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Turbulent thermal convection at high Rayleigh numbers for a Boussinesq
fluid of constant Prandtl number
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The results from direct numerical simulations of turbulent Boussinesq convection are briefly
presented. The flow is computed for a cylindrical cell of aspect ratio 1 /2 in order to compare with
the results from recent experiments. The results span eight decades of Ra from 2�106 to 2
�1014 and form the baseline data for a strictly Boussinesq fluid of constant Prandtl number �Pr
=0.7�. A conclusion is that the Nusselt number varies nearly as the 1/3 power of Ra for about four
decades towards the upper end of the Ra range covered. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2140023�
Motivated by applications in astrophysics, geophysics,
as well as industry, experimental research in thermally driven
convective turbulence has been aiming for the largest pos-
sible Rayleigh numbers �Ra� in the well-controlled Rayleigh-
Bénard problem.1–7 In the applications just cited, Ra is
estimated8 to vary from 106 to 1022, and so there is much
interest in covering a similarly wide range of Ra in experi-
ments. However, such experiments have had to contend with
several artifacts such as the effects of sidewall conduction9–12

at low Ra, the difficulties of maintaining the constant-
temperature conditions at the bottom and top plates,13,14 non-
Boussinesq effects,3,5,6 variable Prandtl numbers,3–7 and so
forth. Plausible corrections for these effects have been in-
vented in the references just cited, but their approximate na-
ture makes it difficult to rely on them fully, especially when
the artifacts occur in combination. These limitations have
made it difficult to be precise about the scaling law of heat
transport at high Rayleigh numbers.

Impressive advances of the CPU architectures and par-
allel computing in the last decade have made the direct nu-
merical simulation �DNS� of the Rayleigh-Bénard problem
an attractive option, especially on two counts. Simulations
can �a� avoid several technological limitations just discussed
and provide baseline data, and �b� obtain flow details that are
inaccessible, despite impressive gains,15 in experiments.
Here, we perform the DNS of governing field equations cov-
ering 2�106�Ra�2�1014. The calculations pertain to Pr
=0.7, strict Boussinesq conditions, constant temperature for
bottom and top plates, and no sidewall conduction. We con-
sider the flow in a cylindrical cell of aspect ratio �=1/2,
with no-slip surfaces, heated from below and cooled from
above, and with an adiabatic sidewall. This paper is a first
report of the principal results on heat transport. In the
Pr-Ra phase plane, we cover the region IVu of Ref. 16, but
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the boundary layers undergo a change in character from be-
ing nominally laminar to becoming turbulent.

The flow is solved by numerically integrating three-
dimensional Navier-Stokes equations with Boussinesq ap-
proximation. The numerical method is already described in
Ref. 17, and it suffices here to mention that the equations in
cylindrical coordinates are solved by central second-order
accurate finite-difference approximations in space and time.

The present simulations consist of nine runs at Pr=0.7
and 2�106�Ra�2�1014. Those in the range 2�106−2
�1011 are from Ref. 17 and the flow at Ra=2�1011 has
been recomputed with a finer spatial resolution as a check for
the higher-Ra flows. The cases 2�1012�Ra�2�1014 are
new. All simulations were run on multiprocessor IBM
Power3, Power4, and NEC SF-6� machines of the comput-
ing center CASPUR in Rome, and the entire project needed
about 2�105 IBM Power4-equivalent CPU hours.

The smallest velocity and temperature lengths in the
bulk are nominally the Kolmogorov scale � and the Corrsin
scale ��. The smallest scales near the plates are controlled by
the boundary layer thicknesses �u �velocity� and �� �ther-
mal�. Since Pr=0.7, ���� and ����u. Thus, the grid size
must be of the order of � in the bulk and resolve the bound-
ary layers on the plates. All the relevant scales can be esti-
mated a priori by existing empirical scaling relations for the
Nusselt number �Nu� versus Ra as confirmed a posteriori by
Verzicco and Camussi.17 Grötzbach18 estimates that �
�h�Pr2 /Ra Nu��1/4�, where Nu is the total heat flux normal-
ized by the purely conductive value, and h is the vertical
distance between the horizontal plates and suggests that it is
enough to resolve with four grid points the thermal boundary
layer ���h / �2Nu�. He proposes that this can be checked by
monitoring Nu.

To explore the optimal grid, we performed simulations
of selected cases for several resolutions. Simulations of Verz-
icco and Camussi17 for Ra=2�107, using grid resolution in

the bulk of � /2.4, and 10 points in the thermal boundary
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layer, had yielded Nu=20.24±1.42, while resolutions of five
points within the thermal boundary layer, and of 4� in the
bulk, had yielded Nu=20.56±1.48. Accordingly, the case of
Ra=2�1011 was earlier computed by Verzicco and
Camussi17 with the grid in the bulk that is 4� in size, con-
taining five points in the thermal boundary layer. We have
recomputed the same flow with the mesh in the bulk of 1.2�
and with 10 points in the thermal boundary layer, obtaining
Nu=440.3±10; this is to be compared with the previous re-
sult Nu=447.2±11.7. Such considerations allowed us to
scale up the simulations for the three highest Rayleigh num-
bers for which the following details pertain. For Ra=2
�1012 the number of nodes was 257�193�769 in the azi-
muthal, radial, and vertical directions with a maximum grid
spacing in the bulk of �max�2.4� and a near-wall resolution
�min��� /8. For Ra=2�1013, the same numbers were 385
�301�1381, �max�2.3�, �min��� /120, while for Ra=2
�1014 we used 513�401�1801, �max�2.2�, �min

��� /38.
For the data of Fig. 1, the near-wall resolution ranges

from seven nodes in the thermal boundary layer at Ra=2
�1014 to 12 nodes at Ra=2�1013. Such a fine spatial reso-
lution requires an equally fine time step in order to capture
the dynamics of the smallest scales. We have found that the
needed time step depended on Ra and, in particular, up to
7000 time steps for the turnover time of each large eddy have
been used at Ra=2�1014 and 2000 steps at Ra=2�1012.
The simulations at Ra=2�1012 were run for 110 turnover
times while those at Ra=2�1013 and Ra=2�1014 were lim-
ited to 40 turnover times. It was found that the statistics at
the end of the simulation were close to those computed at
3 /4 and 4/5 of the total simulation times, respectively.

The Nusselt number is plotted in Fig. 2�a� as a function
of Ra; in order to make the scaling more evident, Nu has
been compensated by the factor Ra1/3. The relation Nu
�Ra1/3 over more than four decades in Ra brings back the
theoretical analysis19 to about 50 years ago, when Malkus
and Priestley predicted it by assuming that all the heat trans-

FIG. 1. Root-mean-square temperature profiles in the vertical direction x,
averaged over time, and the azimuthal orientation, for different Rayleigh
numbers; the inset is a zoom of the lower wall region to emphasize the wall
resolution �with the symbols representing the positions of the grid points�.
From left to right, the lines are for �—� Ra=2�1014 and �–·–� Ra=2
�109 decreasing by factors of 10. Temperatures are normalized by the total
temperature difference �.
fer occurred within the thermal boundary layers, the bulk of
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the flow was essentially isothermal, and that the thermal
boundary layers did not communicate through the bulk. The
first two hypotheses have been confirmed by laboratory ex-
periments as well as by numerical simulations, and thus ac-
cepted. The independence of the two thermal boundary lay-
ers, in contrast, has been refuted often owing to the presence
of a persistent large-scale recirculation which connects the
top and bottom plates, presumably reinjecting the height be-
tween the plates as an additional length. We will show below
that, for the present cylindrical cell of aspect ratio �=1/2,
the large-scale flow does not survive �or, at least, substan-
tially weakens� beyond Ra�1012, thus making it possible for
the thermal boundary layers to be essentially independent of
each other. The 1/3 power seems to be appropriate for at
least these conditions.

The occurrence of the 1/3 power was already noted in
previous numerical simulations17 and in recent
experiments12,20 though, in Ref. 20, it applied for slightly
less than a decade of Ra in small aspect ratio cylindrical cells
��=0.43, 0.67, and 0.98�. Unpublished data of Niemela and
Sreenivasan �private communication� for aspect ratio 4 have
shown a closely similar result. The Nusselt numbers from
simulations, shown in Fig. 2�a�, differ slightly from experi-
mental values. These differences are unlikely to be due to
insufficient spatial resolution in simulations because it would
lead to underestimated temperature gradients at the wall and
to smaller Nu. The differences between experiments may in
part be due to different degrees of departure from perfect
constancy of the wall temperatures. In part, the differences
might also be caused by differences in the mean flow
structure.12 According to the model of Stringano and

21

FIG. 2. �a� Compensated Nusselt number vs the Rayleigh number. �b�
Ra-Pr phase diagram for the mean flow structure: region 1R stands for a
single recirculation, 2R for two rolls; no mean flow occurs in the region
NMF. ��� Present results; ��� data from Niemela et al. �Ref. 5�; ��� data
from Chavanne et al. �Ref. 6�.
Verzicco, these structural changes can be described by the
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phase diagram of Fig. 2�b� in the Ra-Pr plane. The consis-
tency of this model has been verified by sequences of visu-
alizations such as those of Fig. 3 and three-dimensional ani-
mations. Even from single snapshots, it is possible to
distinguish the structure of the large-scale flow via the pres-
ence �or absence� of warm and cold currents.

To quantify the differences in the flow structure, we
show sample vertical velocities in Fig. 4 and compute their
statistics in Fig. 5. For the cases represented by Figs. 3�a�
and 3�b�, the velocity signals should be anticorrelated and
possess a negative average. For the configuration of Fig.
3�c�, no mean flow is present and the two velocity signals
should not be correlated. These conclusions, supported quali-
tatively from velocity time series in Fig. 4, are confirmed
quantitatively in Fig. 5. This figure shows the probability
density function of the product between the two velocities
and the time-averaged maximum vertical velocity. The his-
tograms of the velocity product in Fig. 5�a� show large nega-
tive tails at Ra=2�109 and Ra=2�1010, weaker negative
tails at Ra=2�1011 and 2�1012, and symmetric tails at
Ra=2�1013 and Ra=2�1014, in agreement with the depic-
tion of Fig. 2�b�. The inset of Fig. 5�a� clearly shows that in
the high end of Ra the mean value of the histograms tends to
zero thus indicating uncorrelated velocities over the extent of
the computational domain. The transition to different flow
structures is also consistent with Fig. 5�b�, which shows the
maximum vertical velocity as a function of Ra. In fact, con-
sidering that for a given temperature difference the maxi-
mum vertical velocity is proportional to the distance along
which a fluid particle can accelerate, it is apparent that the
configuration of Fig. 3�a� produces the largest velocities
while that of Fig. 3�c� yields the smallest, and the velocity
keeps decreasing with Ra owing to the dominance of smaller
flow scales.

The changes in the mean flow structure have an impact
also on the viscous boundary layers on the horizontal plates.
A short discussion of the boundary layer structure is useful
because it has been assumed16,22 that they quantitatively be-
have as “standard” laminar �Blasius� and turbulent boundary

FIG. 3. Snapshots of temperature showing the possible mean flow configu-
rations: �a� single recirculation Ra=2�1010 �region 1R of Fig. 2�b��; �b� the
two-roll configuration Ra=2�1012 �region 2R of Fig. 2�b��; �c� only turbu-
lent fluctuations Ra=2�1014 �region NMF of Fig. 2�b��. Only the tempera-
ture range 0.475���0.525 is represented with shades of gray; light gray
stands for warm fluid and dark gray for cold fluid.
layers on a flat plate. As shown in Fig. 6�a�, the intensity of
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velocity fluctuations at the edge of boundary layers �esti-
mated as the position of the peak in the root-mean-square
velocity profile� remains constant when a mean flow struc-
ture is present, and decreases with Ra in the absence of a
mean flow. The intensity of these fluctuations has to be com-
pared with the mean horizontal wind, which is of the order of
10% of the free-fall velocity in the presence of large recir-
culations and even smaller in the flow regime of Fig. 2�b�.
This comparison suggests that fluctuations in the boundary
layer are of the same order as the large-scale velocity, which
itself is highly unsteady owing to frequent reversals, transi-
tions from one state to another, and to azimuthal tilting of
large structures. Even so, the time-averaged friction coeffi-
cients of Fig. 6�b�, normalized by the maximum velocity �see
inset of Fig. 1�, are similar for the present boundary layers
and for the flat plate. In addition, it is interesting that the
friction coefficient, Cf, decreases with the boundary layer
Reynolds number Re as Re−1/2, as expected for laminar
flows, and departs from it at higher Re, presumably marking
the transition to turbulence. As an aside, for Pr=0.7, the tran-
sition value Ra�1012 agrees with the expression Ra�5.66
�1011Pr1.4 /�2=1.37�1012 derived12 for the maintenance of
the fully developed turbulent state.

FIG. 4. Time series of vertical velocity sampled in the positions sketched in
Fig. 3: �a� Ra=2�1010, �b� Ra=2�1012, �c� Ra=2�1014. Velocities are
normalized by the free-fall velocity U=�g	�h.
Although more results will have to await a forthcoming
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paper, we can already conclude that for the present condi-
tions the Nusselt number increases with the Rayleigh number
following the 1/3 power law to some reasonable accuracy, at
least in the range 2�1010�Ra�2�1014.
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FIG. 5. �a� Probability density function �PDF� of the product vx���vx��
+
�, the velocities being sampled in the positions of Fig. 3: �—� Ra=2
�1014, �----� Ra=2�1013, � ¯¯¯ � Ra=2�1012, �–·–� Ra=2�1011,
�----� Ra=2�1010, and �–·–� Ra=2�109. The PDFs are normalized by the
rms � of vx���vx��+
�. The inset shows the mean value of the correlation as
functions of Ra. �b� Time average of the maximum vertical velocity as a
function of the Rayleigh number for Pr=0.7.
FIG. 6. �a� Velocity fluctuation at the edge of the kinematic boundary layers
of the horizontal plates. �b� Friction coefficient at the horizontal plates: ���
present results, �� � data for the flat plate from Schlichting �Ref. 23�. The
Reynolds number Re is computed using the mean velocity at the edge of the
viscous boundary layer. The friction coefficient is defined as the mean wall
shear stress �averages are performed over the horizontal plates and in time�
H. Schlichting, Boundary Layer Theory �McGraw-Hill, New York, 2000�.
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