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Within the framework of random multiplicative energy cascade models of fully developed turbulence,
finite-size-scaling expressions for two-point correlators and cumulants are derived, taking into account the
observationally unavoidable conversion from an ultrametric to an Euclidean two-point distance. The compari-
son with two-point statistics of the surrogate energy dissipation, extracted from various wind tunnel and
atmospheric boundary layer records, allows an accurate deduction of multiscaling exponents and cumulants,
even at moderate Reynolds numbers for which simple power-law fits are not feasible. The extracted exponents
serve as input for parametric estimates of the probabilistic cascade generator. Various cascade generators are
evaluated.
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I. INTRODUCTION

The inertial-range dynamics of fully developed turbulent
flows, driven by large-scale forcing on one end and con-
trolled by fluid viscosity and small-scale dissipation on the
other, reveals an ubiquitous multiscale character. The Navier-
Stokes equations do not show any distinguishing length
scales within the inertial range, thus suggesting a picture of a
scale-invariant dynamicsf1–3g. This scale-invariance should
reflect itself in the scaling of structure functions, which are
moments of velocity increments constructed from the mea-
sured velocity data. However, measured structure functions
in shear flows seem to show only an approximate multiscal-
ing characterf4,5g, even at one of the largest accessible Rey-
nolds numbers where the large-scale and the dissipation scale
are separated by five orders of magnitudef6g. The reason for
this distortion of scaling seems to be the sensitivity of struc-
ture functions to the mean shear that is inevitably present in
most natural flows at high Reynolds numbers. While
schemes have been proposed to account for these effects
f6–8g, it has been demonstrated recentlyf9g that the lowest-
order two-point correlation function of the surrogate energy
dissipation of a high-Reynolds-number atmospheric bound-
ary layer reveals a more convincing power-law scaling over
the entire inertial range, without having to resort to shear

corrections of the sort needed for structure functions. This
finding suggests that the phenomenological picture of the
self-similar turbulent energy cascade may be more relevant
than previously anticipated.

A straightforward way of substantiating this finding is to
consider measurements in flows at sufficiently high Reynolds
numbers, and examine if rigorous scaling occurs in two-point
correlations of energy dissipation. However, this approach
might not be feasible because one does not knowa priori
how high a Reynolds number is high enough, and also be-
cause various experimental artifacts may obscure pure scal-
ing, even if it exists. In such cases it is important to under-
stand the nature of finite-size effects, which have to be
guided by appropriate models. It is then possible to examine
simple empirical energy cascade models and extend their rel-
evance to experimental data at even modest Reynolds num-
bers. This is the purpose of the paper.

Random multiplicative cascade processessRMCPd
present a particularly simple geometrical picture of the en-
ergy cascade, e.g., Refs.f10–14g, and are a natural archetype
for multiscaling. In their binary version, for examplef13g,
the models introduce a hierarchy of length scalesl j =L /2j

and a random multiplicative cascade generator is used to
transport the energy flux from the integral scaleL through
the inertial range scalesLù l j ùh down to the dissipation
scaleh=L /2J. Referring to the ultrametric branching struc-
ture of binary RMCPs,N-point correlation functions of arbi-
trary order have been calculated analytically with generating
function techniquesf15–18g. In terms of the ultrametric two-
point distance, which measures the number of cascade steps
necessary to reach the last common branching, these models
reveal rigorous multiscaling. However, in this form, the two-
point RMCP statistics cannot be compared directly to quan-
tities that can be extracted from the data because, from an
experimentalist’s perspective, the two-point correlations are
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expressed as functions of the Euclidean two-point distance.
In this respect, RMCPs are incomplete and have to be
supplemented, stating the conversion of the ultrametric to
Euclidean statisticsf19–21g. This unavoidable conversion
will lead to some deviations from rigorous multiscaling of
correlation functions for two-point distances within the iner-
tial range. The challenge is to find the degree to which the
theoretical and converted two-point correlation functions can
match their experimental counterparts. If this comparison is
satisfactory, the two-point correlation statistics of the energy
dissipation will allow for an unambiguous extraction of mul-
tiscaling exponents, even for moderate Reynolds numbers.
This would then suggest that the underlying cascade process
is still self-similar.

Just as two-point correlations allow statements to be made
about cascade generators via multiscaling exponents, two-
point cumulants of logarithmic energy dissipationf20g allow
us to access properties of the probabilistic RMCP cascade
generator in another way. Taken together, a reliable testing of
various parametrizations of the underlying cascade generator
can be given. This would be the best we can do to settle the
question of whether the latter is bimodalf22,23g, log-normal
f24,25g, log-stablef26,27g, log-infinite divisible f28–30g, or
any other type of distribution.

The structure of this paper is as follows. Section II pro-
vides basic information about the two-point correlation of
the lowest order for the surrogate energy dissipation in four
fully developed turbulent flows—one atmospheric boundary
layer and three wind-tunnel flows. This information serves to
provide the needed guidance for the subsequent RMCP mod-
eling of Sec. III, where analytic expressions for two-point
correlators and cumulants are derived, taking into account
the ultrametric-Euclidean conversion. A comparison of the
derived finite-size-scaling expressions with the data is pro-
vided in Sec. IV. With the help of the multiscaling exponents
and cumulants extracted, Sec. V tests various prototype pa-
rametrizations of the probabilistic cascade generator. A con-
clusion and outlook is given in Sec. VI.

II. DATA ANALYSIS I: BASIC FACTS ON TWO-POINT
STATISTICS

We analyze four different data sets, three of which have
been recorded in a wind tunnelf31g and the fourth in an
atmospheric boundary layerf32g about 35 m above the
ground. We will refer to them as w1, w2, w3, and a, respec-
tively. Characteristic quantities of all data sets are summa-
rized in Table I. The Reynolds numberRl=Îku2ll /n is
based on the Taylor microscalel=Îku2l / ks]u/]xd2l ;n is the
kinematic viscosity andu is the streamwise velocity compo-
nent. Upon the application of the frozen flow hypothesis, the
recorded time series were converted into one-dimensional
spatial series. The energy spectra of all four records reveal
more or less the typical 5/3 slope in the inertial range. In
contrast to wind-tunnel records, that from the atmospheric
boundary layer reveals a white-noise behavior at very small
scales; this noise, which comes from detailed electronic cir-
cuitry, has been removed by an appropriate Wiener filter. The
energy dissipation was then calculated as the surrogate am-

plitude «=15nsdu/dxd2. Various tests were made to ensure
that the effect of Wiener filtering were not consequential.

Figure 1 illustrates the lowest-order two-point correlator
r1,1sd= ux2−x1ud=k«sx1d«sx2dl / sk«sx1dlk«sx2dld sampled from
the four different experimental records. Well inside the iner-
tial rangeh!d!L the two-point correlators reveal a power-
law behaviorr1,1,sL /ddt1,1. Power-law fits are indicated by
the shifted broken straight lines; see also the insets, where
the local slopes are shown. The resulting scaling exponents
aret1,1=0.15sw1d, 0.14sw2d, 0.18sw3d, and, 0.20sad. Note
that there is a Reynolds number dependence of this expo-
nent. This has been explored in greater detail elsewheref33g.

For the records with the largest Reynolds number, there is
a large scale range for which the two-point correlator exhib-
its a rigorous power-law scaling. However, with decreasing
Reynolds number this scale range becomes smaller. As a rule
of thumb, we observe that a good scaling range is confined
betweend<20−30h and <0.5L. If we could understand
precisely the deviations from the power-law scaling beyond
this intermediate inertial range, a more satisfactory extrac-
tion of multiscaling exponents would be possible, especially
for turbulent flows with moderate Reynolds numbers. In the
small-distancedø20−30h region, however, the correlations
observed exceed the power-law extrapolation; consult Fig. 1
again. As has been explained in Ref.f9g, this enhancement is
a consequence of the unavoidable surrogacy of the experi-
mentally measured energy dissipation. Without knowing the
correct small-distance behavior based on the proper energy
dissipation, a theoretical modeling of two-point correlations
in the dissipative regime is not very meaningful. We are thus
left to inspect only the remainder of the inertial range. In
Ref. f9g it has also been shown that the surrogacy effect does
not carry over to two-point distances greater thand<20
−30h. From an atmospheric record with velocity compo-
nents parallel and perpendicular to the mean flow direction,
various forms of the surrogate energy dissipation have been
constructed and for all of them the respective two-point cor-
relators have been found to be identical fordù20−30h.

At d<L, the two-point correlator has not yet converged to
unity, which is its asymptotic value asd→`. For all four
data records inspected, the decorrelation length appears to be
aroundLdec<4L and matches the length observed in the au-
tocorrelation function of the streamwise velocity component.
These findings suggest that the two-point correlator can be
described as

TABLE I. Taylor-scale based Reynolds numberRl, integral
length scaleL in units of the dissipation scaleh, record length
Lrecord, Taylor microscalel, and resolution scaleDx of three wind
tunnel sw1, w2, w3d f31g and one atmospheric boundary layersad
f32g records.

Data set Rl L /h Lrecord/L l /h Dx/h

w1 306 484 102500 35 1.97

w2 493 968 193500 44 2.79

w3 1045 2564 77500 64 2.97

a 9000 53104 1000 187 1.29
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r1,1s20 − 30h , d ø Ldecd = a1,1SLdec

d
Dt1,1

f1,1sd/Ldecd.

s1d

For two-point distancesd much smaller than the decorrela-
tion length the finite-size function converges to unity; that is,
f1,1sd!Ldecd→1. One goal of this paper is to qualitatively
and quantitatively reproduce this functional form with an
extended modeling based on random multiplicative cascade
processes. This approach, which is the subject of the next
section, naturally suggests a physical interpretation of the
decorrelation lengthLdec.

III. TWO-POINT STATISTICS OF RANDOM
MULTIPLICATIVE CASCADE PROCESSES

A. Binary random multiplicative cascade process

In its simplest form an RMCP employs a binary hierarchy
of length scalesl j =Lcasc/2

j. In the first cascade step the par-
ent interval of lengthl0=Lcasc is split into left and right
daughter intervals, both of lengthl1. In subsequent cascade

steps, each interval of generation 0ø j øJ−1 is again split
into a left and right subinterval of lengthl j+1= l j /2. Once the
dissipation scaleh=Lcasc/2

J is reached, the interval splitting
stops and has resulted into 2J spatially ordered intervals of
smallest sizeh. It is convenient to label them as well as their
ancestors according to the binary notationks jd

=k1,k2,… ,k j. The label refers to the hierarchical position of
an interval of generationj , whereki =0 or 1 stands for the
left or right interval, respectively.

The binary interval splittings go together with a probabi-
listic evolution of the energy-flux field. From generationj to
j +1 the field amplitudes propagate locally as

Pks jd,0 = qks jd,0Pks jd,

Pks jd,1 = qks jd,1Pks jd. s2d

The two random multiplicative weightsqleft=qks jd,0 and
qright=qks jd,1, with meankqleftl=kqrightl=1, are drawn from a
scale-independent bivariate probability density function
psqleft ,qrightd, which is called the cascade generator. Initially,
corresponding toj =0, the iterations2d starts with a given

FIG. 1. Two-point correlatork«sx+dd«sxdl / k«sxdl2 of the surrogate energy dissipation extracted from the records w1, w2, w3, and a.
Power-law fits are indicated by the shifted broken straight lines. The inset figures illustrate the local slope.
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large-scale energy fluxP, which might itself be a random
variable fluctuating around its normalized meankPl=1. Af-
ter the last iterationJ−1→J, the energy-flux amplitude is
interpreted as the amplitude«ksJd=PksJd of the energy dissi-
pation supported at the interval of lengthh at positionksJd.
As a result of Eq.s2d, this amplitude is a multiplicative sum
of the random weights, given by

«k1,…,kJ
= qk1,…,kJ

qk1,…,kJ−1
¯qk1

P. s3d

In the following we assume the cascade generator to be of
the factorized formpsqleft ,qrightd=psqleftdpsqrightd with identi-
cal statistics for the left or right variable. Of course, the
factorization is not the most general ansatz but, as already
pointed out in Ref.f34g, it represents a reasonable approxi-
mation: the turbulent energy cascade takes place in three
spatial dimensions and calls for a three-dimensional RMCP
modeling, respecting energy conservation. Since the mea-
sured temporal records come from one-dimensional cuts, the
three-dimensional RMCP has to be observed in unity subdi-
mension. Because of this, the RMCP appears to be noncon-
servative and the two multiplicative weights appear to be
almost decorrelated and independent of each other.

B. Two-point correlators

Expressions forN-point momentsk«sx1dn1
¯«sxNdnNl are

easily found. They can be calculated either by a straightfor-
ward approach or, more formally, by an iterative construction
of the respective multivariate characteristic functionf15,16g;
a third and more elegant approachf35g makes use of the full
analytic solution of the multivariate characteristic function
for logarithmic cascade-field amplitudesf17,18g. We simply
state the results up to two-point correlations:

k«sx1dn1l = kqn1lJkPn1l, s4d

k«sx1dn1«sx2dn2l = kqn1+n2lJ−Dkqn1lDkqn2lDkPn1+n2l. s5d

Here, the binary notationksJd has been transformed
into a spatial bin label x=1+o j=1

J k j2
J−j, which

runs over 1øxø2J in units of h.
Two bins x1;sk1,… ,kJ−D ,kJ−D+1,… ,kJd and x2

;sk1,… ,kJ−D ,kJ−D+18 ,… ,kJ8d are assigned an ultrametric
distanceD once the firstJ−D k’s are identical andkJ−D+1
ÞkJ−D+18 . In other words, afterJ−D common branches along
the binary tree, the two bins separate into different branches.

For the extraction of scaling exponents

tn = log2kqnl, s6d

It is enough to consider the two-point statisticss5d. In nor-
malized form, the two-point correlators are found to scale
perfectly as

rn1,n2
sDd =

k«sx1dn1«sx2dn2l
k«sx1dn1lk«sx2dn2l

=
kPn1+n2l

kPn1lkPn2l
S kqn1+n2l

kqn1lkqn2l
DJ−D

=
kPn1+n2l

kPn1lkPn2lSLcasc

2lD
Dtn1,n2

, s7d

where lD=2D−1h represents the characteristic two-bin dis-
tance corresponding to the ultrametric distanceD.0 and

tn1,n2
= tn1+n2

− tn1
− tn2

. s8d

For an experimentalist, the expressions7d does not
present an observable result. Different pairs of bins, all hav-
ing an identical Euclidean distancehød,Lcasc, do not have
an unequivocal ultrametric distance. Depending on their po-
sition within the binary ultrametric cascade tree, the two bins
might share a cascade history that is longssmall Dd or short
slarge Dd. Consequently, as an experimentalist analyzes the
two-point statistics in terms ofd, the ultrametric expression
s7d has to be averaged over allD that contribute to the same
value of d. In order to perform this conversion from an ul-
trametric to an Euclidean distance and, by this means, to
restore spatial homogeneity, we introduce the discrete condi-
tional probability distribution

psDudd =5
0 s1 ø D , A = dlog2 ded,

1 − d2−D sD = Ad,

d2−D sA , D ø Jd,

0 sJ , D , `d,

d2−J sD = `d

s9d

of finding the ultrametric distanceD for a given Euclidean
distanced in units of h f20g; see alsof19g. This expression
has been derived by employing the chain picture of indepen-
dent cascade configurations; consult Fig. 2. Independent
hierarchical RMCP domains of equal cascade lengthLcascare
chained one after the other to produce a very long synthetic
record, comparable to an experimental record. In principle,
the cascade length could vary from one domain to the other,
but for simplicity we prefer to keep it fixed. Each domain
represents an independent RMCP realization, evolved from
the initial lengthLcascdown to the dissipation scaleh. In this
respect,Lcasc can be identified with the decorrelation length
Ldcc of Eq. s1d. The conditional probability distributions9d
roughly varies aspsD udd,2log2 d−D. The sumoD=0

J psD udd
=1−d2−J does not add up to unity, sinceps` udd=d2−J rep-
resents the probability that the two bins belong to different
Lcasc-domains.

Since the one-point statisticsk«sxdnl=k«sx+ddnl do not
depend on the spatial indexx, the ultrametric-Euclidean con-
version of the normalized two-point correlators7d leads to

rn1,n2
sd Þ 0d = o

D=1

J

psDuddrn1,n2
sDd + ps`udd

=
kPn1+n2l

kPn1lkPn2lF1 −
d

2A

+
d

2AS2
kqn1+n2l

kqn1lkqn2l
− 1D−1GS kqn1+n2l

kqn1lkqn2l
DJ−A

+ F1 −
kPn1+n2l

kPn1lkPn2l
S2

kqn1+n2l
kqn1lkqn2l

− 1D−1G d

2J .

s10d

This expression holds for everyhødøLcasc. For d=0 and
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d.Lcasc the normalized two-point density simply becomes
rn1,n2

sd=0d=kPn1+n2lkqn1+n2lJ/ skPn1lkqn1lJkPn2lkqn2lJd and
rn1,n2

sd.Lcascd=1, respectively. The two-point densitys10d
does not reveal perfect scaling anymore. Usually the second
term, scaling asd/Lcasc, is small when compared to the first
term, except ford<Lcasc. The modulations, observed for the
first term, are an artifact of the discrete scale invariancef36g
of the binary random multiplicative cascade model imple-
mentation. In the following we will discard these modula-
tions by first considering only dyadic distancesdm
=Lcasc/2

m with integer 0øm,J, and then switching again to
continuousd by interpolating between the discretedm. The
expressions10d then simplifies to

rn1,n2
sdd = an1,n2

SLcasc

d
Dtn1,n2

fn1,n2
sd/Lcascd, s11d

with

an1,n2
=

kPn1+n2l
kPn1lkPn2l

S2
kqn1+n2l

kqn1lkqn2l
− 1D−1

s12d

and the finite-size scaling function

fn1,n2
sd/Lcascd = 1 + san1,n2

−1 − 1dS d

Lcasc
D1+tn1,n2

. s13d

Figure 3 compares the expressionss10d ands11d for the order
n1=n2=1.

The finite-size scaling function has the propertyfn1,n2
sd

!Lcascd=1 as long as the condition 1+tn1,n2
ù0 or, equiva-

lently, kqn1+n2l / skqn1lkqn2ld.1/2 is fulfilled. This is the case
for all positive combinationsn1ù0,n2ù0. However, com-
binations with negative orders do exist, for which the second
term on the right-hand side of Eq.s13d then dominates over
the first term in the limitd/Lcasc→0. This implies that the
normalized two-point densitys11d asymptotically scales as
rn1,n2

sdd,sLcasc/dd−1, giving rise to the effective scaling ex-
ponentstn1,n2

eff =suph−1,tn1,n2
j. This scaling transition is again

a pure consequence of the ultrametric-Euclidean conversion.
More discussions on this subject can be found in Refs.
f19,37,38g.

Upon studying the expressions13d more closely, we real-
ize that two effects, ultrametric-Euclidean conversion and
large-scale fluctuations, contribute to the finite-size scaling
function. They have a tendency to cancel each other. Once
we have

kPn1+n2l
kPn1lkPn2l

= 2
kqn1+n2l

kqn1lkqn2l
− 1, s14d

the finite-size scaling function becomesfn1,n2
sd/Lcascd=1 ex-

actly, showing nod-dependence.
We also wish to point out an interesting mathematical

observation following from the specific expressions
s11d–s13d. Since the finite-size scaling functions13d reveals
the simple scaling behavior

ffn1,n2
sd/Lcascd − 1gSLcasc

d
Dtn1,n2

, S d

Lcasc
Dm

s15d

with m=1, we find

FIG. 2. A chain of hierarchical RMCP domains of equal cascade lengthLcascis employed to convert the ultrametric two-point statistics
into an Euclidean one.

FIG. 3. Comparison of the expressionss10d and s11d for the
order n1=n2=1, showing that the log oscillations inherent to Eq.
s10d remain small. Parameters have been set as follows:Lcasc/h
=210, t2=0.20, andP=1.
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rn1,n2
sdd −

1

jm rn1,n2
sjdd = an1,n2

S1 −
1

jm+tn1,n2
DSLcasc

d
Dtn1,n2

,

s16d

where the normalized two-point correlator with the rescaled
two-point distancejd has been subtracted from itself. As a
function of the two-point distanced this quantity exhibits a
rigorous power-law behavior with scaling exponentstn1,n2

,
which is independent of the chosen rescaling parameterj and
is free of large-scale effects.

C. Two-point cumulants

Because experimental data yield limited statistics, the
two-point correlation densitiess11d will be restricted to low-
est orders 1øn1+n2ø3 or 4. This limits us to indirect in-
formation on the cascade generator, namely the scaling ex-
ponentst1,t2, t3 and, perhaps,t4 of Eq. s6d. In order to do
better, we need to accumulate additional and complementary
information. In fact, as proposed already in Ref.f20g, this
can be achieved by switching to the logarithmic amplitude
«sxd→ ln «sxd, and from two-point correlation densities to
two-point cumulants

C1,1sx2 − x1d = kln «sx1dln «sx2dl − kln «sxdl2,

C2,1sx2 − x1d = kln2 «sx1dln «sx2dl − 2kln «sx1dln «sx2dl

3kln «sxdl − kln2 «sxdlkln «sxdl

+ 2kln «sxdl3,…,

Cn1,n2
sx2 − x1d = U ]n1+n2

]ln1 ] ln2
lnk«sx1dl1«sx2dl2lU

l1=l2=0
.

s17d

Explicit RMCP expressions have already been derived in
Ref. f20g within the ultrametric view as well as the converted
ultrametric-Euclidean view. Here, we summarize only the
latter lowest-order results, which hold forhødøLcasc:

Cn−1,1sdd = G1sJ,ddcn + G0sJ,ddklnn Plc. s18d

The geometric functions GnsJ,dd=s1/2JdoD=1
J sJ

−DdnpsD udd are related to moments of the conditional prob-
ability distributions9d and are fingerprints of the hierarchical
RMCP tree structure. They are given by the expressions

G0sJ,dd = 1 −
d

Lcasc
,

G1sJ,dd = sJ − Ad − 2
d

h
s2−A − 2−Jd

< log2SLcasc

d
D − 2 + 2

d

Lcasc
, s19d

with the last step neglecting small log-oscillations. The cu-
mulants of the logarithmic multiplicative weight

cn = klnn qlc = U ]nQsld
]ln U

l=0
s20d

are generated by the logarithm of the Mellin transform of the
cascade generator, i.e.,

Qsld = lnSE dqpsqdqlD . s21d

The cumulantsklnn Plc of the initial large-scale fluctuation
are defined analogous toklnn qlc.

D. Multifractal sum rules

The cumulantscn of Eq. s20d and the scaling exponentstn
of Eq. s6d are not independent of each other. Combining Eqs.
s6d, s20d, ands21d, we arrive at

Qsnd = ln 2tn = o
k=1

`

ck
nk

k!
. s22d

In the lowest order, this translates to

ln 2t1 = 0 =c1 +
c2

2
+

c3

6
+ ¯. s23d

These multifractal sum rules can be used, for example, to
estimatec1, which cannot be extracted from the two-point
statisticss18d.

Another approach to estimate the value ofc1 is given by
the well-known replica trick:

c1 = kln ql = U ]Qsld
]l

U
l=0

= U ]kqll
]l

U
l=0

= lim
l→0

kqll − 1

l
= lim

l→0

2tl − 1

l
. s24d

Another form of sum rules follows from Eq.s22d and states
that

Uln 2
]tl

]l
U

l=n

= o
k=0

`

ck+1
nk

k!
= c1 + nc2 +

n2

2
c3 + ¯. s25d

It can be seen as a generalization of Eq.s24d.

IV. DATA ANALYSIS II: MORE ON TWO-POINT
STATISTICS

In this section, we discuss further relevant aspects of data
analysis. The goal is threefold:s1d to test the RMCP expres-
sion s11d with the proposed finite-size scaling for two-point
correlators, as already pointed out in Sec. II;s2d to test the
expressions18d for two-point cumulants derived from the
RMCP theory; ands3d to extract reliable values for the scal-
ing exponentstn and cumulantscn from various turbulent
records discussed in Sec. II.

The expressionss11d ands18d come with parametersLcasc,
tn1,n2

, an1,n2
, cn andklnn Plc. The parameterLcascdepends on

neither the ordern1, n2 nor the choice of the two-point sta-
tistics, i.e., whether we use the correlator or the cumulant.
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The fits of Eqs.s11d and s18d to their counterparts from ex-
perimental records have to respect this independence. In ad-
dition to the common parameterLcasc, the fit of each order
has two more parameters: these aretn1,n2

, an1,n2
for the two-

point correlator andcn, klnn Plc for the two-point cumulant.
We demonstrate the quality of fits by choosing the data
record w2. For this data set, two-point correlators with orders
from n1, n2=1, 1 to 2, 2 are illustrated in Fig. 4, while the
two-point cumulants with ordersn1, n2=1, 1 and 2, 1 are
illustrated in Fig. 5. Except for very small two-point dis-
tanceshødø20−30h, where, as already noted, the surro-
gacy effect of the energy dissipation corrupts the experimen-
tal two-point statisticsf9g, the agreement between the
experimental two-point correlators and cumulants and the
best-fit expressionss11d ands18d is remarkable. Table II lists
the best-fit parametersLcasc, tn andcn. Note that, due to Eq.
s8d and t1=0, the scaling exponentstn1,n2

have been con-
verted intot2=t1,1, t3=t2,1+t2 and t4=t3,1+t3=t2,2+2t2.
For w2 the two valuest4=0.79 and 0.77, the first value
extracted fromr3,1sdd and the second fromr2,2sdd, are con-

sistent with each other, although the statistical convergence
of the two two-point correlators of ordern1+n2=4 is already
beyond the limit of acceptability. For the record w3 a similar
statement can be made, but the other records w1 and a are
definitely confined ton1+n2ø3. Their best-fit parameters
Lcasc, tn andcn are also listed in Table II.

Let us comment on the quality of fits in more detail. For
data records at high Reynolds numbers, pure power-law fits
to the experimental two-point correlators would be sufficient
to extract the scaling exponents reliably. In such fits the pa-
rameters involved aretn1,n2

andan1,n2
. Compared to this, the

fits s11d including the finite-size scaling come with one more
additional parameter, which isLcasc. This parameter is the
same for all correlation orders, and can be seen as a severe
constraint to data-fitting. In view of this, the quality of fits
s11d to their experimental counterparts for various orders
considered here is remarkable. It should also be noted that
the overall parameterLcasc carries over to the two-point cu-
mulantss18d, so that the quality of their fits to the data for
the various orders are perhaps even more remarkable. This
universality of the cascade lengthLcasc can be used as an

FIG. 4. Best fits of expressions11d to two-point correlators extracted from data set w2. Correlation orders aren1, n2=1, 1; 2, 1; 3,1 and
2, 2. The parameterLcaschas been fitted such that it is the same for all orders of two-point correlators as well as two-point cumulants, with
the latter illustrated in Fig. 5. The inset figures illustrate the local slope. For comparison, power-law fits with the extracted scaling exponents
listed in Table II are shown as the shifted dashed straight lines.
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uncertainty estimate: If the fit is performed independently
with Lcasc as a free parameter for each correlation order it
will come with some scatter. The extreme values of this scat-
ter are used as the uncertainty estimate which is reported in
Table II within the parentheses. It should be noted that for a
fair judgment of the accuracy one should look at the values
of Lcascon a logarithmic scale, since this is the RMCP view-
point. For data records with medium Reynolds numbers,
pure power-law fits to the two-point correlators become un-
acceptable. For example, for the data records w1 and w2 the

local logarithmic slope of the lowest-order two-point cor-
relator is nowhere really constantsFig. 1d. However, the
plateau-like region suggests that there is an underlying
power law. Power-law fits usually take an average local slope
over this region, leading to inaccurate values of the scaling
exponent. In contrast, the finite-size-scaling fitss11d also
make use of the curvature of the local slope for two-point
distances corresponding to the upper end of the inertial range
and extract more accurate values of the scaling exponent.
Therefore the fit of the scaling exponentstn comes with very
high accuracy, the fit error affects in the worst case the third
decimal place. However, we think that the error on the fit
alone would give a false impression on the true uncertainty
and the values in Table II are reported up to the second
decimal place. For the same linage cumulantscn the error on
the fit is of the order of the last digit.

The cumulantc1 cannot be extracted directly from two-
point cumulants. However, an indirect extraction is possible
via the relationss23d ands24d. Using the numerical values of
c2 andc3 determined already, the truncated multifractal sum
rule s23d leads to thec1 values listed in the second-last col-
umn of Table II. Input for the replica-trick formulas24d are
the scaling exponentst1, t2 and t3 determined already. A
linear extrapolation results in the last column of Table II. For
an order-of-magnitude estimate, it is safe to say thatc1
<0.06 for records w1, w2, w3 andc1<0.08 for record a.

This comparison of the RMCP theory with data demon-
strates that the parameterLcasc is a meaningful quantity and
deserves some consideration. For two-point distances 20
−30hødøLcasc, the fitted expressionss11d and s18d are in
good qualitative agreement with their experimental counter-
parts. At d=Lcasc all two-point correlations decorrelate and
become identical to their asymptotic values corresponding to
d→`. In this respect,Lcasccan be identified with the deco-
rrelation lengthLdec of Eq. s1d. Lcasc.L is somewhat larger
than the operationally defined integral lengthL of Table I,
which is calculated as the correlation length of the velocity
autocorrelation function. The interpretation of the extracted
parameterLcasc is that of a turbulent cascade length which,
according to Fig. 2, describes the spatial extension of a hier-
archical RMCP domain. Its order of magnitude, however, is
the same as that of the integral scaleL.

The finite-size scalingfn1,n2
sd/Lcascd of two-point correla-

tors, predicted by RMCP, now allows for an unambiguous
derivation of scaling exponents, even for fully developed tur-
bulent flows with a rather moderate Reynolds number, where
a clear power-law behavior is no longer seen. Consequently,
as a closer inspection of Table II shows, reliable statements

FIG. 5. Best fits of expressionss18d to two-point cumulants
extracted from data set w2. Correlation orders aren1, n2=1, 1 and
2, 1. The parameterLcaschas been fitted such that it is the same for
all the orders of two-point cumulants as well as two-point correla-
tors, with the latter illustrated in Fig. 4.

TABLE II. Parameter values resulting from least-square fits with expressionss11d ands18d. Lcaschas been
fixed for each data set; uncertainty estimates are given within the parentheses and are explained in the main
text. The last two columns represent the estimatess23d and s24d for the cumulantc1.

Data set Lcasc/h t2 t3 t4 c2 c3 c1s23d c1s24d

w1 1873s1637…2240d 0.15 0.46 0.100 0.042 20.057 20.057

w2 3069s2701…3588d 0.15 0.42 0.78 0.095 0.045 20.055 20.053

w3 7117s6346…9932d 0.17 0.52 0.98 0.099 0.060 20.059 20.063

a 322500s127736…748435d 0.21 0.58 0.149 0.015 20.077 20.079
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that the intermittency exponentt2 might show a weak depen-
dence on the Reynolds number appear to be within reach. Of
course, to make this statement solid, the analysis of many
more records is needed; the results of this effort are dis-
cussed inf33g.

V. PARAMETRIC ESTIMATION OF THE RMCP
GENERATOR

If the scaling exponentstn, or the cumulantscn, exist and
are known for all orders 1øn,`, the binary RMCP genera-
tor could in principle be reconstructed via the inverse trans-
form of Eq. s21d. Unfortunately, as we have seen in the pre-
vious section, reliable information is limited to the lowest
orders. Hence, the best we can do is to use sophisticated
parametric estimates. Section V A lists some of the most
popular parametrizations and compares their performance
with the results listed in Table II. Section V B introduces the
so-called log-normal inverse Gaussian distributionf39,40g,
which represents a broader and more flexible parametrization
class, with the purpose of finding a suitable approximation to
the true cascade generator.

Note that the breakup coefficients, sometimes called mul-
tipliers, have once been thought to represent a direct ap-
proach to derive the RMCP cascade generator from data
f41–45g. In fact, generatorlike scale-invariant distributions of
breakup coefficients have been observed, but conditional dis-
tributions have been found to exhibit scale correlations. In a
series of papersf21,34,46g these findings have been fully
explained within ultrametric hierarchical RMCPs, once those
are analyzed from an experimentalist’s perspective, including
unavoidable small-scale resummation and restoration of spa-
tial homogeneity via the ultrametric-Euclidean conversion.
This work has demonstrated that cascade generators and dis-
tributions of breakup coefficients are not directly related.

A. Dictionary of prototype cascade generators

Here we list a number of popular generatorspsqd for bi-
nary random multiplicative cascade processes. They all have
the property that the expectation valuekql=1.

The log-normal distribution

plog-normalsqd =
1

Î2psq
expF−

1

2s2Sln q +
s2

2
D2G s26d

is classicf24,25g. Its log-stable generalization has also been
consideredf26,27g, but does not qualify for our purposes,
since the cumulantscn do not exist for this distribution be-
yond some order. For comparison, we will also employ the
rescaled gamma distribution

pgammasqd =
gg

Gsgd
qg−1e−gq s27d

and the asymmetric beta distributionf34g

pbetasqd =
Gs8bd

GsbdGs7bd
81−8bqb−1s8 − qd7b−1. s28d

The bimodal distribution

palphasqd =
a2

a1 + a2
d(q − s1 − a1d) +

a1

a1 + a2
d(q − s1 + a2d),

s29d

although discrete, has also been used extensivelyf22,23g.
Another popular discrete representative is the log-Poisson
distribution

plog-Poissonsqd = o
k=0

`
2−n1sn1 ln 2dk

k!
dsq − 2n1s1−n2dn2

kd ,

s30d

which was originally derived withn1=2 andn2=2/3 from
some plausible reasoning on the structure of the most singu-
lar objects in fully developed turbulent flowsf28–30g.

For all parametrizationss26d–s30d it is straightforward to
determine analytic expressions for the scaling exponents and
cumulants via Eqs.s20d–s22d. The free parameter of the one-
parametric distributionss26d–s28d is then fixed to reproduce
the observed intermittency exponentt2, listed in Table II.
The two-parametric distributionss29d and s30d need also
conform tot3 in addition tot2. No further freedom is left for
the scaling exponents of higher order and cumulants of all
orders. Table III summarizes their predicted values.

It is difficult to rate the prototype cascade generators be-
cause of ambiguity inherent in the data. Within the one-
parametric distributionss26d–s28d the log-normal distribu-
tion performs better: for all the records, the predicted values
for c1 andc2 are close to the observed cumulants. However,
the log-normal distribution without skewness is unable to
reproduce the observed positive values forc3 and for the
record w2 it also overestimates the scaling exponentt4. Fur-
thermore, the difficulties of the log-normal distribution for
high-order moments is now well knownf2g. Compared to the
log-normal distribution, the rescaled gamma distribution and
the asymmetric beta distribution have the tendency to over-
estimate the first two cumulants. Furthermore,c3 is predicted
with an opposite sign. Rather surprisingly, the simple two-
parametric bimodal distributions29d shows the closest agree-
ment for all records. The scaling exponentt4, if observed, as
well as the cumulantsc1 andc2 almost match their observed
counterparts. Moreover,c3 comes with the correct sign, al-
though it is about a factor 2 too low for the records w1, w2,
w3 and roughly a factor 2 too large for the atmospheric
boundary layer record. Like the distributionss27d and s28d,
the two-parametric log-Poisson distribution overestimates
the second cumulantc2 and, except for record w3, predictsc3
with the wrong sign. It is interesting to note that the
parameter-free log-Poisson distributionf28g with n1=2 and
n2=2/3 matches well the scaling exponentst3 and t4 of
record a with the largest Reynolds number, but disagrees
with all cumulants.

B. Log-normal inverse Gaussian distribution

A broader and more flexible parametrization class is the
so-called normal inverse Gaussian distributionf39,40g
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psx;a,b,m,dd = asa,b,m,ddsSx − m

d
D−1

K1XdasSx − m

d
DCebx,

s31d

with ssxd=Îs1+x2d, asa ,b ,m ,dd=p−1a expsdÎa2−b2

−bmd and −̀ ,x,`. K1 is the modified Bessel function of
the third kind and index 1. The domain of variation of the
four parameters is given bym[R, d[R+ and 0ø ubu,a.

The distribution is denoted by NIGsa ,b ,m ,dd, and its cumu-
lant generating functionQsl ;a ,b ,m ,dd=lnkelxl has the
simple form

Qsl;a,b,m,dd = d„Îa2 − b2 − Îa2 − sb + ld2
… + ml.

s32d

If x1,… ,xm are independent normal inverse Gaussian ran-
dom variables with common parametersa and b but indi-

TABLE III. Fitted parameters for a few prototype cascade generators and their predicted values for the
remaining scaling exponentstn and cumulantscn.

log-normal distributions26d
Data set s t3 t4 c1 c2 c3

w1 0.33 0.46 0.93 20.054 0.107 0.000

w2 0.32 0.44 0.87 20.050 0.101 0.000

w3 0.34 0.51 1.03 20.059 0.119 0.000

a 0.38 0.63 1.26 20.073 0.145 0.000

gamma distributions27d

Data set g t3 t4 c1 c2 c3

w1 8.84 0.45 0.87 20.058 0.120 20.014

w2 9.41 0.42 0.82 20.054 0.112 20.013

w3 7.94 0.50 0.96 20.064 0.134 20.018

a 6.39 0.60 1.16 20.080 0.169 20.029

beta distributions28d

Data set b t3 t4 c1 c2 c3

w1 7.61 0.44 0.85 20.059 0.124 20.019

w2 8.11 0.42 0.81 20.055 0.116 20.017

w3 6.82 0.49 0.94 20.066 0.139 20.025

a 5.47 0.60 1.13 20.083 0.178 20.040

bimodal distributions29d

Data set a1=a2 t4 c1 c2 c3

w1 0.22 0.52 0.88 20.049 0.092 0.025

w2 0.24 0.44 0.80 20.049 0.094 0.018

w3 0.21 0.61 1.00 20.052 0.094 0.033

a 0.31 0.50 1.06 20.075 0.144 0.026

log-Poisson distributions30d with n1=2, n2=2/3

t2 t3 t4 c1 c2 c3

0.22 0.59 1.06 20.10 0.228 20.092

log—Poisson distributions30d

Data set n1 n2 t4 c1 c2 c3

w1 109.84 0.96 0.90 20.055 0.111 20.004

w2 13.75 0.90 0.82 20.054 0.112 20.012

w3 1548.7 1.01 1.03 20.059 0.117 0.001

a 4.61 0.79 1.09 20.085 0.184 20.044
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vidual location-scale parametersmi anddi si =1,… ,md, then
x+=x1+¯+xm is again distributed according to a normal in-
verse Gaussian law with parametersa, b, m+ and d+. Fur-
thermore, we note that the NIG distributions31d has semis-
tretched tails

psx;a,b,m,dd , uxu−3/2exps− auxu + bxd s33d

asx→ ±`. This result follows from the asymptotic relation
Knsx→`d,Îp /2x−1/2e−x.

For our purposes we assume the random multiplicative
weight to be distributed according to

ln q , NIGsa,b,d,md, s34d

which turns normal inverse Gaussian statistics into log-
normal inverse Gaussian statistics. With Eqs.s20d, s22d, and
s32d, the scaling exponents and cumulants yield

tn ln 2 = Qsn;a,b,m,dd s35d

and

c1 = m +
dr

Î1 − r2
, c2 =

d

as1 − r2d3/2,

c3 =
3dr

a2s1 − r2d5/2, …, s36d

wherer=b /a.
For each of the records w1, w2, w3 and a, the four NIG

parametersa, b, d andm are determined so as to reproduce
t1=0 and the observed values fort2, t3 andc2 listed in Table
II. Since the respective expressionss35d ands36d are nonlin-
ear, real solutions for the parameters are not guaranteed.
Where complex-valued solutions resulted in the first attempt,
which occurred for w2, w3 and a, the values forc2, t3 andt2
are relaxed, in this order and to some small extent, until
real-valued parameter solutions are obtained. The outcome is
listed in Table IV. The results are very close to the log-
normal values listed in Table III. The log-normal inverse
Gaussian distribution has the tendency to overestimate the
fourth-order scaling exponentt4. The magnitude of the third

cumulantc3 is strongly underestimated, so that its predicted
sign shows only random scatter. For all four records the ex-
tracted distributions are very similarsthough we do not show
them for brevityd.

As a summary of this section, we reiterate that the bimo-
dal distribution s29d produces the best overall agreement
with the observed scaling exponents and cumulants. How-
ever, the true cascade generator will not be discrete. From
the set of continuous generator representatives tested, the
log-normal and log-normal inverse Gaussian distributions
perform best and about equally well.

VI. CONCLUSIONS

Random multiplicative cascade processes are able to de-
scribe the observed two-point correlation structure of the sur-
rogate energy dissipation of fully developed turbulent flows
beyond simple power-law scaling. Keeping in mind the need
for a satisfactory comparison between modeling and experi-
mental data, a useful transformation has been introduced:
this transformation converts model-inherent, but unobserv-
able ultrametric two-point distances to Euclidean two-point
distances, the latter corresponding to a “horizontally
sampled”n-point statistics of the experimental records. The
predictions of RMCP for finite-size scaling of two-point cor-
relation functions are confirmed by experimental data from
three wind-tunnel shear flows and one atmospheric boundary
layer; a physical length scale characterizing in a natural and
precise way the upper end of the inertial range, called here
the turbulent cascade length, is shown to be of the same
order of magnitude as the integral scale. Furthermore, the
quantitative classification of the deviations from a rigorous
scaling of two-point correlators allows for an unambiguous
extraction of multiscaling exponents, even for flows with
moderate Reynolds numbers. When complemented with ad-
ditional information extracted from two-point cumulants of
the logarithmic energy dissipation, a reliable testing of vari-
ous parametrizations of the RMCP generator has become
feasible.

RMCPs produce a consistent geometrical modeling of the
self-similar turbulent energy cascade. This is further sup-
ported by recent investigations on the scaling part of three-
point statisticsf47g and previous investigations on scale cor-
relationsf21,34,46,48g. Thus the self-similar and RMCP-like
cascade process appears to be robust, even for turbulent

TABLE IV. Fitted parameters of the log-normal inverse Gaussian cascade generator and their predicted
values for the scaling exponentstn and cumulantscn.

log-normal inverse Gaussian distributions34d
Data set a b d m t2 t3 t4 c1 c2 c3

w1 10.98 0.94 1.09 20.14 0.15 0.46 0.95 20.051 0.100 0.002

w2 17.28 25.46 1.56 0.47 0.15 0.43 0.85 20.052 0.106 20.006

w3 27.26 17.80 1.17 21.06 0.16 0.52 1.11 20.052 0.099 0.012

a 6.99 22.44 0.92 0.27 0.20 0.60 1.19 20.076 0.160 20.027
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flows with a rather small Reynolds number. However, as
shown by variations among the four records considered, the
strength of the cascade generator appears to depend on the
Reynolds number and perhaps also the flow geometry. To
clarify if this is indeed a Reynolds number dependence or
due to something else needs a separate and extended effort
f33g.

Needless to say, there is a strong need for the experimen-
talists to produce clean and longer records with converged
statistics.
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