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Abstract. A logarithmic scaling for structure functions, in the form Sp ∼ [ln(r/η)]ζp ,
where η is the Kolmogorov dissipation scale and ζp are the scaling exponents, is suggested
for the statistical description of the near-dissipation range for which classical power-law
scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown
that the logarithmic scaling, deduced from general considerations for the near-dissipation
range, covers almost the entire range of scales (about two decades) of structure functions,
for both velocity and passive scalar fields. This new scaling requires two empirical con-
stants, just as the classical scaling does, and can be considered the basis for extended
self-similarity.
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The Kolmogorov approach to the phenomenological description of the inertial range
of scales in turbulence requires that the scales r À η, where η is the Kolmogorov
dissipation scale [1]. The dominant physical mechanism operating in the inertial
range can be thought to be the Kolmogorov–Richardson cascade, and its application
readily yields the well-known power-law scaling for structure functions [2,3]. On the
other hand, the near-dissipation range of scales, for which r > η but there exists
no separation between the inertial and dissipation ranges, has a more complex
dynamics arising from a strong competition between the cascade and dissipation
mechanisms (see, for instance, refs [4–6] and the references cited there). Indeed, for
small and moderate Reynolds numbers, the near-dissipation range can span most
of the available range of scales. Analogous situation occurs also for the turbulent
mixing of passive scalars.
One of the few properties known about the near-dissipation region is that it obeys

the so-called extended self-similarity (ESS) [7], while the classical power-law scaling
does not exist. In ESS the scaling relation between structure functions of different
orders is given by
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Figure 1. The second-order structure function S2(r/η) against r/η. The
experimental data (Rλ = 206) are shown as circles. The solid curve is the
best fit of (3) to the data, corresponding to the logarithmic scaling.

Sp(r) ∼ Sβp,q
q (r), (1)

where βp,q is the exponent of the pth order structure function relative to that of
the qth order. For the velocity field in the near-dissipation range, ESS implies that

Sp(r) = f(r/η)ζp , (2)

where f(x) is an unknown function different from a power law. Finding this function
is crucial for the near-dissipation range. We show here, using experimental and
numerical data, that the logarithmic function

Sp ∼ [ln(r/η)]ζp (3)

can successfully replace the power law Sp ∼ rζp in the near-dissipation range.
Figures 1 and 2 show the longitudinal second-order structure function of the

velocity field calculated using the data obtained in a wind tunnel at Rλ = 206
and 487, respectively. Here Rλ is the so-called Taylor microscale Reynolds number
which varies as the square root of the large-scale Reynolds number. The flow was
a combination of the wake and homogeneous turbulence behind a grid and is more
fully described in ref. [8]. Following convention, we invoke Taylor’s hypothesis [1]
to equate temporal statistics to spatial statistics. For convenience, we normalize
the scale r by the Kolmogorov scale η. The solid curves in these figures are the best
fit by eq. (3) for ζ2 ' 3.1 and 3.3, respectively. We consider in figure 3 the quantity
S2(r) calculated using data from a high-resolution direct numerical simulation of
homogeneous steady three-dimensional turbulence [9], corresponding to 10243 grid
points and Rλ = 460. The solid curve in this figure also corresponds to the best
fit by eq. (3), with ζ2 ' 3.2. The logarithmic scaling applies well to the near-
dissipation region and, although we do not particularly expect it, to a considerable
part of the inertial range as well, overlapping with the 2/3rds form of Kolmogorov.
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Figure 2. Same as in figure 1, but for Rλ = 487.

Figure 3. The second-order structure function S2(r/η) against r/η. The
DNS data [9] (Rλ = 460) are shown as circles. The solid curve is the best fit
of (3) corresponding to the logarithmic scaling. The dashed straight line is
the Kolmogorov’s 2/3rds scaling form, nominally thought to be applicable in
the inertial range (ignoring effects of small-scale intermittency).

Figure 4 shows the structure functions of different orders for wind-tunnel data
(Rλ = 487) and the logarithmic scaling (3) is shown in the figure as solid curves.
The exponents ζp normalized by the exponent ζ3 are shown in figure 5 as circles. For
comparison we show by crosses in this figure the relative exponents ζp,3 obtained
using ESS in the atmospheric turbulence for large Rλ = 10,340 [10]. As described at
some length in [10], the ESS exponents are very close to those determined directly.
The fact that the normalized logarithmic exponents are also the same as the

power-law exponents clearly shows why the ESS works well at low Reynolds num-
bers. We understand that this observation merely shifts emphasis on explaining

Pramana – J. Phys., Vol. 64, No. 3, March 2005 317



K R Sreenivasan and A Bershadskii

Figure 4. Structure functions of different orders (p = 1, 3, 4 and 6) for
Rλ = 487 (cf. fiigure 2). The solid curves are drawn to indicate the logarithmic
scaling (3).

Figure 5. Normalized exponents ζp/ζ3 against p for Rλ = 487 (circles).
Crosses are the ESS exponents obtained for the atmospheric turbulence data
at Rλ = 10,340 [10].

why these two sets of exponents should be identical, but leave this question for the
future.
For the passive scalar we use the data acquired with a cold-wire probe in the wake

of a heated cylinder in a wind tunnel (see ref. [11] for details of the experiment).
Temperature can be considered a passive scalar for the conditions of the experiment.
We used measurements on the centerline of the wake. Figures 6 and 7 show the
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Figure 6. Second-order structure function of the temperature fluctuations
for the heated wake.

Figure 7. As in figure 3, but for different orders of the structure function.

temperature structure functions of different orders and the solid curves are the best
fits drawn to indicate agreement with eq. (3) (i.e., logarithmic scaling). Values of
ζp/ζ2 calculated from figures 6 and 7 are shown in figure 8 as circles. We also show
by triangles in this figure the ESS exponents obtained for passive scalar in fully
developed atmospheric turbulence using ordinary scaling in the inertial range of
scales [12].
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Figure 8. Exponents for the passive scalar extracted from figures 6 and 7
(circles) and for the fully developed atmospheric turbulence (ordinary scaling
in the inertial range, triangles [12]).

Figure 9. Correlation function for velocity fluctuations against r/η for
Rλ = 487 (circles). The solid curve is drawn in the figure to indicate agreement
with the logarithmic scaling shown in figure 2.

It should be pointed out that the logarithmic scaling requires two fitting constants
just as the ordinary scaling does, and, in the examples discussed above, the range of
scales covered by this scaling is about two decades. Application of these results to
correlation functions and spectra is in good agreement with the structure functions
analysis (see, for instance, figure 9) as well as with other available data sets.
Thus, we have clear experimental indication that the logarithmic scaling is an

appropriate tool for the description of data in the near-dissipation range. This
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scaling applies to nearly the entire range of scales in flows of low and modest
Reynolds numbers. At high Reynolds numbers, it overlaps with conventional power
laws. The normalized logarithmic exponents are the same as the classical ones, thus
demonstrating why ESS works so well at low and moderate Reynolds numbers.
These comments apply to both velocity and scalar fields. The theory concerning
these observations will be discussed elsewhere [13].
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