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To Larry Sirovich, on the occasion of his 70th birthday.

ABSTRACT The Earth receives, on the average, the largest amount of
radiation from the Sun on summer solstice (June 21), which is the longest
day of the year. However, the warmest day occurs usually later; the time
lag is about a month for 50 deg latitude, and decreases with increasing
latitude. There is comparable time lag between the shortest day of the year
(winter solstice, December 21) and the coldest day of the year. We model
these and related observations by a linear Maxwell-type viscoelastic model.
By comparing predictions of the model with observations, we extract, as
functions of the latitude, two free parameters representing the memory
and the effective viscosity coefficient. Some interpretation of the results is
provided.
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1 Introduction

The yearly seasons are related to Earth’s position with respect to the Sun,
so it is traditional and seemingly logical to assume that the longest day of
the year, which is nominally when the Earth receives the largest amount of
radiation from the Sun, is also the warmest. The following quote from Smart
[1956] exemplifies this thinking: “...the days increase in warmth from March
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21 to June 21 corresponding to the increasing [length of day]...; from the
latter date, a decrease ensues.” However, the reality is different. A survey
of some fifty years of the temperature data for New Haven, CT, shows that
the warmest day occurs on July 24 (with a standard deviation of about
10 days), which is 33 days after summer solstice (June 21). The time lag
between the coldest day and winter solstice (December 21) is similar. The
situation is akin to the commonly known fact that, often, the warmest
temperature on a winter day is reached not at noon but a few hours later
(see Figure 1.1). It is also of interest to be able to explain the fact that the
temperature changes occur most rapidly around late April and October, a
month or so after the occurrence of equinoxes (the two days of the year,
March 21 and September 21, on which day and night have equal duration).
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F1GURE 1.1. The variation of temperature as a function of time during a typical
winter day. Different curves represent measurements at different places in the
same neighbourhood.

A proper explanation of these observations should incorporate detailed
modelling of solar radiation received by the Earth, the differential storage
and rerelease of this radiation by oceans and the land, cloud coverage,
albedo effect, ocean-land interactions, global circulation, and so forth. That
would be a major task. Our limited goal here is to model these behaviors
in a simple way by subsuming the details by two free parameters in a
Maxwell memory model. One of the parameters is a relaxation time (or
memory coefficient) and the other an (effective) viscosity coeflicient; see,
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for example, Joseph [1990]. If the model has some value, one should be
able to extract these parameters from comparison of its predictions with
empirical observations, and to interpret them usefully. We show that it is
possible to do so.

Section 2 describes the model briefly while Section 3 summarizes the data
analysis. Section 4 is a disscussion of the model, with Section 5 providing
a few concluding remarks.

2 The model

The simplest version of the model assumes that one can associate, with a
given latitude, a mean temperature for the same day of the year. This is the
value of the temperature averaged over many years, all of which correspond
to a given day; further, the temperature is averaged for all positions on a
given latitude so that the longitude-variations are ignored for this first look.
Let us denote this mean temperature by (¢, ¢), where ¢ is the latitude and
t denotes, within a year, the number of days elapsed since the occurrence
of one of two solstices. Let (#) be the time average of 8, taken over all
days in a year, and T denote the difference § — (6). At any latitude, we
are interested in the variation of T' through the year, and wish to relate
it to L(t) = L*(t) — (L*), where L* is the length of day at the chosen
latitude and (L*), the yearly average of L*, is approximately 12 hours for
all latitudes. The proposed model is

/\a—T + T =nL(t), (2.1)
ot
where A is a relaxation {memory) parameter and 7 is a viscosity coeffi-
cient. The inevitable nonlinearities in the problem are hidden in the two
parameters A and 7.

Models bearing some resemblance to equation (2.1) have indeed been
proposed for seasonal variations of temperature, but they are overtly non-
linear and more complex; for example, Crowley and North [1991] incorpo-
rate ice-albedo feedback and turbulent eddy diffusivity—each of which is
the subject of extensive and unfinished study in its own right. We know of
no effort identical to ours, carrying out data analysis to the same degree.

3 Data analysis

Data on length of day are available in tabulated form in List [1951] and,
in forms more suitable for computer manipulations, in Meeus [1988] and
Montenbruck and Pflaeger [1994]. Figure 3.1 shows a plot of L(t), taken
from List [1951], for 50 deg latitude in the northern hemisphere over a
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FIGURE 3.1. The variation of the length of day, L(t), at 50 deg latitude, as a
function of the number of days counted from the summer solstice. The data are
from List [1951]. The cosine term shown by the full line fits the data well. The
deviations from the fit can be accommodated by including higher harmonics, but
the effort was deemed unnecessary for present purposes.

one-year period, as a function of the number of days from the winter sol-
stice. For simplicity of further analysis, we fit the data in Figure 3.1 by
Acos(wt), where A is the amplitude of the daylight variation and the cir-
cular frequency w = 27/365 days~!. This fit is adequate for our purposes;
small discrepancies that exist between the fit and the data are not worth
emphasizing, given the gross features we wish to understand. Figure 3.2
shows that the amplitude A, as determined from such fits, varies smoothly
with the latitude and can be fitted by a simple polynomial.

If L(t) can be fitted by a cosine term, the solution of equation (2.1) is
simply

T(t) = acoswt + bsinwt (3.1)

where

A=—, n=(a+b\w). (3.2)
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FIGURE 3.2. The variation of the coefficient A as a function of the latitude. The
fit to the data (full line) is I = 19.47A — 2.10A? 4 0.082A%, where the latitude £
is expressed in degrees and the amplitude of daylight variations A in hours.

Equivalently, we have

T(t) = \/% cos w(t—¢), (3.3)

where
d=w tan " Dw). (34)

We shall verify if this solution adequately expresses the mean temperature
variation for a fixed latitude through the year, and if so, obtain a and b
(and thus extract the parameters A and 7 or ¢). This will be done below.
The latitude-averaged temperature data have been compiled in Qort and
Rasmuusen [1971] for a five-year period between 1955 and 1960. These data
are compiled from observations from a number of weather stations (of the
order of a few hundred) in the northern hemisphere. There are more weather
stations over land than on water, so the data may be biased in some way.
Figure 3.3 shows a comparison of these temperature data with the solution
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FIGURE 3.3. The variation of T at 50 deg latitude as a function of the number
of days, counted with respect to the summer solstice, showing that it can be
fitted quite well by equation (3.1). The observational data, taken from Oort
and Rasmuusen [1971], were five-year averages. The authors remark that scanty
evidence available over a period of some twenty years are substantially the same
as the five-year averages, thus implying that reasonable stationarity has been
reached. The weather stations are not distributed on a uniform grid on the globe
(see, for example, figure la and 1b of Oort and Rasmuusen [1971]). This may
introduce some unknown bias.

of the model equation. The agreement is good and one has
A=38days, and 7n=2.69°/hr.

This gives a phase lag ¢ of about 30 days, consistent with expectations
raised earlier. Considering that n represents the increase in temperature
per hour of heating by the Sun, a plausible interpretation is that, on the
average, an hour of solar heating raises the temperature at 50 deg latitude
by about 2.7 K.

In analyzing temperature data for other latitudes, two restrictions should
be noted. First, data on length of day become increasingly uncertain for
latitudes above 65 deg because small changes in atmospheric reflectivity can
cause relatively large changes in daylight. This difficulty restricts useful
consideration to lower latitudes (even though the model seems to work
for latitudes at least as high as 75 deg). For latitudes below about 25
deg, the relatively small seasonal variations are influenced by a variety of
minor effects, none of which—including the length of day—appears to have
a particularly dominant influence. Possibilities for improving the model
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for low altitudes will be mentioned briefly later, but, for now, we restrict
attention to the latitude range between 25 deg and 65 deg—which is what
we mean by mid-latitudes.

temperature amplitude, oC

20 30 40 50 60 70

latitude, deg

FIGURE 3.4. A comparison between the amplitude of the harmonic fit to the tem-
perature data and the observed amplitude of temperature variation. Their good
agreement is a measure of the goodness of the fit to the temperature variations
in mid-latitudes.

Our experience is that temperature variations at all mid-latitudes can
be fitted well by equation (3.1). A quick feel for the goodness of fit can
be had from Figure 3.4, which compares half the difference amplitude of T
at various mid-latitudes with the amplitude (a” + bz)% obtained by fitting
equation (3.1) to the data. The agreement is good, and the data can be
approximated crudely by a straight line which intercepts the latitude axis
at a finite value of 13 deg (to which no particular attention need be paid
because of the limitation of the model for tropical latitudes). One can
combine this approximate and empirical formula with equations (3.1) and
(3.2) to obtain

_onA
VI a2

The interpretation of the numbers on the right-hand-side of the equation is
unclear. Equation (3.5) probably possesses no greater significance than the

(in °C) ~ 0.23¢ (in deg) — 3.06 (in °C). (3.5)
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city latitude, deg.* A, days
Fairbanks, AL 64 20
Anchorage, AL 60 27
Minneapolis, MN 45 30
Burlington, VA 44 27
Boston, MA 42 38
Chicago, IL 42 34
New Haven, CT 41 39
Boulder, CO 40 36
Columbus, OH 40 34
Little Rock, AR 35 47
Jacksonville, FL 30 42
Miami, FL** 26 57

*Latitude rounded off to the nearest degree

** At this latitude, temperature variations are not fitted
well by equation (3.1).

TABLE 3.1. The coeflicient A for a few cities in the United States. Despite the
scatter, the trend towards larger A for lower latitudes is unmistakable.

fact that it relates the three parameters A, n and A. It can be simplified
even further by noting that A/n is approximately constant to within 15%.

A summary of the principal results is given in Figure 3.5 which plots the
relaxation parameter A (or, more usefully, the phase lag ¢) and viscosity
7 as functions of the latitude. (Although the data come from the northern
hemisphere, the model should hold equally for the southern hemisphere.)
The increasing value of the time lag was not expected at the outset. To
assuage the reader’s skepticism, we plot in Figure 3.6 the temperature
variations for latitudes of 30 and 75 deg. It is clear, without any help from
the model, that the time lag is smaller for higher latitudes than for lower
latitudes. The feature will be explained subsequently.

The data examined so far are averages for a given latitude, but the model
works for local areas as well. Figure 3.7 shows the temperature variation
through the year for the city of New Haven. Examination of these data for
several other American cities shows that equations (3.1)—(3.3) adequately
describe the observed temperature variations—although, not unexpectedly,
A varies somewhat between two cities that lie on the same latitude (see
Table 3.1). The general trend, however, is quite similar to that for longitude-
averaged data.

We now note three other aspects briefly:

a. Temperature variations at different heights: We have examined the tem-
perature data at several altitudes from the ground. There are only minor
variations with respect to height, at least until the tropopause is reached.
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FIGURE 3.5. The parameters A and 5 as functions of the latitude. Note the scale

change between the two parameters. All data correspond to a pressure altitude
of 1000 mb.
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FIGURE 3.6. A comparison of the temperature variations at two substantially
different latitudes. The data show without ambiguity that the warmest day occurs
later in the year at lower latitudes than at higher latitudes.
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FIGURE 3.7. The variation of T'(¢) for the city of New Haven as a function of
the number of days, counted with respect to summer solstice, showing that it
can be fitted well by equation (3.1). The observational data are from Miller
and Thompson [1979] obtained over several (but unknown number of) years. A
twelve-year average has a standard deviation of the order of 4°C.
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FIGURE 3.8. Temperature variations at 15 deg latitude, showing the limitations
of the model for low latitudes.
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Thereafter, temperature variations cannot be fitted by equation (3.1):
and, if they can be fitted at all, the value of A seems to be significantly
smaller than at lower altitudes.

b. Temperature variations at lower latitudes: It has been remarked already
that temperature variations at lower latitudes cannot be fitted well by
equation (3.1). An example is shown for the latitude of 15 deg (Figure
3.8). Lower latitudes exhibit a more pronounced bimodality, or some
other more complex behavior, depending on the altitude and latitude.
Where bimodality is pronounced, a simple nonlinear version of the model
could work, but this has not been tested extensively.

c. Largest gradients in temperature variations: For any given latitude, one
can write from equation (3.1) that

dir  nL-T

at 3.
dt A (3.6)

and compute dT'/dt using the measured values of A and n. The result
is shown in Figure 3.9 for 50 deg latitude. The largest changes occur
sometime in April and October, consistent with the known fact that the
weather changes are most rapid in these months of Spring and Fall. If
you are an outdoor jogger, you will need to change from long jumpers
to shorts, and vice versa, sometime around these dates.
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FIGURE 3.9. Temporal derivative of the temperature T'(t) through the year, as
computed for 50 deg latitude using equation (3.6).
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4 Discussion

A linear viscoelastic model describes several gross features of temperature
variations in mid-latitudes. A prominent qualitative character of the model
is the “memory” incorporated through the parameter A. The best fit to the
data shows that the parameter varies with latitude in a simple manner,
as shown in Figure 3.5. (All these data correspond to a pressure altitude
of 1000 mb. Slightly different definition of constant altitude could lead
to slightly different numbers.) In the simple version, the present model
averages temperature over all longitudes—and, at a given latitude, over
many years—and is thus similar in spirit to general circulation models,
though it is difficult to associate the two in detail.

To understand the parameter ), let us make an energy balance for a thin
slice of the globe centered around a given latitude ¢. The radius of this slice,
which is in the form of a disc, is Rcos ¥, R being the Earth’s radius. The
disc gets heated by the component of the solar radiation received normal to
the surface, loses (gains) energy by convective heat loss to the neighboring
discs as well as to the atmosphere, and stores (or releases) energy due to
the imbalance between these two effects. This energy storage, associated
with the cyclic heat-up and cool-down processes, occurs in the first few
meters of the ground; as is well-known to divers and plumbers alike, onc
can identify a penetration depth below which the seasonal variations of
temperatures are felt less conspicuously. The details of the energy loss (or
gain) are not well understood, and the standard practice in the heat transfer
literature is to represent this effect by means of a term A(T — T*), where
one’s ignorance is lumped into the heat transfer coefficient h; here, T is a
reference temperature. The energy balance then takes the form

peA d(T —T7)
h dt

where p and ¢ are the density and specific heat, respectively, of the soil in
the upper few meters of the Earth’s crust, and A is a characteristic length
scale for the penetration of heat. It is clear that this characteristic length
should be proportional to the radius of the disc under consideration. If
we assume that the daily excess energy supply is proportional to L, then
equation (4.1) coincides with equation (2.1) if

+ (T —T*)} = excess (deficit) energy supply, (4.1)

pcA
A=— 4.2
h ? ( )
whence one may expect that
A stant (4.3)
—— = con . .
cos?

Table 4.1 shows the ratio is roughly constant with a value of about 64
days. With this information, and A(¢) given in the caption to Figure 3.2,
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latitude, deg. A/ cos?

25 62.9
30 64.7
35 63.5
40 61.4
50 59.1
60 66

65 63.6

TABLE 4.1. The ratio A/ cos¥ at various latitudes. The ratio is a constant with
a mean value of about 63.8 and a standard deviation of about 3.1.

equation (3.5) is an explicit formula for = 7n(¢), whose graph resembles
that shown in Figure 3.5.

Daily variations in temperature are caused mainly by ground absorption
and release of heat. The thermal conductivity of the ground and its heat
capacity are not very large, so (on a short term) it gives up at night what
it receives during the day. Inserting reasonable values for p, ¢ and h (or,
equivalently, for the so-called Biot number, or for the soil diffusivity), one
gets a plausible estimate for the penetration depth to be of the order of
a meter. Clearly, more precise estimates of this depth will depend on the
latitude, and on whether one is on land or in the ocean, and so forth.

Two further comments may be useful. First, our equation (2.1) is tan-
tamount to assuming that the heating of the Earth by the Sun can be
represented by the term nL(t). In principle, this term can be computed
exactly from the known information on the solar radiation arriving at the
Earth. We have not attempted to do this. In effect, the “viscosity coeffi-
cient” n lumps these factors into an effective single number. Secondly, we
have so far ignored temperature fluctuations about its mean value (#) at
a given latitude; the model therefore has nothing to say about the latter.
If one imagines that equation (2.1) without the derivative term holds for
the mean temperature (f) as well, it is clear that one can define another
constant n* given by

nt = ) (4.4)

where the denominator (L*), as already remarked, is approximately 12
hours at all latitudes. There is no reason to expect that this new coefficient
n* will be related to n. However, we find that the variation of 1* is roughly
linear in £ and follows

p' = 4.53¢ —2.33. (4.5)
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5 Concluding remarks

A large number of non-equilibrium phenomena, involving dilute gases and
a variety of rheological problems, have been represented successfully by
relaxation (or memory) models. Various phenomena that occur in turbu-
lent shear flows have also been modelled in this way. Two examples will
suffice. In Narasimha and Prabhu [1972], a fully developed turbulent wake
was distorted by a rapid pressure gradient, which was then released. The
subsequent evolution of the flow, which is generally difficult to predict by
conventional turbulence models, has been replicated well by a relaxation
model. For a pipe flow with a periodically oscillating mass flow (Mao and
Hanratty [1986]}, the stress and rate of strain can be related quite well by
a memory model. The present work has shown that the relaxation model
performs similarly well for modelling seasonal variations of temperature.
However, the ubiquitous success of memory models does not necessarily
suggest that we understand the physics leading to relaxation effects. That
understanding must come from the study of specific systems on hand.
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