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Does the flatness of the velocity derivative blow up
at a finite Reynolds number?
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Abstract. A tentative suggestion is made that the flatness of the velocity derivative
could reach an infinite value at finite (though very large) Reynolds number, with possible
implications for the singularities of the Navier–Stokes equations. A direct test of this
suggestion requires measurements at Reynolds numbers presently outside the experimental
capacity, so an alternative suggestion that can be tested at accessible Reynolds numbers
is also made.
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0. Preamble

The first author of this paper presented an invited talk at STATPHYS 22. The ti-
tle of the presentation was “Onsager and the theory of hydrodynamic turbulence”.
The paper was jointly authored with G L Eyink of Johns Hopkins University, and
will be published in Rev. Mod. Phys. in 2005. In that article, we traced On-
sager’s contributions to hydrodynamic turbulence through his published papers,
correspondence and unpublished notes. It is remarkable that Onsager anticipated
essential elements of several important results that others published many years
later. One of the several topics that interested Onsager was the subject of Euler
singularities and dissipative anomaly. He stated – and had in his unpublished notes,
calculations to support the statement – that there is a precise minimal Hölder sin-
gularity that would lead to finite dissipation in the inviscid limit. The subject of
finite-time Euler singularities has been fascinating to many mathematicians and nu-
merical simulators alike, but the conclusions are still far from being clear. Instead
of repeating parts of the review article with Eyink, it was thought that it might be
better to say something different on the subject of singularities. The present paper
may have some vague connection with Navier–Stokes singularities, and is more
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specifically about the nature of the flatness factor of the velocity derivative in tur-
bulent flows.

1. Introduction

The possibility that the Navier–Stokes (NS) equations could attain singularities at
some finite though large Reynolds numbers is intriguing [1]. Though the subject has
held long-standing interest (see [2–9]), and the regularity of the three-dimensional
(3D) solutions is assured for sufficiently low Reynolds numbers [10], a complete
theory for high Reynolds numbers is lacking at present. One principal result from
[6] is that the 3D singularities of the NS equations, if they exist, possess a Hausdorff
dimension of less than unity in four-dimensional space-time. We are thus assured
that the singularities would be very rare, and cannot take the form of a simple vortex
line because it possesses Hausdorff measure of unity in space-time. However, the
result does not rule out the appearance of singular features at some point along
a vortex line for brief periods of time. A related and important conclusion [9] is
that the 3D Euler solutions remain regular if the maximum norm of the vorticity
remains bounded. Further pedagogical discussion of this issue can be found in [11].
One of the latest efforts on the subject of NS singularities is [12].

Most experimentalists believe that the tendency to form 3D NS singularities is
smoothed out by viscosity and that they do not occur in practice. However, the
questions are quite subtle, and it would be useful if experiments could motivate
further discussion on singularities. In the absence of direct information, a chosen
velocity gradient, or combinations of velocity gradients, are the next best substitutes
to consider from the experimental point of view. In particular, statistical quantities
such as the flatness (i.e., the normalized fourth-order moment) of the so-called
longitudinal velocity derivative might be expected to detect the occurrence of such
singularities. We restrict ourselves to making a few tentative remarks from this
perspective on the behavior of the derivative flatness.

2. Experimental data

Figure 1, taken from [13], shows the flatness of the longitudinal velocity derivative
as a function of the Reynolds number Rλ = u′λ/ν based on the root-mean-square
velocity fluctuation u′, the Taylor microscale λ and the fluid viscosity ν. This
Reynolds number varies as the square root of the Reynolds number, Re = u′L/ν,
based on the large scale L. The graph covers low Reynolds numbers from direct nu-
merical simulations and a variety of laboratory experiments, as well as atmospheric
surface layer at high Reynolds numbers. The data were collected in 1997. Some
new data obtained since then are compatible with this figure, but the scatter has
remained comparable for them as well. It is not clear if this scatter is a reflection of
the non-universality of the flatness, or simply a sampling error due to the increas-
ing demands placed at increasingly high Reynolds number on the length of data
required for statistical convergence. It is usually implied that the latter is the case.
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Figure 1. The figure is a compilation of the flatness F of the longitudinal
velocity derivative ∂u/∂x, taken from [13].

The interpretation is that the flatness increases as a power-law in Rλ, for Rλ > 100
or so. Another line of thinking [14] is that Rλ is not the proper Reynolds number
to use for testing universality but we shall not consider it here: if there is a singular
behavior in one Reynolds number, it is likely to show up in another.

Suggestions have occasionally been made in the literature that, beyond a certain
Reynolds number, the derivative flatness becomes a constant or develops some
non-monotonic feature [15]. An interesting interpretation of this claim has been
that a second transition of some kind occurs in turbulence – and who knows if
there are more? – and that the nominal power-law range just discussed is not the
asymptotic state. In another recent paper [16], however, it has been pointed out
that the tendency for the flatness to reach constancy at some high Reynolds number
is merely an experimental artifact; and that it disappears when the resolution of
measurement is improved. At the least, this study suggests that there is a great
need to resolve the velocity data better in order to know with any certainty the
proper behavior of the flatness.

What might be the needed resolution? The conventional wisdom has been that
the gradients can be computed from the velocity data reliably if the latter are mea-
sured with a resolution of the order of the Kolmogorov scale defined on the average
dissipation rate [17]. Since this convention might well be reasonable at modest
Reynolds numbers, by extension, the (average) Kolmogorov scale has been treated
as the finest resolution required for all purposes at all Reynolds numbers (though,
in practice, even this resolution has not been attained at high Reynolds numbers).
For some time, however, there has been a growing realization [18,19] that the Kol-
mogorov scale is a fluctuating quantity due to the (approximate) multifractality
[20] of the energy dissipation, and that scales significantly smaller than the average
value do exist, especially at high Reynolds numbers. In another recent work [21], an
explicit formula has been derived (subject to some elementary caveats) to show that
the appropriate resolution depends on the moment order and the Reynolds number
itself. The higher the order of the moment and the higher the Reynolds number, the
more stringent is the required resolution in measurement and simulations. Direct
numerical simulations of passive scalar [22], made with resolutions much smaller
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than the Batchelor scale (the nominally smallest scale for passive scalars), confirm
that finer scales than the Batchelor scale do indeed exist. This result points to the
essential plausibility of the arguments just made for the velocity data.

Given that we do not yet have the high Reynolds number flatness measurements
with the required resolution, their behavior is still unclear. It follows that the
existing data are open to different interpretations. One such interpretation is at-
tempted below. The key to the interpretation is the fact that the flatness data
of figure 1 – such as they are – appear to show a continually increasing tendency
to curve upwards, and are not unambiguously described by a power-law (though a
power-law may be a moderately good fit for some range of Rλ).

3. The new interpretation of the derivative flatness

We have argued elsewhere [23–25] that the natural parameter for assessing the
behavior of small-scale turbulence is the logarithm of the Reynolds number, and
that the inverse of log Rλ is the appropriate expansion parameter in turbulence.
While this has no analytical justification that we are aware, several known features
of turbulence point in this direction. For instance, the number of steps in the
energy cascade is proportional – at least as we understand the situation presently –
to the logarithm of the Reynolds number. In one interpretation [26], the number
of ‘particles’ on which one does statistical mechanics of the inertial range is equal
to 3

2 log2 Rλ. Further, it makes good sense to expand the Reynolds shear stress in
pipe and channel flows in terms of the logarithm of the Reynolds number. Earlier,
this same notion was put to extensive use by Barenblatt [27] for formulating the
mean velocity distribution in wall-bounded flows; for an explicit formulation in
more general contexts, see [28]. We thus examine here the consequences of the
same line of thought for the derivative flatness. Since there is much scatter in the
flatness data, we have fitted a local average for the data and considered it below.

Figure 2 shows the inverse flatness F−1 (from the local average fit) against
1/ ln(Reλ). New data from experiments performed in wind tunnels [29] and in
atmospheric surface layer [30], are added. The straight line is drawn to indicate
critical-like dependence

F (x) = c1
x

(xc − x)
(1)

with

x = ln(Rλ). (2)

This fit is reasonable from Rλ ≈ 50 (which is on the order of the minimum
Reynolds number at which turbulence-like behavior sets in [31]) and describes all
the measured data up to Rλ ≈ 20,000 (which is about the highest Reynolds num-
ber at which measurements have been made so far [30]). Extrapolating this fit,
perhaps with some peril, one can find the ‘critical’ value xc = ln R

(c)
λ ' 12.6± 1.5,

as the intersection point of the fitting straight line with the horizontal axis. This
gives a ‘critical’ value R

(c)
λ of about 300,000 (corresponding to about 19 ‘particles’
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Figure 2. Inverse flatness data (circles)

against inverse ln Rλ. The solid straight line

indicates the best fit with eqs (1) and (2).

Figure 3. Same as in figure 2 but in the

conventional log–log coordinates.

as mentioned above). While the error bar in 1/lnR
(c)
λ is modest, it translates to

huge uncertainty between 66,000 and 1,300,000 in the value of R
(c)
λ itself.

A slightly different perspective on the topic is provided in figure 3, which com-
pares the smoothed data (circles) with the ‘critical’ approximation (1) and (2) (solid
curve) as well as conventional power law (dashed line) in log–log coordinates. Even
though there is a slight suggestion that the data prefer the ‘critical’ line to the
pure power-law (towards the upper end of Rλ), one needs an order of magnitude
higher Rλ in order to determine unambiguously whether the data will follow the
traditional power law or the critical behavior. Such Reynolds numbers are outside
the limits of the present experiments.

Thus, the suggestion of ‘criticality’, or the singular behavior of the flatness, could
remain only as an academic curiosity except for one possibility. As we have already
discussed, the velocity measurements, from which the derivative flatness of fig-
ure 1 is computed, have been made typically with a resolution on the order of the
Kolmogorov scale. Since those made with poorer resolution are known [16] to fall
below those of figure 1, it is eminently possible that the flatness measured with
better resolution will fall above those of figure 1. This behavior probably mani-
fests itself already at Rλ values at the top end of figure 1. If the data at those
same Reynolds numbers can be repeated with improved resolution, and they show
a tendency to migrate more towards the ‘critical’ curve, one may infer that there
is possibly an element of truth in our speculation.

4. Discussion and conclusion

On the basis of available evidence, we have tentatively argued that singular be-
havior of the flatness at some large but finite Reynolds number may not be ruled
out. To show that this suggestion is on the right path, one needs measurements
of the derivative flatness at the highest possible Reynolds number available with
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increasingly improved resolution. If such measurements migrate towards the ‘crit-
ical’ curve of figure 3, the suggestion would have acquired a status beyond mere
speculation. Of course, to be certain, one needs data at much higher Rλ, which
seems to be out of reach for the present.

A few further remarks might be useful. All available evidence [31,32] suggests
that the energy dissipation rate, which is proportional at high Reynolds numbers to
the second moment of the velocity derivative, becomes independent of the Reynolds
number. There is thus no evidence that the singularities, if they exist, will con-
tribute to the second moment. We have examined the evidence available for the
(normalized) sixth moment. Though the scatter of the data is larger than that for
the fourth moment, the data seem to fit the formula

F6 = c2

[
x

xc − x

]2.3±0.2

, (3)

where x and xc have the same meaning as before. It may thus be speculated that
higher order moments will have the same form, with the same ‘critical’ Reynolds
number, but with increasingly larger values of the exponent. Needless to say, forms
such as (1) and (3) can be approximated adequately as power laws in some range
of x.

Finally, we may ask: if the singularities do indeed arise in the flow, what does it
say about the NS equations themselves? Can one ever say anything definitive about
the NS singularities through experiments? Does one have to consider something
else besides the NS equations once singularities arise in the flow? In the face of these
difficult and unanswered questions, the spirit of this note should be taken to be that
experiments may be able to sharpen mathematical questions. At present, we would
be content if the note sharpened experimental questions about the flatness a bit
better. We are well aware that there is in this subject no substitute for convincing
mathematical demonstrations.
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