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“Clusterization” and intermittency of temperature fluctuations in turbulent convection
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Temperature time traces are obtained in turbulent thermal convection at high Rayleigh numbers. Measure-
ments are made in the midplane of the apparatus, near the sidewall but outside the boundary layer. A telegraph
approximation for temperature traces is generated by setting the fluctuation amplitude to 1 or O depending on
whether or not it exceeds the mean value. Unlike the standard diagnostics of intermittency, the telegraph
approximation allows one to distinguish the tendency of events to cl(gdtesterization from their large-scale
variability in amplitude. A qualitative conclusion is that amplitude intermittency might mitigate clusterization
effects.
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[. INTRODUCTION characteristic dimension of the apparatus. That is, if these

We consider turbulent convection in a confined containet@rge-scale plumes originate from the boundary layer, it is as
of circular cross section and 50 cm diameter. The aspect ratiy @ Significant fraction of the boundary layer on the bottom
(diameter/heightis unity. The sidewalls are insulated and Wall participates once in a while in this activity that we have
the bottom wall is maintained at a constant temperaturecalled the large-scale plume. The maximum temperature in
which is higher by a small amoumT than that of the top these large-scale plumes is a fraction of the excess tempera-
wall. The working fluid is cryogenic helium gas. By control- ture of the bottom platénamelyAT/2), so, presumably, the
ling the temperature difference between the bottom and tofluid that is participating in the formation of a typical large-
walls, as well as the thermodynamic operating point on thescale plume comes from the top parts of the boundary layer.
phase plane of the gas, the Rayleigh number Ra of the flowhey are certainly not small-scale events that scale on the
could be varied between 1@nd 13° We measure tempera- thickness of the boundary layer. This description does not
ture fluctuations at various Rayleigh numbers towards th@pply to small-scale plumes—i, though, presumably, they
upper end of this range, in which the convective motion istoo belong to the same family. In Fig. 1, we show the case of
turbulent. Time traces of fluctuations are obtained at a dishot plumes, that is, the case when the wind at the measure-
tance of 4.4 cm from the sidewall on the center plane of thenent point arrives from the hotter bottom plate. One can
apparatus. This position is outside of the boundary layer reimagine that the wind direction could be just the opposite,
gion for the Rayleigh numbers considered here. More detailteading to the arrival at the probe of cold plumes coming
of the experimental conditions and measurement proceduifsom the colder top plate. We have analyzed such instances
can be found in Ref{1]. as well. Further, beyond a certain Rayleigh number, as de-

A significant part of convection, even at the high Rayleighscribed in Ref[3], the mean wind reverses itself randomly,
numbers that concern us here, is due to plup2§sWe use SO that a probe permanently held at one position sees hot
the term “plume” here merely to denote an organized activityplumes for some period of time and cold plumes for some
of convection without implying much about their three- other period of time. We have analyzed the two parts sepa-
dimensional shapes and sizes, or the parameters on whig¢htely by stringing together only hot parts or the cold parts of
they scale, though a few comments will be made momena measured temperature trace. In each case, the telegraph
tarily. The primary goal of the paper is to learn about theapproximation is related to specific properties of the under-
tendency of the plumes to cluster togetleusterization. lying physical processes associated with hot or cold plumes,

The upper part of Fig. 1 shows a short segment of temas they encounter the probe during their motion.
perature fluctuations at Ra=1x510'%. There are four large-
scale events yvithin this segme(marked'by the letters Il. RANDOM TELEGRAPH APPROXIMATION
A-D), and we imagine them to be the manifestation of large-
scale plumes. Each event consists of several subevents, andA more detailed discussion of the plumes will be pre-
there also exist a number of small events marked While  sented elsewhere but we limit ourselves here to a discussion
it may well be that the subevents deserve to be considereaf their tendency to cluster together occasionally. This is not
separately, we regard them collectively here. Under thesebvious from the piece of the temperature trace shown in
circumstances, it is clear from Fig. 1 that a typical lifetime of Fig. 1, and a longer trace crowds the plumes too much. It
the large events is of the order of 8 s. Noting from R8f. may be surmised that the clusterization is indeed responsible
that the mean speed of the large-scale circulatiorean for the mean wind in the apparatus. In the usual methods of
wind) for these conditions is about 6 cm/s, a typical lengthanalysis of turbulent signalgl], it is difficult to separate the
scale of these events is of the order of 50 cm, which is thelusterization effect from the traditional intermittency effects
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two realizations of the temperature trace compared with those of the

FIG. 1. An example of the measured temperature time tracemperature trace itseffhinner ling. The ordinate has been shifted
(upper partand its random telegraph approximatigéower parj. In so that the first points in both spectra coincide.
addition to the small plumes marked-i, there are several others

such structures in the signals. They have not been marked merely

because they occur below the zero line. Here and for other figure&POVe a certain frequency. This is not difficult to understand
Ra=1.5< 101 from a visual inspection of Fig. 1.

Of patrticular interest is the power-law behavior of the

- . - spectral densities of the telegraph approximation. For both
arising from amplitude variability. To separate these two ef hot and cold cases, they follow a power law of the form

fects, we ignore the variation of the amplitude from one
plume to another and replace the temperature trace of the

type shown in the upper part of Fig. 1 by its random tele- E(f) ~ 7. (2
graph approximation, shown in the lower part. This approxi-

mation is generated from the measured temperature by sethough this power-law behavior is clear from Fig. 2, we
ting the fluctuation magnitudes to 1 or 0 depending on reproduce in Fig. 3 the spectra of the telegraph signal, com-
whether or not the actual magnitude exceeds the mean valyrited from several records to attain better statistical conver-
(marked as zero and shown by the dashed line in the upp@ence, in order to emphasize the power-law scaling. The ex-
part of Fig. 3. Formally, for the temperature fluctuati(t) ponent 8=1.38+0.02. A reasonable shift of the threshold
(with zero meap the telegraph approximatiofi(t) is con-  does not change the spectral expon@nErom the closeness

structed as of the spectra of the temperature trace with its telegraph ap-
proximation, it is inferred easily that the former has a spec-

1/ O(t) tral exponent of 1.38 as well, though this applies to a smaller

T(t) = §<m + 1). 1) range of scales on the low-frequency end. Observation of the

temperature trace spectra with such a power-law exponent
was first made in Ref5], and was explored theoretically in

By definition, T can assume either 1 and 0. The telegraphref. [6], and is now a well-known result.

approximation can be generated by setting different “thresh- The probability density function of the duration between
olds” from the mean. It turns out that most properties exameventsr for the telegraph approximation is shown in Fig. 4.
ined here are reasonably independent of the threshold; thisata for the hot and cold cases are given separately. The
comment will be recalled also at other specific places in theéog-log scale has been chosen to emphasize the power-law

paper. structure
It may be useful to know how the conventional statistics

for the random telegraph approximation compare with those o(7) ~ 7@ 3)
of the temperature signal. Figure 2 compares the spectral '

densitiesE(f) of the telegraph approximations with those of  For both hot and cold cases, we obsemel.37+0.03. A
the full signal. The comparisons are made separately for haeasonable variation of the threshold in the vicinity of the
and cold cases. It is clear that the spectra of the telegrapiiverage value does not change the exponent
approximation are close to those of the original signal in a It is known that, for nonintermittent cas¢Ref. [7] and
significantly large interval of scales. The main difference isSec. IV), the relation between the exponentandg is given
that the telegraph approximation has a larger spectral contebt
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10% related to clusterization entirelgee also Ref{7]). It is of
102 | interest to note here that, for the telegraph approximation of
I the temperature fluctuation in the turbulent atmospheric
— 10" | -1.38 boundary layer, we get [when taken from Eq(3)] and 8
w w00l [when taken from Eq(2)] to be about 1.38, while the spec-
tral density of the temperature trace has a roll-off rate of
107" | hot about 1.66 (consistent with the Kolmogorov-Obukhov-
2l . . . . Onsager-Corrsin theof]). It is clear that the spectra of the
10 0.01 0.1 ) 10 100 temperature signal and its telegraph approximation are closer
' ' in confined convection than in atmospheric turbulence.
103
102 | IIl. QUANTIFYING CLUSTERIZATION
= 10} -1.38 The difference between the observed telegraph spectral
w0l exponent 8=1.38 and the expected value given by E4)
(=1.63 is a quantitative measure of clusterizatipfi of
107" | plumelike objects observed in temperature traces. This is a
sz | cod , ) , part of intermittency.
0.01 0.1 1 10 100 Intermittency of the so-called temperature dissipation rate
f[s] [4,8] is characterized in turbulence by
FIG. 3. Spectrum in the telegraph approximation computed us- x= d_TZ ) (5)
ing twenty realizations of the temperature trace, for the hot case dt

(upper ploj and for the cold casébottom pary. The straight lines ] o '
(the best fif show that the power-law approximati¢?) holds well ~ (This measure of dissipation is not to be confused with the

for both hot and cold cases.

B=3-a.

If we substitute in Eq(4) the value ofa=1.37(as observed
in Fig. 4) we obtainB=1.63. This is considerably larger than

other measure of dissipation from gradients, discussed be-
low.) Following Obukhov[4], the local average

1 t+7
Xr= " f x(Ddt
t

T

that actual value measured in Fig. 3, namely 1.38. This difcan be used to describe the intermittencyoThe scaling of
ference is the object of interest to us here; as already rehe moments,
marked, since there are no amplitudes involved, it must be

o
10° ¢ o7 o ©
10° assuming that scaling exists, is a common tool for the de-
T 102 [ scription of the intermittency4,8]. Intermittent signals pos-
= I sess a nonzero value of the exponggpt Of particular inter-
10" | est is the exponent, for the second-order moment.
- The telegraph approximation is a composite of Heaviside
10001 step functions, so the dissipation rg&® is a composite of
' pulses(i.e., é functiong located at the edges of the boxes of
the telegraph signal. For the uniform random distribution of
10* the pulses along the time axigq=0. Nonzero values ofi,
o[ mean that there is a clusterization of pulses. Figure 5 shows
. 10" r dependence of the normalized dissipation l(a@ on 7 for
\g/_ 102 } the telegraph approximation of hot and cold signals. The
- straight lines(the best fity are drawn to indicate the scaling
10 - law (6) for q=2. It should be noted that scaling interval for
10° the dissipation rate is the same as those for the probability
0.1 density function and for the spectruf. Figs. 3 and 4

TIs]

Values of the intermittency exponenp, calculated as slopes
of the straight lines in Fig. 5, ig,=0.47+0.03. The rela-

FIG. 4. The probability density function of the duratiofior the  tively large value of the exponent, suggests that the clus-
telegraph approximation of the temperature sigf@i hot and cold  terization of the pulses is quite strong. The temperature dis-
cased The straight linegthe best fits are drawn to indicate the Sipation can be also characterized by the “gradient” measure
scaling law(3). [4,8]
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10
H E(f) = f WG(fHp(t)dt, (7)
7 -
6F whereG(ft) is a transform function and the weight function
5r W(t) is supposed to have a scaling form
N/\ a4k 0.47
§ .| WI(t) ~ t°. (8)
“:5 Since the quantitie&(ft) and p(t)dt are dimensionless, one
Vool can use dimensional considerations to find the expogent
(cf. Ref.[4]) through
O hot
< cold W(t) ~ <X>t2, 9
101 : 1' : 1'0 and the use of Eqg2), (3), and(7); this yields relation(4).

To estimate the clusterization correction on the relation
between scaling spectrum ap¢t), we should take into ac-

FIG. 5. Normalized second moment of the local dissipation ratecount, the.two-pomt Correlatlon. in the telggraph Sl_grféj)' .
for the telegraph approximation plotted againgor cold and hot In a situation where the two-point correlation function exhib-

cases. The straight lingghe best fits are drawn to indicate the its the scaling behavior
scaling law(6). &) ~t7?, (10)

the correlation exponeny is the same as the exponemj.
f (VT)2dv This is easily seen by the well-known res(if] that the
_ U correlation dimensiom, is related toy through

Xe =" s
DZ:]‘_’YI (ll)

T[s]

Uy

wherev, is a subvolume with space-scaldgfor a justifica-
tion of this measure, see Rd#], p. 381 and latgr The
scaling law of the moments of this measure are important D,=1-puy, (12)
characteristics of the dissipation fie[8]. By Taylor’s hy-

pothesig4], we can replaceT/dx by dT/(udt (where(uyis ~ thus yieldingy=u,. To estimate the weight functiow(t)
the mean wind and is the coordinate along the direction of with the same dimensional considerations as above, and to

the wind, and can define the dissipation rate as _take into account the two-point correlatiorhich character-
izes clusterizatiop we replacgy) by

and tou, [8] via

(AT 2
f (E) dt (XOYM? ~ 22, (13)
0
Xe = T Replacing Eq(9) by
L/ UA\LI22
wherer=r/(u). This, too, should follow the scaling relation WD ~ O™t (14
(6). we have
This definition has a problem in the telegraph approxima- W(E) ~ (222, (15)

tion becausalT/dt is composed ob functions. Fortunately,
one is interested in the scaling of the discrete representationhe corresponding correction of E@) is
of the dissipation field, given by

B=(3~ual2) - a. (16)
- O - 07, Using the value ofu,=0.47 from Fig. 5 and the value
A n%( w1~ O ~1.37 from Fig. 4, we obtain

wheren specifies an interval of space. This discrete defini- E(f) ~ 714, 17
tion of x, avoids the problem withs functions. Obviously, \hich compares well with the behavior found in Fig(s®e
for the telegraph signal, scaling exponents calculated for thgisg Refs/5,6)).

pulsedefined dissipation, Eq$5) and (6), and for the dis-
crete spikelikeprocess are identical; this observation is not

true for the original temperatur®(t). V. SUMMARY AND DISCUSSION

The results discussed so far are for a fixed Rayleigh num-

IV. CLUSTERIZATION AND THE SPECTRUM ber. The same situation seems to occur at other Rayleigh

numbers. For those Rayleigh numbers where there is a rever-

The spectrum of the telegraph approximation can be resal of the wind, the concatenated data corresponding to one
lated to the probability distributiop(7) through given direction of the wind follow the same statistics as well.
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Thus, the characteristics discussed in the paper are generallyponentu, for the telegraph approximation should arise
valid for turbulent temperature fluctuations at all Rayleighentirely from clusterization. The value @f, is about 0.47.
numbers covered in the measurements. One main COHClUSIQThiS should be Compared with the intermittency exponent

is that the telegraph approximation captures the basic statigomputed for they-y correlation of the full temperature sig-
tical features of the temperature time trace obtained in COMA4l1. which is about 0.36—consistent with similar estimates

vection. This approximation, which gives a clear separation, ;iapie for passive scalafsee, e.g., Ref10]). The clus-
between clusterization and magnitude intermittency, ha ’ '

been useful in demonstrating that there is a significant tenferization exponent is thl_JS larger thgn the classical intermit-
dency for the plumes to cluster together. The telegraph ag€NCcy €xponent. From this, one can infer that the magnitude
proximation turns out to be useful here because of the spditérmittency plays a smoothing role on the clusterization
cific process of heat transport, which is determined in largéffécts within the scaling interval.
measure by the random motion of temperature plumes. How-
ever, one can expect that this approximat{on its modifi-
cationg may be also useful in the description of other turbu- ACKNOWLEDGMENT
lent signals.
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