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Rayleigh–Taylor turbulent mixing of immiscible, miscible
and stratified fluids
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We propose a simple empirical model to describe the Rayleigh–Taylor �RT� turbulent mixing of
immiscible, miscible and stratified fluids. For immiscible fluids, the rate of momentum loss is an
invariant of the flow, whereas the energy dissipation rate increases linearly with time. Turbulent
diffusion, accounted for through temperature fluctuations, does not terminate mixing but slows it
down significantly. A stratified density distribution can stabilize RT mixing. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2009027�
Rayleigh–Taylor instability �RTI� occurs whenever fluids
of different densities are accelerated against the density
gradient.1,2 Extensive interfacial mixing of the fluids ensues
with time.3 It plays a key role, for instance, in preventing the
formation of “hot spot” in inertial confinement fusion, pro-
viding proper conditions for the synthesis of heavy mass
elements in supernovae and determining the drop size distri-
bution in sprays.4–13 A grip on the mixing process and its
dependence on the density ratio, diffusion, stratification and
other physical factors is the basic objective of studies of RTI.
We propose a simple heuristic model to describe turbulent
mixing in RTI of immiscible, miscible and stratified fluids.
Compressibility is not considered.

For incompressible immiscible fluids,
observations2,3,14–19 suggest the following evolution of RTI
under sustained acceleration g �gravity�. Small perturbations
at the fluid interface grow exponentially with time. In the
nonlinear regime a coherent structure of bubbles and spikes
appears �see Fig. 1�. Light �heavy� fluid with density �l�h�
penetrates the heavy �light� fluid in bubbles �spikes�, which
move steadily for fluids with finite density ratio. The spatial
period � of the structure in the plane normal to the direction
of gravity is set by the fastest-growing mode or the initial
perturbation.3,13,14 Shear-driven instabilities produce small-
scale vortices on the sides of evolving spikes.3,14–16 For a
broad-band initial perturbation, the period � may grow.20,21

Eventually, a mixing zone develops3,16–19 and its width h̃
in the direction of gravity increases quadratically with time,

h�gt2, g= �g�. It is commonly accepted that diffusion and
stratification reduce the growth rate of the instability,13,22–25

but their quantitative influences on RTI evolution are poorly
understood. The mixing flow is sensitive to the horizontal
boundaries of the fluid tank �computational domain� though
much less so to the vertical, and retains the memory of the
initial conditions.3,26,27

For a long time the nonlinear dynamics of RTI was in-
terpreted as a single-scale problem, characterized by the spa-
tial period � of the structure of bubbles and spikes.12,20,21

12,20,21
This idea was implemented by the models in a heuris-
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tic equation balancing the forces of inertia, buoyancy and
drag with three adjustable parameters dependent on the den-

sity ratio. To derive a similarity solution h̃�gt2 for the mix-
ing zone, the models required the horizontal scale � to grow

proportional to the vertical scale �� h̃ �the so-called “bubble
merge”�. The free parameters of the models were adjusted to
fit the evolution of these scales in observations.26 Despite

significant efforts, the university of the scaling h̃ /gt2 and
� /gt2 as well as the mechanism of the mixing process have
remained open issues.3,26–28

A recent analysis29 of the conservation laws based on
group theory has found that the evolution of RTI has a mul-
tiscale character: The spatial period of the coherent structure

� and the vertical scale h̃ contribute independently to the
nonlinear dynamics, whereas the postulates of single-scale
models12,20,21 violate the conservation laws. The present
work accounts for the conclusions of Ref. 29 and suggests a
simple heuristic model describing the RT mixing of immis-
cible, miscible and stratified fluids. We show that the growth
of the horizontal scale is not a necessary condition for the
mixing to occur. The rate of momentum loss per unit mass is
an invariant of the flow, whereas the energy dissipation rate
increases linearly with time. Turbulent diffusion reduces the
mixing growth rate significantly, while stratification can sta-
bilize the mixing process.

(a) RTI of immiscible fluids. The dynamics of incom-
pressible RT spike is governed by a balance per unit mass of
the buoyant and dissipation forces30 as

dh

dt
= �,

d�

dt
=

��

�
g + F , �1�

where � is the velocity, h is the position, �� /� is the function
of the density ratio with ��= ��h−�l� /2, �= ��h+�l� /2. With
�h↔�l and opposite signs for position, velocity, and dissipa-
tion force, system �1� describes the dynamics of the bubble.
The spike �bubble� position is proportional to the vertical

scale h� h̃ of the flow.6,26–28 We consider fluids with similar

densities, �� /��1 in �1�, so the bubbles and spikes are
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nearly symmetric, and h� h̃ /2. The dissipation force is
the rate of momentum loss in the direction of gravity and
F=−� /�, where � is the energy dissipation rate.30 If there is
no viscous time scale, dimensional grounds suggest31,32 for
the energy dissipation rate �=C�3 /L, where C is a constant,
and L is the characteristic length scale of the flow.

The time dependence of asymptotic solutions for system
�1� depends on whether the characteristic length scale of the

flow is horizontal �L��� or vertical �L� h̃�h�. If the rel-
evant scale is the horizontal one, the solution is steady, �
��g� and h� t�g�, as observed for nonlinear RTI.2,14,15,29

In this regime the rate of momentum loss is F=g�� /� and
the energy dissipation rate is �= �g�� /��3/2�� /C�1/2. If, on
the other hand, the characteristic length scale is the vertical

scale, L� h̃�h, then system �1� has the asymptotic solution
with ��gt and h�gt2, and F= �1−a�g�� /�, where a= �1
+2C�−1�0.1 according to observations.3,26,27 The rate of
momentum loss decreases compared to its value in the non-
linear regime, the flow length scale h grows, and the energy
dissipation rate increases with time �=a�1−a��g�� /��2t.

A comparison of the energy dissipation rate and the rate
of momentum loss suggests two distinct mechanisms for
how a transition may occur from the nonlinear to turbulent
regime of RTI. In the former case, the energy dissipation rate
� is comparable in the nonlinear and turbulent regimes so
that ���g�� /��3/2�1/2��g�� /��2t. Hence, the horizontal
scale � grows quadratically with time, �� t2g�� /�. This sce-
nario was used by merger models.20,21 In the latter case, the
rate of momentum loss F=−� /� has the value F=g�� /� in
the nonlinear regime with L��, and is reduced to the value

F= �1−a�g�� /� in the turbulent regime with L� h̃�h.
Therefore, the turbulent mixing can develop if the vertical h
scale dominates the flow, and is regarded as the integral scale
for energy dissipation. The dissipation occurs in small-scale
structures6,14,15 produced by shear at the fluid interface.

RT turbulent mixing has two invariants: the rate of
momentum gain g�� /� and the rate of momentum loss
F=−� /�= �1−a�g�� /� in the direction of gravity. The en-
ergy dissipation rate grows linearly with time ���3 /L
��g�� /��2t and is not an invariant. In Kolmogorov
turbulence31 the invariance of energy dissipation rate � is

31,32

FIG. 1. Large-scale coherent structure of bubbles and spikes in the

Rayleigh–Taylor instability: � is the horizontal scale �spatial period�, h̃ is the
vertical scale, g is gravity and �h�l� is the density of the heavy �light� fluid.
Arrows mark the direction of the fluid motion at the tip of the bubble �up�
and spike �down�. A roll-up of vortices results in a mushroom-type shape of
the spike. For fluids with similar densities, �h��l, the bubbles and spikes
are nearly symmetric.
compatible with the existence of the inertial range,
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direct cascade and k−5/3 velocity spectrum: The energy in-
jected at large scales ���2�� /L� is transferred without loss
through the inertial range and dissipated at small scales
����L��� /L�2. Whether these fundamental concepts are ap-
plicable to an accelerating flow is unclear in the absence of
rigorous analysis or trustworthy guidance from experiments
and simulations. We see, however, that for describing RT
turbulent mixing the rate of momentum loss is a better indi-
cator than the energy dissipation rate.

(b) RTI of miscible fluids. The transport of scalars �such
as temperature or molecular diffusion� decreases the buoyant
force and changes the mixing properties. In experiments and
simulations of miscible fluids16,17,19,22,27 the value of h /gt2

shows significant scatter and sensitivity to the initial condi-
tions, which existing models12,20,21 do not explain. To study
the influence of scalar transport on the mixing process, we
assume ��T and �� /���T /T, where T is the temperature
and �T /T is the temperature contrast between the cold, heavy
fluid and the warm, light fluid, and account for the turbulent
diffusion through the temperature fluctuations. According to
Refs. 31 and 32, for nearly the homogeneous case the rate of
temperature change is � /T, where the function �=���T�2

and � is conductivity. Dimensional grounds suggest31,32 �
���L���T /L�2��� /L���T�2, and for small �� /��1 the de-
crease in the density contrast is d��� /�� /dt�−�� /L�
	��T /T�2�−�� /L���� /��2. The system of governing equa-
tions has the form

dh

dt
= �,

d�

dt
= 
g − C

�2

L
,

d


dt
= − Ct

�

L

2, �2�

where Ct�0 is a constant and 
=�� /�. For turbulent case
with L�h in Eq. �2�, the density ratio 
→0 as t→� and
h�exp�1/
�, and we have h�gt2 / ln�gt2 /h0� to the lowest
order, where h0 is the initial position. Therefore, the turbulent
diffusion cannot terminate the mixing development but re-
duces its growth rate significantly, see Fig. 2. The depen-
dence h�gt2 / ln�gt2 /h0� implies that the values of h /gt2

measured at large but distinct moments of time are different
constants, and the memory of the initial conditions is re-
tained.

(c) RTI in stratified fluids. This situation occurs in iner-
tial confinement fusion �ICF� with embedded interface or in

23–25

FIG. 2. The turbulent mixing of immiscible and miscible fluids with turbu-
lent diffusion calculated through temperature fluctuations. In Eqs. �1� and
�2�, the characteristic length scale is L=h, the time scale is 
0, the initial
position, velocity and density ratio are h0=0.1g
0

2, �0=0, and ��� /��0=0.2,
and C=3.67; for the immiscible case Ct=0 and h=him �dashing line, left
plot�, for the miscible case h=hm and Ct=3 �solid line, left plot�; the ratio
hm /him decays with time �right plot�.
direct-drive experiments with picked pulses, in stellar
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non-Boussinesq convection9,10 �plumes of dense fluid propa-
gating in a light stratified fluid�, and other phenomena.13 The
influence of stratification on the nonlinear evolution of RTI is
not well understood. Theories13,33,34 have described the
growth of linear RTI for various density profiles. Simulations
of multilayer ICF capsules reported that, in a stratified me-
dium, the width of the mixing zone approaches a constant
value and the accelerated mixing does not develop.24 Simu-
lations of stellar convection9,10 found similar results. To es-
timate the influence of stratification on the mixing develop-
ment, we neglect compressibility, as in Refs. 13 and 33, and
consider the propagation of a dense incompressible spike in a
light fluid with stratified density profile. The increase in the
light fluid density results in a decrease in the buoyant force
and d
 /dt= �d
 /d�l��d�l /dh��dh /dt�. As an example, we
assume �l=�0�h /h0�G,��0=�l�h=h0

and derive

dh

dt
= �,

d�

dt
= 
g − C

�2

L
,

�3�
d

dt

1

�1 + 
�
=

�1 − 
0�
2�1 + 
0�

d

dt
	 h

h0

G

,

where �
0=
�h=h0
. If the characteristic length of the flow is

the horizontal scale, L��, the solution for system �2� has the
form �h /h0�G=1+2�
0−
� / �1−
0��1+
�. Asymptotically,
�=
=0 and h=h* with �h* /h0�G= �1+
0� / �1−
0�. This
equilibrium is accompanied by oscillations, � ,
 ,h−h*

�exp�iwt�, which are gravity waves with frequency w2

=Gg /2h*. If the characteristic length is the vertical scale, L
�h, the asymptotic dynamics is qualitatively similar to that
for L�� �see Fig. 3�. The equilibrium point is a circle in the
phase space of dynamical system �3�, and without dissipa-
tion, the oscillation amplitude is finite. In practice, these os-
cillations are damped, and stratification may result in the
appearance of a layered structure. Compressibility, neglected
in �3�, may result in generation of acoustic waves and may
destroy the spike.10 The nonlinear dynamics of RTI in com-
pressible stratified fluids is a fundamental and hard
problem,13,33,34 and its complete consideration is beyond the
scope of the present work. According to our simple model, in

FIG. 3. The spike propagation in a stratified density distribution: in Eq. �3�
C=3.67, the length scale is L=h, the time scale is 
0, and the initial position,
velocity and density ratio are h0=0.1g
0

2, �0=0 and ��� /��0=0.2.
a stratified density profile, incompressible spikes propagate
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to a certain distance, until the density difference is zero, and
the mixing development is terminated.

Our results agree with available observations. For in-
stance, for L=h, system �1� justifies the physical meaning of
the model,28 which did not use merger arguments and ob-
tained good qualitative agreement with experiments26,27 for
the growth of vertical scale h /gt2. The solution for system
�2� indicates that RT turbulent mixing has no “universal” law
h�gt2 for miscible and immiscible fluids, in contrast to
expectations16,17,19,26,27 �see Fig. 2�. The turbulent diffusion
may explain the significant scatter of values h /gt2 and sen-
sitivity to the initial conditions observed in Refs. 16, 17, 19,
26, and 27. For stratified fluids, our model confirms the
observations9,10,23–25 quantitatively. The lack of data prevents
us from making comparisons with RT observations of mis-
cible and stratified fluids.

The experiments and simulations on RT turbulent
mixing26,27 focus mostly on identifying coefficients in the
dependencies h /gt2 and � /gt2, and on adjusting free param-
eters in the empirical models with various dependencies on
the density ratio.12,20,21,26–28 The foregoing results indicate
that other observations are required to grasp the essentials of
the mixing process. For instance, the merger mechanism20,21

of the turbulent mixing with ��h presumes a “spherical”
character of bubbles �spikes� evolution. This assumption has
no reasonable grounds because RTI is essentially an aniso-
tropic phenomenon: The flow dynamics in the direction of
gravity differs from that in the normal plane.2,3,14–19,29 The
growth of horizontal scales in observations26,27 may indicate
a sensitivity of the flow to external boundaries of the fluid
tank �domain� rather than solely to the “merging” character
of the mixing. An experimental study of RTI with systematic
variation of the aspect ratio of the boundary conditions may
clarify this issue. On the other hand, if indeed small-scale
structures are essential for the mixing development, then any
process that advects vorticity from the interface into the bulk
may decrease the dissipation of energy at the fluid interface
and decelerate the mixing. Such situation may occur, for in-
stance, in ablative RTI4 or in premixed combustion in gravity
field.7 In contrast, the growth of the large scales is insensitive
to the vorticity distribution. Monitoring the vorticity frac-
tions in the bulk and at the interface may elucidate the role of
small structures in RT turbulent mixing.

For isotropic Kolmogorov turbulence, the energy dissi-
pation rate is a statistical invariant,31,32 and the rate of mo-
mentum loss is not a diagnostic parameter. For RT turbulent
mixing of incompressible fluids, the flow invariant is the rate
of momentum loss in the direction of gravity, whereas the
energy dissipation rate is time dependent. These values de-
scribe the structure of the interface and the energy transports.
To date, none of them was monitored in RTI observations.

To summarize, the present phenomenological model de-
scribes RT turbulent mixing of immiscible, miscible, and
stratified fluids. The model does not presume a single-scale
character of the interface dynamics and distinguishes be-
tween the evolution of horizontal and vertical scales. For
fluids with constant densities, the results obtained indicate
two distinct mechanisms for the mixing development. The

first is the traditional “merge” associated with the growth of
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horizontal scales. The second is associated with the produc-
tion of small-scale structures and with the growth of the ver-
tical scale, which plays the role of the integral scale for en-
ergy dissipation. In RT turbulent mixing, the rate of
momentum loss is the flow invariant, whereas the energy
dissipation rate is not, and the fundamental scaling properties
of the accelerated flow differ from those of the classical Kol-
mogorov turbulence. The model considers the influence of
turbulent diffusion and stratification on RT mixing. We show
that turbulent diffusion calculated through the temperature
fluctuations does not stop mixing, but decreases the value of
h /gt2 significantly, makes it time dependent and sensitive to
the initial conditions. In a stratified density profile, incom-
pressible bubbles and spikes propagate to a certain distance
and the mixing process is terminated. Our model is based on
dimensional grounds, and the results obtained can serve for
future rigorous analysis and systematic experimental studies
of accelerated mixing flows.

The work is partially supported by the Naval Research
Laboratory.
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