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Within the framework of random multiplicative energy cascade models of fully developed turbulence,
finite-size-scaling expressions for two-point correlators and cumulants are derived, taking into account the
observationally unavoidable conversion from an ultrametric to an Euclidean two-point distance. The compari-
son with two-point statistics of the surrogate energy dissipation, extracted from various wind tunnel and
atmospheric boundary layer records, allows an accurate deduction of multiscaling exponents and cumulants,
even at moderate Reynolds numbers for which simple power-law fits are not feasible. The extracted exponents
serve as input for parametric estimates of the probabilistic cascade generator. Various cascade generators are
evaluated.
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[. INTRODUCTION corrections of the sort needed for structure functions. This
o . finding suggests that the phenomenological picture of the
The inertial-range dynamics of fully developed turbulentse|f-similar turbulent energy cascade may be more relevant
flows, driven by large-scale forcing on one end and conthan previously anticipated.
trolled by fluid viscosity and small-scale dissipation on the A straightforward way of substantiating this finding is to
other, reveals an ubiquitous multiscale character. The Navieconsider measurements in flows at sufficiently high Reynolds
Stokes equations do not show any distinguishing lengtmumbers, and examine if rigorous scaling occurs in two-point
scales within the inertial range, thus suggesting a picture of aorrelations of energy dissipation. However, this approach
scale-invariant dynamidgd—3]. This scale-invariance should might not be feasible because one does not kaopriori
reflect itself in the scaling of structure functions, which arehow high a Reynolds number is high enough, and also be-
moments of velocity increments constructed from the meacause various experimental artifacts may obscure pure scal-
sured velocity data. However, measured structure function#d, even if it exists. In such cases it is important to under-
in shear flows seem to show only an approximate multiscalstand the nature of finite-size effects, which have to be
ing charactef4,5], even at one of the largest accessible Rey-guided by appropriate models. It is then possible to examine
nolds numbers where the large-scale and the dissipation scaiénPle empirical energy cascade models and extend their rel-

are separated by five orders of magnit(iéle The reason for €vance to experimental data at even modest Reynolds num-
this distortion of scaling seems to be the sensitivity of strucP€rS: This is the purpose of the paper.
Random multiplicative cascade processéBRMCP)

ture functions to the mean shear that is inevitably present in . . . g
most natural flows at high Reynolds numbers. Wh"epresent a particularly simple geometrical picture of the en-

schemes have been proposed to account for these effec%?y cascade, e.g., Refd0-14, and are a natural archetype

: multiscaling. In their binary version, for exampl&3],
[6-8], it has been demonstrated receri@y that the lowest-  yno ' moqdels introduce a hierarchy of length scajed /2!
order two-point correlation function of the surrogate energyand a random multiplicative cascade generator is used to

dissipation of a high-Reynolds-number atmospheric boundt'ransport the energy flux from the integral scléhrough

ary layer reveals a more convincing power-law scaling OVeha inertial range scales=1;= 7 down to the dissipation

the entire inertial range, without having to resort to Shearscaler;:L/ZJ. Referring to the ultrametric branching struc-

ture of binary RMCPsN-point correlation functions of arbi-
trary order have been calculated analytically with generating

*Email address: cleve@ictp.trieste.it function techniquefl5-18. In terms of the ultrametric two-
"Email address: Thomas.Dziekan@fysik.uu.se point distance, which measures the number of cascade steps
*Email address: schmiegl@imf.au.dk necessary to reach the last common branching, these models
SEmail address: oebn@imf.au.dk reveal rigorous multiscaling. However, in this form, the two-
'Email address: bruce.pearson@nottingham.ac.uk point RMCP statistics cannot be compared directly to quan-
TEmail address: krs@ictp.trieste.it tities that can be extracted from the data because, from an
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expressed as functions of the Euclidean two-point distance. TABLE I. Taylor-scale based Reynolds numbiy, integral
In this respect, RMCPs are incomplete and have to béength scaleL in units of the dissipation scale, record length
supplemented, stating the conversion of the ultrametric td-recora TaYlOr microscale\, and resolution scalax of three wind
Euclidean statistic§19—21. This unavoidable conversion tunnel(wl, w2, w3 [31] and one atmospheric boundary layey
will lead to some deviations from rigorous multiscaling of [32] records.

correlation functions for two-point distances within the iner-
tial range. The challenge is to find the degree to which the Data set Ry Lim Lecodl M7 Ax/y
theoretical and converted two-point correlation functions can

match their experimental counterparts. If this comparison is wi 306 484 102500 3 197
satisfactory, the two-point correlation statistics of the energy w2 493 968 193500 a4 279
w3 1045 2564 77500 64 2.97

dissipation will allow for an unambiguous extraction of mul-
tiscaling exponents, even for moderate Reynolds numbers. @ 9000  5<10* 1000 187 1.29
This would then suggest that the underlying cascade process
is still self-similar.

Just as two-point correlations allow statements to be madglitude =15r(du/dx)?. Various tests were made to ensure
about cascade generators via multiscaling exponents, twahat the effect of Wiener filtering were not consequential.
point cumulants of logarithmic energy dissipati@®] allow Figure 1 illustrates the lowest-order two-point correlator
us to access properties of the probabilistic RMCP cascadg ;(d=|x,—xy|) =(e(xy)e(%2))/ ((e(x1)){e(Xp))) sampled from
generator in another way. Taken together, a reliable testing ahe four different experimental records. Well inside the iner-
various parametrizations of the underlying cascade generat@ial rangen<d<L the two-point correlators reveal a power-
can be given. This would be the best we can do to settle thew behaviorry ;~ (L/d)™1 Power-law fits are indicated by
question of whether the latter is bimodaR,23, log-normal  the shifted broken straight lines; see also the insets, where
[24,2Y, log-stable[26,27], log-infinite divisible[28-30, or  the local slopes are shown. The resulting scaling exponents
any other type of distribution. arer; ;=0.15(w1), 0.14(w2), 0.18(w3), and, 0.20a). Note

The structure of this paper is as follows. Section Il pro-that there is a Reynolds number dependence of this expo-
vides basic information about the two-point correlation of nent. This has been explored in greater detail elsewi3ie
the lowest order for the surrogate energy dissipation in four - For the records with the largest Reynolds number, there is
fully developed turbulent flows—one atmospheric boundary, |arge scale range for which the two-point correlator exhib-
layer and three wind-tunnel flows. This information serves tGitg 5 rigorous power-law scaling. However, with decreasing
provide the needed guidance for the subsequent RMCP mogkeynolds number this scale range becomes smaller. As a rule
eling of Sec. lll, where analytic expressions for two-point of thumb, we observe that a good scaling range is confined
correlators and cumulants are derived, taking into accoundetweend~20-30p and ~0.5.. If we could understand
the ultrametric-Euclidean conversion. A comparison of theprecisely the deviations from the power-law scaling beyond
derived finite-size-scaling expressions with the data is prothis intermediate inertial range, a more satisfactory extrac-
vided in Sec. IV. With the help of the multiscaling exponentstion of multiscaling exponents would be possible, especially
and cumulants extracted, Sec. V tests various prototype paor turbulent flows with moderate Reynolds numbers. In the
rametrizations of the probabilistic cascade generator. A congmg|l-distancel < 20— 30y region, however, the correlations

clusion and outlook is given in Sec. VI. observed exceed the power-law extrapolation; consult Fig. 1
again. As has been explained in R&f], this enhancement is

Il. DATA ANALYSIS I: BASIC EACTS ON TWO-POINT a consequence of the unavoidable surrogacy of the experi-

STATISTICS mentally measured energy dissipation. Without knowing the

) _ correct small-distance behavior based on the proper energy

We analyze four different data sets, three of which haveyjssipation, a theoretical modeling of two-point correlations
been recorded in a wind tunngd1] and the fourth in an  jn the dissipative regime is not very meaningful. We are thus
atmospheric boundary lay€i82] about 35 m above the |eft to inspect only the remainder of the inertial range. In
ground. We will refer to them as w1, w2, w3, and a, respecRef. [9] it has also been shown that the surrogacy effect does
tively. Characteristic quantities of all data sets are summapgt carry over to two-point distances greater trduy 20
rized in Table I. The Reynolds numbd®, = \(uW)\/v is -307. From an atmospheric record with velocity compo-
based on the Taylor microscale= \(u?)/{(du/dx)?); vis the  nents parallel and perpendicular to the mean flow direction,
kinematic viscosity andi is the streamwise velocity compo- various forms of the surrogate energy dissipation have been
nent. Upon the application of the frozen flow hypothesis, theconstructed and for all of them the respective two-point cor-
recorded time series were converted into one-dimensionaklators have been found to be identical foe 20-30y.
spatial series. The energy spectra of all four records reveal At d=L, the two-point correlator has not yet converged to
more or less the typical 5/3 slope in the inertial range. Inunity, which is its asymptotic value as—cc. For all four
contrast to wind-tunnel records, that from the atmosphericata records inspected, the decorrelation length appears to be
boundary layer reveals a white-noise behavior at very smakroundLy..~4L and matches the length observed in the au-
scales; this noise, which comes from detailed electronic cirtocorrelation function of the streamwise velocity component.
cuitry, has been removed by an appropriate Wiener filter. Th&hese findings suggest that the two-point correlator can be
energy dissipation was then calculated as the surrogate ardescribed as
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FIG. 1. Two-point correlatofs(x+d)e(x))/(e(x))? of the surrogate energy dissipation extracted from the records wi, w2, w3, and a.
Power-law fits are indicated by the shifted broken straight lines. The inset figures illustrate the local slope.

T

11 steps, each interval of generatio=@<J-1 is again split
f1,1(d/Lged - into a left and right subinterval of length.,=I;/2. Once the

dissipation scaley=L.,./2’ is reached, the interval splitting

() stops and has resulted intd &patially ordered intervals of

For two-point distancesl much smaller than the decorrela- Smallest size. Itis convenient to label them as well as their
tion length the finite-size function converges to unity; that is,2ncestors — according to  the  binary 'notat|op<.(l)
f11(d<Lged — 1. One goal of this paper is to qualitatively =K1Kz, K- The label refers to the hierarchical position of
and quantitatively reproduce this functional form with an@n interval of generatio, where«;=0 or 1 stands for the
extended modeling based on random multiplicative cascad§t OF right interval, respectively. _ ,
processes. This approach, which is the subject of the next 1€ binary interval splittings go together with a probabi-

section, naturally suggests a physical interpretation of thdStic evolution of the energy-flux field. From generatipto
decorrelation length 4., ] +1 the field amplitudes propagate locally as

L
r1,1(20 - 307] <ds= Lde(‘) = a.]_’l(%)

IT.»,0= A ol L),
Ill. TWO-POINT STATISTICS OF RANDOM
MULTIPLICATIVE CASCADE PROCESSES I, 1= 1L, (2)
A. Binary random multiplicative cascade process The two random multiplicative weight$}.;=0,.0) o and

In its simplest form an RMCP employs a binary hierarchy Gright=0«(,1, With mean{gie) =(digny =1, are drawn from a
of length scale$j:LcasJ2J. In the first cascade step the par- scale-independent bivariate probability density function
ent interval of lengthly=L¢as iS split into left and right  p(Qies, igny)» Which is called the cascade generator. Initially,
daughter intervals, both of length. In subsequent cascade corresponding tg=0, the iteration(2) starts with a given
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where |p=2P"19 represents the characteristic two-bin dis-
tance corresponding to the ultrametric distabce 0 and

(8

For an experimentalist, the expressidid) does not
present an observable result. Different pairs of bins, all hav-
ing an identical Euclidean distaneg< d< L., do not have
3) an unequivocal ultrametric distance. Depending on their po-

sition within the binary ultrametric cascade tree, the two bins

In the following we assume the cascade generator to be ghight share a cascade history that is Idgagall D) or short
the factorized formp(Qiett, Grigh) = P(Clest) P(Grigny) With identi- (large D). Consequently, as an experimentalist analyzes the
cal statistics for the left or right variable. Of course, thetwo-point statistics in terms dd, the ultrametric expression
factorization is not the most general ansatz but, as aIread§7) has to be averaged over &lithat contribute to the same
pointed out in Ref[34], it represents a reasonable approxi-value ofd. In order to perform this conversion from an ul-
mation: the turbulent energy cascade takes place in threiéametric to an Euclidean distance and, by this means, to
spatial dimensions and calls for a three-dimensional RMCPestore spatial homogeneity, we introduce the discrete condi-
modeling, respecting energy conservation. Since the medional probablllty distribution

large-scale energy flukl, which might itself be a random
variable fluctuating around its normalized meah=1. Af-
ter the last iteration)—-1—J, the energy-flux amplitude is
interpreted as the amplitude.w =11, of the energy dissi-
pation supported at the interval of lengthat positionx'?.
As a result of Eq(2), this amplitude is a multiplicative sum
of the random weights, given by

T =7 - Ty — Tn.-
nl,nz nl+n2 nl I"I2

sured temporal records come from one-dimensional cuts, the O 1<D < A=[log d
three-dimensional RMCP has to be observed in unity subdi- - ( _ llogz d.
mension. Because of this, the RMCP appears to be noncon- 1-d2 (D=A),
servative and the two multiplicative weights appear to be p(D|d) =4 d27® (A<D=)), 9)
almost decorrelated and independent of each other. 0 (J<D<x)

B. Two-point correlators L d2™ (D =)

Expressions foN-point moments(e(xy)™- - -e(xy)™) are  of finding the ultrametric distanc® for a given Euclidean
easily found. They can be calculated either by a straightforeistanced in units of  [20]; see alsd19]. This expression
ward approach or, more formally, by an iterative constructiorhas been derived by employing the chain picture of indepen-
of the respective multivariate characteristic functji@s,16; dent cascade configurations; consult Fig. 2. Independent
a third and more elegant approd@5] makes use of the full hierarchical RMCP domains of equal cascade lehgjh.are
analytic solution of the multivariate characteristic function chained one after the other to produce a very long synthetic
for logarithmic cascade-field amplitudgs7,18. We simply  record, comparable to an experimental record. In principle,
state the results up to two-point correlations: the cascade length could vary from one domain to the other,

(e(x)™) = (qY(IT™), but for simplici'ty we prefer to keep it f_ixeq. Each domain
represents an independent RMCP realization, evolved from
o + the initial lengthL ,s.down to the dissipation scabke In this
(200)™e(x)"™) = (g7 (q™) (") (T T2). respectl ,sccan be identified with the decorrelation length

(4)
(5

Here, the binary notationk” has been transformed Lgcc Of EQ. (1). The conditional probability distributio(19)
into a spatial  bin label x=1+3),,2%7, which  roughly varies ap(D|d)~2°%P. The sum=p_qp(D|d)
runs over Ex<2 in units of ». =1-d27J does not add up to unity, sing&e|d)=d2™ rep-
Two bins  X;=(kq,...,K)-p,Kjp+1.---,K3) and X,  resents the probability that the two bins belong to different
=(Kq,... K3-psK)_p+1, -+, K}) are assigned an ultrametric Lcasgdomains.

distanceD once the first]-D «’s are identical and¢;_p.q
# K}_p+1- IN other words, afted—D common branches along

Since the one-point statistigz(x)")=(e(x+d)") do not
depend on the spatial indexthe ultrametric-Euclidean con-

the binary tree, the two bins separate into different branchesersion of the normalized two-point correlat@ leads to

For the extraction of scaling exponents

J

7. = logy(q", (6) Fon,(d # 0) = DE_1 P(Dd)r (D) + p(|d)
It is enough to consider the two-point statisti&. In nor- [T q
malized form, the two-point correlators are found to scale - u{ -=
perfectly as (IMM)(11"2) 2
)= {200 el Aol )]( e )
D) = e 0™ CECE) CECE)
ny+n np+n J-D [1m*n2 Ny -1
_ a0y (@) - (ol ) S,
(X" \ (g™)Xq™) X"\ (™K g"™) 2
— ) (Lcasc> nyny 7 (10)
TN 21, ’ This expression holds for evey<d<L,, Ford=0 and
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FIG. 2. A chain of hierarchical RMCP domains of equal cascade lelngthis employed to convert the ultrametric two-point statistics

into an Euclidean one.

d> L .. the normalized two-point density simply becomes
Iy (d=0) = (T2 "2 ((TT"1)(q")(T1"2)(q™)’)  and
Fnyn,(d> Leasd =1, respectively. The two-point densit§t0)

Upon studying the expressid3) more closely, we real-
ize that two effects, ultrametric-Euclidean conversion and
large-scale fluctuations, contribute to the finite-size scaling

does not reveal perfect scaling anymore. Usually the seconf@nction. They have a tendency to cancel each other. Once

term, scaling asl/L,s, is small when compared to the first
term, except fod=L,s. The modulations, observed for the
first term, are an artifact of the discrete scale invaridi3&

of the binary random multiplicative cascade model imple-
mentation. In the following we will discard these modula-
tions by first considering only dyadic distanced,
=L.asd 2™ with integer 0= m<J, and then switching again to
continuousd by interpolating between the discredg. The
expression(10) then simplifies to

mr%m>=a%%<Lj“ﬁm”ZanWLwe (11)
with
<HW%< () yl
= 2 -1 12
v = () \ (g a) 12

and the finite-size scaling function

d l+7“1vn2
) . (13

f%%mmwe=1+e@%—n(%%
Figure 3 compares the expressigh8) and(11) for the order
n1=n2=1.

The finite-size scaling function has the propefwnz(d
<L.asd=1 as long as the condition Ir§, n,= 0 or, equiva-
lently, (q"*"2)/ ({(g")(q"2)) >1/2 is fulfilled. This is the case
for all positive combinations;=0,n,=0. However, com-

binations with negative orders do exist, for which the second

term on the right-hand side of E¢L3) then dominates over
the first term in the limitd/L ,sc— 0. This implies that the
normalized two-point densityll) asymptotically scales as
n ”2(d) (Lcascld) 1 giving rise to the effective scaling ex-
ponent —sup{ 1,7, n,}- This scaling transition is again

we have

<Hn1+n2> _ <qnl+n2> _
(M%) (q")y(q")

the finite-size scaling function becomfesl,,nz(d/Lcasgzl ex-
actly, showing nad-dependence.

We also wish to point out an interesting mathematical
observation following from the specific expressions
(11)—(13). Since the finite-size scaling functid3) reveals
the simple scaling behavior

o
) (15)

(14)

d

LC&S

[ (L casd = u(mﬁm”~<

with w=1, we find

3.

1k )
10 10°
dm

L
1

0 10

10°

FIG. 3. Comparison of the expressiofi)) and (11) for the

a pure consequence of the ultrametric-Euclidean conversiomrder n;=n,=1, showing that the log oscillations inherent to Eq.

More discussions on this subject can be found in Refs
[19,37,38.

(10) remain small. Parameters have been set as follbwsy 7
=210 7,=0.20, andll=1.
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AN
"

1 1 L Tny.n
O e [s .

(20
=0

(16) are generated by the logarithm of the Mellin transform of the

where the normalized two-point correlator with the rescaleacas'cade generator, ..,

two-point distancetd has been subtracted from itself. As a

function of the two-point distance this quantity exhibits a QM) = |n(f dqp(Q)Q")- (21
rigorous power-law behavior with scaling exponents, ,

which is independent of the chosen rescaling parangeded  The cumulantgIn" IT). of the initial large-scale fluctuation
is free of large-scale effects. are defined analogous {" g)..

C. Two-point cumulants D. Multifractal sum rules

Because experimental data yield limited statistics, the The cumulants, of Eq.(20) and the scaling exponents

two-point correlation densitied1) will be restricted to low-  of Eq. (6) are not independent of each other. Combining Egs.
est orders &n,+n,<3 or 4. This limits us to indirect in- (g), (20), and(21), we arrive at

formation on the cascade generator, namely the scaling ex- .
ponentsry, 7, 73 and, perhapsr, of Eq. (6). In order to do B B n“
better, we need to accumulate additional and complementary Q(n) =In 27, = k%ckﬁ- (22)
information. In fact, as proposed already in RgI0], this -
can be achieved by switching to the logarithmic amplitudeln the lowest order, this translates to
e(x)—1In e(x), and from two-point correlation densities to

; c, C
two-point cumulants In 271:0:cl+32+€3+... (23)

C1 1% = X9) ={In e(x7)In £(x»)) = {In &(x))?, ,

Lot A ! 2 These multifractal sum rules can be used, for example, to
estimatec;, which cannot be extracted from the two-point

C2,1(X2 —X) = <In2 e(x)In e(xp)) — Z(In &(xy)In £(xp)) statistics(18).
x{In &(x)) = (IN? (x)XIn &(x)) Another approach to estimate the valuecofis given by
3 the well-known replica trick:
+2(In e(x))°, ...,
_ _ Q)
. a=(ng= ——
Copn0=X) = o In(e () 6002 M Do
Xo—=X1) = T InelX e(X .
nl,nz 2 1 (9)\”1 F?)\nz 1 2 o (9 \ AN 1 27_}\ _ l
e 2 AON Dy 222 (o
(17) N A=0 A—0 A A—0 A

Explicit RMCP expressions have already been derived if\nother form of sum rules follows from Eq¢22) and states

Ref.[20] within the ultrametric view as well as the converted that

ultrametric-Euclidean view. Here, we summarize only the p
7\

latter lowest-order results, which hold fer<d=<L g In 22
IN

- nk n?
:20k+1gzcl+n02+503+'“- (25)
A=n k=0 -

Ch-1,1(d) = Gy(J,d)c, + Go(J,d)(In" IT).. (18) o
It can be seen as a generalization of E2f).
The geometric functions G, (J,d)=(1/2)=_,(J
-D)"p(D|d) are related to moments of the conditional prob-
ability distribution(9) and are fingerprints of the hierarchical
RMCP tree structure. They are given by the expressions

IV. DATA ANALYSIS II: MORE ON TWO-POINT
STATISTICS

In this section, we discuss further relevant aspects of data
Go(J,d)=1- d ’ analysis. The goal is threefoldl) to test the RMCP expres-
casc sion (11) with the proposed finite-size scaling for two-point
correlators, as already pointed out in Sec.(8) to test the

d expression(18) for two-point cumulants derived from the
G,(J,d)=(J-A)-2—(2"-27) RMCP theory; and3) to extract reliable values for the scal-
Y ing exponentsr, and cumulants, from various turbulent
Lcasc d records discussed in Sec. Il
~ log, o )" 2+ 2Lcasc, (19 The expressiong&l1) and(18) come with parameteis, ¢,

Tnynyr 8nynyr Cn and(In" IT).. The parametek.,,.depends on
with the last step neglecting small log-oscillations. The cu-neither the orden;, n, nor the choice of the two-point sta-
mulants of the logarithmic multiplicative weight tistics, i.e., whether we use the correlator or the cumulant.
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FIG. 4. Best fits of expressiofll) to two-point correlators extracted from data set w2. Correlation ordens;arg=1, 1; 2, 1; 3,1 and
2, 2. The parametdr.,s.has been fitted such that it is the same for all orders of two-point correlators as well as two-point cumulants, with
the latter illustrated in Fig. 5. The inset figures illustrate the local slope. For comparison, power-law fits with the extracted scaling exponents
listed in Table Il are shown as the shifted dashed straight lines.

The fits of Egs.(11) and(18) to their counterparts from ex- sistent with each other, although the statistical convergence
perimental records have to respect this independence. In adf the two two-point correlators of order +n,=4 is already
dition to the common parametér,,., the fit of each order beyond the limit of acceptability. For the record w3 a similar
has two more parameters: these a8, , a, n, for the two- statement can be made, but the other records wl and a are
point correlator and,, (In" 1), for the two-point cumulant. definitely confined ton; +n,<3. Their best-fit parameters
We demonstrate the quality of fits by choosing the datd-cass ™ @ndc, are aiso listed in Table Il.

record w2. For this data set, two-point correlators with orders datl_aeﬁeli:ifc?sm;{]%?thogéhicﬂgglléﬁgbgté n mgreo(\j/\(/a:ri-lllévsofgts
from ny, n,=1, 1 to 2, 2 are illustrated in Fig. 4, while the 9 y ' P P

WO-Doint cumulants with orders.. no=1. 1 and 2. 1 are to the experimental two-point correlators would be sufficient
two-p i L 2= i ~  to extract the scaling exponents reliably. In such fits the pa-
illustrated in Fig. 5. Except for very small two-point dis-

rameters involved ar anda,, ,.. Compared to this, the
tancespy=<d=20-30y, where, as already noted, the surro- ®nyny s P

gacy effect of the energy dissipation corrupts the experimenf-lts (12) including the finite-size scaling come with one more

) - additional parameter, which ik, This parameter is the
tal two-point statistics[9], the agreement between the game for all correlation orders, and can be seen as a severe
experimental two-point correlators and cumulants and thegnstraint to data-fitting. In view of this, the quality of fits

best-fit expressionell) and(18) is remarkable. Table Il lists  (11) to their experimental counterparts for various orders
the best-fit parameteis.as, 7 andc,. Note that, due to Eq.  considered here is remarkable. It should also be noted that
(8) and =0, the scaling exponents, ,, have been con- the overall parametelr,q.carries over to the two-point cu-
verted iNtO 7,=7; 1, 3= 1+ 7 and 74=73 1+ 73= 75 o+ 27,. mulants(18), so that the quality of their fits to the data for
For w2 the two valuesr,=0.79 and 0.77, the first value the various orders are perhaps even more remarkable. This
extracted fronr; 4(d) and the second from, ,(d), are con-  universality of the cascade length,s. can be used as an
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local logarithmic slope of the lowest-order two-point cor-
relator is nowhere really constaiFig. 1). However, the
plateau-like region suggests that there is an underlying
power law. Power-law fits usually take an average local slope
over this region, leading to inaccurate values of the scaling
exponent. In contrast, the finite-size-scaling fiid) also
make use of the curvature of the local slope for two-point
distances corresponding to the upper end of the inertial range
and extract more accurate values of the scaling exponent.
Therefore the fit of the scaling exponentscomes with very
high accuracy, the fit error affects in the worst case the third
decimal place. However, we think that the error on the fit
alone would give a false impression on the true uncertainty
and the values in Table Il are reported up to the second
decimal place. For the same linage cumulatshe error on

the fit is of the order of the last digit.

The cumulantc; cannot be extracted directly from two-
point cumulants. However, an indirect extraction is possible
via the relationg23) and(24). Using the numerical values of
¢, andc; determined already, the truncated multifractal sum
rule (23) leads to thec; values listed in the second-last col-
umn of Table II. Input for the replica-trick formule24) are
the scaling exponents;, 7, and r; determined already. A
linear extrapolation results in the last column of Table Il. For

0.1} . ) o
an order-of-magnitude estimate, it is safe to say that

~0.06 for records wl, w2, w3 anc} = 0.08 for record a.
This comparison of the RMCP theory with data demon-
| s strates that the parametey,s.is a meaningful quantity and
| deserves some consideration. For two-point distances 20
-0-0?00 - -30p=d=<L,, the fitted expressiongll) and(18) are in
(b) iy good qualitative agreement with their experimental counter-
parts. Atd=L,s. all two-point correlations decorrelate and
FIG. 5. Best fits of expressiond8) to two-point cumulants Pecome identical to their asymptotic values corresponding to
extracted from data set w2. Correlation ordersmren,=1, 1 and ~ d— . In this respectl,s.can be identified with the deco-
2, 1. The parametdr,,s:has been fitted such that it is the same for rrelation lengthl g 0f EQ. (1). Leasc> L is somewhat larger
all the orders of two-point cumulants as well as two-point correla-than the operationally defined integral lendthof Table I,
tors, with the latter illustrated in Fig. 4. which is calculated as the correlation length of the velocity
autocorrelation function. The interpretation of the extracted
uncertainty estimate: If the fit is performed independentlyparameteil ., is that of a turbulent cascade length which,
with L..scas a free parameter for each correlation order itaccording to Fig. 2, describes the spatial extension of a hier-
will come with some scatter. The extreme values of this scatarchical RMCP domain. Its order of magnitude, however, is
ter are used as the uncertainty estimate which is reported ithe same as that of the integral schle
Table Il within the parentheses. It should be noted that for a  The finite-size scalingy, n,(d/Lcasd Of two-point correla-
fair judgment of the accuracy one should look at the valuesors, predicted by RMCP, now allows for an unambiguous
of L¢ascON a logarithmic scale, since this is the RMCP view- derivation of scaling exponents, even for fully developed tur-
point. For data records with medium Reynolds numbersbulent flows with a rather moderate Reynolds number, where
pure power-law fits to the two-point correlators become un-a clear power-law behavior is no longer seen. Consequently,
acceptable. For example, for the data records wl and w2 thas a closer inspection of Table Il shows, reliable statements

0.051

0_

TABLE II. Parameter values resulting from least-square fits with expres&ldnand(18). L.,schas been
fixed for each data set; uncertainty estimates are given within the parentheses and are explained in the main
text. The last two columns represent the estimé2&s and (24) for the cumulant;,.

Data set Leasd 7 T 73 7 Co C3 c1(23 c1(24)
wl 1873(1637...2240 0.15 0.46 0.100 0.042 —-0.057 —0.057
w2 3069(2701..3588 0.15 0.42 0.78 0.095 0.045 —0.055 —0.053
w3 7117(6346..9932 0.17 052 098 0.099 0.060 —0.059 —0.063
a 322500(127736..748435 0.21 0.58 0.149 0.015 —0.077 —0.079
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that the intermittency exponem might show a weak depen- a,
dence on the Reynolds number appear to be within reach. OPaiphdd) =
course, to make this statement solid, the analysis of many

more records is needed; the results of this effort are dis- (29
cussed i 33].

ag

Q- (1-ay)+

oq-(1+ ,
v a1

although discrete, has also been used extensi\@2y23.

V. PARAMETRIC ESTIMATION OF THE RMCP Another popular discrete representative is the log-Poisson

GENERATOR distribution
If the scaling exponents,, or the cumulants,, exist and * 27(py In 2)K
are known for all orders & n< =, the binary RMCP genera- Plog-Poissohd) = 2 Té(q - 2112 k)
tor could in principle be reconstructed via the inverse trans- k=0 :
form of Eqg.(21). Unfortunately, as we have seen in the pre- (30)

vious section, reliable information is limited to the lowest

orders. I-_|ence,_ the best we can do_ is to use sophisticateghich was originally derived withv;=2 and»,=2/3 from
parametric estimates. Section V A lists some of the mossome plausible reasoning on the structure of the most singu-
popular parametrizations and compares their performancgy objects in fully developed turbulent floWj&8—30.
with the results listed in Table Il. Section V B introduces the For all parametriza’[ion&G)_(go) itis Straightforward to
so-called log-normal inverse Gaussian distributi@8,40,  determine analytic expressions for the scaling exponents and
which represents a broader and more flexible parametrizatiofymulants via Eq920—(22). The free parameter of the one-
class, with the purpose of finding a suitable approximation tgyarametric distribution26)—(28) is then fixed to reproduce
the true cascade generator. . the observed intermittency exponery listed in Table II.
Note that the breakup coefficients, sometimes called mulThe two-parametric distribution629) and (30) need also
tipliers, have once been thought to represent a direct agzonform tor, in addition tor,. No further freedom is left for
proach to derive the RMCP cascade generator from datghe scaling exponents of higher order and cumulants of all

[41-45. In fact, generatorlike scale-invariant distributions of grders. Table 11l summarizes their predicted values.
breakup coefficients have been observed, but conditional dis- It is difficult to rate the prototype cascade generators be-

tributions have been found to exhibit scale correlations. In &ause of ambiguity inherent in the data. Within the one-

series of paper$21,34,44 these findings have been fully parametric distributiong26)—(28) the log-normal distribu-
explained within ultrametric hierarchical RMCPs, once thosejon performs better: for all the records, the predicted values
are analyzed from an experimentalist's perspective, includingor ¢, andc, are close to the observed cumulants. However,
unavoidable small-scale resummation and restoration of spghe log-normal distribution without skewness is unable to
tial homogeneity via the ultrametric-Euclidean conversion.reproduce the observed positive values égrand for the
This work has demonstrated that cascade generators and digtord w2 it also overestimates the scaling expongnur-
tributions of breakup coefficients are not directly related.  thermore, the difficulties of the log-normal distribution for
high-order moments is now well know&]. Compared to the
A. Dictionary of prototype cascade generators log-normal distribution, the rescaled gamma distribution and
Here we list a number of popular generatpte) for bi- o T R ST e
nary random multiplicative cas_cade processes. They all hav\'/?/ith an opposite sign. Rather éurprisingly, the simple two-
the property that thg e>.<pe<.:tat|0n valm=1. parametric bimodal distributiof29) shows the closest agree-
The log-normal distribution ment for all records. The scaling exponentif observed, as
1 o2\2 well as the cumulants; andc, almost match their observed
Plog-normal @) = == exp{— ﬁ(ln q+ E) } (26)  counterparts. Moreovet comes with the correct sign, al-
V2maq though it is about a factor 2 too low for the records wil, w2,

is classic[24,25. Its log-stable generalization has also beenw3 and roughly a factor 2 too large for the atmospheric
considered 26,27, but does not qualify for our purposes, boundary layer record. Like the distributio(i7) and (28),
since the cumulants, do not exist for this distribution be- the two-parametric log-Poisson distribution overestimates

yond some order. For comparison, we will also employ thethe second cumulaiet and, except for record w3, prediatg
rescaled gamma distribution with the wrong sign. It is |nterest|ng to note that the

parameter-free log-Poisson distributif?8] with »;=2 and
1,=2/3 matches well the scaling exponents and 7, of
record a with the largest Reynolds number, but disagrees
with all cumulants.

,y'}’
['(y)
and the asymmetric beta distributi®4]

pgammiq) = qy—le—yq (27)

1"(8[8) _ 5 _ _ . . . . .
Poeid ) = FAE gL-85gA1(8 — ) AL, (28) B. Log-normal inverse Gaussian distribution
A broader and more flexible parametrization class is the
The bimodal distribution so-called normal inverse Gaussian distributi@g,40
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TABLE Illl. Fitted parameters for a few prototype cascade generators and their predicted values for the
remaining scaling exponents and cumulantg,,.

log-normal distribution(26)

Data set o T3 T (o] Co C3
wl 0.33 0.46 0.93 —0.054 0.107 0.000
w2 0.32 0.44 0.87 —0.050 0.101 0.000
w3 0.34 0.51 1.03 —0.059 0.119 0.000

a 0.38 0.63 1.26 —0.073 0.145 0.000

gamma distributior(27)

Data set vy T3 Ts Cq Cy C3
wl 8.84 0.45 0.87 —0.058 0.120 —0.014
w2 9.41 0.42 0.82 —0.054 0.112 —0.013
w3 7.94 0.50 0.96 —0.064 0.134 —0.018

a 6.39 0.60 1.16 —0.080 0.169 —0.029

beta distribution(28)

Data set B T3 T4 C1 C C3
wl 7.61 0.44 0.85 —0.059 0.124 —-0.019
w2 8.11 0.42 0.81 —0.055 0.116 -0.017
w3 6.82 0.49 0.94 —0.066 0.139 —0.025

a 5.47 0.60 1.13 —0.083 0.178 —0.040

bimodal distributio29)

Data set ar1=ao T4 Cy Cy C3
wl 0.22 0.52 0.88 —0.049 0.092 0.025
w2 0.24 0.44 0.80 —0.049 0.094 0.018
w3 0.21 0.61 1.00 —0.052 0.094 0.033

a 0.31 0.50 1.06 —0.075 0.144 0.026

log-Poisson distributiof30) with v1=2, 1,=2/3

T2 73 T4 C1 C2 C3

0.22 0.59 1.06 —0.10 0.228 —0.092

log—Poisson distributiof30)

Data set vy vy T4 C1 C C3
wl 109.84 0.96 0.90 —0.055 0.111 —0.004
w2 13.75 0.90 0.82 —0.054 0.112 -0.012
w3 1548.7 1.01 1.03 —0.059 0.117 0.001

a 4.61 0.79 1.09 —0.085 0.184 —0.044

—u\! - The distribution is denoted by NI@, 8, «, 8), and its cumu-
_ B X= ) y M
p(X,a,,B,/J,,ﬁ)—a(a,,[j’,,u,ﬁ)s( s ) K1(50‘5< P ))eﬂxv lant generating functionQ(\; a,B,u,d)=In(e") has the
(31) simple form
Qi By, 8) = 8(Na? = B2 = Na? = (B+N)?) + X

with S(X):\/(1+X2), ala, B, m,8) =7 ta exp(\a?- 32 (32)
- Bu) and -0 <x<w, K; is the modified Bessel function of

the third kind and index 1. The domain of variation of the If xq,...,X, are independent normal inverse Gaussian ran-
four parameters is given by €R, SER, and 0<|g|<a. dom variables with common parametersand 8 but indi-
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TABLE V. Fitted parameters of the log-normal inverse Gaussian cascade generator and their predicted
values for the scaling exponents and cumulants,,.

log-normal inverse Gaussian distributiG3v)
Data set o B 6 y T T3 T4 Cy Co C3

wl 10.98 0.94 1.09 -014 015 046 095 -0.051 0.100 0.002
w2 17.28 —5.46 1.56 0.47 0.15 043 0.85 —-0.052 0.106 —0.006
w3 27.26 17.80 117 -106 016 052 111 -0.052 0.099 0.012
a 6.99 —-244 092 0.27 0.20 060 1.19 -0.076 0.160 -—-0.027

vidual location-scale parametessand & (i=1,...,m), then  cumulantc; is strongly underestimated, so that its predicted
Xy =X+ +Xq, IS again distributed according to a normal in- sign shows only random scatter. For all four records the ex-
verse Gaussian law with parametersB, u, and é,. Fur-  tracted distributions are very simil&hough we do not show
thermore, we note that the NIG distributi¢81) has semis- them for brevity.

tretched tails As a summary of this section, we reiterate that the bimo-
dal distribution (29) produces the best overall agreement
P(X; a, B, 11, 8) ~ |X| "3 2exp(— afx| + BX) (33) with the observed scaling exponents and cumulants. How-

ever, the true cascade generator will not be discrete. From
the set of continuous generator representatives tested, the
log-normal and log-normal inverse Gaussian distributions
é)erform best and about equally well.

asx— x. This result follows from the asymptotic relation
K, (X— 00) ~ 7/ 2x V27,

For our purposes we assume the random multiplicativ
weight to be distributed according to

VI. CONCLUSIONS
Ing~ NIG(a, 8,6, ), (34
Random multiplicative cascade processes are able to de-
which turns normal inverse Gaussian statistics into log-scribe the observed two-point correlation structure of the sur-
normal inverse Gaussian statistics. With E@gQ), (22), and  rogate energy dissipation of fully developed turbulent flows
(32), the scaling exponents and cumulants yield beyond simple power-law scaling. Keeping in mind the need
for a satisfactory comparison between modeling and experi-
mental data, a useful transformation has been introduced:
this transformation converts model-inherent, but unobserv-
able ultrametric two-point distances to Euclidean two-point
and distances, the latter corresponding to a “horizontally
sampled’n-point statistics of the experimental records. The
Sp 5 predictions of RMCP for finite-size scaling of two-point cor-
CQ=p+t —, C= a5, relation functions are confirmed by experimental data from
Vl-p a(l-p%) three wind-tunnel shear flows and one atmospheric boundary
38p layer; a physical length scale characterizing in a natural and
= Tz)&')/z (36) precise way the upper end of the inertial range, called here
@iLmp the turbulent cascade length, is shown to be of the same
order of magnitude as the integral scale. Furthermore, the
wherep=p/a. guantitative classification of the deviations from a rigorous
For each of the records w1, w2, w3 and a, the four NIGscaling of two-point correlators allows for an unambiguous
parametersy, B, 6 and u are determined so as to reproduce extraction of multiscaling exponents, even for flows with
71=0 and the observed values fgy; 73 andc, listed in Table  moderate Reynolds numbers. When complemented with ad-
Il. Since the respective expressigi@$) and(36) are nonlin-  ditional information extracted from two-point cumulants of
ear, real solutions for the parameters are not guaranteethe logarithmic energy dissipation, a reliable testing of vari-
Where complex-valued solutions resulted in the first attemptous parametrizations of the RMCP generator has become
which occurred for w2, w3 and a, the values égy s andr,  feasible.
are relaxed, in this order and to some small extent, unti RMCPs produce a consistent geometrical modeling of the
real-valued parameter solutions are obtained. The outcome &elf-similar turbulent energy cascade. This is further sup-
listed in Table IV. The results are very close to the log-ported by recent investigations on the scaling part of three-
normal values listed in Table Ill. The log-normal inverse point statistic§47] and previous investigations on scale cor-
Gaussian distribution has the tendency to overestimate thelations[21,34,46,48 Thus the self-similar and RMCP-like
fourth-order scaling exponeny. The magnitude of the third cascade process appears to be robust, even for turbulent

7,In2=Q(n;a,B,u,d) (35)

C3
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flows with a rather small Reynolds number. However, as Needless to say, there is a strong need for the experimen-
shown by variations among the four records considered, thtalists to produce clean and longer records with converged
strength of the cascade generator appears to depend on tiatistics.
Reynolds number and perhaps also the flow geometry. To

clarify if this is indeed a Reynolds number dependence or

due to something else needs a separate and extended effortThe authors acknowledge fruitful discussions with Hans
[33]. C. Eggers and Markus Abel.
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