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Temperature time traces are obtained in turbulent thermal convection at high Rayleigh numbers. Measure-
ments are made in the midplane of the apparatus, near the sidewall but outside the boundary layer. A telegraph
approximation for temperature traces is generated by setting the fluctuation amplitude to 1 or 0 depending on
whether or not it exceeds the mean value. Unlike the standard diagnostics of intermittency, the telegraph
approximation allows one to distinguish the tendency of events to cluster(clusterization) from their large-scale
variability in amplitude. A qualitative conclusion is that amplitude intermittency might mitigate clusterization
effects.
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I. INTRODUCTION

We consider turbulent convection in a confined container
of circular cross section and 50 cm diameter. The aspect ratio
(diameter/height) is unity. The sidewalls are insulated and
the bottom wall is maintained at a constant temperature,
which is higher by a small amountDT than that of the top
wall. The working fluid is cryogenic helium gas. By control-
ling the temperature difference between the bottom and top
walls, as well as the thermodynamic operating point on the
phase plane of the gas, the Rayleigh number Ra of the flow
could be varied between 107 and 1015. We measure tempera-
ture fluctuations at various Rayleigh numbers towards the
upper end of this range, in which the convective motion is
turbulent. Time traces of fluctuations are obtained at a dis-
tance of 4.4 cm from the sidewall on the center plane of the
apparatus. This position is outside of the boundary layer re-
gion for the Rayleigh numbers considered here. More details
of the experimental conditions and measurement procedure
can be found in Ref.[1].

A significant part of convection, even at the high Rayleigh
numbers that concern us here, is due to plumes[2]. We use
the term “plume” here merely to denote an organized activity
of convection without implying much about their three-
dimensional shapes and sizes, or the parameters on which
they scale, though a few comments will be made momen-
tarily. The primary goal of the paper is to learn about the
tendency of the plumes to cluster together(clusterization).

The upper part of Fig. 1 shows a short segment of tem-
perature fluctuations at Ra=1.531011. There are four large-
scale events within this segment(marked by the letters
A–D), and we imagine them to be the manifestation of large-
scale plumes. Each event consists of several subevents, and
there also exist a number of small events markeda–i. While
it may well be that the subevents deserve to be considered
separately, we regard them collectively here. Under these
circumstances, it is clear from Fig. 1 that a typical lifetime of
the large events is of the order of 8 s. Noting from Ref.[3]
that the mean speed of the large-scale circulation(mean
wind) for these conditions is about 6 cm/s, a typical length
scale of these events is of the order of 50 cm, which is the

characteristic dimension of the apparatus. That is, if these
large-scale plumes originate from the boundary layer, it is as
if a significant fraction of the boundary layer on the bottom
wall participates once in a while in this activity that we have
called the large-scale plume. The maximum temperature in
these large-scale plumes is a fraction of the excess tempera-
ture of the bottom plate(namelyDT/2), so, presumably, the
fluid that is participating in the formation of a typical large-
scale plume comes from the top parts of the boundary layer.
They are certainly not small-scale events that scale on the
thickness of the boundary layer. This description does not
apply to small-scale plumesa–i, though, presumably, they
too belong to the same family. In Fig. 1, we show the case of
hot plumes, that is, the case when the wind at the measure-
ment point arrives from the hotter bottom plate. One can
imagine that the wind direction could be just the opposite,
leading to the arrival at the probe of cold plumes coming
from the colder top plate. We have analyzed such instances
as well. Further, beyond a certain Rayleigh number, as de-
scribed in Ref.[3], the mean wind reverses itself randomly,
so that a probe permanently held at one position sees hot
plumes for some period of time and cold plumes for some
other period of time. We have analyzed the two parts sepa-
rately by stringing together only hot parts or the cold parts of
a measured temperature trace. In each case, the telegraph
approximation is related to specific properties of the under-
lying physical processes associated with hot or cold plumes,
as they encounter the probe during their motion.

II. RANDOM TELEGRAPH APPROXIMATION

A more detailed discussion of the plumes will be pre-
sented elsewhere but we limit ourselves here to a discussion
of their tendency to cluster together occasionally. This is not
obvious from the piece of the temperature trace shown in
Fig. 1, and a longer trace crowds the plumes too much. It
may be surmised that the clusterization is indeed responsible
for the mean wind in the apparatus. In the usual methods of
analysis of turbulent signals[4], it is difficult to separate the
clusterization effect from the traditional intermittency effects
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arising from amplitude variability. To separate these two ef-
fects, we ignore the variation of the amplitude from one
plume to another and replace the temperature trace of the
type shown in the upper part of Fig. 1 by its random tele-
graph approximation, shown in the lower part. This approxi-
mation is generated from the measured temperature by set-
ting the fluctuation magnitudes to 1 or 0 depending on
whether or not the actual magnitude exceeds the mean value
(marked as zero and shown by the dashed line in the upper
part of Fig. 1). Formally, for the temperature fluctuationQstd
(with zero mean), the telegraph approximationTstd is con-
structed as

Tstd =
1

2
S Qstd

uQstdu
+ 1D . s1d

By definition, T can assume either 1 and 0. The telegraph
approximation can be generated by setting different “thresh-
olds” from the mean. It turns out that most properties exam-
ined here are reasonably independent of the threshold; this
comment will be recalled also at other specific places in the
paper.

It may be useful to know how the conventional statistics
for the random telegraph approximation compare with those
of the temperature signal. Figure 2 compares the spectral
densitiesEsfd of the telegraph approximations with those of
the full signal. The comparisons are made separately for hot
and cold cases. It is clear that the spectra of the telegraph
approximation are close to those of the original signal in a
significantly large interval of scales. The main difference is
that the telegraph approximation has a larger spectral content

above a certain frequency. This is not difficult to understand
from a visual inspection of Fig. 1.

Of particular interest is the power-law behavior of the
spectral densities of the telegraph approximation. For both
hot and cold cases, they follow a power law of the form

Esfd , f−b. s2d

Though this power-law behavior is clear from Fig. 2, we
reproduce in Fig. 3 the spectra of the telegraph signal, com-
puted from several records to attain better statistical conver-
gence, in order to emphasize the power-law scaling. The ex-
ponent b=1.38±0.02. A reasonable shift of the threshold
does not change the spectral exponentb. From the closeness
of the spectra of the temperature trace with its telegraph ap-
proximation, it is inferred easily that the former has a spec-
tral exponent of 1.38 as well, though this applies to a smaller
range of scales on the low-frequency end. Observation of the
temperature trace spectra with such a power-law exponent
was first made in Ref.[5], and was explored theoretically in
Ref. [6], and is now a well-known result.

The probability density function of the duration between
eventst for the telegraph approximation is shown in Fig. 4.
Data for the hot and cold cases are given separately. The
log-log scale has been chosen to emphasize the power-law
structure

pstd , t−a. s3d

For both hot and cold cases, we observea=1.37±0.03. A
reasonable variation of the threshold in the vicinity of the
average value does not change the exponenta.

It is known that, for nonintermittent cases(Ref. [7] and
Sec. IV), the relation between the exponentsa andb is given
by

FIG. 1. An example of the measured temperature time trace
(upper part) and its random telegraph approximation(lower part). In
addition to the small plumes markeda–i, there are several others
such structures in the signals. They have not been marked merely
because they occur below the zero line. Here and for other figures,
Ra=1.531011.

FIG. 2. Spectra of the telegraph approximation(thicker line) of
two realizations of the temperature trace compared with those of the
temperature trace itself(thinner line). The ordinate has been shifted
so that the first points in both spectra coincide.
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b = 3 −a. s4d

If we substitute in Eq.(4) the value ofa.1.37(as observed
in Fig. 4) we obtainb.1.63. This is considerably larger than
that actual value measured in Fig. 3, namely 1.38. This dif-
ference is the object of interest to us here; as already re-
marked, since there are no amplitudes involved, it must be

related to clusterization entirely(see also Ref.[7]). It is of
interest to note here that, for the telegraph approximation of
the temperature fluctuation in the turbulent atmospheric
boundary layer, we geta [when taken from Eq.(3)] and b
[when taken from Eq.(2)] to be about 1.38, while the spec-
tral density of the temperature trace has a roll-off rate of
about 1.66 (consistent with the Kolmogorov-Obukhov-
Onsager-Corrsin theory[4]). It is clear that the spectra of the
temperature signal and its telegraph approximation are closer
in confined convection than in atmospheric turbulence.

III. QUANTIFYING CLUSTERIZATION

The difference between the observed telegraph spectral
exponentsb.1.38d and the expected value given by Eq.(4)
s.1.63d is a quantitative measure of clusterization[7] of
plumelike objects observed in temperature traces. This is a
part of intermittency.

Intermittency of the so-called temperature dissipation rate
[4,8] is characterized in turbulence by

x = UdT2

dt
U . s5d

(This measure of dissipation is not to be confused with the
other measure of dissipation from gradients, discussed be-
low.) Following Obukhov[4], the local average

xt =
1

t
E

t

t+t

xstddt

can be used to describe the intermittency ofx. The scaling of
the moments,

kxt
ql

kxtlq , t−mq, s6d

assuming that scaling exists, is a common tool for the de-
scription of the intermittency[4,8]. Intermittent signals pos-
sess a nonzero value of the exponentmq. Of particular inter-
est is the exponentm2 for the second-order moment.

The telegraph approximation is a composite of Heaviside
step functions, so the dissipation rate(5) is a composite of
pulses(i.e., d functions) located at the edges of the boxes of
the telegraph signal. For the uniform random distribution of
the pulses along the time axis,mq=0. Nonzero values ofmq
mean that there is a clusterization of pulses. Figure 5 shows
dependence of the normalized dissipation ratekxt

2l on t for
the telegraph approximation of hot and cold signals. The
straight lines(the best fits) are drawn to indicate the scaling
law (6) for q=2. It should be noted that scaling interval for
the dissipation rate is the same as those for the probability
density function and for the spectrum(cf. Figs. 3 and 4).
Values of the intermittency exponentm2, calculated as slopes
of the straight lines in Fig. 5, ism2.0.47±0.03. The rela-
tively large value of the exponentm2 suggests that the clus-
terization of the pulses is quite strong. The temperature dis-
sipation can be also characterized by the “gradient” measure
[4,8]

FIG. 3. Spectrum in the telegraph approximation computed us-
ing twenty realizations of the temperature trace, for the hot case
(upper plot) and for the cold case(bottom part). The straight lines
(the best fit) show that the power-law approximation(2) holds well
for both hot and cold cases.

FIG. 4. The probability density function of the durationt for the
telegraph approximation of the temperature signal(for hot and cold
cases). The straight lines(the best fits) are drawn to indicate the
scaling law(3).
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xr =

E
vr

s¹Td2dv

vr
,

wherevr is a subvolume with space-scaler (for a justifica-
tion of this measure, see Ref.[4], p. 381 and later). The
scaling law of the moments of this measure are important
characteristics of the dissipation field[8]. By Taylor’s hy-
pothesis[4], we can replacedT/dx by dT/ kuldt (wherekul is
the mean wind andx is the coordinate along the direction of
the wind), and can define the dissipation rate as

xt ,
E

0

t SdT

dt
D2

dt

t
,

wheret. r / kul. This, too, should follow the scaling relation
(6).

This definition has a problem in the telegraph approxima-
tion becausedT/dt is composed ofd functions. Fortunately,
one is interested in the scaling of the discrete representation
of the dissipation field, given by

xt , o
n=1

t

sQn+1 − Qnd2/t,

wheren specifies an interval of space. This discrete defini-
tion of xt avoids the problem withd functions. Obviously,
for the telegraph signal, scaling exponents calculated for the
pulse-defined dissipation, Eqs.(5) and (6), and for the dis-
cretespikelikeprocess are identical; this observation is not
true for the original temperatureQstd.

IV. CLUSTERIZATION AND THE SPECTRUM

The spectrum of the telegraph approximation can be re-
lated to the probability distributionpstd through

Esfd =E WstdGsftdpstddt, s7d

whereGsftd is a transform function and the weight function
Wstd is supposed to have a scaling form

Wstd , td. s8d

Since the quantitiesGsftd andpstddt are dimensionless, one
can use dimensional considerations to find the exponentd
(cf. Ref. [4]) through

Wstd , kxlt2, s9d

and the use of Eqs.(2), (3), and(7); this yields relation(4).
To estimate the clusterization correction on the relation

between scaling spectrum andpstd, we should take into ac-
count the two-point correlation in the telegraph signal,jstd.
In a situation where the two-point correlation function exhib-
its the scaling behavior

jstd , t−g, s10d

the correlation exponentg is the same as the exponentm2.
This is easily seen by the well-known result[9] that the
correlation dimensionD2 is related tog through

D2 = 1 −g, s11d

and tom2 [8] via

D2 = 1 −m2, s12d

thus yieldingg=m2. To estimate the weight functionWstd
with the same dimensional considerations as above, and to
take into account the two-point correlation(which character-
izes clusterization), we replacekxl by

kxt
2l1/2 , t−m2/2. s13d

Replacing Eq.(9) by

Wstd , kxt
2l1/2t2, s14d

we have

Wstd , t2−m2/2. s15d

The corresponding correction of Eq.(4) is

b = s3 − m2/2d − a. s16d

Using the value ofm2.0.47 from Fig. 5 and the valuea
.1.37 from Fig. 4, we obtain

Esfd , f−1.40, s17d

which compares well with the behavior found in Fig. 3(see
also Refs.[5,6]).

V. SUMMARY AND DISCUSSION

The results discussed so far are for a fixed Rayleigh num-
ber. The same situation seems to occur at other Rayleigh
numbers. For those Rayleigh numbers where there is a rever-
sal of the wind, the concatenated data corresponding to one
given direction of the wind follow the same statistics as well.

FIG. 5. Normalized second moment of the local dissipation rate
for the telegraph approximation plotted againstt for cold and hot
cases. The straight lines(the best fits) are drawn to indicate the
scaling law(6).

BERSHADSKII et al. PHYSICAL REVIEW E 69, 056314(2004)

056314-4



Thus, the characteristics discussed in the paper are generally
valid for turbulent temperature fluctuations at all Rayleigh
numbers covered in the measurements. One main conclusion
is that the telegraph approximation captures the basic statis-
tical features of the temperature time trace obtained in con-
vection. This approximation, which gives a clear separation
between clusterization and magnitude intermittency, has
been useful in demonstrating that there is a significant ten-
dency for the plumes to cluster together. The telegraph ap-
proximation turns out to be useful here because of the spe-
cific process of heat transport, which is determined in large
measure by the random motion of temperature plumes. How-
ever, one can expect that this approximation(or its modifi-
cations) may be also useful in the description of other turbu-
lent signals.

Since the possible effects of amplitude variations are re-
moved in the telegraph approximation, it is clear that the

exponentm2 for the telegraph approximation should arise
entirely from clusterization. The value ofm2 is about 0.47.
This should be compared with the intermittency exponent
computed for thex-x correlation of the full temperature sig-
nal, which is about 0.36—consistent with similar estimates
available for passive scalars(see, e.g., Ref.[10]). The clus-
terization exponent is thus larger than the classical intermit-
tency exponent. From this, one can infer that the magnitude
intermittency plays a smoothing role on the clusterization
effects within the scaling interval.
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