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High-Reynolds-number simulation of turbulent mixing
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A brief report is given of a new 20483 direct numerical simulation of the mixing of passive scalars
with uniform mean gradients in forced, stationary isotropic turbulence. The Taylor-scale Reynolds
number is close to 700 and Schmidt numbers of 1 and 1/8 are considered. The data provide the most
convincing evidence to date for the inertial-convective scaling. Significant departures from
small-scale isotropy are sustained in conventional measures. Subject to some stringent resolution
requirements, the data suggest that commonly observed differences between the intermittency of
energy and scalar dissipation rates may in part be a finite-Reynolds-number effect. © 2005
American Institute of Physics. �DOI: 10.1063/1.2001690�
Recent advances in parallel computing power up to
many teraflops in aggregate speed have created great oppor-
tunities for understanding the fundamental scaling properties
of turbulence at adequately high Reynolds numbers. In par-
ticular, massive amounts of data from direct numerical simu-
lations �DNS� are now available at grid resolutions 10243

and above1,2 with Reynolds numbers comparable to �and, in
some cases, exceeding� those that laboratory experiments
have often considered sufficiently high. The wide range of
resolved scales in simulations has enabled the probing of
various scaling issues with adequate precision and confi-
dence. For example, simulations of Ref. 2 on a 40963 grid,
reaching a Taylor-scale Reynolds number R��1200, have
provided new data on intermittency corrections to the energy
spectrum in the inertial range while also confirming previous
estimates of the Kolmogorov constant in experiments3 and
DNS.1,4

In this Letter, we present basic results from a 20483

simulation aimed at addressing the fundamental aspects of
mixing at high Reynolds number. Our simulation is based on
the well-known algorithm of Rogallo,5 which is Fourier
pseudospectral in space and explicit, second order in time.
Velocity and scalar fluctuations are maintained stationary, re-
spectively, by the stochastic forcing scheme of Eswaran and
Pope,6 and by a uniform mean scalar gradient. �Comparison
with DNS of isotropically forced scalar fields7 would be of
interest.� We used the resolution criterion kmax�=1.5 or bet-
ter, where kmax=�2N /3 is the highest wavenumber resolved
on an N3 grid and � is the Kolmogorov length scale. Periodic
boundary conditions are applied to the computational do-
main. Although idealized, this configuration is of great im-
portance in the study of small-scale turbulence. The Schmidt
number �Sc� is either 1 or 1 /8, so the Kolmogorov scale is
the limiting factor for resolution. Using about 2�106 CPU
hours on 2048 of 6080 IBM SP processors at the Lawrence
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Berkeley National Laboratory NERSC facility, we have
simulated the flow up to four eddy-turnover times although
we report statistics mainly from the last two, when station-
arity is better attained. Instantaneous velocity and scalar
fields were archived at regular intervals for further analysis.

The averaged R� for the flow thus simulated was just
below 700. This Reynolds number is the highest known for
the DNS of scalar mixing, and very close to the highest
reported ��800� in related laboratory experiments.8 Our em-
phasis here is on inertial-convective scaling expected for sca-
lar mixing at high Reynolds number. The scaling is demon-
strated in terms of the scalar spectrum and mixed structure
functions. We also report on central issues of similarity scal-
ing including departures from local isotropy in the presence
of a mean gradient, and the intermittency of fluctuations of
the scalar dissipation rate ��� compared to the energy dissi-
pation ���.

As a demonstration of the quality of scaling in the ve-
locity field, we show in Fig. 1 data for the “four-fifths law”
of Kolmogorov,9
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where �ru=u�x+r�−u�x� is the so-called longitudinal veloc-
ity increment �i.e., the velocity component and the separation
distance are in the same direction�. Equation �1� is an asymp-
totically exact result for the inertial range and its verification
is the most stringent and direct criterion for the existence of
a scaling region. We have included data at R��240 and 400
from 5123 and 10243 simulations as well. As expected, the
scaling region grows with the Reynolds number. While the
present data at the highest R� show good attainment of a
“plateau” at 4 /5, this is sensitive to temporal variability of
the volume-averaged � which, being driven by large scales,
can vary by as much as 50% in our simulations even in a
period of statistical stationarity.
Figure 2 shows the “compensated” scalar spectrum in
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the 20483 simulation corresponding to the well-known
inertial-convective range for wavenumbers10,11 1 /L�k
�1/�OC�1/� �where L is an integral length scale in the
flow�,

E	�k� = C	
* ��	��	−1/3k−5/3, �2�

C	
* being the Obukhov-Corrsin constant in the three-

dimensional scalar spectrum function E	�k�. This figure
shows a better-developed scaling range for both Sc=1/8 and
1 compared to previous results at a lower Reynolds
number.12 For Sc=1 we also observe a spectral bump which
is a consequence of viscous effects and may also be
regarded12 as the precursor to k−1 Batchelor scaling that ap-
plies for high Sc. The height of the observed “plateau” is in
excellent agreement with the value of C	

* inferred from ex-
perimental measurements13 of the one-dimensional spectrum
using spectral relations for an isotropic scalar field. �Accord-
ing to these relations, C	

* =0.67 in E	�k� corresponds to the

FIG. 1. The third-order velocity structure function scaled according to Kol-
mogorov’s relation �see Eq. �1�� at R��240, 400, and 700 �triangles, circles,
and squares, respectively�. The dashed line of slope 2 gives the small r
asymptote S / �15�3/2�r /��2 where S�−0.5 is the velocity gradient skewness.

FIG. 2. Scalar spectrum according to Obukhov-Corrsin scaling in 20483

DNS at R��700 and Sc=1/8 �triangles� and 1 �circles�. The dashed line at

0.67 is for comparison with experiment �see Ref. 13�.
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scaling constant of 0.4 in the one-dimensional spectrum.�
In physical space the most important scaling result is the

“Yaglom relation,”14
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with the increments of velocity and the scalar taken over
distances ��r�L, and the mean scalar dissipation rate de-
fined as ��	=2D��	 · �		. In our DNS there is some differ-
ence among results for r taken in different directions because
of anisotropy in the scalar field �see Ref. 12, and Fig. 5
therein� but we focus here on the component average as a
basic measure. Figure 3 shows the normalized mixed struc-
ture function of Eq. �3�, for Sc=1 at three Reynolds numbers
as in Fig. 1. For small r the data follow closely an r2 line
derived from the Taylor-series expansion of both u and 	 in
space; for large r there is a steep drop as the normalized
quantity on the left-hand side of Eq. �3� tends to zero. At
intermediate values of r, a plateau develops with increasing
Reynolds number and approaches the theoretical value of
2 /3. It is somewhat surprising, however, that the plateau
does not widen as much between 10243 and 20483 as the
difference between 5123 and 10243 suggests. We tentatively
attribute this effect to the anisotropy of the large-scale scalar
field �see later�. The width of the scaling range in Fig. 3 is
restricted by the integral length scale of the scalar field which
is smaller than that for the velocity. It is also for this reason
that the scaling ranges in the velocity and scalar fields differ.

Figures 1–3 suggest that conditions suitable for address-
ing important scaling issues in turbulent mixing have been
reached in our data. We noted that the large-scale anisotropy
limits the scaling of the passive scalar. In fact, the anisotropy
of the scalar field extends to dissipative scales.15,16 In the
present simulations �as in the experiments of Ref. 8� it is
natural to compare the statistics of scalar gradients parallel
and perpendicular to the imposed mean gradient, denoted by
�
	 and ��	 respectively. In particular, while odd-order
moments of ��	 are indeed zero as required by reflectional

FIG. 3. Mixed velocity-scalar structure function scaled according to the
Yaglom relation �see Eq. �3�� for Sc=1 at the same R� as in Fig. 1. A dashed
line of slope 2 gives the small r asymptote �see Eq. �12� in Ref. 12�.
symmetry, those of �
	 are known to break this symmetry
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and deviate substantially from zero; at the same time, the
flatness factors of both �
	 and ��	 increase with the Rey-
nolds number. We show the relevant skewness and flatness
factors in Figs. 4�a� and 4�b�. Consistent with the data of
Refs. 3 and 8, the gradient skewness is of the order unity,
confirming that some departure from local isotropy remains
even at the highest Reynolds number reached here.

There have been suggestions in the literature17 that rela-
tive constancy of a derivative skewness �as above� may not
in itself be sufficient evidence for anisotropy at the small
scales, in part because different normalization factors for the
odd-order moments can lead to seemingly different conclu-
sions. Additional information has been obtained in the spec-
tral distribution of this skewness, which can be quantified by
computing the cospectrum between a scalar gradient and its
square, defined such that its integral in wavenumber space is
equal to the third moment of the scalar gradient. We find that
this quantity, called the skewness cospectrum,18 possesses
nontrivial values, including, for Sc=1, a local maximum at
scales represented by k�=O�0.1�. This and other quantities
such as the spectra of scalar gradient components indicate
that, overall, the anisotropy originating at the large scales
due to the mean gradient does percolate down to the smallest
scales in the scalar field.

Many studies in the literature19 suggest that, at the small
scales, the scalar field is, by various measures, more inter-
mittent than the velocity. To illustrate this, we show in Fig. 5
a visualization of the the instantaneous scalar dissipation � in
space in our 20483 simulation, and in Fig. 6 the probability
density functions �PDFs� of energy and scalar dissipation
rates. The scalar dissipation shows localized zones of intense
fluctuations with a sheet-like structure which is more readily
revealed in the present rendering than two-dimensional con-
tours in a previous work.20 �The energy dissipation is, by

FIG. 4. Skewness �
3� and flatness �
4� factors of scalar gradient compo-
nent fluctuations at different R�. �
	 at Sc=1/8 �triangles�, �
	 at Sc=1
�circles�, and ��	 at Sc=1 �squares�.
contrast, more tube-like.� In Fig. 6 we have included data on
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the enstrophy, at the two Reynolds numbers of the 5123 and
20483 simulations. In general, all of these PDFs have wide
tails, indicating significant probability for fluctuations much
larger than the mean value. At a given Reynolds number, the
scalar dissipation has a wider tail than enstrophy, which itself
has a wider tail than the energy dissipation. As the Reynolds
number increases, the PDF of � shows the greatest change,

FIG. 5. �Color online�. Spatial distribution of the scalar dissipation rate for
Sc=1 shown as elevated surfaces for three chosen grid planes in the 20483

simulation.

FIG. 6. PDFs of energy dissipation rate ���, enstrophy ���, and scalar
dissipation rate at Sc=1/8 ��� and 1 ��� from �top� 5123 DNS at R�

�240 and �bottom� 20483 DNS at R��700. All variables are normalized by

the mean.
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whereas that of � shows the least tendency to become flatter.
This suggests that some of the differences among � ,�2, and
� are due to finite Reynolds number. The variances of ln �
�which is important in modeling� estimated from the data are
3.33 and 3.73 for Sc=1/8 and 1 at R��240, and 4.39 and
4.29, respectively, at R��700. The last of these numbers is
probably too low, which supports a recent assertion21 that a
higher degree of resolution �larger kmax�� is required at a
higher Reynolds number.

Our main purpose in this Letter has been to document a
few primary characteristics of a new 20483 DNS database
which �together with previous data from 643 to 10243� po-
tentially allows newer, and more definitive, physical insights
into the subject of turbulent mixing at high Reynolds num-
ber. Our results show that an inertial-convective range has
been achieved in both spectral and physical space, but that
the small scales of the scalar remember the anisotropy of the
large scale. The data also suggest that the PDFs of energy
dissipation, enstrophy, and scalar dissipation may converge
to the same shape at a high enough Reynolds number. Other
quantitative aspects such as anomalous scaling, multifractal
measures, and intermittency exponents, will be analyzed in
detail and reported separately in the future.
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