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We examine available data from experiment and recent numerical simulations to
explore the supposition that the scalar dissipation rate in turbulence becomes
independent of the fluid viscosity when the viscosity is small and of scalar diffusivity
when the diffusivity is small. The data are interpreted in the context of semi-empirical
spectral theory of Obukhov and Corrsin when the Schmidt number, Sc, is below
unity, and of Batchelor’s theory when Sc is above unity. Practical limits in terms of
the Taylor-microscale Reynolds number, Rλ, as well as Sc, are deduced for scalar
dissipation to become sensibly independent of molecular properties. In particular,
we show that such an asymptotic state is reached if RλSc1/2 � 1 for Sc< 1, and if
ln(Sc)/Rλ � 1 for Sc> 1.

1. Introduction
After some fifty years of accumulated work (e.g. Batchelor 1953; Sreenivasan 1984,

1995, 1998; Zocchi et al. 1994; Kaneda et al. 2003), it has now become empirically
clear that, away from the walls, the mean dissipation rate of turbulent energy
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is independent of the fluid viscosity, ν, as long as ν is small, or the appropriate
Reynolds number is large. Here, ui is the velocity fluctuation in the coordinate
direction xi and 〈·〉 indicates a suitable average. This property of turbulence (Taylor
1938; Kolmogorov 1941), known as the dissipative anomaly, has the consequence
that the normalized energy dissipation, i.e. the function f ≡ 〈ε〉L/u′3, where L and
u′ are some viscosity-independent length and velocity scales, respectively, approaches
an asymptotic constant in the limit of high Reynolds numbers. This behaviour of f

is consistent with rigorous bounds for 〈ε〉 deduced from the Navier–Stokes equations
(e.g. Constantin 1994). In particular, a functional form motivated by the results of
Doering & Foias (2002), namely

f ≡ 〈ε〉L
u′3 = A(1 +

√
1 + (B/Rλ)2), (1.1)

where Rλ ≡ u′λ/ν is the Reynolds number based on the Taylor microscale λ, with
λ2 = u′2/〈(∂u/∂x)2〉 and u′2 ≡ 〈u2〉, is found to provide, as seen in figure 1, a good fit
for the Reynolds number dependence of f . Here, L is the longitudinal integral length
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Figure 1. Normalized energy dissipation rate from the direct numerical simulations of
isotropic turbulence. Solid line represents equation (1.1) with A ≈ 0.2 and B ≈ 92.

scale evaluated from the energy spectrum function E(k) in wavenumber space as

L =
π

2u′2

∫ ∞

0

E(k)

k
dk. (1.2)

With this choice, the fit in figure 1 gives A ≈ 0.2 and B ≈ 92, yielding an asymptotic
value of 0.4 for f .

While the behaviour shown in figure 1 is universal for all turbulent flows away
from the solid wall (see Sreenivasan 1995), it must be stressed that the coefficients
A and B are not universal, even if one fixes the operational definitions of L and u′.
They depend on the type of flow, and, for a given flow, on detailed initial conditions –
for example the geometry of the grids in grid-generated turbulence and the nature of
large-scale forcing in simulations.

Similar issues can be explored for 〈χ〉 ≡ 2κ〈(∂φ/∂xi)
2〉, which is the mean ‘dissipa-

tion’ rate of the scalar variance 〈φ2〉, φ being the fluctuating scalar and κ its diffusion
coefficient. Specifically: (a) what is the ‘asymptotic’ nature of 〈χ〉 when ν and κ are
both small? (b) What is the analogue of (1.1) for 〈χ〉 as a function of Rλ and the
Schmidt number Sc (≡ ν/κ)? Answering these questions is the goal of this paper.
Aside from their intrinsic interest, the findings are of practical value for reacting flows
in which the products in the fast-chemistry limit are in direct proportion to χ (see,
e.g. Bilger 2004; Sreenivasan 2004).

The questions outlined above are not entirely new, but the available data are
scattered in the literature and the effect of Schmidt number, especially for Sc � 1,
has received less attention than is warranted. Monin & Yaglom (1975) discussed (a)
above, while both (a) and (b) were addressed briefly by Sreenivasan & Yeung (2000). A
short paper addressing some of these same issues (Xu, Antonia & Rajagopalan 2000)
has also appeared. We believe, however, that this work is the first comprehensive
evaluation of these questions, besides incorporating new data from direct numerical
simulations and presenting related correlations. In § 2, we provide a brief overview of
numerical and experimental datasets from various sources used in the paper, as well
as some basic information on the numerical methods used in the present simulations.
In § 3, we present results and theoretical considerations, which lead us to infer the
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circumstances under which the scalar dissipation becomes independent of molecular
properties, for Sc< 1 and Sc> 1. Conclusions are summarized in § 4.

2. The data
2.1. From direct numerical simulations (DNS)

The velocity field for the present DNS database is homogeneous and isotropic. These
data are obtained by solving the Navier–Stokes equations using Fourier pseudo-
spectral methods (Rogallo 1981) with periodic boundary conditions in all three
directions for solution domains with grid resolution from 643 to 10243. As described
in previous publications (e.g. Yeung & Pope 1989), the forcing is applied to low
wavenumbers within a spectral shell of chosen radius kF . This yields a statistically
stationary state with a balance between the energy input due to forcing and dissipation
due to molecular viscosity. The particular forcing scheme chosen here was developed
by Eswaran & Pope (1988), where more details can be found. Although different
forcing schemes have been adopted in the literature (see Yeung & Zhou 1997), their
details are known to make no difference to the fundamental scaling of 〈ε〉 (Sreenivasan
1998).

For the scalar field, we solve for the fluctuations in the presence of an imposed mean
gradient (e.g. Pumir 1994; Overholt & Pope 1996; Brethouwer, Hunt & Nieuwstadt
2003) according to the advection–diffusion equation

∂φ

∂t
+ u · ∇φ = −u · ∇Φ + κ∇2φ, (2.1)

where ∇Φ is the mean scalar gradient. A spatially uniform ∇Φ allows the scalar
fluctuations to remain homogeneous and attain a statistically stationary state. This is
made possible because the destruction of scalar variance by the molecular dissipation
is balanced against its production through the action of velocity fluctuations on
the mean gradient. Because (2.1) is linear, the magnitude of ∇Φ has no effect on
normalized statistics of the scalar field.

We have accumulated a significant DNS database from simulations previously
performed in which the Reynolds and Schmidt numbers were varied independently.
Table 1 gives the data from Yeung et al. (2002, 2004) and Yeung & Sawford (2002).
We have also included new data from a 10243 resolution. Overall, we have varied
Rλ from about 8 to about 390 while keeping Sc fixed at unity; similarly, we varied
Sc from 1/4 to 1024 for Rλ fixed at 8 as well as 38 (Yeung et al. 2002, 2004).
These parameter combinations are shown in table 1. The adequacy of numerical
resolution in DNS is often expressed for the velocity field by the non-dimensional
parameter kmaxη, where η ≡ (ν3/〈ε〉)1/4 is the Kolmogorov scale (Kolmogorov 1941)

and kmax =
√

2N/3 is the highest wavenumber resolved on an N3 grid. For high-Sc
scalar fields, the resolution requirement is expressed by kmaxηB , where ηB ≡ ηSc−1/2 is
the Batchelor scale (Batchelor 1959). For a given computational size, this requirement
is met only by keeping the Reynolds number appropriately low. For reference, we
have included in table 1 the values of u′2, the scalar variance related to its spectral
density Eφ through

φ′2 ≡ 〈φ2〉 =

∫ ∞

0

Eφ(k) dk, (2.2)

the integral scale for velocity, L, the integral scale for the scalar, Lφ , defined through
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Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉 N

8 1.122 1.498 2.537 0.159 1 1.029 1.174 1.410 128
8 1.122 1.498 2.537 0.159 8 1.667 0.847 1.656 128
8 1.122 1.498 2.537 0.159 64 2.208 0.613 1.670 128
8 1.144 1.518 2.588 0.159 4 1.384 0.944 1.449 128
8 1.144 1.518 2.588 0.159 16 1.739 0.765 1.434 128
8 1.144 1.518 2.588 0.159 32 1.897 0.691 1.404 128
8 1.197 1.575 2.697 0.159 64 2.570 0.661 2.177 256
8 1.197 1.575 2.697 0.159 128 2.737 0.601 2.141 256
8 1.197 1.575 2.697 0.159 256 2.895 0.550 2.103 256
8 1.182 1.576 2.760 0.159 256 3.161 0.555 2.494 512
8 1.182 1.576 2.760 0.159 512 3.321 0.511 2.455 512
8 1.182 1.576 2.760 0.159 1024 3.471 0.473 2.416 512

38 1.625 1.077 2.822 0.025 0.25 1.029 0.935 2.106 64
38 1.625 1.077 2.822 0.025 0.5 1.197 0.838 2.285 64
38 1.625 1.077 2.822 0.025 1 1.355 0.751 2.397 64
38 1.589 1.007 2.802 0.025 0.25 1.108 0.994 2.240 256
38 1.589 1.007 2.802 0.025 1 1.433 0.801 2.500 256
38 1.589 1.007 2.802 0.025 4 1.716 0.649 2.568 256
38 1.584 1.064 2.665 0.025 4 1.758 0.628 2.720 256
38 1.584 1.064 2.665 0.025 8 1.893 0.566 2.724 256
38 1.584 1.064 2.665 0.025 16 2.024 0.511 2.723 256
38 1.645 1.214 2.787 0.025 16 2.145 0.530 2.969 512
38 1.645 1.214 2.787 0.025 32 2.271 0.483 2.935 512
38 1.645 1.214 2.787 0.025 64 2.391 0.443 2.903 512
90 1.295 1.366 0.763 0.006546 0.125 1.601 1.102 2.573 128
90 1.295 1.366 0.763 0.006546 0.25 1.750 1.003 2.694 128
90 1.295 1.366 0.763 0.006546 1 2.017 0.829 2.835 128

140 1.404 1.095 1.169 0.0028 0.125 1.263 0.924 1.875 256
140 1.404 1.095 1.169 0.0028 1 1.458 0.731 1.934 256
240 1.480 1.164 1.201 0.0011 0.125 1.807 0.955 3.235 512
240 1.480 1.164 1.201 0.0011 1 1.943 0.827 3.245 512
390 1.534 1.254 1.302 0.000437 0.125 1.641 0.896 2.579 1024
390 1.534 1.254 1.302 0.000437 1 1.714 0.819 2.588 1024

Table 1. DNS data in our simulations, from Yeung et al. (2002) for Rλ = 8, Yeung et al.
(2004) for Rλ =38–240, including preliminary results for Rλ = 390.

the relation

Lφ =
π

2〈φ2〉

∫ ∞

0

Eφ(k)

k
dk, (2.3)

as well as 〈ε〉, 〈χ〉, Rλ and Sc.
In addition to the present, we incorporate data from Overholt & Pope (1996),

Bogucki, Domaradzki & Yeung (1997), Wang, Chen & Brasseur (1999) and Watanabe
& Gotoh (2004). All these studies were for stationary isotropic turbulence though
some of them differ in the method of forcing the turbulence and in ways by which
scalar fluctuations are maintained against scalar dissipation. Bogucki et al. (1997)
forced both the velocity and scalar field by keeping the energy constant in a few
low-wavenumber modes. The forcing of the velocity field by Overholt & Pope was the
same as the present, as was the manner of maintaining stationarity of the scalar field
through the mean gradient. Wang et al. maintained both the velocity and scalar fields
stationary by forcing wavenumbers with k < 3 such that the energy and scalar spectra
followed a k−5/3 power law. Watanabe & Gotoh forced both the velocity and scalar



Scalar dissipation rate and dissipative anomaly in isotropic turbulence 203

Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉 N

258 1.077 1.180 0.507 0.0006 1 1.421 0.407 1.116 512
427 1.146 1.180 0.591 0.00024 1 1.407 0.413 1.196 1024

Table 2. DNS data from Watanabe & Gotoh (2004).

Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉 N

28 0.902 1.260 0.519 0.025 0.7 1.424 1.424 1.539 32
52 2.497 1.091 8.703 0.025 0.7 1.476 1.477 4.136 64
84 6.266 0.965 132.300 0.025 0.7 1.421 1.421 9.856 128
84 6.187 0.970 126.500 0.025 0.7 1.375 1.375 9.012 128

Table 3. DNS data from Overholt & Pope (1996). The integral scalar length in their paper is

taken to be Lφ = 〈φ2〉1/2
/β , which is reproduced here.

Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉 N

132 0.676 1.072 0.179 0.001 0.7 0.766 0.752 0.345 256
68 0.256 1.049 0.014 0.001 0.7 0.141 0.883 0.004 256

100 0.857 1.530 0.201 0.004 1 1.090 0.956 0.419 128
151 0.855 1.514 0.177 0.002 1 1.090 0.937 0.440 256
195 0.874 1.412 0.246 0.001 1 1.100 0.918 0.501 512

Table 4. DNS data from Wang et al. (1999).

Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉 N

36 0.450 1.310 0.047 0.01 3 0.905 0.711 0.160 162
36 0.450 1.310 0.047 0.01 5 0.984 0.506 0.190 162
36 0.450 1.310 0.047 0.01 7 1.001 0.648 0.160 162
74 0.560 1.090 0.080 0.0033 3 1.010 0.715 0.260 240
74 0.560 1.090 0.080 0.0033 5 1.060 0.650 0.260 240
74 0.560 1.090 0.080 0.0033 7 1.080 0.642 0.270 240

Table 5. DNS data from Bogucki et al. (1997).

field with Gaussian random solenoidal forces that were delta-correlated in time, and
applied the forcing in the wavenumber range 1 � k � 2. The relevant parameters from
these references are summarized in tables 2 to 5, making sure (except when explicitly
noted otherwise) that they conform to the definitions used here.

2.2. From experiment

The data considered here are from Mills et al. (1958), Yeh & Van Atta (1973), Warhaft
& Lumley (1978), Sreenivasan et al. (1980), Tavoularis & Corrsin (1981), Sirivat &
Warhaft (1983), Mydlarski & Warhaft (1998) and Antonia, Zhou & Xu (2000)
(table 6). Most of the measurements were made at low Reynolds numbers and for
nearly passive temperature fluctuations in air (Sc ≈ 0.7) in decaying grid-turbulence,
generated by heating either the turbulence-generating grid itself, or an auxiliary screen
placed downstream; the experimental configurations and conditions are succinctly
summarized by Sreenivasan et al. (1980). The recent experiments of Mydlarski &
Warhaft (1998) stretch the Reynolds number range substantially using the so-called



204 D. A. Donzis, K. R. Sreenivasan and P. K. Yeung

Source Rλ u′ L 〈ε〉 ν Sc φ′ Lφ 〈χ〉

MKOC 22 0.0529 0.0157 0.016 1.5 0.72 0.075 0.0142 0.0199

YV 35 0.0872 0.02 0.0456 1.55 0.725 0.2776 0.0184 0.308

WL 45 0.121 – 0.0951 1.65 0.73 0.0687 – 0.01298
45 0.121 – 0.0951 1.65 0.73 0.1105 – 0.0558

STHC 34 0.1 0.014 0.0856 1.5 0.71 0.0549 0.0116 0.0203
34 0.1 0.014 0.0856 1.5 0.71 0.135 0.0111 0.132

TC 128 0.4227 0.044 1.94 1.5 0.71 0.1091 0.031 0.128
147 0.4889 0.051 2.65 1.5 0.71 0.1158 0.038 0.154
160 0.5441 0.057 3.42 1.5 0.71 0.1249 0.0435 0.1773

SW 26 0.0432 0.02 0.00531 1.65 0.7 0.02963 0.0156 0.00222
36 0.08 0.02 0.0393 1.65 0.7 0.0576 0.0164 0.0176

MW 85 0.1249 0.056 0.0314 1.6 0.71 0.249 0.052 0.124
140 0.1703 0.11 0.0418 1.55 0.69 0.4195 0.17 0.277
247 0.3162 0.17 0.164 1.5 0.67 0.5797 0.16 0.581
306 0.3018 0.3 0.0833 1.6 0.71 0.8944 0.33 0.799
407 1.0198 0.16 6.13 1.6 0.71 0.2828 0.079 0.466
582 0.7635 0.43 0.94 1.6 0.71 1.0344 0.29 1.74
731 1.2 0.4 3.88 1.5 0.67 1.4318 0.28 4.96

AZX 30 0.0594 0.0212 0.018 1.5 0.7 0.061 0 0.01
51 0.1125 0.0465 0.117 1.5 0.7 0.076 0 0.03
62 0.1809 0.0372 0.4 1.5 0.7 0.061 0 0.032
78 0.2657 0.0349 1.412 1.5 0.7 0.044 0 0.026

Table 6. Experimental data. The scalar integral length scale in Mydlarski & Warhaft (1998)

is Lφ = 〈φ2〉1/2
/β where β is the mean gradient.

active grid. The definitions of length and velocity scales used in experiments are
sometimes different from those of numerical simulations, which complicates precise
comparisons, though these differences do not appear to be critical. In any case, we
have provided a list of the different definitions used by the authors wherever necessary
or appropriate.

3. The scaling of scalar dissipation
3.1. Unity Schmidt number

In analogy to the energy dissipation rate, we can examine the Rλ-variation of 〈χ〉L/

〈φ2〉u′. No general results are known on bounds on scalar dissipation, comparable
to those of Doering & Foias (2002) for the energy dissipation, though Schumacher,
Sreenivasan & Yeung (2003) studied related issues with the assumption of rapid
straining at small scales. The data culled from table 1 for Sc= 1, plotted in figure 2,
indeed have the form

〈χ〉L
〈φ2〉u′ = A′(1 +

√
1 + (B ′/Rλ)2), (3.1)

which is a direct extension of (1.1). For our own DNS data (circles in the figure) we
have A′ ≈ 0.4 and B ′ ≈ 31. The value of B ′ in (3.1) is significantly smaller than B in
(1.1), which suggests that the asymptotic value of the normalized scalar dissipation
is attained faster in Rλ than the normalized energy dissipation. This is evident also
from a comparison of figures 1 and 2. In analogy with the energy dissipation, we
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Figure 2. Scalar dissipation rate normalized with L/u′ for Sc= 1. �, present data; �, Wang
et al. (1999); �, Watanabe & Gotoh (2004). Dotted line: equation (3.1) as the best fit for
the present data. Dash-dotted line: theoretical prediction of (3.12), which will be described
towards the end of § 3.2. Inset shows the present data using the normalization of T instead
of L/u′, as well as (3.12). While the asymptotic constancy holds for both normalizations, the
direction of approach of this constancy is different.

expect the form of the equation to be the same for all initial conditions, though the
numerical values could be different.

In plotting figure 2, we have used L as the relevant lengthscale because the ratio Lφ/

L is of the order unity for these data (0.7 ± 0.06). Further, instead of using L/u′ as the
indicator of the large-eddy time scale, we can consider the alternative quantity given
by T ≡ K/〈ε〉. Its reciprocal is called the ‘mechanical-to-scalar time scale ratio’, often
used in the modelling of reacting flows (see, e.g. Fox 2003), and has been studied, for
example, in Yeung & Sawford (2002). The time scales L/u′ and T are related from
definitions as

L

T u′ = 2
3
f, (3.2)

where f is given by (1.1). Because their ratio becomes a constant only for large Rλ,
the use of the time scale T , instead of L/u′, changes the form of the normalized data
for low Rλ, but its constancy for high Reynolds numbers is assured, as seen from the
inset to figure 2. The use of T as a time scale possesses an advantage, as we shall see
further below.

In summary, it appears from the data just considered that dissipative anomaly
applies to passive scalar fields as well. Following the idealized notion of cascades, the
implication is also that the time taken by the scalar variance to reach the dissipative
scales is of the same order as the time scale of the large eddies. In particular, the
present evidence does not support the idea of a cascade short-circuit (Villermaux,
Innocenti & Duplat 2001), though it is possible that the present homogeneous flows
and the jet flow studied by Villermaux et al. could be different in this respect. We
have focused here on homogeneous flows partly because the large body of data
available allows definitive conclusions to be drawn, and partly because – based on
our experience with the energy dissipation (Sreenivasan 1995) – each inhomogeneous
flow has to be studied carefully on its own merit. While we do not expect a large
qualitative difference, this is clearly work for the future.
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Figure 3. Scalar dissipation rate normalized with L/u′. �, present data; �, Watanabe &
Gotoh (2004); �, Wang et al. (1999); �, Overholt & Pope (1996); �, Mydlarski & Warhaft
(1998); �, Tavoularis & Corrsin (1981); �, Sirivat & Warhaft (1983); �, Sreenivasan et al.
(1980); �, Yeh & Van Atta (1973); �, Warhaft & Lumley (1978); �, Mills et al. (1958); +,
Antonia et al. (2000); �, Bogucki et al. (1997). The relative sizes of symbols of the same type
illustrate the relative magnitudes of Sc.

3.2. Non-unity Schmidt numbers

We can now plot available data for all Sc in a similar manner (figure 3). The data
for different conditions tend to approach constant values of the order unity for large
Rλ, though without collapsing, because of the additional parameter, Sc. There is, in
particular, no discernible order for low Rλ. Instead of examining the Rλ-variation, we
may plot the data against the microscale Péclet number

Pλφ ≡ u′λφ

D
= RλSc

λφ

λ
, (3.3)

where the scalar microscale λφ is defined through the relation

λ2
φ = 6κ

〈φ2〉
〈χ〉 . (3.4)

That, too, does not collapse the data although the dependence on Sc emerges more
clearly (figure 4). This is not surprising because the Péclet number does not distinguish
between the case of low Sc and high Rλ on the one hand and that of high Sc and
low Rλ on the other – which are two different problems in mixing. Even if T were
used instead of L/u′, the data do not collapse against Rλ or Pλφ (see figures 5 and 6).
While a reasonable conclusion may still be that an asymptotic state is reached for
large Rλ or Pλφ , this limit is not the same for all the data.

For the data used in figure 2, the ratio Lφ/L is about 0.7 ± 0.06, so it is reasonable
to assume that the scalar field is forced at essentially the same scale as the velocity
field. As shown in figure 7, the length scale ratio for our data depends on Sc, even
if not very strongly.† If Lφ/L is small compared to unity so that the scalar forcing

† This dependence may seem surprising at first, but the increasing importance with Sc of the −1
part of Eφ(k) makes it quite plausible. There is practically no dependence on Rλ for fixed Sc.
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Figure 4. Scalar dissipation rate normalized with L/u′. Symbols as in figure 3.
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Figure 5. Scalar dissipation rate normalized with T = K/〈ε〉. Symbols as in figure 3.

occurs within the inertial range of the velocity field, the appropriate time scale for
normalizing 〈χ〉/〈φ2〉 is not L/u′ or T , but their products with the factor (Lφ/L)2/3.
This conclusion follows if we assume that the characteristic time scale for the inertial
range is given by the Kolmogorov scenario, and that the time scale needed for scalar
variance to reach the dissipative scales is diminished because the forcing occurs in the
inertial range at Lφ <L. It would thus seem appropriate to multiply the ordinates in
figures 3 to 6 by (Lφ/L)2/3. We have prepared these plots, but do not present them
because they make no qualitative difference. We surmise the reason to be that, while
the length scale ratio is not strictly unity, its variation is not sufficiently strong for it
to matter in the present context.

To understand the Sc-dependence of 〈φ2〉/〈χ〉T , we consider large Sc and small Sc
separately. For the former case, we may approximate the scalar spectrum by

Eφ(k) = COC〈χ〉〈ε〉−1/3
k−5/3 (3.5)
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Figure 6. Scalar dissipation rate normalized with T = K/〈ε〉. Symbols as in figure 3.
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Figure 7. Ratio of integral length scales for present data. The relative size of the symbol
illustrates the relative magnitude of Rλ.

below a crossover wavenumber and by

Eφ(k) = CB〈χ〉(ν/〈ε〉)1/2k−1 (3.6)

above the crossover. Here, COC is the Obukhov–Corrsin constant (Obukhov 1949;
Corrsin 1951) and CB is the Batchelor constant (Batchelor 1959). The natural crossover
scale is kη ∼ 1/η, where η = (ν3/〈ε〉)1/4 is the Kolmogorov scale. By integrating the
scalar spectrum it is then easy to show that

〈φ2〉
〈χ〉 =

(3/2)COC

〈ε〉1/3
k

2/3
0

[
1 −

(
k0

kη

)2/3
]

+ (1/2)CB

(
ν

〈ε〉

)1/2

ln (Sc), (3.7)

which can be written as
〈φ2〉
〈χ〉T = c1f̃ + c2

ln(Sc)

Rλ

(3.8)
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Figure 8. High Schmidt number scaling for low and moderate Reynolds numbers. Symbols
as in figure 3. Dotted line: best fit for data with Sc � 1. Dash-dotted: equation (3.8) with
COC = 0.6 and CB = 5. Inset is an expanded view near the origin. As in figure 3, the relative
size of the symbol illustrates the relative magnitude of Sc.

with

f̃ = f 2/3 − c3

Rλ

, (3.9)

where f comes from (1.1), c1 = COC , c2 = CB

√
15/3 and c3 =

√
15. It should be noted

that taking the crossover scale as a multiple of kη different from unity – as is
indeed suggested by the numerical constants COC and CB (determined, e.g. from the
simulations of Yeung et al. 2002) – does not alter any of the conclusions drawn here.
The appearance of terms of the form 1/Rλ and ln(Sc)/Rλ in (3.9) and (3.10) is also in
agreement with a separate analysis by Borgas et al. (2004; see equation (15) therein).

The first term of (3.8) depends on both Rλ and the flow (through constants A and
B that are implicit in f ), and the second term is a linear function of ln(Sc)/Rλ. The
advantage of using T instead of L/u′ is that the prefactor for the second term is a
constant in the former case instead of being a function of Rλ and of A and B in the
latter. Equation (3.8) shows that the meaning of large Reynolds number for large Sc
is that ln(Sc)/Rλ must be small (in addition to the usual criterion that Rλ itself be
large).

In simulations given in table 1, it is generally the case that ln(Sc)/Rλ is not small
(as we shall discuss further in § 3.3), and so the asymptotic state has not been reached.
Nevertheless, for some sets of data, the f̃ -term is small compared with the ln(Sc)/Rλ-
term, which suggests that the data for those cases may collapse if plotted against
ln(Sc)/Rλ. This is indeed the case, as shown in figure 8.

For Sc< 1, we can obtain an approximate spectrum from (3.5), but using the
high-wavenumber cut-off at the Obukhov–Corrsin scale (ηOC ≡ ηSc−3/4). Proceeding
as before, we integrate the spectrum using (1.1) for 〈ε〉 and obtain

〈φ2〉
〈χ〉T = c1

(
f 2/3 −

√
15

1

RλSc1/2

)
. (3.10)
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Figure 9. Low Schmidt number scaling. Symbols as in figure 3. Dotted line: best fit for data
with Sc< 1. Dash-dotted: equation (3.11) with COC = 0.6 and CB = 5.

The first term is a function of both the flow geometry (or forcing scheme in
simulations) and Rλ, while the second is a linear function of the parameter (RλSc1/2)−1.
However, since the first term is in general not small, especially for high Rλ, the straight
lines would depend on flow features and Rλ. It is clear that the asymptotic state is
attained only when RλSc1/2 is large (in addition to Rλ being large) – this being
different from the large-Sc case.

As an aside, it is worth remarking that (3.10) can be rewritten, using (1.1) for f ,
as

〈φ2〉
〈χ〉T ′ = 3

2
c1

(
1 − 15−1/6 1

R
1/3
L′ Sc1/2

)
, (3.11)

where a new time scale T ′ = L2/3/〈ε〉1/3
and a new Reynolds number RL′ = (u′L2/λ)/ν

have been introduced. To obtain this equation, we have also used the relation
Rλf

2/3 = 152/3R
1/3
L′ . The important feature of (3.11) is that it does not contain any flow-

dependent parameters (unlike (3.10) through f ). If we now plot 〈φ2〉/〈χ〉T ′ against

(R1/3
L′ Sc1/2)−1 we expect a straight line with a negative slope. In figure 9, we show all

the relevant data and compare the best fit (dotted line) with the line given by (3.11)
(dash-dotted line with COC = 0.6 and CB = 5). The comparison is not unreasonable.
This scaling is a consequence of the Obukhov–Corrsin spectrum, according to which
the scalar dissipation rate, when normalized by T ′, should scale with R

−1/3
L′ Sc−1/2,

thus independent of all other details. If we plot the data using Rλ, or another time
scale, then the dependencies on the flow and Rλ will reappear.

Finally, for Sc= 1, we can put Sc to unity in both estimates (3.8) and (3.10), the
corresponding form turns out to be the same:

〈χ〉T ′

〈φ2〉 =
2

3c1

(
1 − 15−1/6

RL′
1/3

)−1

. (3.12)

We can express (3.12) in terms of L/u′ and Rλ as 〈χ〉L/〈φ2〉u′ = 2f/(3 c1(f
2/3 −√

15/Rλ)
−1). This functional form, although different from (3.1), can also be fitted to
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compare with the DNS data. In figure 2, we included this theoretical prediction using
the values of A and B obtained from our DNS data. This trend of the curve is similar
to (3.1), though it yields a somewhat higher value than that observed for the data.

3.3. Limits

The results of the preceding section can be summarized as follows:

〈φ2〉
〈χ〉T

1

c1

= f 2/3 − 1

Rλ

×
{

c3 − c4 ln(Sc) (Sc > 1),√
15 Sc−1/2 (Sc < 1),

(3.13)

where c4 = c2/c1. We are now interested in the limiting behaviours of 〈φ2〉/〈χ〉T ′ with
respect to Rλ and Sc. In particular, from (3.13) it is easy to find the following results:

lim
Rλ→∞

〈φ2〉
〈χ〉T = c1(2A)2/3 (0 < Sc < ∞), (3.14)

lim
Rλ→0

〈φ2〉
〈χ〉T = −c1

1

Rλ

{
c3 − c4 ln(Sc) (Sc > 1),√

15 Sc−1/2 (Sc < 1),
(3.15)

lim
Sc→∞

〈φ2〉
〈χ〉T =

1

Rλ

c2 ln(Sc) (Rλ < ∞), (3.16)

lim
Sc→0

〈φ2〉
〈χ〉T = − c1

√
15

RλSc1/2
(Rλ < ∞). (3.17)

Some comments on these limits are now in order. According to (3.14), as Rλ

approaches infinity, the normalized scalar dissipation rate tends to a constant. As
already remarked, this constant is flow-dependent. However, the limiting behaviour
appears to be independent of the diffusivity of the scalar. In figure 5, this is what
would be expected for higher Rλ. In the opposite limit of vanishing Rλ, equation (3.15)
shows that the behaviour at small Rλ depends upon Sc (and this dependence is
different for scalars with Sc greater or less than unity). Moreover, 〈φ2〉/〈χ〉T decreases
for Sc< 1, while it increases for high Sc (the numerical value depending on c1 and
c2). This can also be seen in For low-Sc scalars the normalized scalar dissipation
increases as Rλ decreases, while high-Sc scalars do the opposite. This limit presents
no dependence on the flow (or forcing in DNS). The third limit, (3.16), implies that
no flow and forcing effects are felt when Sc is very high. This feature cannot be tested
here since the only high-Sc data available are our own, for which a common forcing
scheme was used. Finally, (3.17) suggests an Rλ-dependence, but no flow-dependence,
as Sc → 0.

We have seen that, according to the Obukhov–Corrsin scaling, there is a universal
behaviour of 〈χ〉/〈φ2〉 when normalized by T ′ and plotted against RL′ . This is seen
in the recast form of (3.13) as

〈φ2〉
〈χ〉T ′

2

3c1

= 1 − 15−2/3

RL′
1/3

×
{

c3 − c4 ln(Sc) (Sc > 1),√
15 Sc−1/2 (Sc < 1).

(3.18)

Using this form of normalization and remembering that, because of the relation
Rλf

2/3 = 152/3RL′
1/3, one Reynolds number tends to infinity when the other does,

we see that the Rλ → ∞ limit preserves the asymptotic constancy even if it yields a
different limit from (3.12). The limit in this case is

lim
Rλ→∞

〈φ2〉
〈χ〉T ′ = 3

2
c1 ≡ 3

2
COC (0 < Sc < ∞). (3.19)
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Figure 10. Scalar dissipation rate normalized by T ′ = L2/3/〈ε〉1/3. Symbols as in figure 3. The
relative size of the symbol illustrate the relative magnitude of Sc. Dotted line: the limit 2/3COC

predicted by (3.19) with COC = 0.6.

In particular, the constant 3COC/2 is independent of the flow details for high Rλ flows,
and hence universal. The replot of the data using this scaling, shown in figure 10,
seems to confirm the conclusion. The lack of strict universality could be due, among
other effects, to the remnant effects of the large-scale details – especially considering
the number of flows analysed here.

3.4. The overall picture

Equations (3.8) and (3.10) can be used to address the following question: how close
is a given flow, characterized by given values of Rλ and Sc, to being asymptotic? To
illustrate this point, we take the operational view that the asymptotic state is attained
when the second term in each of these equations, which depends on both viscosity
and diffusivity, is 10 % of the respective first terms. A choice of some other similar
percentage will not affect the conclusions qualitatively, as we shall see.

In figure 11, we have plotted in the (Rλ, Sc)-plane the condition just spelled out,
implementing it as follows. The full curve to the right-hand side of the plot is the
locus of points for which the first term in (3.8) is 10 times larger than the log-term,
while that to the left is the locus for which the first term of (3.10) is 10 times the
second one. The dash-dotted lines mean that the Rλ-parts in the first term (which are
small for large Rλ in any case) are neglected. The horizontal dotted line represents the
Rλ at which the asymptotic state for 〈ε〉 has been attained (at this Rλ, the difference
between (1.1) and its asymptotic value is 1

10
th of the latter). The behaviours bound

the asymptotic state and, as long as a point resides above these lines, it can be
regarded, to this rough approximation, as belonging to the asymptotic state. The
diagram reinforces the statement that such an asymptotic state is governed by both
Reynolds and Schmidt numbers, and that the precise criteria depend on whether Sc
is large or small. The high-Rλ approximations (dash-dotted lines in the diagram) are
very close to the solid lines. The approximation depends only on the flow-specific
constant A (see (1.1)). However, since the constant A does not depend too strongly
on the flow, these limits provide a qualitative indication for all flows. Moreover, if this
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Figure 11. Theoretical limits for asymptotic state. See text for explanation on different lines.
Symbols as in figure 3.

diagram were redrawn using RL′ instead of Rλ (to make the result flow-independent),
the result would look very similar.

Figure 11 also shows where all the data from our tables lie on this phase plane. It
is clear that all the high-Sc data from simulations are not asymptotic, as also some
of the older experiments. This is not a new revelation, but the diagram is the first
attempt made to quantify this feature.

3.5. A useful correlation

We may write from dimensional considerations that

Eθ (k) = C〈χ〉〈ε〉−1/3
k−5/3f (kη, Sc), (3.20)

and

Eθ (k) = C〈χ〉(ν/〈ε〉)1/2k−1f (kη, Sc), (3.21)

depending on whether Sc< 1 or Sc> 1. We can then integrate these expressions to
obtain 〈φ2〉

〈φ2〉/〈χ〉
τφ

=

∫ ∞

0

f (kη, Sc) d(kηB), (3.22)

where τφ is equal to τη = (ν/〈ε〉)1/2 or τB = 〈ε〉−1/3
ηB

2/3 depending on whether we use
(3.20) or (3.21). Following the arguments leading to (3.10), we may expect that the
right-hand side of (3.22) is a function of Rλ and Sc. Or, using RL′ instead of Rλ, we
have

〈φ2〉/〈χ〉
τφ

= F (RL′, Sc). (3.23)

We may now naively expect that F will be in the form of power laws in RL′ and Sc
and write

〈φ2〉/〈χ〉
τφ

= αRL′
nScm. (3.24)
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Figure 12. Scalar dissipation rate normalized with τB and τη for all data. Dotted lines are best
fits. Symbols as in figure 3. The relative size of the symbols illustrate the relative magnitude
of Sc.

By an optimization procedure, we obtain n= 0.35 and m =0.57 (when using τB) and
n=0.36 and m =0.23 (when using τη) as best fits to the data. This is confirmed in
figure 12. The prefactor α in (3.24) is 1.55 for τB and 1.43 for τη (and the additive
constants in both cases are negligibly small).

Using the fact that τB = (ν/〈ε〉)1/2Sc−1/3 = T ′/(15 RL′
2Sc2)1/6, (3.24) can also be

written as

〈φ2〉
〈χ〉T ′ ∼ RL′

n−1/3Scm−1/3. (3.25)

The closeness of the best estimate of 1/3 for n suggests that the Rλ-variation must
indeed be negligible. The weak power of Sc is qualitatively similar to a logarithmic
dependence on Sc as Sc → ∞.

4. Summary of conclusions
We are concerned here with the asymptotic independence of the scalar dissipation

on scalar diffusivity. One of the problems faced while attempting to understand
the large-Reynolds number behaviour for non-unity Schmidt numbers is the lack
of a suitable criterion of what constitutes the asymptotic state. Without that rough
guideline, we can come to varying conclusions from simulations and experiments. In
this paper we have arrived at empirical criteria based on the analysis of existing data
and summarized them in figure 11.

We wish to note that the flows analysed here are homogeneous. This choice was de-
liberate because the situation with inhomogeneous flows is more complex. At the least,
the meaning of when a Reynolds number is high enough depends on the flow. The
presence of solid boundaries introduces additional complexities: the role of viscosity
in the boundary layer is different from that in the jet (or wake) because the viscosity
effects in the former will not vanish at any Reynolds number (though Schmidt
number effects may vanish at high enough Sc). Our expectation is that the asymptotic
independence discussed here will hold for all flows far from a solid boundary, but
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that the rate at which this state is attained will be different for different flows. As
we have already noted, the asymptotic value of the normalized scalar dissipation will
depend on the flow. The exercise of examining inhomogeneous flows for the energy
dissipation has been undertaken by Sreenivasan (1995), and is worth pursuing for the
scalar as well. This has been an ongoing project of ours.
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