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Abstract. We report basic results from new numerical simulations of passive scalar mixing at Schmidt
numbers (Sc) of the order of 1000 in isotropic turbulence. The required high grid-resolution is
made possible by simulating turbulence at very low Reynolds numbers, which nevertheless possesses
universality in dissipative scales of motion. The results obtained are qualitatively consistent with those
based on another study (Yeung et al., Phys. Fluids 14 (2002) 4178–4191) with a less extended Schmidt
number range and a higher Reynolds number. In the stationary state maintained by a uniform mean
scalar gradient, the scalar variance increases slightly with Sc but scalar dissipation is nearly constant.
As the Schmidt number increases, there is an increasing trend towards k−1 scaling predicted by
Batchelor (Batchelor, J. Fluid Mech. 5 (1959) 113–133) for the viscous-convective range of the scalar
spectrum; the scalar gradient skewness approaches zero; and the intermittency measured by the scalar
gradient flatness approaches its asymptotic state. However, the value of Sc needed for the asymptotic
behavior to emerge appears to increase with decreasing Reynolds number of the turbulence. In the
viscous-diffusive range, the scalar spectrum is in better agreement with Kraichnan’s (Kraichnan.,
Phys. Fluids 11 (1968) 945–953) result than with Batchelor’s.
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1. Introduction

In applications, turbulent mixing of scalars occurs over a wide range of the Schmidt
number (Sc), which is the ratio of the kinematic viscosity of the host fluid to the
molecular diffusivity of the diffusing scalar. It is well-known that Sc � 1 for
mixing in conducting liquids, O(1) in gaseous-phase mixing and combustion, and
O(102 − 103) for color dyes used in flow visualization experiments and certain
biomolecules. The range of scales present in the scalar field is sensitive to Sc: for
Sc � 1 the smallest scale is estimated to be the Obukhov-Corrsin scale ηOC ≡
ηSc−3/4 (where η is the Kolmogorov scale) while, for Sc � 1, the smallest scale is
the Batchelor scale ηB ≡ ηSc−1/2. Much attention has been given in the literature
to heat transport in air, corresponding to Sc = O(1), and in water, corresponding to
Sc = O(7). Accepted results in these instances include a wavenumber spectral roll-
off of k−5/3 in the inertial-convective range (e.g., [1]), even though deviations from
local isotropy and possible intermittency corrections do exist (e.g., [2, 3]). However,
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despite the elegant theoretical work of Batchelor [4] and others, the behavior of
weakly-diffusive scalars of Sc � 1 is not as well understood. For instance, Antonia
and Orlandi [5] note that there is no consensus yet in the literature concerning
Batchelor’s [4] k−1 spectrum in the viscous-convective range defined by 1/η �
k � 1/ηB . Our goal in this paper is to provide some results for the case Sc � 1.

A major difficulty in studying turbulent mixing at high Sc is the need to resolve
scales of size ηB which, for Sc � 1, is much smaller than the smallest scale of the
velocity field. This puts stringent demands on the sensor capability in experiments as
well as grid resolution and consequent CPU expense in direct numerical simulations
(DNS). For the latter case, a relief appears possible because at least some of the
essential elements of Batchelor scaling appear to depend only on a large scale-
separation between η and ηB , without the requirement of high Reynolds number.
Several authors [6–10] have performed simulations for Sc > 1 in 3D isotropic
turbulence at relatively low Reynolds numbers. In particular, for passive scalars
with uniform mean gradients in stationary and forced turbulence, Yeung et al. [8]
obtained results for Sc = 64 (using a 5123 grid) at Taylor-microscale Reynolds
number Rλ ≈ 38, while Brethouwer et al. [10] reported limited data at Sc = 144
at Rλ ≈ 20. However, even at Sc = 144 the scale separation between η and ηB

is only a factor of 12, which is clearly insufficient for convincing demonstrations
of scaling properties in the viscous-convection range. (It may be noted that Gotoh
et al. [11] studied Sc = 1000 at Rλ ≈ 3, but in 2D turbulence.)

In this paper, we present basic results from new simulations for Sc values that
are an order of magnitude higher than before; this is made possible by lowering the
Reynolds number even further. Specifically we compute mixing for Sc up to 1024
at Rλ ≈ 8 using, as in [8], 5123 grid points. Questions may arise, of course, as to
whether turbulence at such a low Reynolds number may have “realistic” scaling
properties (at least for Kolmogorov’s first hypothesis). However, we show (see
Section 2) that there is a good collapse of the energy spectrum in Kolmogorov
scaling for Rλ between 8 and 38. Our primary objective here is to determine, in
Section 3, whether inferences based on recent work up to Sc = 64 remain valid in
the limit of very high Sc. These inferences concern, in particular, a sustained trend
towards a well-defined Batchelor scaling range in the scalar spectrum, asymptotic
approach towards local isotropy, and a saturation of the level of intermittency in
single-point statistics of the scalar gradient fluctuations. A summary of this work
is given in Section 4.

2. Simulation Overview and Resolution Requirements

The numerical algorithms employed are similar to those in our recent work [8]: a
Fourier pseudo-spectral method [12] with periodic boundary conditions in space
and second-order differences in time is used to solve velocity and scalar transport
equations in homogeneous turbulence. Stationary isotropic turbulence is maintained
by numerical forcing at the large scales, using the scheme of Eswaran and Pope



TURBULENT MIXING AT VERY HIGH SCHMIDT NUMBERS 335

[13]. The passive scalar field is generated and maintained stationary by a uniform
mean gradient. Velocity and scalar fields in the Fourier space are saved, for fur-
ther analysis, at time intervals corresponding roughly to one eddy-turnover time.
Stationarity in time allows such data sets to be treated as multiple realizations for
ensemble averaging. The calculations were carried out on a massively parallel IBM
SP computer.

As suggested in Section 1, some care is necessary in choosing the simulation
parameters so that the mixing of a passive scalar at Sc = 1024 can be simulated with
desired accuracy, down to the smallest scales. For the velocity field the commonly
applied criterion is that the dimensionless parameter kmaxη should be at least 1.5,
where kmax = √

2N/3 is the highest wavenumber resolved on an N 3 grid. For
scalars of Sc > 1 the equivalent condition is that kmaxηB = 1.5 or higher. For Sc =
1024 this corresponds to kmaxη = 48, which incidentally provides an opportunity
for studying velocity fluctuations in the so-called far-dissipation range of kη � 1
(e.g., [14]).

To obtain a desired value of kmaxη we note that the Kolmogorov scale η depends
on the viscosity (ν) and the mean energy dissipation rate (〈ε〉), and that in our
simulations the latter quantity is largely determined by the forcing parameters. In
order to proceed systematically, we retain the same forcing parameters as in the
lowest-Rλ case in our previous production runs, i.e Rλ ≈ 38 on a 643 grid with
kmaxη = 1.5, but increase the viscosity while also refining the grid (with larger N
and larger kmax). If our new simulation for Sc = 1024 is to be carried out on a 5123

grid at kmaxη = 48 then the corresponding value of kmaxη on a 643 grid is 6. The
relation η = (ν3/〈ε〉)1/4 suggests that a four-fold increase in η can be achieved by
increasing the viscosity by a factor of 44/3 = 6.35. The actual combinations of grid
resolution and viscosity used, and the Reynolds and Schmidt numbers attained, are
listed in Table I. To give more details on the Sc-dependence we have also performed
simulations for a range of grid resolutions for intermediate Schmidt numbers. In
particular results for Sc = 64, 128, 256 on a 2563 grid have been averaged over
long periods of time.

Although the Reynolds number range simulated in this work obviously falls
well below inertial-range requirements, it is important to demonstrate that the

Table I. Grid resolution, viscosity, and the Reynolds and
Schmidt numbers.

N kmaxη ν Rλ Sc

64 1.5 0.025 38 1

64 3 0.063 20 –

64 6 0.159 8 –

128 12 0.159 8 1, 4, 8, 16, 32, 64

256 24 0.159 8 64, 128, 256

512 48 0.159 8 256, 512, 1024
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Figure 1. Comparison of Kolmogorov-scaled energy spectra at Rλ ≈ 38 (	), 20 (◦) and 8
( ), computed on a 643 grid.

small scales in the velocity field still possess the universal behavior associated
with Kolmogorov’s first hypothesis. Figure 1 shows the 3D energy spectrum func-
tion in Kolmogorov variables and at three different Reynolds numbers. It can be
seen that, indeed, there is a good collapse of the data, at least for kη > 1. Be-
cause our primary interest is in the viscous-convective range, this result suffices to
suggest that the high-Sc behavior driven by the dissipation-range motions in this
flow is still physically realistic. On the other hand, when kη is extended to very
large values, eventually the energy spectrum attains such low values that it becomes
contaminated by round-off errors due to finite computer precision. As in [14] use of
double-precision arithmetic becomes necessary as far as the far-dissipation range
of the velocity field is concerned.

Figure 2 shows a comparison of single versus double-precision results for the
energy spectrum, extended to kη = 24. Because the spectrum is quadratic in the
velocity Fourier coefficients, round-off errors in single-precision become dominant
at spectral levels of the order (10−8)2 = 10−16. It is reasonable to expect round-off
error to behave as white noise, which has a flat spectrum, and thus appears with a
positive slope because of multiplication by k5/3 in the curves shown. It is clear that
use of double precision allows the spectrum to be free of contamination by round-off
error for spectral levels down to around O(10−33) while remaining in good agree-
ment with single precision results before the latter become distorted by round-off.

Because the spectra of high-Schmidt-number scalar fields fall more slowly
(as seen later in Figure 4) than does the energy spectrum, the need for double-
precision in our passive scalar calculations is less obvious. It is recognized
that velocity modes in the far dissipation range contribute little to the spectral
cascade of scalars [15], and thus should have little effect on the scalars at the
small scales. Numerical tests indeed show only minor differences between results
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Figure 2. Kolmogorov-scaled energy spectra at Rλ ≈ 8 computed on a 2563 grid using single-
precision (dashed line) and double-precision (solid line) versions of the DNS code.

obtained from single-precision and double-precision codes. Nevertheless, we are
motivated by a desire to remove any doubts on the effects of computer precision,
and to retain a database useful for future studies of the far-dissipation range of the
velocity field. All of the results to follow have been obtained using double-precision
versions of our computer codes, at the cost of approximately 50% increase in CPU
time mainly due to longer messages in inter-processor communication calls.

3. Passive Scalar Results

We are interested in the behavior of scalar fluctuations φ evolving according to the
transport equation

∂φ

∂t
+ ui

∂φ

∂xi
= −ui

∂�

∂xi
+ D

∂2φ

∂xi∂xi
(1)

where � is the mean scalar field, and D is the molecular diffusivity; ui represents
the turbulent velocity field which itself is obtained by solving the Navier–Stokes
equations at the specified Rλ. A basic characterization of the scalar variance and
its dissipation rate is first given below, followed by more detailed aspects such as
the form of the spectrum and the scaling properties of scalar gradient fluctuations.

3.1. SCALAR VARIANCE AND DISSIPATION

The scalar variance 〈φ2〉 evolves according to
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where the first term on the right-hand-side is a production term and the second is the
mean dissipation rate of scalar variance (〈χ〉). For simplicity we let ∇� = (G, 0, 0)
in Cartesian coordinates, with G = 1. Initially φ is set to be zero everywhere
in space. Subsequently both 〈φ2〉 and 〈χ〉 are proportional to G2; however, the
magnitude of G itself does not appear in the ratio 〈φ2〉/〈χ〉 (which is the scalar
mixing time), nor in appropriately non-dimensionalized quantities.

Although our primary interest is in the stationary state, in Figure 3a and b we
show the complete time evolution of the scalar variance and dissipation, for Sc from
64 to 1024 (at Rλ ≈ 8), including data from both the 2563 and 5123 simulations.
(The velocity field statistics in the two simulations are very similar to each other:
for instance, their time-averaged energy dissipation rates differ by less than 1%.)
Because of the choice of zero initial conditions, at very early times φ ≈ −u1G,

Figure 3. Time evolution of (a) scalar variance 〈φ2〉 and (b) scalar dissipation 〈χ〉. The time is
normalized by the eddy-turnover time TE : data are for Sc = 64, 128, 256 on a 2563 grid (solid
lines), and Sc = 256, 512, 1024 on a 5123 grid (dashed lines). In (a) the data are monotonically
non-decreasing with respect to Sc. In (b) they are monotonically non-increasing.
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which makes 〈φ2〉 the same for all scalars whereas 〈χ〉 is proportional to the diffu-
sivity D. Over time, of course, the properties of each scalar, including its spectrum,
adjust to a definite similarity state determined by its Schmidt number. The eventual
attainment of stationarity is indicated by the fact that 〈χ〉 becomes nearly indepen-
dent of Sc (thus also demonstrating that the dissipation at small scales is controlled
by spectral transfer from the large scales), even though the scalar variance 〈φ2〉 in-
creases slightly with Sc. Together these results imply that the mechanical-to-scalar
time scale ratio rφ = (K/〈ε〉)/(〈φ2〉/〈χ〉) decreases slightly with increasing Sc,
which is consistent with results reported by Yeung and Sawford [16] covering the
Sc range from 1/4 to 64.

Substantial “undulations” (more prominent if plotted using linear scales) within
the time period of stationarity may be noted in Figure 3(a,b). These are essentially
non-ideal features due to the statistical variability in the large-scale motions for
which only a limited number of samples can exist in a solution domain of finite size.
Stochastic forcing is also known to contribute substantially to the statistical vari-
ability over time, which can be minimized only by averaging over long time periods
spanning many eddy-turnover times (TE ). Our subsequent results are averaged from
t/TE = 10 and t/TE = 5 onwards for the 2563 and 5123 simulations respectively.

3.2. SPECTRA AND BATCHELOR SCALING

A basic feature of increasing Schmidt number in turbulent mixing is a systematic
increase of high-wavenumber content in the scalar spectrum, representing fluctu-
ations at increasingly smaller scales. Figure 4 shows these spectra Eφ(k) in the

Figure 4. Un-normalized 3D spectra for energy and scalars at Rλ ≈ 8: E(k) (chain-dotted
line), Eφ(k) for Sc = 64, 128, 256 from 2563 simulation (solid lines), and Eφ(k) for
Sc = 256, 512, 1024 from 5123 simulation (dashed lines). The dotted line shows slope −1 for
reference.
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range Sc = 64 to 1024, as well as the energy spectrum E(k). It is well known
(see, e.g., [17, 18]) that, even for Sc = 1, the scalar spectrum falls off more slowly
with wavenumber than the classical −5/3 slope, because a remnant of the k−1

region appears already. The present data at high Sc are well above the round-off
levels suggested in Figure 2. The spectra for Sc = 256 computed from 2563 and
5123 simulations are seen to virtually coincide, which suggests kmaxηB = 1.5 gives
sufficient resolution, at least for second-order statistics. Furthermore, as Sc in-
creases, the spectral form appears to gain closer resemblance to k−1 behavior in an
intermediate range of scales.

A primary motivation for simulating Sc = O(103) is the expectation of a suffi-
ciently wide scaling range between η and ηB = ηSc−1/2, so that the status of k−1

Batchelor scaling in the viscous-convective range can be resolved. Both Batchelor’s
[4] original result (assuming quasi-steady strain rates of order (〈ε〉/ν)1/2), namely,

Eφ(k) = q〈χ〉(ν/〈ε〉)1/2k−1 exp(−q(kηB)2), (3)

where q is a dimensionless coefficient known as Batchelor constant in the high Sc
limit, and Kraichnan’s [19] modification of it (accounting for rapid fluctuations of
the strain-rate), namely,

Eφ(k) = q〈χ〉(ν/〈ε〉)1/2k−1(1 + (6q)1/2kηB) exp(−(6q)1/2(kηB)), (4)

are well-known, reducing to Eφ(k) = q〈χ〉(ν/〈ε〉)1/2k−1 in the range kηB � 1.
In addition, to facilitate comparison with experiment we also consider correspond-
ing scaling behavior in the 1D spectrum E1φ(k1), where k1 is a single Cartesian
wavenumber component. If the scalar field is isotropic (or nearly so), E1φ(k1) can be
obtained by averaging over the three coordinate axes, or derived from the 3D spec-
trum Eφ(k) by the isotropy relation [20] E1φ(k) = − ∫ ∞

k Eφ(k)/k dk (see also [6]).
In Figure 5 we show both the three- and 1D spectra in normalized form, for

scalars with Schmidt numbers ranging from 64 to 1024. The data support a k−1

scaling range, especially in the 3D spectrum on log-log scales for kηB roughly
between 0.02 and 0.08, although the attainment of a true plateau appears less definite
under a stricter test posed by the use of log-linear scales (see insets). Our data also
show, despite some small differences in the viscous-diffusive range (kη > 1), an
excellent degree of agreement with Kraichnan’s expression, and slower decay at
high wavenumbers than suggested by Batchelor. The coefficient q depends weakly
on Sc for Sc < 64, as already noted in [8]. Nevertheless, our present result at higher
Schmidt numbers also suggest an asymptotic value between 5 and 6, which is in
good agreement with deductions based on a study of structure functions in physical
space [22].

Although classical arguments suggest that the width of an apparent k−1 scal-
ing range (as seen above) is primarily contingent upon having a sufficiently high
Schmidt number, it is of interest to ascertain whether there is also a Reynolds
number dependence. To address this question we compare in Figure 6 normalized
spectra for three Reynolds and Schmidt number combinations, using in part data
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Figure 5. The scalar spectrum in 3D (top) and 1D (bottom) versions scaled by Batchelor
variables for high-Schmidt-number scalars at Rλ ≈ 8: Sc = 64, 128, 256 (A-C) from 2563

simulation, and Sc = 256, 512, 1024 (D-F) from 5123. The data are compared with Batchelor’s
(dotted line) and Kraichnan’s (dashed line) expressions calculated with q = 2

√
5 which is based

on a theoretical estimate by Qian [21].
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Figure 6. 3D scalar spectrum normalized by Batchelor variables, for the cases (Rλ 38, Sc = 64:
	), (Rλ 8, Sc = 64; ), and (Rλ 8, Sc = 1024: ©). Dotted and dashed lines represent Batchelor
and Kraichnan formulas as in Figure 5.

from Yeung et al. [8] for Rλ ≈ 38. An increase of Sc from 64 to 1024 with Rλ

held constant (at 8) produces, as expected, results closer to k−1 scaling with a wider
range. However, a similar effect can also be observed when Rλ is increased (from
8 to 38) while Sc is held constant (at 64). These results suggest that the actual
requirement for high Sc may be weakened (say, towards only moderately large
values) if the Reynolds number is high. We shall return to this issue in the context
of other results in this paper.

3.3. SCALAR GRADIENTS, LOCAL ISOTROPY AND INTERMITTENCY

For many reasons (e.g., see [23]), the small-scale structure of velocity and scalar
fluctuations in turbulence is important in both practical applications and theoretical
development. Two of the essential elements of classical Kolmogorov phenomenol-
ogy are that, at high Reynolds numbers, the small scales of turbulence become
locally isotropic, and also increasingly intermittent via the occurrence of intense
and localized fluctuations. However, a large body of evidence from both experi-
ments and simulations (see [2, 3] for a summary) have clearly indicated that, at least
for scalars with Sc = O(1), first-order departures from local isotropy may persist
even to very high Reynolds number. Furthermore, various measures such as deriva-
tive flatness factors and intermittency exponents inferred from two-point correlators
indicate that the scalar field is generally more intermittent than the velocity field. An
important question, which has not been addressed in the usual phenomenology, is
the possible dependence of these statistics on the Schmidt number, especially when
Sc is large and the scalar fluctuations become strongly influenced by the strain-rate
fluctuations in the velocity field.
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In a recent paper [8] we studied the issue of local isotropy via the skewness of
scalar gradient fluctuations ∇‖φ parallel to the imposed mean scalar gradient: this
skewness decreased systematically as the Sc was varied from 1/4 to 64 (roughly
by powers of 2), with Rλ held constant at about 38. Data from Yeung et al. [8] and
the present simulations at Rλ ≈ 8 are shown together in Figure 7. It is clear, again,
that there is a systematic decrease of the skewness at high Sc, with perhaps both
datasets following power-law scaling for Sc > O(10). Careful comparison of data
for Rλ of 38 and 8 does reveal, however, some modest differences which imply that
there are some Reynolds number effects which remain to be understood.

Another conclusion from Yeung et al. [8] is that the scalar gradient fluctuations
become more intermittent with increasing Sc, but most likely approach a saturated
asymptotic level in the high-Sc limit. The present data at Rλ of 8 are shown in Ta-
ble II. Comparisons between data sets at the same Sc but different grid resolution
suggest that an effect of marginal grid resolution for a given Sc is a slight underes-
timate for the flatness factor. (This effect may, however, be obscured by the fact that
higher-resolution simulations are generally run over a shorter period of time and
thus may be more prone to statistical variability.) Nevertheless, we can conclude
that the flatness of ∇‖φ (parallel to the mean gradient) does not increase further
with Sc when the latter is beyond (roughly) 64, followed by the same behavior
of ∇⊥φ (perpendicular to the mean gradient) for Sc around 256. The asymptotic
flatness level attained is about 10, which is somewhat lower than about 12 at Rλ ≈
38 in Yeung et al. [8]. The increasing closeness, with increasing Sc, between the

Figure 7. Skewness factor (µ3) of ∇‖φ versus Schmidt number, at Rλ of 8 (	) and 38 ( ,
from [8]).
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Table II. Flatness factors, µ4, of the scalar gradient components, in direc-
tions parallel and perpendicular to the mean gradient, from simulations at
Rλ ≈ 8.

Sc Grid kmaxηB µ4(∇‖φ) µ4(∇⊥φ)

1 1283 11.9 5.2 ± 1.02 4.6 ± 0.57

4 1283 6.0 7.1 ± 1.55 6.4 ± 0.87

8 1283 4.2 7.8 ± 1.56 7.2 ± 0.93

16 1283 3.0 8.4 ± 1.54 7.8 ± 0.96

32 1283 2.1 8.9 ± 1.46 8.3 ± 0.97

64 1283 1.5 8.8 ± 1.22 8.4 ± 0.84

64 2563 3.0 8.8 ± 1.45 8.8 ± 0.96

128 2563 2.1 9.1 ± 1.29 8.9 ± 0.94

256 2563 1.5 9.0 ± 1.05 8.7 ± 0.78

256 5123 3.0 9.9 ± 1.40 9.8 ± 1.47

512 5123 2.1 10.2 ± 1.18 10.1 ± 1.68

1024 5123 1.5 9.9 ± 0.89 10.0 ± 1.82

flatnesses of ∇‖φ and ∇⊥φ is consistent with the reduction of small-scale anisotropy
of the small-scale scalar. The requirement of a higher Sc (64 in the present case,
compared with O(4) in Yeung et al. [8]) for the attainment of the asymptotic be-
havior is also consistent with trends noted in the skewness data in Figure 7 as well
as the spectra shown in Figure 6. In other words, the asymptotic state of the scalar
seems to require a higher value of Sc when Rλ becomes smaller.

Finally, we show in Figure 8 the probability density function (PDF) of ∇‖φ at
the same Sc as in Table II. The most significant Schmidt number effects are in the
range 1–64 (lines A–C), where the left half (for ∇‖φ < 0) becomes stretched out,
leading to the reduced skewness seen in Figure 7. With further increase in Sc, the
widths of the tails on both sides change very little, consistent with the gradient
flatness approaching an asymptotic level as suggested by the numbers in Table II.
The asymptotic shape of this PDF is apparently close to a stretched-exponential.

4. Discussion and Conclusions

In order to help resolve several important issues concerning the scaling of weakly
diffusive passive scalars in 3D turbulent mixing, we have performed a series of
direct numerical simulations (DNS) aimed at reaching Schmidt numbers (Sc) an
order of magnitude higher (we believe) than has been attained previously for 3D
turbulent mixing. Specifically, we have reached Sc = 1024 based on a simulation
using 5123 grid points. Satisfactory resolution of scalar fluctuations at the Batchelor
scale is maintained by reducing the Reynolds number to a value of 8 (when based
on the Taylor microscale). Care is taken to verify that the small-scale motions in
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Figure 8. Logarithm (to base 10) of the standardized PDF of ∇‖φ for at different Schmidt
numbers: 1,8,64 (A–C, from 1283 simulation), 64,128,256 (D–F, from 2563), and 256, 512, 1024
(G–I, from 5123). For comparison the dashed curve shows the standard Gaussian distribution.

the velocity field at this Reynolds number satisfy the classical dissipative-scale uni-
versality to a reasonable degree, and that the energy spectrum in the far-dissipation
range is not contaminated by round-off errors due to the finite precision of computer
arithmetic. We emphasize that the attainment of a well-defined viscous-convective
range requires (very) high Schmidt number, but not high Reynolds number.

Our focus in data analysis has included the behavior of scalar variance and
dissipation rate, the spectral shape in respect of the classical Batchelor k−1 scal-
ing, and the statistics of passive gradients bearing upon the central issues of local
isotropy and intermittency. Passive scalar fluctuations are generated and maintained
by a uniform mean gradient within forced isotropic turbulence, and statistics are
collected over an extended period of stationarity in time. Consistent with previ-
ous results, the scalar fluctuations attain a self-similar state where the variance
increases slightly with Sc, but the dissipation rate is essentially independent of Sc.
The scalar spectrum increasingly resembles the k−1 viscous-convective range as Sc
is raised systematically from 64 to 1024 in powers of 2, and the Kraichnan [19] form
continues to be a very good approximation in the viscous-diffusive range. Scalar
gradient statistics computed for Rλ ≈ 8 confirm the trend of reduced skewness and
approach to local isotropy in the high-Sc limit. However, the value or range of Sc
for peak skewness at Rλ of 8 appears to be somewhat higher when compared with
previous results at Rλ of 38. The level of intermittency manifested in single-point
scalar gradient flatness factors shows the same trend as in Yeung et al. [8], namely a
saturation at high Sc. This saturation now requires at Rλ 8 a minimum of Sc ≈ 64.
It thus appears that increasing Sc at the cost of decreasing Rλ has some limitations,
and there may be physical features whose understanding requires both large Rλ and
large Sc. For other features such as the probability distribution of scalar gradient
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fluctuations, which continues to be close to a stretched-exponential, the precise
value of Rλ does not seem to be important.

To summarize, we have documented the basic results from numerical simulations
of 3D turbulent mixing at very high Schmidt number, and have used data over an
extended range of Schmidt numbers (1–1024) to address several important issues
in Schmidt-number-scaling of passive scalar fluctuations driven by a uniform mean
gradient. This new database is expected to be useful for further studies of more
detailed aspects of passive scalar mixing, such as the behavior of spatial structure
represented by intermittency in two-point correlators, fluctuations of the scalar
dissipation rate, and multifractal statistics. These will be reported elsewhere.

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation,
via Grants CTS-0121030 (PKY) and CTS-0121007 (KRS), as well as via NSF
cooperative agreement ACI-9619020 through computing resources provided by
the National Partnership for Advanced Computational Infrastructure at the San
Diego Supercomputer Center. Our thanks go to Dr. Joerg Schumacher for a helpful
discussion at the time of planning the simulations.

It is a pleasure to dedicate this paper to Prof. Robert A. Antonia on the occasion
of his 60th birthday.

References

1. Sreenivasan, K.R., The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids
8 (1996) 189–196.

2. Sreenivasan, K.R., On local isotropy of passive scalars in turbulent shear flows, In: Proceedings
of the Royal Society of London, Vol. 434 (1991) pp. 165–182.

3. Warhaft, Z., Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32 (2000) 203–240.
4. Batchelor, G.K., Small-scale variation of convected quantities like temperature in turbulent fluid.

J. Fluid Mech. 5 (1959) 113–133.
5. Antonia, R.A. and Orlandi, P., Effect of Schmidt number on passive scalar turbulence. Appl.

Mech. Rev. 56 (2003) 615–632 .
6. Bogucki, D., Domaradzki, J.A. and Yeung, P.K., Direct numerical simulations of passive scalars

with Pr > 1 advected by turbulent flow. J. Fluid Mech., 343 (1997) 111–130.
7. Yeung, P.K., Sykes, M.C. and Vedula, P., Direct numerical simulation of differential diffusion

with Schmidt numbers up to 4.0. Phys. Fluids 12 (2000) 1601–1604.
8. Yeung, P.K., Xu S. and Sreenivasan, K.R., Schmidt number effects on turbulent transport with

uniform mean scalar gradient. Phys. Fluids 14 (2002) 4178–4191.
9. Orlandi, P. and Antonia, R.A., Dependence of the nonstationary form of Yaglom’s equation on

the Schmidt number. J. Fluid Mech. 451 (2002) 99–108.
10. Brethouwer, G., Hunt, J.C.R. and Nieuwstadt, F.T.M., Micro-structure and Lagrangian statistics

of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474 (2003)
193–225.

11. Gotoh, T., Nagaki, J. and Kaneda, Y., Passive-scalar spectrum in viscous-convective range in
two-dimensional turbulence. Phys. Fluids 12 (2000) 155–168.



TURBULENT MIXING AT VERY HIGH SCHMIDT NUMBERS 347

12. Rogallo, R.S., Numerical experiments in homogeneous turbulence. NASA Tech. Memo. 81315,
NASA Ames Research Center (1981).

13. Eswaran, V. and Pope, S.B., An examination of forcing in direct numerical simulations of
turbulence. Comput. Fluids 16 (1988) 257–258.

14. Chen, S., Doolen, G., Herring, J.R. and Kraichnan, R.H., Far-dissipation range of turbulence.
Phys. Rev. Lett. 70 (1993) 3051–3054.

15. Yeung, P.K., Multi-scalar triadic interactions in differential diffusion with and without mean
scalar gradients. J. Fluid Mech. 321 (1996) 235–278.

16. Yeung, P.K. and Sawford, B.L., Random sweeping hypothesis for passive scalars in isotropic
turbulence. J. Fluid Mech. 459 (2002) 129–138.

17. Yeung, P.K. and Pope, S.B., Differential diffusion of passive scalars in isotropic turbulence.
Phys. of Fluids A 5 (1993) 2467–2478.

18. Mydlarski, L. and Warhaft, Z., Passive scalar statistics in high-Péclet-number grid turbulence.
J. Fluid Mech. 358 (1998) 135–175.

19. Kraichnan, R.H., Small-scale structure of a scalar field convected by turbulence. Phys. Fluids
11 (1968) 945–953.

20. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics. Vol. II. MIT Press, Cambridge,
MA (1975).

21. Qian, J., Viscous range of turbulent scalar of large Prandtl number. Fluid Dynam. Res. 15 (1995)
103–112.

22. Borgas, M.S., Sawford, B.L., Xu, S., Donzis, D.A. and Yeung, P.K., High Schmidt number scalars
in turbulence: structure functions and Lagrangian theory. Phys. Fluids (2003) Submitted.

23. Sreenivasan, K.R. and Antonia, R.A., The phenomenology of small-scale turbulence. Ann. Rev.
Fluid Mech. 29 (1997) 435–472.


