in Fig. 6.
Data shown in Fig. 6a were calculated from a signal acquired with a cold-wire
probe in the wake of a heated cylinder in a wind tunnel at Reλ � 130 (see Ref. 11
for details of the experiment). Temperature can be considered as a passive scalar

Fig. 6. As in Fig. 3 but for temperature (passive scalar) fluctuations measured in the turbulent wake at
Reλ = 130 (Fig. 6a), and in unstable atmospheric surface layer at Reλ = 7000 (Fig. 6b).
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for the conditions of this experiment. Data shown in the Fig. 6b were obtained
from a temperature signal measured in the unstable atmospheric surface layer at
Reλ � 7000.(12) The straight lines are drawn in order to compare the data with
Eq. (2).

The Reynolds number variation of the cluster exponent for the passive scalar
can be discussed using Eq. (3). Data not presented here show that the first two
terms of Eq. (3) give the same slope (≈ 3

2 ) as for velocity but αε∞ � 0.07.
This means, in particular, that the small-scale fluctuations of passive scalar are
more strongly clustered than the velocity fluctuations at the same Reynolds
number. This is consistent with the tendency of the scalars to form ramp-cliff
structures.(22)

5. PROBABILITY DENSITY FUNCTIONS

OF THE INTERPULSE PERIOD

Recall that the scaling exponent of the spectrum of the TA is determined
completely by that of the spectrum of the full signal (Sec. 2). In contrast, the
cluster exponents of the TA signals depend on the interplay between the scaling
part of the full spectrum and its dissipative part. Moreover, the cluster exponent
can exist for TA even when the original spectrum does not exhibit any scaling, and
may indeed contain substantial qualitative information about the full signal. This
requires that we consider the distribution of the crossing intervals of TA (same as
the crossing intervals of the original signal). This distribution does not have any
information about the ordering of events in space (or time)—unlike the cluster
exponent.

We consider the probability density function (PDF) of the crossing inter-
vals between pulses τ (i.e. interval of time between two successive zero-crossing
points). The pulses can also be characterized by the return time T (T = τi + τi+1,
where i is index of the zero-crossing point in the time series).

In Sec. 3 we compared the tendency of turbulent signals to cluster with white
noise as a model of disorder. It is interesting to continue this comparison with
respect to the PDF of T . If the white noise is a model signal for the turbulence
in this respect, the PDFs should be similar. Figure 7 shows, as an example, p(T )
for a white noise signal (Fig. 7a), for the passive scalar signal (Fig. 7b), and
for the velocity signal (Fig. 7c). The solid lines are the best fit to a lognormal
distribution. One can see that the central parts of the PDFs are indeed similar for
all three signals. The large T tails for the turbulent signals are exponential (see also
Refs. 10, 25), that can be readily related to the Poisson character of the very large
time periods. (This is difficult to reach technically in the white noise simulations.)

The similarity of shapes of p(T ), at least for the central part of the PDF,
for the white noise and for turbulent signals suggests some similarities. Such a
similarity is rather nontrivial because one might imagine a better correspondence,
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Fig. 7. Comparison of the white noise PDF (Fig. 7a) with those of the passive scalar signal in turbulent
wake (Fig. 7b) and of the turbulent velocity signal (Fig. 7c). The solid parabolas (the best fit) indicate
lognormal distribution, and τd is a dissipative scale for the signal.

instead, with the PDF of T for a stochastic signal with the Markov (Lorentzian)
spectrum

E( f ) = 2σ

1 + ( f/ f0)2
. (11)

This expectation appears more natural because of the power-law spectrum charac-
teristic of (11). But the Markov-Lorentzian signals exhibit power-law PDFs instead
of exhibiting the logarithmical PDF.

We have come to the following conclusion after some careful scrutiny of many
turbulent signals: the so-called active scalars (or vectors) in turbulent flows possess
the properties of the Markov-Lorentzian scaling properties (cf. Ref. 3, where
the cluster properties were explored). This conclusion is true for temperature in
thermal convection, where the dynamics are determined by the heating, and also
for the magnitude of magnetic field in magnetohydrodynamic turbulence. The
scaling properties of the tendency to cluster for the ‘Markov-Lorentzian’ class is
quite similar for the processes belonging to that class (see for an example of such
behavior(3)) but significantly different from that of the ‘white noise’ class studied
in present paper.
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6. CONCLUDING REMARKS

Small-scale intermittency in turbulence has two ingredients: one due to am-
plitude variations and the other due to the tendency of structures to cluster together
in space. For understanding the latter, it is useful to study the random telegraph
approximation (TA) of the signal; by doing so, we eliminate amplitude variations
and preserve only the information on clustering. Under benign conditions that
should apply to turbulence far away from the walls, we have shown that there ex-
ists a unique relation between the spectral scaling of the signal and its TA. We have
defined, and experimentally determined, the cluster exponents for the velocity and
passive scalar signals and deduced their asymptotic values in the limit of infinite
Reynolds number. The finite values of the asymptotic cluster exponents, for both
the velocity and passive scalar, are a measure of the tendency of small-scales
to cluster finitely even in the limit. Perhaps most importantly, the intermittency
exponent of the dissipation is related to the cluster exponent through a ‘universal’
constant (see Eq. (8)). This is perhaps our most important qualitative conclusion.
While its full implications are being explored, it appears that the amplitude ef-
fects are contained entirely in the one constant c whose numerical value we have
determined empirically.

We have shown that there are two classes of signals, the white-noise type and
the Markovian-Lorentzian type, which have two generically different behaviors
for the probability density functions of the interpulse distance of the TA signals.
The former is close to that for the velocity and passive scalars, while the latter is
close to that for active scalars and vectors.

APPENDIX

Following the reasoning due to G.L. Eyink,(6) we will show here that Eq. (1)
can be supported by heuristic considerations. First, let us suppose for simplicity
that the velocity is a monofractal with Hölder exponent h. It is well known(7) that,
for a wide class of signals, the fractal dimension of the zero-crossing set Z on the
line is

D(Z ) = 1 − h. (A1)

The telegraph approximation

u(t) = sign(υ(t)) (A2)

of the velocity field υ(t) is bifractal, with “shocks” on the set Z with codimension
h. Thus

〈(�u)2〉 ∼ lh (A3)
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by the standard “bifractal” scaling argument (where �u is variation of u on scale
l). On the other hand,

〈(�υ)2〉 ∼ l2h . (A4)

In terms of the spectral exponents n = 1 + 2h and m = 1 + h, this recovers the
empirical relation (1). Equation (A1) provides also a restriction n > 1 that is
significant for the application to the small-scale field such as vorticity.

For a multifractal signal

D(Z ) = 1 − ζ1, (A5)

where ζ1 is the first-order scaling exponent of |�u| (Theorem 4.2 of Ref. 5).
Repeating the “bifractal” scaling argument, one expects that

〈(�u)p〉 ∼ lζ1 (A6)

for all p > 1, whereas

〈(�υ)p〉 ∼ lζp . (A7)

Thus for multifractal signal one obtains

m = 1 + ζ1, (A8)

instead of the Eq. (1). For the case on hand, this will differ only slightly from the
Eq. (1), see Ref. 24.
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