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Abstract

We provide a brief assessment of the contributions of Sir Sam Edwards to
field-theoretic methods in the statistical theory of turbulent fluid dynamics,
and connect those contributions to later developments in the subject.

4.1 Introduction

The closure problem in hydrodynamic turbulence is notorious for its difficulty
(see, e.g., Monin and Yaglom 1971). Expansions of high-order moments in
terms of powers of Reynolds number do not converge; truncation of the hier-
archy of moments or cumulants beyond a certain order yield unrealizable results
such as negative energy. Sam Edwards was immersed in this problem in the
mid-sixties. In his first paper on the subject, ‘Theoretical dynamics of homogen-
eous turbulence,” J. Fluid Mech. 18, 239 (1964) he already stated its essential
difficulty:

‘Many problems in theoretical physics can be expressed in terms of functional differ-
ential equations, but turbulence is an exceptional problem in that there is in the limit
of large Reynolds number no external parameter which can be used as a basis of an
expansion technique. In the language of quantum field theory it is a problem of infinitely
strong coupling constant.’ (

The turbulence problem perhaps no longer appears to be as ‘exceptional’ as it
once did, for other important strong-coupling problems have since been faced in
theoretical physics. Some of these, such as color confinement in quantum chro-
modynamics, are still with us; others, such as critical phenomena in three space
dimensions, have been successfully solved.! Experience has taught us that each

L' We have used the word ‘solved’ to indicate that critical scaling exponents have been
calculated by several methods, such as Borel-restunmed e-expansion, high-temperature series
and Monte Carlo simulation, and that the results agree to several significant digits [for recent7
discussions, see Guida and Zinn-Justin (1998), and Pelissetto and Vicari (2002)]. Mathematical
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such strong-coupling problem stands on its own, and no general and encom-
passing method is available, or perhaps likely to be found, to solve them all. In
the case of critical phenomena, it was discovered that there were ‘hidden’ small
parameters, such as the deviation of space dimension d from an upper-critical
dimension d. (often four), namely € = dc—d, or an inverse number of components
of the order parameter, 1/N. These parameters were made the basis of successful
perturbative calculations even for ¢ = 1 or N = 1, especially when augmented
with Padé or Borel resummation techniques (Wilson and Fisher 1972; Ma 1976;
Fisher 1998). It has also been possible to develop successful nonperturbative
numerical schemes to calculate critical scaling exponents, e.g., by fast Monte
Carlo algorithms. [See Guida and Zinn-Justin (1998), and Pelissetto and Vicari
(2002) for a survey of current results.]

None of these methods that enabled break-through successes in the theory of
critical phenomena has yielded results of comparable significance in understand-
ing or predicting turbulent flows. Nevertheless, considerable progress has been
made. Edwards himself was a pioneer in the application of quantum field-theory
tools to turbulence. In his paper cited above (Edwards 1964), he developed a
self-consistent expansion method which, in his own words, was ‘based on the
internal properties of the system. His methods, as well as the related earlier
work of Kraichnan (1959, 1961) and Wyld (1961), have yielded some import-
ant insights. Recently, perturbative techniques have scored a very significant
success in calculating turbulent scaling exponents in a simplified model of a
white-noise advected passive scalar (for a review, see Falkovich et al. 2001). Tt
is our purpose in this chapter to review the contribution of Sam Edwards to
developing field-theoretic methods in turbulence theory, and to sumrnarize some
recent progress and hopes for the future. In Section 4.2 we shall take a quick
tour through Edwards’ classic paper and point out some of its significant results
that have played a role in later developments. In particular, in Section 4.3, we
shall discuss the recent progress in calculating anomalous scaling exponents in
the Kraichnan model for passive scalars by perturbative field-theoretic methods.
In Section 4.4 we offer some prognosis for the much harder problem of Navier-
Stokes turbulence. The paper concludes with a brief summary and perspective
in Section 4.5.

4.2 Contributions of Edwards

Edwards (1964) contains many noteworthy aspects but we shall focus on those
that seem to us most important in view of our present understanding of the
subject, and on those that have played some part in later developments. Other

physicists regard aspects of the problem as open: e.g., no one has yet constructed by rigor-
ous mathematics a strong-coupling fixed point of the renormalization group for a realistic,
short-ranged model in three dimensions, although the numerical evidence is that it exists and
the scaling properties in its vicinity are understood by the e-expansion. Various non-universal
quantities of significant interest, such as critical temperatures, cannot yet be readily calculated
for real physical systems found in nature or realized in laboratories. Engineers might in general
regard a problem as open if it is understood only to this degree of detail.
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scientists revisiting the paper will certainly uncover riches left uncounted and
undescribed in our summary. Everyone interested in the subject of turbulence is
thus warmly encouraged to read the paper for himself and discover hidden vistas
unremarked upon by us.

The problem that Edwards considers is the idealized case of homogeneous
isotropic turbulence maintained statistically steady by a stochastic fluctuating
force, which acts as the random source of energy: ‘

ou
ot

=vV*U - (U-V)U - Vp+ F. (4.1)

Here U is the fluid velocity, with pressure p determined to enforce incompress-
ibility V- U = 0. The stirring force F' chosen by Edwards is a Gaussian random
field with zero mean and covariance given by

<Fi(r,t)Ej(r/,t')> = gij(r - I‘/./'IL/ — f,il). (42)

Because the energy input is stochastic, it is only possible to seek statistical
information about the system. Edwards thus focuses on the multivariate prob-
ability density for Fourier amplitudes. The first step in his paper is the derivation
of the Liouville equation for the probability density. It resembles Hopf’s (1952)
functional equation with which it shares the property of linearity. On the way
to deriving this equation, Edwards obtains the now well-known relation for the
mean energy input of a Gaussian white-noise force, for which the spatial Four-
ier transform of the noise covariance gy (t ~¢') is equal to hi5(t — t'). The mean
energy input is just the integral over wavenumber of the forcing spectrum hy [see
Edwards’ eqn. (2.23) and the formula below it]. This result was obtained inde-
pendently by Novikov (1964) at about the same time, and is usually attributed
to him.

A difficulty with the Liouville equation for dissipative systems is that it is
impossible to write down its stationary solution in analytical form, as one can
write down the Gibbs distribution for thermodynamic equilibrium. However,
Edwards realized that an effective substitute is to write down an analytical
expression for the distribution over histories, or a path-integral. This is his
formula (3.7), which provides an exact non-Gaussian distribution over space-
time histories of the turbulent velocity. An advantage of this approach is that
it allows a calculation also of multi-time statistics, such as the two-time cor-
relation functions, which are of independent interest. From his path-integral
formula, Edwards derived a set of statistical field equations (3.5), by a stand-
ard method (e.g. section 10-1-1 of Ttzykson and Zuber 1980). These equations
are the main focus of his later analysis. The modernity of Edwards’ approach is
quite striking: while similar path-integral formulas had been introduced before
for linear statistical dynamics by Onsager and Machlup (1953), this may be the
first introduction of such a formula for classical nonlinear dynamics. It is a small
step to transform Edwards’ path-integral expression into the now-standard one
for the Martin-Siggia-Rose field-theory with an extra ‘response field’ (Martin
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et al. 1973, Janssen 1976, DeDominicis and Peliti 1977). Such path-integrals for
stochastically forced Navier-Stokes equations have proved useful in more recent
work—e. g. the evaluation of tails of probability density functions (PDF’s) using
instanton methods (Falkovich and Lebedev 1997).

As Edwards notes, his path-integral reformulation of the problem is in prin-
ciple ‘a solution to the problem of turbulence, [but] as it stands it is quite useless
in practice.” It can only be useful in conjunction with some method of calculat-
ing approximately the integrals of non-Gaussian densities over high-dimensional
spaces. To this end, Edwards develops a ‘self-consistent’ perturbative expansion
based upon a physical analogy of turbulence dynamics to stochastic Langevin
dynamics. That is, Edwards proposes that the effects of averaging over turbulent
fluctuations in his field equations can be subsumed into two dynamical contribu-
tions: an ‘eddy viscosity’ augmenting the damping from molecular viscosity and
an effective stochastic force, or ‘eddy noise’, chaotically generated by the non-
linear dynamics. To develop the necessary formalism for his expansion, Edwards
derives in Section 4 of his paper the Gaussian path-integral for a linear Langevin
model. His procedure in the following two sections is then to postulate such
a Gaussian expression as the leading-order approximation to the path-integral
for Fourier coefficients of the turbulent velocity. However, this expression con-
tains two unknown functions: an ‘eddy-damping coefficient’ Ry and an effective
‘eddy-noise covariance’ S acting in each wavenumber k. To determine these
functions, Edwards expands his non-Gaussian path-integral density in Hermite
polynomials orthogonal with respect to his reference Gaussian (so that the
polynomials themselves depend upon the unknowns). For each order, Edwards
thereby obtains a set of closed “self-consistent” equations for the functions R
and S. To first order, they are given by expressions (5.16) and (5.21) in his
Section 5, namely,

Lijeq; d3j Lyjigim d:;j .
R = [ TS g o [ L (4.3)
J Wi+ wjtw J wk T wjtw

Here Lyjx are known coefficients, determined from the Navier-Stokes nonlinearity,
and ¢y is the Fourier transform of the spatial velocity-correlation (or the so-called
tensor energy spectrum in k-space). Note from Edwards’ equation (5.5), wg =
vk? ++ Ry, that the frequency itself depends upon Ry. These sets of equations
are the main and general theoretical result of Edwards’ paper. Section 7 of the
paper gives a similar analysis for multi-time correlation functions.

Technically, there are many points of overlap of Edwards’ approach with
the somewhat earlier work of Kraichnan (1959, 1961) and Wyld (1961) and
the later work of Martin et al. (1973), all of whom realized the necessity of
two functions like Ry and Sk. The first is what Kraichnan calls the ‘response
function’ and the second the ‘correlation function’ (or, more accurately, their
two-particle irreducible ‘self-energy’ parts). Edwards’ self-consistent expansion
procedure is formally somewhat different from that employed by Kraichnan,
Wyld, and Martin et al. As remarked by Martin el al., Edwards’ expansion is
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more akin to the ‘quasi-particle’ procedures used in condensed matter physics.
This is particularly clear in Edwards’ use of formal expansions in Hermite i’)()ly—
nomials, which are the eigenfunctions of the self-consistent evolution opemti)r
[his eqn. (6.16)]. However, Edwards’ idea is based on the same physical intui-
tion as that of the other authors. In fact, his Sections 4-6 can be 1‘(—;g‘(u'd(—>(‘l as a
precursor to the works of Kraichnan (1970) and Leith (1971), who several years
later discovered that Kraichnan’s direct interaction approximation (DIA) closure
is realized by a self-consistent Langevin model. A number of later simplifications,
such as Orszag’s (1977) eddy-damped quasi-normal Markovian (EDQNM) clos-
ure also have a Langevin realization. Such a model is the essential content of
Edwards’ Sections 4-6 regarding time-independent statistics, and of Section 7
regarding time-dependent ones.

In Section 8 of the paper Edwards applies his general formalism to a
number of concrete problems. In particular, he discusses the approximate
eqns. (8.1)-(8.8), for the energy spectrum, namely,

(I)qk - 2 ~

57 = *(Rk + vk )(]k -+ (f)k + }I,k) (4/1)
where R and S are given by (4.3). In the text near his equ. (8.13), Edwards
shows that the above equation has the correct thermal equilibrium ‘equipar-
tition solution” when the random force has the k? spectrum required by the
fluctuation-dissipation relation. Also, as a consequence of (4.3), he notes in his
eqn. (8.6) that

/ (Z:;k(Sk -~ Rxqi) = 0, (4.5)

which corresponds to the conservation of energy by the nonlinear terms in
Navier-Stokes equations. However, this cancellation is only formal if the integrals
diverge. At the top of p. 261, Edwards has an interesting discussion about this
‘apparent paradox,” namely that there can still be finite energy dissipation even
when the viscosity, v, vanishes (e.g., Frisch 1995). Edwards points out that the
apparent cancellation of integrals in his (8.6) is not ‘meaningful’ when they are
separately divergent. This is very much related to earlier remarks of ()n;;a,ger
(1949) about the impossibility to reorder Fourier series which are not almolnt;dy
summable but only conditionally convergent. However, Edwards does not qnil;e
reach Onsager’s sharp conclusion that energy dissipation is possible without vis-
cosity. Rather, he only concludes that adding a little viscosity makes the integrals
convergent and permits their exact cancellation. More recently, Polyakoy (1993)
has pointed out an analogy of ‘inviscid dissipation’ in turbulence in two dimen-
sions to conservation-law anomalies in quantum field theory, such as the axial
anomaly in quantum electrodynamics.

The case considered by Edwards at some length in his eqns. (8.15)-(8.35) is
random forcing with a power-law spectrum. This same problem was later also
considered by DeDominicis and Martin (1973) and Yakhot and Orszag (1987)
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in any space dimension d (whereas Edwards considered only d = 3). The para-
meter « of Edwards [see his equ. (8.15)] is the same as the parameter y used by
these later authors. BEdwards does not consider an expansion in the parameter
¢ =4d+y—d=1+y (for d = 3). However, his self-consistent equations yield
similar results as those obtained by the later authors using e-expansion renor-
malization group methods. His treatment is perhaps more similar to that of
Mou and Weichman (1995), who analyzed the same problem using Kraichnan’s
oupling approach. In particular, Edwards obtains a

DIA equations or the mode
power-law energy spectrum through his eqn. (8.30), this result being equivalent
to the later authors’ result E(k) ~ k=7 with

r="5/342y—d)/3.

(Note there is a typographical error in the first of Edwards’ equations, which is
missing a minus sign in the exponent.) It is interesting that Edwards explicitly
states that the validity of this solution is limited to —1 < y <0 2, or, equi valently,
when d = 3, to 0 < ¢ < 3. There is an important qualitative change in the
problem at y = 2 or ¢ = 3, at which the spectrum goes through E{k) ~ 1/k, and
there begins to be more energy at low k than at high k. That is exactly where
‘energy cascade’ begins. This limitation was also recognized also by DeDominicis
and Martin, whereas Yakhot and Orszag imagined that the e-expansion result
would be valid all the way to € = 4. In fact, it appears likely, from both physical
arguments and work to be described later on a model problem, that intermittency
corrections start to appear for e > 3. The restriction of the dimensional analysis
results to 0 < € < 3 was understood by Edwards, and was probably pointed out
in this paper for the first time.

Within the confines of the randomly forced Navier-Stokes equation, the prob-
lem of ‘true turbulence’ corresponds to the case of a compact force in Fourier
space, supported at low wavenumbers. Edwards considers this important prob-
lem on pp. 261-263 of his paper. In certain limiting situations, he obtains the
spectral exponents of Kolmogorov (1941) and Kraichnan (1959). Recognizing
that there are potential infrared divergences, Edwards argues that the energy
spectral exponent must lie between limits set by the Kolmogorov value of —5/3
and the Kraichnan value of —3/2. From the point of view of potential intermit-
tency corrections, it is interesting that he only allows spectra that roll off less
steeply than Kolmogorov’s, whereas we now believe the roll-off to be steeper
(e.g. Kaneda et al. 2002).

Finally, Bdwards (1964) makes detailed calculations for two-time correlations
of the velocity Fourier amplitudes, on pp. 263-264. He predicts that they will fall
off as a CGaussian for small times, as an exponential for intermediate times, and
as a power-law for long times. The decay rates that he calculates are all wave-
number dependent. Before this work of Edwards, and the somewhat earlier work
of Kraichnan (1959, 1961), the interesting subject of time-correlation functions in
turbulence had been neglected. There is no discussion in Edwards of Lagrangian
vs. Bulerian time correlations, and it is apparent that his predictions must be
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understood to be for Bulerian time-correlations. However, sweeping effects, which
Edwards does not discuss, must come into play in that case, as discussed by
Kraichnan (1964) and later by Kraichnan and Chen (1989).

Before concluding this section, we should also point out that Edwards has
returned to studies of turbulence several times since his first 1964 paper, even
as recently as 2002. We will not make extensive comments on these later forays
but make only brief comments on their scope and point out some important
subsequent developments.

Following the framework of the 1964 paper, Edwards and McComb (1969)
alculated the Kolmogorov constant for the energy spectral density. A notable
feature of this paper was the use of a maximum entropy argument to develop a
second relationship, in addition to (4.3), between the two functions Ry and ¢
in BEdwards’ self-consistent expansion. This is necessary to fully determine these
two functions. The role of entropy and the second law in turbulence remains
an intriguing issue. Of course, the maximum entropy principle is unlikely to be
strictly valid for a dissipative, far-from-equilibrium system like turbulence. In
this respect, the notion of ‘relative entropy’ discussed somewhat later by Schlogl
(1971a,b) may have a better theoretical foundation.

In Edwards and McComb (1971), the authors approximated Kraichnan’s
response function (see earlier discussion) by using only its inertial range form
and obtained a closed-form expression for the spectral density; in particular,
they were able to express the viscous cut-off in terms of a Bessel function of the
second kind, leading to an exponential fall-off in the far-dissipation range. The
ideas of this paper were later extended in Edwards and McComb (1972) to make
detailed calculations for a channel flow. In this ambitious work, which aimed to
obtain closed-form solutions for the mean velocity, dissipation, and so forth, in a
two-dimensional channel flow, the authors were understandably rewarded with
only moderate success.

A few years later, Edwards and Taylor (1974) investigated point-vortex mod-
els of two-dimensional plasmas and fluids using Gibbsian statistical mechanics
of Hamiltonian systems, and discussed cluster formation in terms of ‘negative
temperatures,” a concept earlier introduced by Onsager (1949). There has been
extensive development in this field in the intervening yvears. After Edwards and
Taylor (1974) pointed out the failure of the standard thermodynamic limit for
this problem, Lundgren and Pointin (1977) observed that there is a suitable
(nonstandard) limit in which 2N vortices of strength +1/N are distributed
over a flow domain of fixed, finite volume V. This permits one to approx-
imate a continuous vorticity distribution of finite energy F by point vortices,
in the limit vV — oo. For such a limit the existence of Onsager’s negative
temperature states has been proved within the microcanonical ensemble, by
Eyink and Spohn (1993) and Kiessling and Lebowitz (1997). A number of issues
discussed by Edwards and Taylor (1974)-—such as the critical energy for appear-
ance of negative temperatures and the possible nonequivalence of canonical
and microcanonical ensembles—have now been definitively resolved. The most
important development in the field has been the application, independently by
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Robert (1990) and Miller (1990), of Gibbsian statistical mechanics directly to
the continuum Euler equations without the point-vortex approximation.

Tn a paper written to commemorate Kubo’s sixtieth bir‘thda‘y, Edwards
(1980) obtained working expressions for two basic features of 131.11'1;)111011(:@: the
single-point probability density function for the velocity fluctuation and the
small-scale intermittency. Using polymers with freely hinged chains as the ana-
logy, Edwards closed the problem and showed that the PDE of the singleq')(?int
vclocit;y has a Gaussian core with stretched exponential tails, which he explicitly
obtained. In contrast, experience from simulations and measurement seems to
favor slightly sub-Gaussian tails. For the intermittency problem, Edwards usgd
a different analogy to the localized states in disordered semiconductors, and dis-
cussed the energy growth of eddies in the inertial range. The jury is still out on
these ideas.

Most recently, Edwards and Schwartz (2002) have considered turbulence and
surface growth models (particularly focusing, for growth phenomena, on the
Kardar-Parisi-Zhang model) and, using path-integral methods, discussed theor-
etical developments needed for determining two-time correlation functions. This
is a direct outgrowth of the first paper, Edwards (1964). A key result is an
approximate Markovian equation, t.e., local in time, for the two-time correla-
tion. This approach also yields a natural alternative to the maximum entropy
constraint of Edwards and McComb (1969). One of the more characteristic res-
ults of the new approach is the stretched-exponential decay of time correlations,
rather than a purely exponential form.

It is thus clear that turbulence has gripped the interest of Sam Edwards for
many years. His body of work contains many nuggets of technical mastery ‘fmd
intuitive notions, some of which have seen fruition in different ways. The subject
has advanced significantly in several directions since Edwards made his entry. In
the next two se(-;tions, we provide a brief overview of recent developments in the
application of field-theoretic methods to the problem of turbulence. Although
we will not attempt to trace accurately the influence of Edwards on these recent
developments, we shall briefly highlight their relation to his earlier ideas.

4.3 The white-noise passive scalar model
As mentioned earlier, the perturbative methods that Edwards helped pion-
eer have so far not been crowned with absolute success for the problem of
Navier-Stokes turbulence. However, there has been recent noteworthy progress
on another problem: the advection of a passive scalar by ‘synthetic turbulence,’
a Caussian random velocity field which is white-noise in time. This model was
introduced by Kraichnan (1968) and, for this reason, is called the Kraichnan
model. Since an authoritative review of the subject is now available (Falkovich
et al. 2001), our survey below of the recent work on this model will be brief.
The Kraichnan model considers the concentration 6(r,t) of a passive scalar
such as a dye or temperature field injected into developed turbulence. The
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dynamical equation it satisfies is
(0, +U-V)0 = sV + F. (4.6)

Here, F(r,t) is a Gaussian white-noise source term of a passive scalar, similar
to that considered by Edwards for the velocity, with zero mean and covariance

F(r —r")d(t — ¢'). The advecting incompressible velocity field U(r,t) is also a
Gaussian random field with zero mean and covariance
<[]7j(1', ﬁ)([j(l'/, //>> B [)ij (I‘ - I'/)(S<'If - f/> (47)

The cases of greatest interest are those for which the source F' is supported at
low-wavenumbers, while the velocity field U has a power-law spectrum ~ &~ (1+8)
at high wavenumbers, for any 0 < £ < 2. This corresponds to a scaling

D
dij(r) := Dy;(0) = Dyj(r) ~ Imlfl?’f <(d =1+ 8&)di; —

4 — |

for r — 0 in space dimension d [see eqn. (48) of Falkovich et al. (2001)].

Asg was first realized by Kraichnan himself (see Kraichnan 1968), the special
feature of the model is that there is no closure problem, independently of the
precise form of the function d;;(r). The single-time scalar correlation functions
Cp(ry, .. v t) = (0(r1,t) - 0(r,, t)) satisly the equation

O Cu(ry, .o Ty t) = — Z [dij(x; = r) + 2&7(3”]VL Vi Cp(ry, ... rt)

T
L<l<m<n

T 1 ¥ o~ o
-+ L }‘(I'[ - rm)(”n»—‘z(rlw--7rl>~-‘7r7717-‘-71'71,§t)4

Il<l<m<n
(4.9)

Here the summation is over all pairs [ < m of integers [, = 1,...,n while
the hats ~ over the position vectors indicate their omission from the correlation
function. Since this equation for ¢, involves only the lower-order correlation
function C),_2, it is possible, in principle, to mathematically solve this hierarchy
of equations inductively for all of orders of scalar correlations.

An important problem, ag in the case of critical phenomena, is the prediction

of the scaling exponents for the small-scale scalar field. The 1)1101’1()1’1101101()gy in
this case is quite similar to that for the turbulent velocity 1t,sv One imagines
that there is a cascade of the scalar ‘energy’ or intensity, § / i’ll 0% (r, 1), from
the injection scale I to small scales. When the scalar is weakly diffusive, there
is a large range of scales, the so-called inertial-convective range, over which the
flux of scalar intensity is constant. However, this is only true in an average sense,
and Huctuations in individual realizations of the cascade do develop. These fluc-
tuations become large as one considers increasingly smaller scales. This property
of ‘intermittency’ is the origin of the anomalous scaling for the scalar structure
functions defined by

([0(x,£) — (0, )]7) ~ 97 ([)< (4.10)
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where 92 = (0?) is the mean-square scalar fluctuation and ¢, is a scaling expon-
ent. Classical dimensional analysis of Obukhov (1949) and Corrsin (1950), itself
an outgrowth of Kolmogorov (1941), predicts that ¢, = p/3. In fact, it is known
from experiments on real turbulent scalars that ¢, is a concave, nonlinear func-
tion of the order p of the structure function (Antonia ef al. 1985, Meneveau
et al. 1991, Chen and Kao 1997, Moisy et al. 2001, Skrbek et al. 2002). This type
of anomalous scaling law is now called multifractal, after an intuitive interpret-
ation by Parisi and Frisch (1985); see also Mandelbrot (1974). Multifractality
involves an infinite concave family of exponents and is fundamentally different
from the scaling observed in classical critical phenomena.?

Returning to the Kraichnan model, the velocity field in the model does not
possess anomalous scaling, since it is Gaussian and unifractal. Surprisingly,
however, the scalar field advected by this Gaussian velocity field does show
multifractal scaling. Although the input velocity is self-similar, it induces a
scalar cascade through which intermittency develops in successive steps from
Jarge scales to small. In fact, it is possible to guess from Edwards’ work the spec-
tral exponent & of the velocity [see eqn. (8)] at which multifractality begins to
develop. As was noted by Edwards for the Navier-Stokes fluid stirred by a ran-
dom force with power-law spectrum, the energy spectrum has the form ft—2e/3
for O < € < 3. In this range, there is more energy at high wavenumbers than at
low wavenumbers, and 10 energy cascade occurs. Precisely at € = 3 the velocity
spectrum makes the transition from most energy at high wavenumbers to most
at low wavenumbers. Edwards realized that dimensional reasoning breaks down
for € > 3 and that possible corrections to the scaling laws can occur there. Since
the energy spectrum of the velocity field in the Kraichnan model has the power-
law form ~ k=0 there is the formal identity € = 2(e —3)/3. Hence, it is likely
that anomalous scaling begins in the Kraichnan model precisely at £ = 0.

In analogy with e-expansions used in critical phenomenon, it is suggested
that the natural perturbation parameter is not €, as considered by DeDominicis
and Martin (1979), and Yakhot and Orszag (1986), but instead € — 3, or £. The
first to realize this fact for the Kraichnan model were Gawedzki and Kupiainen
(1995), who carried out the corresponding expansion. Fortunately, the Kraichnan
model is exactly solvable and the scalar statistics are Gaussian for £ = 0. Indeed,
setting € = 0 in (4.8) and substituting into (4.9) gives

DCu(r1, . tit) == Y (Dy+28)55 YV, Vi Culrr,. . rait)
1<i<m<n
> Fr—rn)Caa(ri By T T ). (4.11)

L<l<m<n

2 Our point is not that multifractality cannot appear in ordinary critical systems, but that
it is different from the ‘classical critical scaling’ in which only a finite number of exponents
are readily apparent. It is, in fact, possible {(see, e.g., Fourcade and Tremblay 1995) for more
‘exotic’ operators than those considered in ‘classical’ eritical phenomena to possess multifractal
properties.
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The very rough velocity field for £ = 0 acting at high wavenumbers is seen
to mimic exactly a molecular diffusion. This equation for translation-invariant
correlation functions is just a multi-dimensional heat equation, and it is not hard
to show that Gaussian correlation functions, satisfying Wick’s theorem, are the
solution.

From this point Gawedzki and Kupiainen were able to develop an expansion
for the anomalous exponents of the scalar (see also Gawedzki and Kupiainen
1995; Bernard et al. 1996), with the result that

n(2—¢) n{n-2)
2 2(d+2)

Cn == E + ()(52)

At nearly the same time it was realized by Chertkov et al. (1995) and Chertkov
and Falkovich (1996) that the scalar statistics also become Gaussian for d = oc.
They worked out a corresponding expansion in 1/d, yielding a result consistent
with the above.? The Kraichnan model also simplifies for a smooth velocity at
£ = 2, the so-called Batchelor regime of the passive scalar. In that case, all
¢n = 0, in the sense that the correlation functions are logarithmic, instead of
being power-laws. In this limit, an expansion was worked out by Shraiman and
Siggia (1995, 1997). This is technically a more difficult limit than the other two: it
is a singular perturbation problem with a boundary-layer, for which the relevant
expansion parameter turns out to be (2 — {)1/ 2. The problem has thus been
worked out only for the triple correlation n = 3. All of these anthors realized that,
in the Kraichnan model, so-called ‘zero modes,” that is, stationary solutions of
the homogeneous version of equation (4.9), play the key role in the development
of anomalous scaling. This is due to the fact that equations formulated for the
scalar correlation functions are linear with known (singular diffusion) operators.
This linearity property is essentially unrelated to the linearity of the advection-
diffusion equation. However, the fact of closure, 4.e., the existence of closed linear
equations, does depend upon the linearity of advection-diffusion and also the
white-noise character of the velocity; as already implied, it is this combination
that truncates the hierarchy in the Kraichnan model.

All these perturbative results have now been checked by clever Lagrangian
numerical methods, for the £ and (2 — 5)1/ 2 expansion by Frisch el al. (1998,
1999), and Gat et al. (1998), and for the 1/d expansion by Mazzino and
Muratore-Ginanneschi (2001). To know the scalar field at position x and time ¢,
it is enough to track the corresponding tracer particle back to its (Lagrangian)
initial position. It follows that the evolution operator for the n-point average
of the scalar coincides with that for the probability that n tracer particles from
given positions reach new positions x, & = 1,...,n after time . For the n-point
function, it is only necessary to focus on the relative evolution of n particles sim-
ultaneously. This reduces the problem to a study of the evolution of the geometry

3 The 1/d expansion for equilibrium lattice systems was introduced by Fisher and Gaunt
(1964).

Navier—Stokes turbulence 7T

of polyhedra with n vertices. Deviations from dimensional estimates (i.e. anom-
alies) are traceable to the nontrivial evolution of these geometric objects as
advected by the flow. Among all the geometric figures that grow in time accord-
ing to dimensional estimates, the ones that matter are those whose shapes are
preserved: these statistically conserved objects are the ones that dominate the
behaviour of scales in the inertial range and the anomaly of the exponents. This
study also reveals the role of ‘hidden’ statistical integrals of motion. Indeed, the
‘zero modes’ are statistical integrals of motion of the Lagrangian fluid particles.

The perturbation theories originally worked out for the Kraichnan model did
not use a Martin-Siggia-Rose field-theory formulation of the sort that Edwards
helped to pioneer. Nor, for that matter, did they use the renormalization group
(RG) as a basis to organize the expansions. However, in later works, this has heen
done, first by Gawedzki (1997) and later in an extensive series of work by the
St. Petershurg school in Russia (e.g. see Adzhemyan et al. 2001, 2002). As might
be expected, RG is a more important tool when working out higher terms of the
expansions: with its aid the {-expansion has now been carried out to third-order
(Adzheryan et al. 2001). Even more interestingly, the same perturbative RG
approach has been extended to a generalized model, still with a Gaussian random
advecting velocity field, but now with correlations exponentially decaying in
time rather than delta-correlated (Adzhemyan et al. 2002). This is a step in
the direction of greater realism of the models. Some previous conjectures for
‘additive’ operator product expansions as the basis of turbulent multifractality
(Eyink 1993; Lebedev and L’'vov 1994) have been confirmed in the models by
using perturbative RG techniques.

Thus, for a nontrivial model problem and some generalizations, the state of
our understanding of anomalous scaling is now essentially as good as for three-
dimensional critical phenomena, where there are Borel-resummed e-expansion
results, high-temperature series expansions, and numerical Monte Carlo results,
which agree to several decimal places. In both cases, rigorous mathematical
proofs are still lacking, but it is quite clear that scaling exponents exist and
what their numerical values are. Needless to say, we have far from adequately
reviewed all the results that have been obtained by now for the Kraichnan model
of a passive scalar. For example, new insight has been obtained into dissipat-
ive anomalies in turbulence related to the non-uniqueness and stochasticity of
Lagrangian particle paths for a non-differentiable advecting velocity. White-noise
advection models have also been fruitfully investigated for related problems such
as compressible turbulence, magnetohydrodynamics and the coil-stretch transi-
tion of polymers in turbulence. We refer to Falkovich et al. (2001) for a fuller
discussion of these many aspects.

4.4 Navier—Stokes turbulence

The results we have described for the Kraichnan model have already had a sig-
nificant impact on our understanding of Navier-Stokes turbulence. There is now
rather general agreement that velocity structure functions will show anomalous,
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multifractal scaling. There was already good empirical evidence for this, both
experimental (Anselmet et al. 1985; Sreenivasan and Dhruva 1998) and numer-
ical (Cao el al. 1996). It is hard to imagine that anomalous scaling would arise
in the cascade for the passive scalar and not for the nonlinearly self-interacting
velocity field. In this respect, the Kraichnan model results have served much the
same purpose as Onsager’s exact solution of the two-dimensional Ising model,
which eventually convinced most statistical physicists that Landau’s mean field
theory needed to be replaced. In the same way, the fact that Kolmogorov-style
dimensional analysis fails in the Kraichnan model lessens one’s faith that these
same arguments will succeed when applied to Navier—Stokes turbulence. A better
theory is clearly needed.

Technically, it has not proved possible to carry over readily the formal meth-
ods successfully employed in the Kraichnan model to Navier-Stokes equations.
This, also, is very much as for the two-dimensional Ising model, whose spe-
cific methods of solution (such as infinite-dimensional Lie algebras, spinors, and
Toeplitz determinants) played no direct role in the apparatus of the successful
general methods such as the renormalization group and the ec-expansion. The
only method used in Onsager’s solution that has subsequently shown general
applicability to a wide class of systems is the transfer matrix. Likewise, it may
be that there are certain features of the solution of the Kraichnan model that
are more general and can be carried over to Navier-Stokes turbulence and to
other similar nonequilibrium scaling problems, such as random surface growth.
The concept of a ‘zero mode’ seems a plausible candidate. Zero modes can also
be considered in nonlinear dynamics (e.g. in shell models or Navier-Stokes tur-
bulence) by working with the linear Hopf equation or linear Liouville equation
or, equivalently, with the infinite linear hierarchy of equations for multipoint
correlation functions. The linearity of the scalar advection-diffusion equation is
not a prerequisite for the existence of zero modes, and it is likely that they play
an important role in anomalous scaling more generally.

The perturbative expansion techniques employed successfully in the
Kraichnan model have not so far found any success in Navier-Stokes turbu-
lence. It is quite likely, as we discussed earlier, that randomly stirred fluids with
power-law forcing spectrum first develop intermittency at ¢ = 3. However, the
statistics do not become Gaussian in that limit and there is no other obvious
analytical simplification at € = 3. So, an expansion in € — 3 does not look very
feasible, It is also a frequent speculation that Navier-Stokes turbulence should
simplify in infinite-dimensional space (Frisch and Fournier 1978), but this has not
yet been demonstrated. Yakhot (2001) has proposed an expansion in d — d., with
2 < d. < 3 a critical dimension where the energy cascade changes from inverse
to direct, and made some progress by attributing a simple behaviour for pres-
sure terms. One likely hope for a successful perturbative treatment is the 1/N
expansion for Kraichnan’s ‘random coupling’ model (Kraichnan 1961), in which
N copies of the Navier-Stokes equation are coupled together with quenched ran-
dom parameters. It is known for this and related models (Kraichnan 1961; Eyink
1994a; Mou and Weichman 1995) that Kraichnan’s DIA closure becomes exact
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and the statistics become Gaussian at N = co. Furthermore, in an N-component
version of a shell model it has been shown numerically that the anomalous scal-
ing corrections to Kolmogorov’s (1941) arguments vanish proportionally to 1 /N
(Pierotti 1997). Thus, the anomalous exponents should be perturbatively access-
ible in the shell model by a 1/N expansion. Unfortunately, for Navier—Stokes
turbulence, the DIA closure is not consistent with Kolmogorov (1941) scaling
and a Lagrangian formulation of the random-coupling model would need to be
devised (Kraichnan 1964). None of these steps appears to be trivial.

4.5 Conclusion

The turbulence problem remains a hard nut to crack. Anomalous scaling almost
certainly occurs, but no controlled approximation to the exponents exists. Fur-
thermore, there are many other flow properties in turbulence that we would
like to calculate, not just scaling exponents. More practical, and also physic-
ally very interesting, are quantities such as drag coeflicients, mixing efficiency,
spread rates, single-point probability density functions, and mean velocity pro-
files. So far, none of these aspects of the problem can be reliably calculated at
high Reynolds numbers.

We do not, however, wish to leave the impression that the situation is hope-
less. Despite the lack of adequate analytical tools, quite a lot of understanding
has been gained, through the work of many people, Sam Edwards among them.
Much of the lore is reasonably well established on the basis of experiment, simu-
lation, and theoretical arguments. As we have argued above, multifractal scaling
of the turbulent velocity field is now doubted by few, although occasional papers
still appear claiming the contrary. It is clear in flow experiments (Sreenivasan
and Dhruva 1998) and simulations (Cao et al. 1996), and has been established
theoretically for the Kraichnan model. Likewise, there is good evidence for a dis-
sipative anomaly in the conservation of energy at zero viscosity. It is observed in
experiments (Sreenivasan 1984) and simulations (Kaneda et al. 2003), and there
are known theoretical mechanisms to produce it (Onsager 1949; Eyink 1994b).
Concepts such as fractality of isosurfaces (Sreenivasan 1991), fusion rules for
powers of velocity-gradients (Fairhall et al. 1997), Kolmogorov’s refined similarity
hypothesis connecting scaling of velocity-increments and dissipation (Stolovitzky
and Sreenivasan 1994), stochasticity of Lagrangian particle trajectories (Bernard
et al. 1998; Yeung 2002), and many other key ideas, seem well-founded and
likely to survive into the future. Our ability to calculate with the Navier—Stokes
equations continues to extend to higher Reynolds numbers because of advances in
computing power, and new experimental techniques (Donnelly and Sreenivasan
1998) and modeling techniques (Meneveau and Katz 2000) extend that capacity.

The present status for the ‘turbulence problem’ seems to us really not so dif-
ferent from that for other strong-coupling problems in field theory, e.g., the color
confinement problem in QCD. In the confinement problem there are also heur-
istic ideas [the QCD vacuum is a color magnetic monopole condensate, a Type I1
chromomagnetic superconductor with confined chromoelectric flux fubes acting
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as ‘strings’ between color charges; see Mandelstam (1978), and 't Hooft (1978,
1981)], but there is great difficulty in making quantitative calculations. Direct
numerical simulations, i.e., lattice QCD (Wilson 1974) allow us to calculate, in
principle, anything we wish (e.g. the hadron spectrum), but in practice computer
limitations confine us to modest results for the foreseeable future. Nevertheless,
many aspects of QCD are regarded as reasonably well-established (e.g. a mass
gap, color confinement, chiral symmetry-breaking), even though they are not
rigorously proved. Turbulence is very similar. It is no accident that both these
problems ended up as Clay Institute Millenium Prize Problems: proving the
mass gap for four-dimensional quantum non-abelian gauge theory, and proving
regularity of Navier-Stokes solutions at high Reynolds numbers. They are both
strong-coupling problems and those are mathematically hard. However, in both
cases we have a lot of very good insights and ideas that can spur intuitively new
developments. The difficulties that remain should not lead us to despair, but,
instead, ought to inspire us to greater imagination and ingenuity—qualities that
Edwards has always had in generous quantities.
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