7. Turbulent Flows

7.1 Fundamentals of Turbulent Flows

When a viscous fluid flows through long straight tubes at reasonably high
speeds, the Hagen—Poiseuille law, according to which the pressure drop is lin-
early proportional to the volume of fluid flowing through the pipe, is replaced
by another law, in which the pressure drop is significantly greater, and al-
most proportional to the square of the volume flow rate of fluid. At the same
gime it is found that the fow field, which is smooth and straight (or laminar)
in the Hagen-Poiseuille regimne, becomes at higher velocities full of irregular
eddying motions (or turbulent). This may be seen clearly in the case of a fluid
flowing through glass tubes if a dye is introduced through a small injector at
the inlet {(Figures 7.1, 4.53). The colored filament is straight and smooth for
low speeds but breaks off and disperses almost uniformly when turbulence
develops. As a second example, consider a jet of water that emerges from a
circular orifice into a tank of still water. At very low speeds of the Huid the
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jet is smooth and steady. For higher speeds, it develops swirls of various size
amidst avalanches of complexity (Figure 7.2).
The two figures, being static, do not do justice to the dynamical inter.
actions occurring within the flow. Observation suggests that parcels of fluid
get stretched, folded, and tilted as they evolve, in turn losing shape by ag.
glomeration and breakup, while new ones are constantly being created. Thig
evolution and development of the flow does not repeat itself in full detail. Tq
gether, these features have a profound influence on the ability of the turbulent
flow to transport heat, mass, and momentum. Under suitable conditions, tuy
bulence occurs in such varied flow configurations as boundary layers, wakes
behind objects, thermal convection, and geophysical and astrophysical lows:
The turbulence in each of these contexts is different in detail but similar iy
its function.
As a practical matter, turbulence plays an important role in technology
and control phenomena such as weather and climate that have a large ef:
fect on human activities. Without turbulence, the mixing of air and fuel in
an automobile engine would not occur on useful time scales. The transport
and dispersion of heat, pollutants, and momentum in the atmosphere and
oceans would be far weaker. In short, life as we know it would not be possible
on Earth. Turbulence also has undesirable consequences. It increases energy
consumption of pipelines, aircraft, ships, and automobiles and is an aspect to
be reckoned with in air-travel safety, and it distorts the propagation of eleet
tromagnetic signals, and so forth. A major goal of a turbulence practitioner
is the prediction and control of the effects of turbulence in various applica
tions such as industrial mixers and burners, nuclear reactors, aivcraft intakes;
around ships, and inside of rocket nozzles. A major goal of a physicist work-
ing in turbulence is to understand the dynamical origin of this complexity;
describe and quantify its features, and understand the universal properties
embedded in features that are specific to a flow. A larger goal is to under
stand whether the statistical complexity of turbulence is shared in a serious
way by other phenomena such as granular Hows, fractures, and earthquakes,
[n summary, then, turbulence is a rich problem both as a paradigm of
spatiotemporal complexity and as a matter of practical importance. There
are three major aspects to be considered: the origin of turbulence, the phe-
nomena of flows in which turbulence is already developed, and the control
of turbulence in a given situation. We will be concerned primarily with the
second feature here, though brief remarks follow on the onset of turbulence

7.2 Onset of Turbulence

During the last 120 years or so a great deal of ingenuity has been expended,
on both mathematical and experimental fronts, on answering the question of
how turbulence arigses, and a reasonable picture has emerged, at least in some
instances (see Section 4.2.4). Qualitatively, the transition from the laminar to
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the turbulent state occurs if the momentum exchange by molecular transpo%'t;
cannot compete sufficiently effectively with the transport due to .maf:ro.sco.plc
Auctuations in flow velocity. Making use of the ideas of dynamic similarity,
0. Reynolds (1883, 1894) argued that the transition from the la,minar. to t,h'c
turbulent state occurs when a nondimensional parameter, now be,.armg) his
name, exceeds a certain critical value. The Reynolds number (4.51) is deh.ne.d
as Ul/v, where U 13 a characteristic velocity of the flow, [ its characteristic
size, and v the kinematic viscosity of the fluid.

h Thc situation is more complex than was originally presumed by Reynolds.
For instance, the numerical value of the critical Reynolds number depends on
the flow and a number of other factors such as the initial dist;m'ba,n(tg level
(besides the obvious dependence on the precise definitions selected for the
velocity and length scales). The notion that flows are laminar and stable up
to a certain critical Reynolds number, becoming turbulent thereafter, turns
oub to be somewhat naive in practice.

7.2.1 Linear Stability

A generic case of instability to consider in a carefully prepared experiment
is one in which the perturbations are small. This idea has prompted a vast
development of linear stability theory, the theory that calculates the Reynolds
number at which laminar motion becomes unstable to small perturbations.
Starting with Lord Rayleigh in the 1880s, O. Reynolds (1883), W.M.F". Orr
(1907), A. Sommerfeld (1908), G.I. Taylor (1923), W. Heisenberg (1924),
C.C. Lin (1955), S. Chandrasekhar (1961), and others (see, for example, P. G.
Drazin, W.H. Reid (1981) for details) have made lasting contributions to the
subject.

Since the instabilities grow only at relatively high Reynolds numbers (or
equivalently, small viscosities), it appears reasonable at first to treat the prob-
lem as essentially inviscid. Indeed, inviscid instability is often able to explain
certain observations concerning the behavior of fluids with finite viscosity.
This turns out to be the case particularly for flows for which the maximum
vorticity occurs within the bulk of the fluid instead of on the boundaries.
An excellent example is the so-called mixing layer, the flow formed when
two parallel streams with different velocities come together (see A. Michalke
(1970)). ’

Inviscid instability yields implausible answers for certain other flows. For
instance, the theory yields the result that the flow between two parallel plates,
one of which is stationary while the other moves with finite velocity, alled
plane Couette flow, is stable at all Reynolds numbers. Experiments, on the
other hand, show that the How does indeed become unstable at some finite
Reynolds number on the order of a thousand (when based on the velocity of
the moving plate and the distance between the plates). This phenomenon is
puzzling at first sight because if a flow is stable in the absence of viscosity,
the additional damping provided by viscosity may be thought reasonably to
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make it even more stable, not less so. However, viscosity plays a subtle role, ‘
as explained by W. Tollmien (1929), and more fully by C.C. Lin (1955), and

san promote instability (see P.G. Drazin, W.H. Reid (1981)).

These issues are best explained for the case of a boundary layer on a thin
flat plate, for which extensive literature is available (see Section 4.2.4). This

is an important flow in practice because it will be seen that turbulence often
arises within a boundary layer. To study the initial growth of the perturbation
in the boundary layer of a viscous fluid, W.M.F. Orr (1907) and A. Som-
merfeld (1908) derived from the Navier—Stokes equations a linear differential
equation (4.73) that is now named after them. The solutions of this equa-

tion are of the form shown in Figure 4.58. Inside the neutral curve (w; = 0), -
the two-dimensional wave perturbations are unstable (w; > 0), and outside,

they are stable (w; < 0). In regions of instability, the perturbations grow
exponentially (with time if they are spatially homogeneous, or with space if

introduced at some point in space and allowed to grow as they propagate, or

in both space and time if the perturbations are in the formn of a wave packet).

Further investigation shows that a second characteristic layer is formed
at the position in the How where the velocity of the main flow is the same as
the phase velocity of the oscillation. In the absence of friction this would lead
to singularities in the motion of fluid particles, since they are subject to the

same pressure gradient for a very long time. However, if viscosity is postu- -

lated in this second layer also, then the disturbance is free from singularities.
With the presence of viscosity, the phase displacement of longitudinal motion
produces a damping effect, which, in conjunction with the amplification due
to the secondary boundary layer, gives a critical value for the Reynolds num-

ber. Here we have only hinted at the basic physics, but it was the notable
e o b

achievement of W. Tollmien (1929) to carry out the calculation needed to
compute the critical Reynolds number,

There are other flows for which the linear stability theory gives excellent
results for the loss of stability. This loss of stability is often expressed in
terms of nondimensional parameters that are related to a suitably defined
Reynolds number. For instance, the theory (H. Oertel Jr. and J. Delfs (1996),
Chapter 8) predicts rather well the so-called Taylor number at which the How
between concentrically rotating cylinders loses stability and begins to form

torroidal vortices. The Taylor number is the square of the Reynolds number

based on the angular velocity of the rotating cylinder, the gap between the -

two cylinders, and the viscosity. The theory similarly predicts well the so-

called Rayleigh number, Ra, at which the heat transfer changes from a steady

conductive mode to a structured form involving hexagonal or roll patterns.
The Rayleigh number is a measure of the ratio of the effect of buoyancy, which

tends to accelerate a fluid parcel against gravity, to the viscous and diffusive
effects that tend to slow it down. For the fluid between a pair of infinitely
extended horizontal plates, with the bottom plate heated and the top plate :

cooled, the heat transport ceases to be purely conductive at Ra = 1708 (see
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Gection 8.2.1). In engineering literature on so-called free convection problems,
the Grashof number Gr = RaPr is often used, where the Prandtl number is
Pr = /k (see Section 9.2), x being the thermal diffusivity of the fluid.

In a broad class of flows, a few of which were just mentioned, the loss of
linear stability of the laminar state is a significant first step in the formation
of turbulence. There is more detail to be found in Chapter 8 The next step in
the process of complexity is the nonlinear stage, at which the perturbations
have grown to sufficiently large amplitude at which they begin to interact with
the mean flow and cease to grow exponentially as a result of this interaction.
This is discussed below briefly.

7.2.2 Nonlinear Stability

Tascinating advances have been made with respect to successive instabilities
potentially leading to turbulence. L.D. Landau proposed a quasi-periodic
route to turbulence (see L.D. Landouw, E.M. Lifschitz (1991)) in which suc-
cessive instabilities occur at ever faster rates and culminate in turbulence at
their accumulation point. Other possibilities such as the few-step route (D.
Ruelle, F. Takens (1971)) and the period-doubling route (e.g., M.J. Feigen-
baum (1978)) have been proposed for the generation of temporal complexity
(or chaos) in a variety of nonlinear systems. Indeed, these scenarios have been
observed in many nonlinear systems including fluid flows (and are thus be-
lieved to be universal in scope), but the appearance of turbulence is an issue
of both temporal and spatial complexity. Here, progress is attained more or
less on a case-by-case basis, although some generality of concepts does exist.
In particular, the route to turbulence is not unique, because, among other
things, the process is not merely one of successive instabilities but also one
of flow receptivity to a variety of background fluctuations that are invariably
present. For instance, for the flat plate boundary layer, unless the disturbance
level is carefully controlled, the process of transition may be bypassed alto-
gether, and pointlike disturbances may evolve into three-dimensional wave

% -
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Fig. 7.3. Transition in the plate boundary layer, M. Nishioka et al. 1990
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packets that grow quickly into spots of turbulence. These spots coalesce to

form turbulence as we know it.

For the boundary layer, when the background noise level and initial con.

ditions are carefully controlled, a variety of details can be reproduced, and

the following sequence of events occurs (Figure 4.56). Once the modes of
primary instability, known as the Tollmien—Schlichting waves, grow to finite

amplitudes, the flow develops spanwise variations. These spanwise variationg

appear rather slowly in wind tunnels, and are better studied when induced :

artificially, as was done by P.S. Klebanoff et al. (1962), who attached small
strips of tape at equal intervals across the plate. Their measurements revealed
the appearance of counterrotating vortices, and the development of definite
peaks and valleys in the Auctuation velocity. As spanwise variation intensifies,

a thin layer of high shear appears, especially at the peak, consistent with the -

observations of L.5.G. Kovasznay et al. (1962). J.T. Stuart (1963) has shown
that the convection and vortex-stretching in the presence of large spanwise
variations produce small layers of high intensity, resembling those observed
experimentally. These layers possess inflection points and are inviscidly unsta-
ble, thus leading to further high-frequency modes and the formation of new
vorticity in both longitudinal and spanwise directions. The passage of the
vortex structures results in spikes in velocity signals, as seen in the extensive
studies of M. Nishioka et al. (1990) for the case of a two-dimensional channel
(Figure 7.3). Near where the spikes occur, spots of turbulence are born. Tur-
bulent spots (H. W. Emons (1951)) have a well-defined shape within which
the fluid is in nearly turbulent motion, and are swrrounded by essentially
laminar ow. The spots grow as they propagate and merge with other spots
to become fully developed turbulent flow. The growth rate of isolated spots
is proportional to the square root of the difference between the Reynolds
number of the flow and the Reynolds number at which spots are born.

For a more detailed description of laminar-turbulent transition in the
boundary layer, see R. Narasimha (1985).

7.2.3 Nonnormal Stability
The combination of stability theory and experiment has been able to ad-

vance our understanding of the origin of turbulence in certain broad classes
of flows illustrated above. However, there are other circumstances for which

linear stability is an unsuitable starting point for understanding the onset of

turbulence. In those instances the onset of turbulence is sudden, and a fun-
damentally different sequence of events is involved. In particular, the many
scales of turbulence appear more or less at the same time. Flow through pipes

is an excellent example of this kind of transition. Typically, flows of this kind *

are stable to all linear perturbations, and one of their strong characteristics
is that the transition has no reproducible critical Reynolds number, as would
be characteristic of linear instability. The Reynolds number at which the
transition to turbulence occurs depends on the type, form, and magnitude of
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the disturbance. For the onset of turbulence, the initial disturbance and the
Reynolds number need to be large enough, and play complementary roles,
where a smaller disturbance level is needed at larger Reynolds numbers, and
vice versa. If the pipe is joined to a smooth-walled vessel by a sharp edge,
the critical Reynolds number is about 2800. If the inlet is well rounded and
the low there is prepared to be relatively free of disturbances, transition
values as high as 10% can be observed. If the inflow is very irregular, it may
fall to about 2300 (see Section 4.2.4). In fact, in the last case, the transition
Reynolds number is representative of the conditions at which large initial
disturbances just manage to regenerate continually. In contrast to pipe flow,
which is linearly stable for all Reynolds numbers, channel flow is expected to
hecome linearly unstable at a finite critical Reynolds number of 5772 (C.C.
Lin (1945), S.A. Orszag (1971)). However, experiments show that the transi-
tion does not usually wait until that Reynolds number is reached, but occurs
at lower Reynolds numbers.

The mechanism of transition in these cases is called suberitical because
it occurs below the linear stability value. W.M.F. Orr (1907) knew that
linear disturbances of a shear How could grow for some time even if they
are stable (since the concept of stability is related to the asymptotic growth
of perturbations). Many later authors have expanded on this theme (for a
summary see S. Grossmann (2000)).

Figure 7.4 shows a schematic plot of subcritical transition. With increas-
ing initial disturbance amplitudes A the transition to turbulence occurs at
smaller Reynolds numbers Rel. The transition line should be interpreted as
the envelope of all stability lines for possible types of disturbances.

It is now clear that the nonnormality of eigenfunctions of the linear op-
erator for the perturbation equation is the essential property responsible for
the transient growth of disturbances. This, together with the proper action
of the nonlinear interactions between finite disturbances of sufficient am-
plitude, leads to the onset of turbulence. The nonnormality of the linear
dynamics quite generally implies a bunching of the eigendirections. Those
disturbances that fit into the bundle decay with time, while those that do
not do so first grow algebraically at a rate that depends on the nonnormality
and the Reynolds number. Only after this transient increase do they decay.

Iamin]ar turbulent

never transition
turbulent range

Fig. 7.4. Subecritical transition
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But if there is sufficient transient amplification, the nonlinearity, which cg;
no longer be neglected, drastically modifies the dynamics, and the appearang
of an irregularly fluctuating velocity field can be expected.

7.3 Developed Turbulence

7.3.1 The Notion of a Mixing Length

The two flows with which we started this chapter are examples of developed
turbulence. In practice, we do not need to know all the details of turbulent
flows, but we wish to obtain answers to questions such as, How fast does a
jet grow on the average? How much power is required to pump a fluid at o
certain rate through a pipe? How much power is required to fly an aircraft?
How much fuel is consumed in providing a required amount of thermal energy
in a combustion chamber? It is useful for these purposes to decompose the
velocity into mean and fluctuating parts (called Reynolds decomposition after
Osborne Reynolds (4.63); see Section 4.2.4), and to obtain suitable equations
for the mean part. This can be done by substituting the Reynolds decormpo-
sition into the Navier-Stokes equations and averaging them. This operation
yields new equations (the so-called Reynolds equations, see Section 5.2.2)
that look similar to the original equations except that a new stress term
appears in addition to the viscous stress. Mathematically, the source of this
new term is the nonlinearity of the advection term in the Navier-Stokes equas
tions. Physically, turbulent fluctuations gives rise, on average, to increased
momentun transport by transporting momentum from place to place in the
flow. The new shear stress (called the Reynolds shear stress) has the form
7 = —pu/v’, where u’, v’ are deviations of the velocity components from their
average values T and v, respectively, and the overline indicates the average
over time. In order to solve the Reynolds equations and obtain formulas of
practical use, we must express 7 in terms of other quantities related to the
mean velocity. The situation, called the closure problem, is analogous to that
in kinetic theory in which the momentum transport of molecular theory is
seerl as a macroscopic viscosity, which must be prescribed. However, viscosity
is a property of a Auid that can be measured once and for all. Such simplicity
does not exist in turbulence for reasons that we shall mention presently, and
so a variety of methods has been devised to express the Reynolds stresses in
relation to the distribution of the mean velocity. The methods developed have
varying levels of success but are not universally applicable to all turbulent
flows. Approaches vary from the application of sophisticated statistical me-
chanical principles or hypotheses, whose physical content is not immediately
apparent, to the use of more or less transparent physical ideas, which cannot

always be justified.
The simplest intuitive physical picture of L. Prandt! has historically al-
lowed us to make some progress by assuming that fluid parcels (or eddies) of
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o certain size transport iomentum through the fluid by means of their seein-
ingly random motion. If so, it is appropriate to associate one length scale
with the “diameter” of these eddies, and another for the distance through
which they remain intact as they propagate relative to the rest of the Huid.
We cannot say a priori that these two lengths are the same, but we expect
that they might be proportional to each other. We now assume that the flow
is such that the mean velocity varies in a direction at right angles to the

3

streamlines (as in pipe flows). Il, as shown in Pigure 4.62, a fluid parcel is
displaced from a position y where the mean velocity is %(y) by a distance
in a direction transverse to the How, the difference between its old and new
velocities is TW(y + 1) — @(y). As a first approximation, we may write this as
19u/0y. This gives an estimate of the order of magnitude of the fluctuation
W The value of v/ is found from the assumption that two parcels of fuid,
which enter the layer in question from opposite sides and subsequently move
on after cach other, approach or recede from one another with relative ve-
locity 200T/0y. This gives rise to transverse velocities of the same order of
magnitude as /. Thus, i forming the average value w'’, we have still to
consider the signs of the corresponding « and v components, It is easy to
see, however, that in crossing a control surface parallel to the boundary, the
fluid particles moving away from the bhoundary are relatively slow compared
to those moving toward the boundary. Therefore, in general, negative values
of w' are associated with positive values of v', and positive values of «' with
negative values of ¢/, Thus the product w'v' tends to be negative in both
cases, and the new shearing stress is positive and of order p(1du/0y)?. If we
arbitrarily take the unknown factor of proportionality as unity, we merely
make a slight change in the meaning of [. To make the formula accurately
express the fact that a positive shearing stress corresponds to positive values
of Ju/dy and a negative shearing stress to negative values of 8%/0y, we nust
write

ou | ou

oy (7.1)
From this approximate cxpression, we infer that the Reynolds stresses due
to turbulent motion arc proportional to the square of velocity increments,
leading to the notion that fluid resistance varics roughly as the square of the
velocity in a turbulent flow. The length [, called Prandtl’s mizing length, is
not unlike the molecular mean free path A in the kinetic theory of gases. In
the latter, the transfer of momentum due to motion of molecules is discussed
in a way similar to our present account of the transfer of momentum by
the large-scale motion of fluid parcels. As in the present case, the deviation
from the mean velocity of particles, moving upward or downward, is given
by w' = +A0u/dy. The transverse velocity v, however, is not proportional
to ', bub is equal to the molecular velocity, cffectively a constant. Thus, the
shearing stresses due to molecular motion (the viscous stresses) are lincarly
proportional to du/dy. In gases, the mean [ree path A is inversely proportional
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to the density p, so that the factor pA present in the definition of viscosity is
independent of the density.

If we insert g, = pl?|07/dy| into the above equation, we obtain the equa-
tion 7/ = p;Ju/Oy. This is of the same type as the equation for the viscous
shearing stress 7 = pdu/Oy, and g has the dbnensions of viscosity. Unlike
the molecular viscosity coefficient, however, g, known as the eddy viscosity
coefficient, depends on the details of the flow and its Reynolds munber. An-
other important difference from ordinary viscosity is that 4 is not a unique
property of the Auid and varies from point to point in the flow. For exam-
ple, it tends to zero as the boundary wall is ap proached. In practice, these
attributes limit the usefulness of the concept of eddy viscosity. Neither is the
notion as compelling as in the molecular case, where there is a large separation
of scales between the molecular mean free path and the scale characterizing
the mean flow gradient. Indeed, in turbulence, the mixing length is often net
a negligibly small fraction of the flow size. In spite of these basic limitations,
the notion of mixing length is qualitatively ingrained even in sophisticated

theories of turbulence.

7.3.2 Turbulent Mixing

The effects of turbulence inchude not only increased momentun transport
but also the transfer by convection of all the propertics of moving matter
(heat content, quantity of admixed matter, etc.). With some exceptions, the
transport of a given property will occur, on average, from regions rich in that
property to those that are lacking in that property. In the case of temperature
differences, this means some type of turbulent heat conduction; in the case
of differences in concentration, a type of turbulent diffusion will result. Thus,
since the quantity of Leat contained in unit mass of a fAuid is ¢, T, where
T is the temperature and ¢, the specific heat at constant pressure, the net
quantity of heat flowing across unit arca per unit time is given by
0- —(‘/pf'\?t,(%{" _ w-(',,//z w01
y

(7.2)

oy

Ay’

That is, ¢,/ is the thermal diffusivity (A1 = ¢, pry). In the case of a chemical
or mechanical admixture of concentration ¢, the mass of admixed substance

transferred across unit arca in unit time is given by
(7.3)

There remains t;ho question of whether xy and D, agree numerically with
v = juy/p, considering that the mechanism of propagation ol a property of
matter, or of an admixed substance, is not quite the same as that of transfer of
momentum. The ratios v, /r, and vy /Dy are known as the turbulent Prandtl
number and turbulent Schimidt number, respectively (see Section 9.4). Their
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munerical values depend on whether one is considering turbulence near a
solid boundary, or in regions away from it (the so-called free shear flow).

This last-ientioned difference is connected with differences in the eddy
gtructure between the two classes of flows. Loosely speaking, eddies with
their axes parallel to the direction of flow predominate near a solid bound-
ary, whereas the eddies with their axes at right angles to the flow direction
pr edominate in free shear flows. Eddies of the first kind make no contribu-
tion to the transport of momentuny, whereas eddies of the second kind make a
very cousiderable contribution. Therefore, the distributions of mean velocity
and of mean temperature or concentration exhibit marked differences. That
the heat exchange is more dominant than the momentum exchange in the
.ase of [ree turbulence has also been shown by experiments on the smoothing
out of temperature and velocity distributions in the rear of lattices of heated
rods, where the temperature differences vanished much more rapidly than
the velocity differences.

In gencral, since turbulent transport and mixing depend largely on the
motion ol parcels of Huid, one may imagine that they become essentially
independent of molecular properties. [t is in fact true that the momentum
transport [ar away from the wall becomes asymptotically independent of the
Auid viscosity. The situation very near the wall is that the viscosity always
plays an important role because turbulent fuctuations arce small ,11(31 e. Tur-
bulent mixing of admixtures does seem to retain some weak dependence on
the molecular Prandtl or Schmidt munber (as appropriate). This seems to be
the result of the fact that parcels moving through the turbulent background
develop transient boundary layers on their front side, and reintroduce the
molecular Prandtl or Schimidt number effects indirectly.

7.3.3 Energy Relations in Turbulent Flows

Work is done on a fluid clement by the Reyunolds stresses and the corre-
gponding pressure diflerences. This work serves to maintain the turbulent
motion within the element. In the very simple picture considered above, the
the ed-
dying motion to maintain itself against the resistance that it encounters in
its motion.

work done on unit volume per second is 7/0w/0y. This work enables

The initiat forward motion of the individual eddy, relative to its
surroundings, is itself a turbulent motion, which, if its Reynolds number is
sufficiently high, gives rise to a turbulence of the second-order with smaller
eddies of twrbulence. These, in twrn, produce turbulence of the third-order.
This process continues until the final eddies arc so small that they cannot
become turbulent. What is left of the kinetic encrgy of these smallest eddies
is transformed into heat as a result of viscosity. This suggests that a large
range of scales is created in turbulence, and that this range is larger il we
start out with a larger Reynolds nuimber.

This sitnple notion has been formalized further by L.F. Richardson (1920)
and, particularly, A.N. Kolmogorov {1941). In describing their work, it is
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customary to speak loosely of scales of turbulence, which, while being an.
other word for sizes of turbulent eddies, conveys a far less specific picture
than balls of fluid moving about in a cohesive manner. For instance, in g
Fourier representation of the turbulent velocity, the scale size would be the
wavelength of a given mode. The Koliogorov picture is that the turbulent
energy is introduced at the largest scale, say £, whicl then cascades down to
smaller and smaller scales without dissipation until a certain smallest scale
is reached, where the velocity gradients are so large that dissipation is large
enough to damp out the generation ol even smaller scales. The amount of
energy transformed into heat per unit volume per it time, denoted by ¢,
is made up of the mean values of the squares and products ol thie partial
derivatives of o/, v/, and w’ with respect to x, y, and z. One can use ¢ and v
to define the characteristic length and velocity scales of these smallest scaleg
as I, = (3/e) and vy = (ve)'/?. These are known as Kolmogorov length
and velocity scales, vespectively. Tt is easy to verify that the Reynolds number
based on these scales is exactly unity, consistent with the idea that their order
of magnitude corresponds to the smallest dynamical scale in turbulence.

The cnergy of the intermediate scales between L and », which form a
hierarchy, is given entively by the consideration that their function is sim-
ply to transmit cnergy to the next smallest scales. Their amplitudes adjust
therisclves to the requirenient that the rate of energy transmission be in-
dependent of the scale. Since the time scales associated with smaller length
scales is shorter, the energy accordingly diminishes with decreasing scale size
in a self-similar manner. Kolmogorov also postulated that the scales will be-
come increasingly isotropic (i.e., direction-independent) as their size beconmes
sialler.

Following the discussion above, the standard approach is that there are
only two length scales of intrinsic interest in turbulence, namely L and [j.
This is not expected to be true near the boundary or if there are multiple
mechanisms for the generation of turbulence. Fven when it might be true, one
can define other length scales. The mwost popular one is the so-called Taylor
microscale A:

o\ ? (u'?)
(51‘> = const. (7.4)

In the case of isotropic turbulence (described in Section 7.4.4), G.1. Taylor

showed that ¢ is given by the simple expression ¢ = 7.5u(0u’ /9y)?. For other
forms of turbulence (wall twrbulence, free shear How turbulence), it is not clear

that the dissipation can he related to the gradient of a single velocity gradient
through a universal numerical coelficient, but the proportionality is still quite

frequently applied. I, for brevity, we write «’ instead of \/((7)7 we may put
e = const-p(u' /N2, Since v = 1|07/ 0y
for [Ju/dy| and replace
have

. we can pub '/l as an approximation
7| by pu'# in the equation ¢ = 7/(9u/0y). We thus
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(' JA)? - const = pu’ /1,
and so
A = const -/ (vl/u').

If Rel = w'l/v is introduced as the Reynolds number for the motion of an
eddy, we have A = [/ VRel.

7.4 Classes of Turbulent Flows

The mizing length | in turbulent motion in general varies from place to place.
As yet, no general theory is available regarding its magnitude, although in a
number of particular cases it has been found possible to make agsumptions
leading to results in good agreement with experiment. In many cases it is
permissible to neglect the actual shearing stresses arising from the viscosity
in comparison with the apparent shearing stresses (see remarks above on
turbulent transport and mixing). In other instances, the more far-reaching
assumption is made that the effect of viscosity on the magnitude of [ is
negligible. In these cases, therefore, we have to deal with the turbulence of
an ideal fluid with zero viscosity. If the Reynolds number is sufficiently large,
this point of view appears to be justified.

We shall first discuss two cases in more detail, the so-called free turbu-
lence and the turbulence that arises along a smooth boundary {Sections 7.4.1
and 7.4.2). The effect of viscosity in the latter case, the flow along a rough
boundary and the flow past a plate are discussed in Section 7.4.2. Section
7.4.3 deals with stratified fluid and the How in curved flows, Section 7.4.4
with turbulence in wind tunnels (including some mention of isotropic turbu-
lence), and finally, Section 7.4.5 deals with two-dimensional turbulence.

7.4.1 Free Turbulence

[n cases such as the mixing of a free jet having a sufficiently high value of
Reynolds number with the fluid surrounding it at rest, it seems reasonable
to take the mixing length for every cross-section as being proportional to
the width of the jet there (I = ab). By b we may, for example, mean half
the base of a parabolic or paraboloidal distribution of velocity, in which the
maximum velocity and quantity of fluid moving coincide with those of the
actual flow considered. Some such assumption is necessary, since the actual
flow passes, in an average sense, smoothly into the external fluid without any
perceptible boundary. Making an assumption of this kind, we get values for
« of approximately 0.125.

Observation shows that free round jets in a sufficiently large space full of
fluid at rest spread out in such a way that except in the immediate neigh-
borhood of the outflow, the width of the jet is proportional to the distance
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from the point of outflow, while the velocity is inversely proportional to that
distance. Throughout the jet the pressure is nearly the same as in the sy
rounding fluid.

In discussions of an ordinary liquid spray, the assumption is sometimeg
made that there is a rise of pressure in the air jet as the velocity decreases, by
Bernoulli’s theorem, and that the pressure at the point of outflow is therefore
reduced, thus causing fluid to be sucked up. This is incorrect: Bernoulli’s
theorem is true only when Irictional stresses are absent, which is certainly.
not the case here. On the contrary, the suction is due to the flow around the
edge of the tube that projects into the jet at right angles. In the spreading
jet the pressure is practically the same as in the surrounding air at rest.

The decrease in velocity with increase of distance from the point of ou
flow is therefore due to the frictional stresses alone. Further, the decrease i
velocity does not take place in such a way that the same quantity of fluid.
fows across all cross-sections. That this cannot be the case is clear becaus
during the advance of the flow, fresh masses of fluid at rest are carried along
with it. This is called entrainment of the outer fluid into the jet. On the other
hand, the momentum of the jet, I = p H u? da, is constant on account of the
constant pressure. We have I = pu?nb? - const, where u; is the maximum
velocity in the cross-section. It follows from the fact that [ is constant that
uy is proportional to 1/b, i.e., to 1/z. The fow is that shown in Figure 7.5 ‘
and sketched in Figure 4.63.

Another important case is that of the spread of the edge of a jet (Figure
7.6). Here u; = const. If we put I = ab, we have, as before, 77 oc a?pu?; ie.,
7/ is also constant. The loss of momentum of the part of the flow coming
from the pipe is proportional to pu?b, and the corresponding resistance is
proportional to 7 -z, so that b « oz, as in the previous example. (The
loss of momentum and the resistance are calculated for a cross-section of
unit depth in the direction perpendicular to the plane of the paper.) The
Auid sucked in from the surrounding region at rest shows an equal gain of

Fig. 7.5. Free jet, H. Oertel Sr., H. Oertel Jr. (1989)
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momentuni. The slope of the boundary between the undisturbed portion of
the jet and the turbulent zone is of practical importance. It may be taken as
1.1

Yet another case is that of the wake in the rear of a moving body (Figures
4.96 and 4.97). These and other canonical flows have been studied in detail,
and a summary can be found in books such as J.O. Hinze (1975).

An important development to which we should draw attention is that
the instantaneous boundary between the turbulent and nonturbulent parts
of free shear flows is quite well defined and relatively sharp at high Reynolds
aumbers. This is also true of wall-bounded flows on the side exposed to the
free stream. Such boundaries, or interfaces, also exist for admixtures. In a
given flow, the interfaces for turbulence itsell and those for admixtures of

Fig. 7.6. Jet perturbation, H. Oertel Sr., H. Oertel Jr. (1989)
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various kinds do not necessarily match, either on average or instantaneously
But all these interfaces have convolutions on many scales, from the largeg
possible to the smallest allowed by viscous or diffusive effects. The stochasti

geometry of these boundaries in a range of scales can be described in termg

of fractals (see, for example, K.R. Sreenivasan (1991)).

7.4.2 Flow Along a Boundary

In cases of flow along boundaries, the mizing length must tend to zero as the
boundaries are approached. This is clear from the definition of the mixing
length. It follows from this that 9u/dy becomes very small in the interior
of the How but reaches large values in the neighborhood of the boundaries;
Figure 4.54 shows the differences between the distributions of velocity for
turbulent flow and Jaminar flow in a tube.

Following Section 4.2.4, we might regard that the layer of fluid next to
the boundary adheres to it even in the case of turbulent flow, and in the
immediate neighborhood of the boundary a thin sublayer is formed with
O/ Oy = Twan/ 1, provided that the boundary is smooth. It should be stressed
that the viscous sublayer is highly disturbed and is far from being laminar, ag
it once was thought to be. For large values of the Reynolds mumnber, the value
ol Twan 18 quite considerable, owing to the vigorous mixing in the interior of
the Huid, so that the rate of increase 9w/ dy is extremely rapid, and the viscous
sublayer is accordingly very thin. For a superficial observation, it thus seems
as il in turbulent motion the velocity has a finite value even at the boundary
itself,

From the theoretical point of view, a general idea of the state of affairs
may be obtained simply if we assume that the shearing stress is constant
throughout the region outside the viscous layer. In actual cases of flow, 7
decreases continuously as the distance from the boundary increases beyond a
point. {For the pipe, 7 becomes zero on the axis.) Nevertheless, the formulas
obtained by putting 7 = const = Twa; give very useful approximations even
in this case, since the greater part of the velocity change occurs very close
to the boundary. For pipes, the formulas below hold nearly to the axis, since
here [ lags behind ky as the distance from the wall increases. If this is positive,
Ju/Oy is also positive. The total shearing stress (7 = F 4 7/, the mean value
ol the viscous stress plus the apparent shearing stress due to turbulence) is
then given by

o o [ O 2
- fb < T 7 5
Ten Oy / ( Oy (7.5)

The first term is important only for very small distances from the boundary.
If the Reynolds number is fairly large, the second term is so much greater
than the first (except close to the boundary) that the first may be neglected
in comparison with it. Taking the square root of the resulting simplified form
of equation (7.5), we have
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T ot X
p Oy
yom the right-hand side we readily sec that T 1as the dimensions
oY the right-hand sid readily sec that ») has the dimensi
of a velocity. For simplicity, we introduce the symbol u, and call it the friction
velocity. It is of the same order of magnitude as the velocities «/, v due to

gurbutence (or, more accurately, w, = \/(717’)) With the assunption we
have made here, however, u,; may be regarded as constant.

We shall now suppose that y = 0 represents a smooth wall, and, for
gimplicity, regard it as extending to an infinite distance in both horvizontal
directions. We shall assume that another wall is at an infinite distance away
from the first wall. Then 7 depends on y only. In what follows, thercfore, we
shall write dit/dy for 0u/dy, and since we shall 1o longer be concerned with
Auctuations, we shall also drop the averaging.

We have now to find a reasonable law for the mixing length £, i.c., one that
gives the correct dimensions. I we make the further asswnption (suggested
by observation) that [ is mnaffected by Huid viscosity, the only length we have
at our disposal is the distance [rom the wall y. The only dimensionally correct
formula for [ is then

l = kry. (7.7)
The numerical factor £ is essentially a universal constant of this problem in
turbulent flow. It is known as the Kdarman constant, due to Th. von Kdrndn.
From equation (7.6) we then have

du
Ly = RY—. (7.8)
dy
Since w, is constant, this can be iimmediately solved, giving
1 ’
=y ~Iny+C) (7.9)
K
For large values of the Reynolds nunber this expression is in reasonable
agreement with observation, with 0.41 as the accepted value of the IKarman

constant. (It is true that for y = 0 the f()l‘llllll‘t gives the value —oo instead of
the value 0, but we know already that our simplified calculation will not apply
at or near y = 0; instead, we should have to use the more accurate equation
(7.5) and sct up a modified formmla for I involving the second length v/u, .
We shall discuss the role of this sccond length S('éll(‘, later.)

We can also obtain an expression for ¢, the constant ol integration in
equation (7.9), frow the fact that the visc (mly becomes important in the im-
mediate neighborhood of the wall. The expression in parentheses in equation
(7.9) must be a pure number aud must not depend on the units employed.
This is achieved if we subtract [rom Iny the logarithm ol the length v/u,
mentioned abovo, i.(\,., il we put

-t (7.10)

KooUr
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Then 4 is a second universal number, and we have
T yur ) ~
U= Up (— In & + (,71) (7,11)
K v

Since the greatest velocity differences occur in the immediate neighborhood:
of the wall, equation (7.11) may also be used as a good approximation ip
cases in which the shearing stress 7 depends on y. We have merely to set
ty = /(Twant/p), and obtain values of the velocity that are found to lie very
close to the observed values. For these cases that deviate from the theory,
e.g., for How in pipes, the observed values of w/u, can be plotted againgt
log o ¥, The curve obtained is almost a straight line. If equation (7.11)
is used in this way as an approximation to the distribution of velocity in
smooth-walled straight pipes, Nikuradse’s experiments (J. Nikuradse 1932)
give © = 0.40 and ) = 5.5. Passing from natural logarithms to ordinary
logarithms (lnaz = 2.3026 log,, «), we obtain

Yibr
U= Uy (5‘()' log g LA 5'3) (7.12)
14

M. V. Zagarola and A.J. Smits (1998) have rccently extended the range of
pressure drop measurements in a pipe up to about 36 million in the Reynolds |
nwber based on the pipe diameter, thus extending Nikuradse’s range by a
[actor of about 10. They confirm the existence of a logarithmic region (though
the Kéarman constant in these measurements is a few percent lower).

It should be mentioned that there is a different scheme of describing the
velocity distribution in pipe Hows (and, in general, in wall-bounded flows).
This scheme, in its modern form, is due primarily to G.I. Barenblatl (1993).
Tt proposes that (7.8) is not strictly valid because the influence of the second
length scale, namely v/u,, never strictly disappears but remaiuns in tact,
though perhaps only weakly. Loosely speaking, this expectation is in keeping
with the spirit of the behavior of condensed matter near the critical point.
Instead of equation (7.8), one then has

e Ve ryus\?
dy  wy < v > ’
where 7 is an undetermined constant. Integrating the equation, one can see
that a power law cmerges for the velocity distribution. Barenblalt and his col-
laborators have examined the data of Nikuradse, and also those of Zagarola
and Smits in the lower range of Reynolds number, and concluded that the
power law provides a better fit to the velocity distribution than the loga-
rithmic law. They have determined the constants in the power-law velocity
distribution by empirical fit to the data.
This description is not merely one of which of the two forms fits the data
better, but is one of principle: Fven at high Reynolds numbers, and not too
close to the wall, does the influence of the secoud length scale v/u, disappear
altogether, or remain weakly present? A firtu answer to this question will have
a basic consequence to our thinking on how one quantity scales with another

(7.13)
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bounded flows. At the moment, there is still considerable debate as

in wall- _ ) rintion iu the
her the logarithmic or the power law is a proper deseription in the

to whet

region not too close to the wall.
L)

» 4.3 Rotating and Stratified Flows, Flows with Curvature Effects

go far, we have assumed that Barth’s rotation and density stratification ,,t}“}t/
evident in most natural flows are of no consequence in tlll'\)l'ﬂ(‘ll(‘t(‘/. Fhis
is true to a large measure in laboratory flows, t:hm‘lgh these cffects can be
jmportant even on that scale. One need ()nly consider the 1?‘(11,]11,111)"\7()141 ex
and its direction of rotation of the fuid as it nears t;hy (11';}111. ;I,x(\‘}‘.g(‘,—s(‘n,lo
flows such as hurricanes are clearly affected by both Earth's rotation and

are

density stratification. o
’ Tl;c main effoct of rotation is to introduce centrifugal and Coriolis {(n'(:ots'.
The centrifugal force always acts perpendicular to the axis of 11()1’.;&,1()11, fm(l is
gimnilar in structure Lo the pressure gradient, with which it is ()Hx“n (:'()11?‘1(‘1(\,1‘(\,(1
together. [n the case of the flow past curved objects, tur] )1%1011(*,(» is diminished
or increased as a result of the centrifugal forces, according to \\711(‘,1111(‘,1" the
yelocity increases or decreases from the center of eurvature outwards. Here
the variation in magnitude of the centrifugal forces plays H.m same }'Ql()'aﬂ
that played by variation of the force of gravity in the fow of layers di flering
in density. .

M. Couctte (1890) investigated a fluid in the space between two (':yhn(lm'.s',
the outer (radius r1) rotating and the inner (radius o) ab vest. H the gap
d = 1y — 1 between the cylinders is small compared with 7y and 79, }}11()1'(! is
a critical peripheral velocity v such that the Reynolds muuber wgd/v 1s.(‘:(u1a,l
to 1900. If the distance between the cylinders is greater, then the stabilizing
effect of the centrifugal forces mentioned above comes into play, and the
critical value of Reynolds number vises sharply. On the other hand, if 1,11(:'i11]1<",1'
cylinder rotates and the outer one is al rest, even the st,;'(mmliqa Hlf)tl()l% 1
unstable, regular eddies being formed with their axes parallel to the ({11'0(:’111(.)11
in which the periphery is moving and with alternate right-handed and 1(‘,?1#‘
handed directions of rotation (see Figures 7.7 aud 8.33). A condition for
the oceurrence of this instability was obtained by G.1. Taylor (1923) and
confirmed by experiment. [t may be expressed as follows:

o

(7.14)

1%

where 7 is the mean of the two radii.

The stability or instability just mentioned is noticeable
boundary layers ab swrfaces of comparatively slight curvature. The t,url)}ﬂom,
mixing is hampered at convex surfaces and strengthened at concave sgrhu;o&
2ddios similar to those of Taylor, described above, may even ocewr i lam-
inar flow past concave swrfaces. According to H. Gértler (1941), 1§ is the

in turbulent
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thickness of the boundary layer, Ud/v = 164/(r/§) may be regarded as t}
limit of stability (see Section 8.3.2).

Examples of the turbulent velocity profile between a rotating cylind
and a nonrotating cylinder are given in Figure 7.8, based on experiments ly
F. Wendt (1933). The exchange of momentum is small if the outer cylinde
rotates, but large if the inner cylinder rotates.

The Coriolis force, which acts perpendicular to the axis of rotation azg
is perpendicular to the relative velocity, may be explained as follows. If 5
fluid mass moves from Earth’s equator to the north, it crosses latitudes with
decreasing radius. To preserve its angular momentum, the fluid parcel hag
to spin faster and thus move to the right. A fluid parcel moving toward thé
equator will have to slow down and move, relative to Earth, to the left. The
movements i the Southern Hemisphere are just the opposite. The Coriolig
force, which thus depends on the latitude, is proportional in magnitude to the
sine of the latitude, and is a source of additional vorticity, and turbulence, in
rotating systems (see Chapter 12).

upwal‘d (as, for example, in a mass of air with the ten.lperature increasing
upward, ot where there is a layer of fresh water supa:‘rnnposed on salt wa-
ter), the process of turbulent mixing must cause heavier layers to be 11’10\f@d
above the lighter, and lighter layers to be pushed down below the heavier.
That is, part of the work available for the maintenance of turbulence (derived
from the main flow) is used up against gravity. This may cause the turbulent
motion to be diminished and possibly die out altogether. This is the expla-
nation of the cessation of turbulence and dying down of the wind at night
in the lower layers of the atmosphere (the wind still continuing unabated at
a higher level). Conversely, turbulence is increased by irradiation from the
ground, which causes a reversal of the stratification, resulting in dense layers
higher than less dense ones. This is what happens, for example, in so-called
Rayleigh-Bénard convection, in which a fluid layer contained between two
horizontal plates is heated at the lower plate and cooled at the top plate.

The precise circumstances in which the Coriolis force is important depend i A u
on the relative magnitude of other forces. The ratio of inertial to Coriolis cm/s cm/s
forces is called the Rossby munber. A second parameter, called the Ekman 200
number, is the ratio of frictional forces to the Coriolis force. In most geophys-
ical flows (which include atmospheric and oceanic motions), the inertial for
is by far stronger than the [rictional force, so it is often the Rossby number 200
that is important. In the boundary layers, of course, the Ekman number is 0
also of consequence. 10
An additional effect is due to density stratification. In a How that is 2
predominantly horizontal, if the density of the medium diminishes rapidly 100
0
9
10
0
11
100
12
100 13
200F 14 ==
200 ! I -— | | -
0 1 d 0 | d

Fig. 7.8. Turbulent velocity profiles in the cylindrical gap of a rotating and a fixed
cylinder, F'. Wendt (1933)

Fig. 7.7. Taylor instability
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7.4.4 Turbulence in Tunnels

Much attention has been devoted to turbulence in wind tunnels. Here ty
bulence is undesirable, since one object of experiments in wind tunnels ig
to simulate the state of affairs when a body is moving at a uniform Speed
through air at rest. Turbulence, however, cannot be entirely avoided. Resid.
nal turbulence remaing even after the air has passed through a honeycomh
and screens at the entrance section of the tunnel (see Figure 7.9). This parti
ularly affects the occurrence of turbulence in the boundary layers on bodieg
under investigation, and hence also the separation of the flow from the bod..
fes. Separation changes the character of the flow near the wall and affects
transport properties immensely, Needless to say, controlling the wind-tunnel”
turbulence is especially important in studies of laminar-to-turbulent transi--
tion in boundary layers and other Hows.
The earliest way of measuring turbulence in a wind tunnel was by the
fall in the drag of a sphere due to the onset of turbulence in the bound-
ary layers. Later, G.B. Schubauer, H K. Skramstad (1947), and H.L. Dryden
(1948) worked out methods using hot-wire anemometers, by which numerical *
values for the small fluctuations of velocity could be obtained more or less
reliably. It was found that wind-tunnel turbulence (or, more generally, any
turbulence arising from flow through a grid of bars ) has simple properties at
sufficient downstream distances from it. It is found to be nearly homogeneous -
and isotropic; that is, the fluctuations of velocity are of the same magnitude
across the wind tunnel cross-section, and their magnitude is the same in all
directions as well. Homogeneous and isotropic turbulence is thercfore the sim-
plest form of turbulence, and can be dealt with up to a point by statistical
theory and by experiiments suggested by theoretical work. Special reference
should be made to the papers by G.I. Taylor (1935, 1936), who introduced
the concept, and Th. won Kdrmdn (1948), who was responsible for deriv-

Fig. 7.9. Turbulent Aow behind a wind-tunnel honeycoinb, M. Lesieur (1997),
picture by J.L. Balint et al.
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ing an important equation for statistical quantities from the Navier-Stokes
equations.
The simplest statistical quantity is the mean energy of fluctuation

E = %p ((«u/?) + (v2) + Wj} .

From a series of measurements made for a grid of mesh-width m through
which fluid moves with mean velocity U, it is now known that ¢ behaves
as a power of the distance from the grid. Equivalently, in situations where
+he turbulence is generated by sweeping a grid of bars at velocity U through
a fuid medium at rest, the decay of the energy changes as a power law in
time. The power-law exponent is roughly —1.25. It is not clear whether this
exponent is universal, or depends weakly on a number of features such as m,
the diameter of the rod, the geometry of the rod itself, and on whether the grid
is passive or has some moving elements to it. The constant of proportionality
in the formula is indeed nonuniversal and depends strongly on the details
just mentioned.

An idea of the distribution in space of the fluctuations in velocity may be
obtained by studying the correlation between the velocities at neighboring
points A and B. For isotropic turbulence there are only two nonzero corre-
lations, both functions of the distance r = AB. In Figure 7.10, R, is the
correlation between the components of velocity at A and at B parallel to
the line AB separating the two points, and Ry the correlation between two
parallel components of velocity at A and at B at right angles to the line
AB. Because of continuity, it can easily be proved, as was done by Th. von
Kdrmdn, that R and Ry are connected by the relation

(7.15)
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Fig. 7.10. Correlation of velocity Auctuations
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@ = Q(Rg - R})
dr

From the graph of R; the characteristic length of turbulence can be de
rived: [UOO Ryi(r)dr = L. Tt is closely related to the mixing length . The valys
of L in Figure 7.10 is a measure of the large eddies in the turbulence motion,
in which the energy of turbulence is controlled by the manner in which tyr.
bulence is produced. According to G.I. Taylor {1936), the statistical meay
value of the dissipation is proportional to

i ((121?,)
‘ dr? /=0’

(7.16

where

d?R 1
(IF) r—0 A2 (7-17)

The Reynolds number based on A, the Taylor microscale introduced earlier,
and the root-mean-square fluctuation velocity v’ are often used to compare
properties among different flows for which the characteristic large scale de-
pends on the geometry, and is thus not a useful scale of comparison. It should
be remembered that A does not represent the smallest scales of turbulence.
That indication is provided by the Kolmogorov scale Iy, already mentioned
in Section 7.2.3.

Isotropic Turbulence

As the name suggests, isotropic turbulence (see Figure 1.4) has no directional
preference and is a mathematical construct: In fact, turbulence can be gener=
ated only in the presence of local shear or near boundaries, and the process
of generation of turbulence tends to maintain a preferred direction. However,
the turbulence that is found far enough away from the boundary where the
mean velocity gradients are small is often approximately isotropic. Isotropic.
behavior can often be a good first approximation when deviations from it
are not large. Further, smaller scales of turbulence tend to be statistically
isotropic (though individual structures do show deviations from isotropy).
For all these reasons, isotropic turbulence is of some interest. In any case, this
is the form of turbulence most accessible to theoretical development, and has
consequently assumed an importance in its own right. Isotropic turbulence
is also homogeneous, though the mention of the latter is often omitted for
brevity.

The main techunical problems in isotropic turbulence are the nonlinear:
transfer of energy from one scale to another, and its dissipation to heat. On
average, the energy transfer occurs from large scales to small scales, though
instantaneously, there is some two-way transfer. The average transfer is as-
sumed to proceed from one scale to a neighboring smaller scale in the form of -
an energy cascade. When the scales involved are large, that is, their charac-
teristic Reynolds numbers, based on their own size, are sufficiently high, it is |
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assumed that the scales merely transmit energy to the next smaller ones with-
out dissipating any part of the energy. When the energy reaches the smallest
scales, it is presumed to be dissipated there. This is the so-called Richardson
cascade, due to L.F. Richardson (1920). If the picture holds for any type of
urbulence at all, isotropic turbulence is the most likely candidate.

One consequence of the energy cascade is that when the scales that contain
most of the energy (of order L) and the scales that dissipate most of the
energy (of order ) are significantly different, the energy dissipation rate is
the same as the rate at which energy is being pumped into turbulence at large
scales. This equality has been verified both experimentally in grid turbulence
and by solving the equations of motion on a high-speed computer, as long
as the Reynolds number of turbulence is sufliciently high for the said scale
separabion to exist. Thus arises the notion that the energy dissipation rate
in high-Reynolds-number turbulence is independent of fluid viscosity. This
seemingly anomalous behavior is of great consequence, and shows that the
limit of high Reynolds number (or vanishing viscosity) is not the same as the
case of zero viscosity. It may be recalled that this feature is comumon to all
singular perturbation problems including boundary layers.

The most significant work in isotropic turbulence is due to A.N. Kol-
mogorov (1941), which follows naturally from the Richardson cascade. Though
Kolmogorov's work was motivated by isotropic turbulence, its description is
better postponed to a later section that considers small scales of turbulence.
The reason is the widely held perception that small scales of turbulence are
statistically isotropic, independent of the nature of large scales, or, equiv-
alently, of the manner of producing turbulence. But one result should be
mentioned here. In the so-called inertial range of scales, which is smaller
than the energy-containing scales L and larger than the dissipating scales [y,
the energy transfer process adjusts itself so that the spectral distribution of
energy is given in the form

E(k) = Cpe?/3k=5/3,

where ), is the so-called Kolmogorov constant and e is the rate of energy
dissipation. The integral of E(k) over all wave numbers k gives the total
turbulent kinetic energy. Here, the wave number k takes the role of distin-
guishing different scales of turbulence: Small values of & correspond to large
scales, and large k represent small scales. The constant C, cannot be deduced
theoretically but is known from experiment to be a constant of about 0.5 at
high Reynolds numbers.

In the past, isotropic turbulence has been studied in wind tunnels behind
a grid of bars, or by pulling a grid of bars through a stationary mass of fluid.
Recently, as computer power has increased, the Navier-Stokes equations (see
Section 5.2) have been solved numerically, starting with an initial realization
of a prescribed random field. In due course, the computer solutions attain
propertics that are essentially independent of the initial conditions and repli-
ate those of measured turbulence. Such simulations have provided a very

(7.18)
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tation that it could provide insight into the three-dimensional problem. For
~instance, the two problems have in common fundamental properties such as
energy transfer between scales, dissipation mechanisims, and structure forma-
tion and evolution.

powerful tool for understanding turbulence in general, and isotropic turh
lence in particular. An interesting result to emerge is that the structure 4
small scales is in the form of vortex tubes that are long compared to theii
diameter. The vortex tubes form mosaics of several different scales. It is ng
yet clear whether this observation is of some fundamental consequence to t

theory of turbulence. Major Theoretical Results

The relative simplicity of the two-dimensional Navier-Stokes equation allows
geveral fundamental properties to be derived. The first result can be derived
in a straightforward manner by taking the curl of the Navier-Stokes equation
for an incompressible fluid, and taking the inviscid (Euler) limit. We obtain
the Helmholtz theorem

o | v =0, (7.19)

ot
where the vorticity w = Vxu is always along the axis normal to the plane.
Here arises a fundamental difference to the situation in three dimensions:
The Helmholtz equation means that vorticity of a fluid parcel is conserved
through the lifetime of turbulence. In contrast, three-dimensional turbulence
permits an additional vortex-stretching term (wVu), which is nonzero due
to the presence of the additional degree of freedom in the third dimension.
Furthermore, the restriction to the plane results in the following equations for
energy [ = §<u2> and enstrophy 2 = (w?) in two-dimensional homogeneous
turbulence

7.4.5 Two-Dimensional Turbulence

As a rule, the components of turbulent fluctuating velocities in all three di
rections are of the same order of magnitude except close to solid surfaces, o
when certain types of body forces act on the flow. This is true even in flow,
that are two-dimensioual on average (such as boundary layers on extended
flat plates, or wakes behind long cylinders, which do not have any average
variations along the span). There are circumstances, however, in which turbu-
lence is close to being two-dimensional (i.e., fluctuations are largely planar),
Examples are atmospheric and oceanic flows (see Chapter 12), which often.
have a very large spatial extent in two directions and a relatively short extent
in the divection of their depth. Such flows occur in a stratified, often rotating
environment and are central to understanding and predicting weather, dis-
persion of particles and chemicals in the atmosphere and oceans, and other
natural phenomena. Another example of two-dimensional turbulence is the
turbulent flow in a soap, which is shown in Figure 7.11.

While these examples are not purely two-dimensional, there is promis- dE w0
ing evidence that the strictly two-dimensional mathematical approximation dt ’
will allow us to make some headway. On the experimental front, there has d‘f 3 — (Vw)(Z)‘ (7.20)
been some success in generating in the laboratory close approximations to dt

two-dimensional flows that compare well to both natural flows and the math- For three-dimensional turbulence, the zero-viscosity limit is known to lead to

ematical ideal. Two-dimensional turbulence is also studied with the expec- an increase of enstrophy, because viscous diffusion of vorticity decreases, and
stretching of vortex lines is less restrained. Thus, as already mentioned, the
rate of energy dissipation for three-dimensional turbulence remains finite even
in the inviscid limit. In two dimensions, however, the enstrophy changes only
due to viscous effects, and thus can only decrease. This leads to zero rate
of energy dissipation in the inviscid limit. G K. Batchelor (1948) provided
arguments that the rate of dissipation of enstrophy is nonzero in the inviscid
limit in the two-dimensional case; this is the so-called enstrophy dissipation
anomaly.

The final picture, then, is that two-dimengional systems do not dissipate
energy in small scales. The energy is transported to larger scales and even-
tually gets dissipated by friction at the boundaries of a finite system. On
the other hand, enstrophy is allowed to cascade down the scales to be dis-
sipated in the small scales. Therefore, there appears to be some (limited)
value to casting the two-dimensional enstrophy {(vorticity) as analogous to
three-dimensional energy (velocity). This was the approach of R.H. Kraich-
nan (1967).

Fig. 7.11. Turbulent flow in a soap, P. Vorobicff, R.E. Ecke {2003)
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2(a) < k=!It may be recalled that the corresponding energy spectrum in
the inertial range was predicted to be F(k) o k3. Experimental observa-
tions of the decaying energy spectrum have yielded slopes ranging from —3
to —4 over varying times and ranges of initial conditions. A full description
of these aspects are summarized by P. Tabeling (2002).

The Energy and Enstrophy Cascades

R.H. Kraichnan (1967) recognized that the enstrophy and the energy cas.
cades can exist simultaneously in two dimensions. From the study of the con.
servation equations and triadic wave number interactions, it can be showy
that energy is transferred, on average, toward the small wave numbers (large
scales), while the enstrophy is transferred toward the large wave numbers
(small scales). The prediction for the energy spectrum in the inverse cascade
is a scaling law E(k) o k~%/3, which has been verified in numerical sit
ulations and experiments. This behavior of the energy in two-dimensional:
turbulence is in marked contrast to the three-dimensional case. The inverse
energy cascade implies a mechanism by which large eddies are created from
small eddies instead of the other way around. The phenomenological picture
is that the initial vortices, formed by the forcing, get conjoined to other vor-
tices to form larger ones during their lifetime, i.e., in the time it takes for
friction at the boundary to damp them out by depleting all their energy. The
three-dimensional Richardson cascade of the breakup of eddies is replaced?
by an aggregation process among vortices in two dimensions. The Kraichnan
conjecture for a (stationary) inverse cascade seems to hold only if there is &
sink for energy at large scales. While the fluid itself has no such property, the
boundary conditions in both simulations and experiments provide the arti-
ficial sink for energy, for example, the friction at the walls. This allows for
observation of a sustained (stationary) inverse energy cascade. One example
of a cascading decay of a sinking vortex ring is shown in Figure 7.12.

The enstrophy 2, as already mentioned, is dissipated in the small scales in
the inviscid limit. In a forced two-dimensional system the enstrophy cascades’
from the energy injection scale down to the small scales. The enstrophy spec-
trum in the inertial range, according to Kraichnan’s theory, has the behavior

Structures

Both forced and decaying two-dimensional turbulence have a well-documented
tendency to form coherent structures. There is as yet no theoretical under-
standing of this phenomenon, and the definition of a coherent structure re-
mains vague. The remarkable feature of the two-dimensional coherent stric-
pures observed in both numerical and experimental work is their long life-
times. Much energy has been put into identifying coherence in vortical struc-
tures, determining their stability properties, and analyzing the dynamics of
vortex interactions including merging. Examples of coherent structures in
turbulent fames are discussed in detail in Chapter 11. Figure 7.13 shows a
laser-induced fluorescence sheet (LIF) of the OH concentration of a turbulent
premixed air-gas flane.

Omne approach to studying coherent structures in two dimensions is comn-
plemeutary to the great amount of work already present in three dimen-
sions. The goal is to provide a statistical description of freely decaying two-
dimensional turbulence. G.K. Batchelor (1969) was the first to propose sell-
similarity in time of the decay process. A dimensional argument then led to

Fig. 7.12. Cascading decay of a vortex ring, A.J. Lugt (1983) .
Fig. 7.13. Coherent structures in a turbulent flame (see Section 11.3.8)



348 7. Turbulent Flows

the following estimate of the decay rate of the vortex density p,

poc BTN (7.21)

where E is the kinetic energy density. The same dimensional analysis shows.
that both vortex size and intervortex spacing grow at a rate linear in time;:
t. This was the initial attempt at a statistical description. It was soon dis:
covered in numerical simulations that although power laws seem to hold, the
exponents deviated from Batchelor’s prediction. The vortex density decayed
more slowly, as did the growth of their size and spacing. These numerical
observations have more recently been supported by experimental data. It hag
also been proposed that another invariant must be present in the system in
addition to K. This invariant is the global maximum vorticity of the system,
While the physical justification for this quantity as an invariant of a decaying
system is not rigorous, it seems to derive reasonable numerical support. On
recalculation of the scaling exponents, good agreement with empirical evi-
dence is achieved, supporting this framework, known as the universal decay
theory.

7.5 New Developments in Turbulence

The past few decades have seen an increased interest in the statistical descrip-
tions of turbulence, and the desire to incorporate the observed structure in-
such descriptions. While turbulence involves the creation and interaction of .
structures and patterns of different length scales, its vast spatial and temporal
complexity necessitates a stochastic description. It is hoped that a probabilis-
tic description will yield a simplified picture of its universal properties. The
length scales within which universality may be applicable are much smaller
than the large scale L, which characterizes the size of the system, or of the
manner in which turbulence is generated. The focus on the small scales,
while offering plenty of promise, tends to gloss over large-scale phenomena -
such as structure formation and coherence, and sweeping effects on the small
structures. Certain properties of the large-scale motion are also universal, in
the sense that they have an origin in some large-scale instability, but they
are nonuniversal in that their shapes, onset, and precise manifestation differ
from fow to flow. The two regimes of turbulence, namely the small and large
scales, have often been examined independently of each other, based on the
asswmption that sufficient separation between them offers independence from
each other. In reality, of course, this independence is to be regarded only as
a convenient model.

We first present a sumiary of the experimental methods in use, and then
discuss some of the recent work.
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Experimental Methods

The measurement of small-scale, rapidly fluctuating quantities such as ve-
locity and velocity derivatives is still most successfully done using thermal
anemometry and hotwire probes (see, e.g., H.H. Brunn (1995) for a survey of
the methods). Data from such measurements are used to calculate statistics of
flows Tanging from mean properties to high-order moments such as Reynolds
stress and structure functions (which are moments of velocity differences be-
tween two neighboring points in space). The limitation of hotwire data is that
their spatial information is always obtained by some means of surrogation,
for instance the use of Taylor’s hypothesis, which assumes that the flow is
swept past a probe, without any distortion, at the local speed. Of course,
multiple probes can be, and have been, used, but there is a limit beyond
which this escalation becomes both cumbersome and invasive. In its simplest
form, laser Doppler velocimetry (LDV)} again yields single-point measure-
ments. The advantage of LDV ig that it is nonintrusive and can be used
in hostile environments such ag flames. The need for full spatial information
has led to the development of particle image velocimetry (PIV). However, the
advantage of PIV over hotwire (or LDV) is restricted by the present technol-
ogy, which places limits on the temporal resolution attainable, and hence on
resolution of the fluctuations at high Reynolds numbers. A recent effort to
remedy this constraint of clagsical PIV has been made. High-energy particle
detectors were modified to serve as optical imaging devices for tracking par-
ticles in a high-Reynolds-number flow (G.A. Voth et al. (1998)). Finally, the
incentive to create very high Reynolds number Hows under controlled labora-
tory conditions has motivated the use of low-viscosity cryogenic helium as a
test fluid (see, e.g., K.R. Sreenivasan, R.J. Donnelly (2000)). In this method,
very high Reynolds numbers can be achieved in moderately sized apparatus.

Small-Scale Turbulence

To study small-scale turbulence, one needs measures that are independent of
the large-scale motion on which small scales are superimposed. A simple such
measure is the velocity difference between two points separated by a distance
7 that is small compared to the large scale L. It is generally assumed that
such quantities, for » < L, behave as in isotropic turbulence. This is the
assumption of local isotropy. The rate at which anisotropic effects of the
large scale diminish with the reduction in scale is a subject of much study
and practical interest, and a survey of the work can be found in S. Kurien,
K.R. Sreenivasan, (2001). -

One exact relation valid at high Reynolds numbers is the so-called Kol-
mogorov’s law, according to which the following relation holds exactly in the
nertial range lp < 7 < L

((u(z +7r) = u(@)®) = ~%<e>7*. (7.22)
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This law has provided the basis for an enormous volume of work. The class
cal interpretation of equation (7.22) (e.g., A.S. Monin, A.M. Yaglom (1975))
is that the energy flux from large to small scales is unidirectional on aver,
age. Other attempts have been made to extract more information from thi
equation. The equation fixes the extent of the inertial range in experiment
and in estimates (¢) with less ambiguity than by the local isotropy relation
(e) = 150 {(Ou/0x)?).

Extrapolating the implications of Kolmogorov’s arguments for higher-
order moments of velocity increments, we have

{(ulz + 1) —ulz))") = C,,,((e)’r)'”’/:;.
The spectral equivalent of equation (7.23) for the special case with n =2 (:ank
be written as

Hlar) = C(e)”%{‘r’/f‘,

where ¢(a1) is the one-dimensional spectrum of the wave number component
ay, and Cj. is called the Kolmogorov constant, mentioned alveady. H.L. Grant
et al. (1962) verified equation (7.24) for the first time. Subsequent investiga-
tors have also found the spectral slope to be close to 5/3. Existing data show
that the Kolmogorov constant is approximately constant (0.5 4 0.05) over a
wide range of Reynolds numbers.

In the dissipation range, Kolmogorov’s arguments yield the following re-
sult for the spectral density:

$lay) = [E) ) Pa ™,
where K = ayl;, is the wave number normalized by the Kolmogorov length
scale I = (3/{e))'/4, and the universal function f(K) is unknown (ex-
cept that it approaches C' for small K). From numerical simulations at
low Reynolds numbers, it appears that the spectral density is of the form
K exp(—ga), where ¢’ &~ 3.3 and g ~ 7.1, though it appears to be smaller
at higher Reynolds numbers. Experimental data support equation (7.25) to
some extent, but the data collapse is not fully satisfactory. A different type
of spectral universality in the dissipation region has been proposed on the
basis of multifractality of the small scale. For a discussion of this approach,
see U. Frisch 1995.

The present situation is such that it is not possible to state that (7.23)
works exactly, even for second-order statistics. There certainly appear to be
departures from equation (7.23) for large enough n. In atmospheric bound-
ary layers, in high-Reynolds-number air and helium flows, the probability
density functions of the velocity increments in the inertial range vary con- .
tinuously with scale separation 7. If fitted by stretched exponentials edur
the stretching exponent m varies smoothly with r, from about 0.5 in the
digsipative range to about 2 as r approaches integral-scale separations {ie,
the distribution becomes a Gaussian). If Kolmogorov were right, m would be
a constant independent of r. Given the empirical evidence, one is forced to

(7.23

(7.24)

(7.25)
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" give up the Kolmogorov universality in its broadest sense, though it remains

of considerable value in making estimates at most finite Reynolds numbers.

Intermittency in the Inertial and Dissipation Ranges

It is now believed, following A.M. Obukhov (1962), that the reason for the
failure of Kolmogorov’s universality is the strong variability of the energy
digsipation rate, a phenomenon known as intermittency. Obukhov suggested
replacing the (global) mean energy dissipation rate (e) in Kolmogorov’s for-
mulas by the local average value ¢, defined over a ball of radius ». For r < L,
where L is a characteristic large scale, the variable €,/(¢) is a Huctuating
quantity and, according to Obukhov’s suggestion, a function of the ratio »/L.
In this way, whenever averages are taken over regions containing varying lev-
els of energy dissipation rate, the large scale enters inertial-range statistics
explicitly. A.N. Kolmogorov (1962) made Obukhov’s suggestion more explicit
by assuming that the dissipation rate is lognormally distributed. He also re-
fined his original hypotheses in an essential way by taking note of Obukhov’s
suggestion. This gave rise to the so-called refined similarity hypothesis. The
resulting modification is that one may expect power laws of the form
(At fuly = Cllr/ L)%,
where the large-scale velocity wg and the factors €7, are nonuniversal, but
the exponents ¢, although different from n/3, are presumed to be universal.
The deviation of the exponents ¢, from n/3 is the hallmark of inertial-range
intermittency. Inertial range intermittency is also deduced [rom the empir-

(7.26)

ical fact that the probability density functions ol wave number bands show
increasingly flattened tails for increasing midband wave numbers.

G K. Batchelor and A.A. Townsend (1949) showed that the non-Gaussian
behavior of the probability density of dissipation quantities increases with
decreasing scale. In a complementary sense, dissipation quantities become
increasingly non-Gaussian as the Reynolds number increases. These are the
two hallimarks of dissipation-scale intermittency. The scaling exponents for
the energy dissipation ave defined as

(edy {e) o< (/L) "u. (7.27)
The proportionality constants, omitted here, are not expected to he univer-
sal. The rationale for writing this power law can be explained in terms of the
so-called breakdown coefficients or mltipliers, which are supposed to rep-
resent the fractions in which the energy dissipation is shared when an eddy
of size r is broken into two eddies, say, of size r/2. It is not clear that the
multipliers, although quite uselul, are [undamental to turbulence. Nontriv-
lal scaling implies that v, is a nonlinear function of ¢. Indeed, there exist
a broad class of models that attempt to explain the observed intermittency
of the dissipative and inertial scales. These models are cast best in terms
of multifractals (see M.S. Borgas (1992) for a summary), which provide a
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convenient superstructure. Kolmogorov’s original model is a degenerate case,
as are other later models described by A.S. Monin and A.M. Yaglom (1975),
The connection of these models to the Navier-Stokes equations is tenuous, :
and since the detailed physics of the models cannot be tested directly, their
success should be evaluated chiefly on the basis of how well they agree with
experiments.

Several efforts have been made to measure the exponents v, in (7.27), in
both high and low Reynolds number flows. Given the difficulties in measuring
them, the agreement among various data sets is surprisingly good. ‘

Some other measures of the dissipation range intermittency include the
scaling exponents for vorticity and circulation. The conclusion is that en-
strophy is more intermittent than the energy dissipation rate. Similarly, the
dissipation rate exponents for the passive scalar appear to also be more in-
termittent than the energy dissipation field in the inertial-convective range
(between L and [y, ). By contrast, in the viscous-convective range, it has been
found that the scaling exponents are trivial (that is, there is no intermittency,
and all intermittency exponents are essentially zero).

Computation of Turbulent Flows

Computing power has increased exponentially with time in the last few
decades. One can in principle start with suitable initial conditions and com-
pute the evolution of a turbulent flow by solving the Navier-Stokes equations
without any further physical approximations. These are called direct numer-
ical simulations (DNS) (see, c.g., P. Moin, K. Mahesh 1998). The hope is
that it will be possible to compute many of the important flows by DNS,
though it is clear that some others, such as the flow around an entire air-
craft or ship, or in the ocean and the atmosphere, will remain out of bounds
for many years to come, if they ever become amenable to direct numerical
simulations. Thus, some inventiveness in our ability to calculate flows will be
needed. Tt is also clear that the physics of turbulence cannot be understood
merely by computing, though that step will help immensely if combined with
organizing principles of the sort illustrated in this chapter. In one sense, we
are still in the early stages of organization of owr knowledge of turbulence.
Vortex methods (see, e.g., A.J. Chorin (1994)), based on the representation
of the turbulence by means of the vorticity field, offer an alternative in some
-ases, especially in two dimensions.

On the other end of the spectrum, since we are interested quite often in
the mean characteristics of turbulent flow, one can write down the Reynolds
equations for the mean quantities of interest by averaging the Navier-Stokes
equations. It is clear from the discussion of Section 7.3 that additional terms
will appear (see Section 5.2.2). For the equations describing the mean velocity
these terms are the standard Reynolds stress terms, which need to be mod-
eled suitably. This aspect of research has been important in practice, and is
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motivated by the need to adapt our partial understanding of turbulence dy-
pamics to obtain predictions of acceptable accuracy in engineering problems.
One account of these models can be found in C.G. Speziale (1991).

In between these two extremes lies the scheme that computes only the
Jarge scale with temporal and spatial detail, while not resolving the small
scales. The notion is that the large scales give shape to a flow and carry
larger share of burden in the transport of heat, mass, and momentwun, while
the effects of the unresolved small scales, which need not be known in detail
for mnost purposes, can be modeled by suitable parameterization. A sensible
modeling of small scales is in principle attainable because of their nearly
universal properties. This scheme of computation is known as large eddy
gimulations (or LES) of turbulence. Here, one writes down the equations for
Jarge scales only, and models the new terms that appear, these terns being
gimilar to the Reynolds stress terms in the mean flow equations. Part of the
reason for studying small-scale structure is indeed the understanding of its
universal properties, so it can be suitably modeled and parameterized, thus
allowing the computation of the large scale correctly. For reviews of these
methods, see M. Lesicur, O. Metais (1996) aud S.B. Pope (2000).

In recent years, a numerical scheme based on microscopic models and
mesoscopic kinetic equations has been successfully employed to compute sev-
eral turbulent flows. The models are based on what is now called the lattice
Boltzmann methods (LBM). In conventional computational methods of fluid
dynamics, one discretizes the macroscopic continuuun equations on a suitably
defined fine mesh before solving them. In LBM, on the other hand, one con-
structs simplified microscopic models that incorporate the essential physics,
the basic premise being that the macroscopic dynamics, which are the result
of a collective behavior of microscopic particles, are insensitive to the precise
details of the microscopic physics, as long as one satisfies certain conservation
properties. These methods are particularly suitable for fluid flows involving
interfacial dynamics and complex boundaries. A summary of the methods
can be found in S. Chen, G.D. Doolen, (1998).

7.5.1 Lagrangian Investigations of Turbulence

Since the transport properties of turbulence are dominated by the advec-
tion of infinitesimal fluid elements, it is natural to resort to the Lagrangian
viewpoint, following the motion of the fluid elements. Lagrangian stochastic
models have become important for the prediction of turbulent mixing and dis-
persion, with a particular emphasis on reacting Hows; see S.B. Pope (2000).
Barly theoretical development in Lagrangian methods has been summarized
by A.S. Monin and A.M. Yaglom (1975), and an idea of the recent work can
be had from P.K. Yeung (2002).

Among the activities currently being pursued, one of the important ones
is the use of DNS data, obtained in the Eulerian frame, to construct La-
grangian trajectories and compute selected properties, including velocity, ac-
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celeration, time scales, velocity gradients, dissipation of energy, properties of
the scalar passively carried along Lagrangian trajectories, and so forth, La,
grangian concepts have been usefully employed in subgrid scale modeling. At
a fundamental level, they have been used to solve aspects of a model for pas-
sive scalars (see next section), and also to study the influence of geometry on
scaling considerations by following Lagrangian clusters. There is, of course;
the thought that Lagrangian studies may be more natural for studying the
properties of coherent structures in turbulence. Finally, using some clever.
experimental methods initially developed for data acquisition in high-energy
physics, G.A. Voth et al. (1998) have measured Lagrangian acceleration of
particles and shown that the distributions have tails that spread to many
standard deviations.

7.5.2 Field-Theoretic Methods

The turbulence problem, more than once described as the last unsolved prob-
lem in classical physics, perhaps no longer appears to be as “exceptional” as it
once did, for other important strong-coupling problems have since been faced
in theoretical physics. Some of these, such as color confinement in quantum
chromodynamics, are still with us. For others, such as critical phenomena
in three spactial dimensions, the critical scaling exponents have been calcu-
lated successfully by several methods, although other nonuniversal quantities
of significant interest, such as critical temperatures, cannot yet be readily
salculated for physical systems found in nature or realized in laboratories.
It is only natural to attempt to use these methods, employed with some
success in similar problems, to address the basic problem of nonlinear cou-
pling among scales of turbulence. Unfortunately, none of these methods that
enabled breakthrough successes in the theory of critical phenomena have
yet yielded results of comparable significance in understanding or predict-
ing turbulent flows. Nevertheless, considerable progress has been made, and
the application of such methods to turbulence has yielded some important
insights. In particular, the perturbative techniques have scored a significant
success in caleulating turbulent scaling exponents in a simplified model of a
white-noise advected passive scalar (for a review, see Falkovich et al. 2001).

7.5.3 Outlook

Turbulence is perhaps the most complex form of motion that fluid flows take.
It contains structures and strong fluctuations, one embedded in the other.
Consideration of one, and the neglect of the other, does not provide a full
picture valid in all instances.

We have implied that it is convenient to think of a scale separation be-
tween the large scales that provide the shape and form for a given turbulent
flow and the dissipative small scales, and that the interaction between them is

@]
@
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weak. This feature renders the small scale nearly universal, and amenable to
a study independent of too many details of the flow. However, this is merely
a model of turbulence, whose elucidation has taken much work. Details are
emerging slowly.

It is often said that each turbulent flow is different. The large scales are
indeed different. There is a varying degree of coherence in the large-scale
motion, depending on initial and boundary conditions. The effects of this
coherence can (and should) be captured eventually by appropriate statistics,
but it is not clear that the statistics one uses, and constructs for reasons of
mathematical convenience, are necessarily best adopted for taking faithful
account of this observed coherence.

Another remark often made is that turbulence has nothing to do with sta-
bility. 1t is indeed the case that the instability caused by linear disturbances
of negligible amplitude plays very little role in maintaining a turbulent How,
but stability arguments have been used consistently (and often successtully)
to describe the observed coherent structures. The nature of this instability
remains unclear at present. However, it is clear that a good student of turbu-
lence ought to be versed in different aspects of hydrodynamic stability, and
the variety of structures that can be generated by this mechanism. Automat-
ically and logically, this leads us to the next chapter.



	Scan3473
	Scan3474

