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Derivative moments in turbulent shear flows
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We propose a generalized perspective on the behavior of high-order derivative moments in turbulent
shear flows by taking account of the roles of small-scale intermittency and mean shear, in addition
to the Reynolds number. Two asymptotic regimes are discussed with respect to shear effects. By
these means, some existing disagreements on the Reynolds number dependence of derivative
moments can be explained. That odd-order moments of transverse velocity derivatives tend not to
vanish as expected from elementary scaling considerations does not necessarily imply that
small-scale anisotropy persists at all Reynolds numbers. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1524627#
a
al
iso
m
u
e
w
ic
oc

e
d

o

ith

ft
s

re
c
c

y

be
ng
onal

us
e by

l-
end

-
r

ents

the
ted

aw

he
e
s to
At-

in

d

I. INTRODUCTION

The postulate of local isotropy1 implies an invariance
with respect to spatial rotations of thestatisticalproperties of
small scales of turbulence. Even though the large scales
anisotropic in all practical flows, it is thought that the sm
scales at high Reynolds numbers are shielded from an
ropy because of their separation by a wide range of inter
diate scales. At any finite Reynolds number, some resid
effects of small-scale anisotropy may linger, but all prop
measures of anisotropy are expected to decrease rapidly
Reynolds number. An understanding of the rate at wh
small scales tend towards isotropy is a basic building bl
in turbulence theory.

A particularly appealing manner of generating larg
scale anisotropy is by a homogeneous shear characterize
a constant shear rateS[dU/dy, whereU(y) is the mean
velocity in the streamwise directionx, andy is the direction
of the shear. During the last few years, nearly homogene
shear flows, both experimental2–4 and numerical,5–7 have ex-
amined the rate at which local isotropy is recovered w
respect to the Taylor microscale Reynolds number,Rl .
The notation is standard:Rl[u8l/n, u is the velocity fluc-
tuation in the longitudinal directionx, u8[A^u2&, l2

5^u2&/^(]u/]x)2&, n is the kinematic viscosity and̂•& de-
notes a suitably defined average. The discussion has o
been focused on the behavior of normalized odd moment
transverse velocity derivatives defined as

M2n11~]u/]y!5
^~]u/]y!2n11&

^~]u/]y!2& (2n11)/2
, ~1!

where n is a positive integer. The velocity derivatives a
small-scale quantities, and symmetry considerations of lo
isotropy demand that the odd moments of transverse velo
derivatives be zero. In practice, they should decrease withRl

relatively rapidly. Though the postulate of local isotrop
841070-6631/2003/15(1)/84/7/$20.00
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does not by itself stipulate this rate, simple estimates can
made by retaining the spirit of local isotropy and maki
further assumptions. Let us assume that the nondimensi
momentsM2n11 depend on some powerp of the shear,
which is the ultimate source of anisotropy in homogeneo
shear flows, and nondimensionalize the shear dependenc
a time scale formed by the energy dissipation ratee and fluid
viscosity n; this nondimensionalization accords with Ko
mogorov’s first hypothesis that small-scale properties dep
solely one andn. We may then write

M2n11~]u/]y!5Spf ~e,n!;Rl
2p , ~2!

where it is further assumed thatS5O(u8/L) and L is the
large scale of turbulence. Lumley8 considered a linear depen
dence on the shear~i.e., p51). This yields an inverse powe
of Rl for the decay of all odd moments. The choicep51
accounts for the dependence of the sign of the odd mom
on the sign ofS in a simple manner.

The existing experimental and numerical data on
skewness of the transverse velocity derivative are collec
in Fig. 1. Data from any given source seem to fit a power-l
of the form

M3~]u/]y!;Rl
2m , ~3!

with m differing from one set of data to another. Though t
power-law is not a particularly good fit for the totality of th
data, the average roll-off at large Reynolds number seem
be compatible with the inverse power discussed above.
mospheric data at much higher Reynolds numbers9,10 are
also consistent with this slower rate of decay.

The situation with respect to the hyperskewness,M5 , is
as follows. Two independent laboratory experiments
nearly homogeneous shear flows3,4 draw different conclu-
sions on theRl behavior ofM5 . On the one hand, Shen an
Warhaft4 find no dependence onRl in the range between 102

and 103. On the other hand, Ferchichi and Tavoularis3 regard
© 2003 American Institute of Physics
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85Phys. Fluids, Vol. 15, No. 1, January 2003 Derivative moments in turbulent shear flows
their data to be essentially consistent with expectations
local isotropy.~For one perspective on this difference, s
Warhaft and Shen.11! A collection of all known data is given
in Fig. 2. The overall impression from the figure is tha
while there is a decreasing trend forRl.300, the hyper-
skewness does not diminish perceptibly even whenRl is as

FIG. 1. The dependence of the skewness of the transverse velocity de
tive on the Taylor microscale Reynolds number. The solid line indicates
Rl scaling expected to hold on the basis of Lumley’s dimensional con
erations~see text!. Notation in the legend stands for: PU, Pumir~Ref. 5!;
YE, Yeung, for details of whose shear flow simulations, see Ref. 24; R
Rogerset al. ~Ref. 25!; SE, Schumacher and Eckhardt~Refs. 6 and 7!; GW,
Garg and Warhaft~Ref. 2!; SW, Shen and Warhaft~Ref. 4!; FT, Ferchichi
and Tavoularis~Ref. 3!.

FIG. 2. The dependence of the hyperskewness of the transverse ve
derivative on the Taylor microscale Reynolds number. The notation in
legend is the same as in Fig. 1.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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high as 1000. Shen and Warhaft4 measured the seventh no
malized moment of the velocity derivative and found tha
increased withRl instead of decreasing.

Such findings have been interpreted~e.g., Refs. 4 and 5!
to mean that, in the presence of large-scale shear, small-s
anisotropy persists to very high Reynolds numbers. The
tent of this paper is to clarify, at least partially, the simult
neous role played by shear, intermittency and the Reyno
number—all of which have an impact on trends displayed
odd derivative moments.

We now consider in Sec. II the issue of intermitten
versus anisotropy. In Sec. III, we highlight the effects
shear by discussing the limiting cases of large shear and l
isotropy, and argue thatRl determines the state of the flow
only partially. In Sec. IV the derivative skewness data a
plotted in the plane spanned by the nondimensional sh
parameterS* andRl , where we use the definition

S* 5Su82/e. ~4!
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FIG. 3. The ratio of the normalized momentsM 2n11(]u/]y) and
M2n11(]u/]x) for n 5 1, 2, and 3 versus the Taylor microscale Reynol
number. QuantitiesM2n11 are defined in Eq.~1!. The notation in the legend
is the same as in Fig. 1. Here and in the next figure, data from Ref. 4 h
been read from published graphs.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Third, fifth, and seventh-order transverse derivative moments with different normalizations, plotted againstRl . Squares are normalized by th
moment of preceding even order, circles by the succeeding even order. Triangles are normalized by the geometric mean of both orders. Variablex in the legend
stands for]u/]y. The data are from Yeung~Ref. 24!, Schumacher–Eckhardt~Refs. 6 and 7! and Shen–Warhaft~Ref. 4!. Solid lines with attached number
indicate fits to possible algebraic power laws. Each symbol corresponds to a different normalization, and includes all the data just cited.
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This broader perspective may help resolve some seemi
contradictory claims on the recovery of isotropy of sm
scales.

II. INTERMITTENCY VERSUS ANISOTROPY

A large number of measurements have shown conv
ingly that high-ordereven moments of small-scale feature
of turbulence increase withRl . Consider the longitudina
velocity derivative]u/]x. The product of its second momen
and fluid viscosity is essentially the energy dissipatio
which is known to remain independent ofRl when Rl ex-
ceeds some moderately high value~see Refs. 12 and 13!. On
the other hand, all high-order moments of longitudinal velo
ity gradients grow withRl ~see, for example, the compilatio
in Ref. 14 of the data on the flatness factor of]u/]x). Sixth-
and higher-order moments increase at increasingly fa
rates withRl . These growths are attributed to the interm
tency of small-scale turbulence. At the present level of
understanding, intermittency is independent of anisotropy
fects. Therefore, just as the growth of high-order even m
ments with increasingRl is unrelated to anisotropy, it is
legitimate to ask if, at least in part, the slower-than-expec
decay—or even modest growth—of odd moments, may
related to intermittency.

To separate intermittency effects from those of anis
ropy, at least in some approximate way, it is useful to plot
ratio 2M2n11(]u/]y)/M2n11(]u/]x). It is plausible to as-
sume that theRl-growth due to intermittency effects is th
same for the moments of]u/]x and for the moments o
]u/]y, so the intermittency effects of odd moments of]u/]y
are cancelled in these ratios by those of]u/]x. Though this
not a rigorous statement, it is useful to see its outcome.
ure 3 shows the results. It is clear, despite large scatter,
all the moments show a tendency to diminish with Reyno
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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number. The odd-moments in Fig. 3 are normalized by po
ers of their respective variances. It would have been de
able to plot ratios of unnormalized, or ‘‘bare,’’ moments
the two derivatives, but Ref. 4 does not include those data
any case, this should not make much difference beca
^(]u/]x)2&/^(]u/]y)2& is essentially a constant at high Re
nolds numbers.

This same issue can be rephrased and reexamined
somewhat different light. When we consider the mome
such as skewness and hyperskewness, we usually norm
them by the appropriate power of the variance of the va
able. This is perfectly reasonable for Gaussian or ne
Gaussian variables, but not so for intermittent quantities w
highly stretched tails. Perhaps a more reasonable alterna
is to consider how an odd moment of a certain order va
with respect to the even moment just below or just above
the geometric mean of those just below and just above.
illustrate the results of this consideration for the third, fif
and seventh order moments of]u/]y(5x) in Fig. 4. The
lack of data on the eighth moment of]u/]y makes the analy-
sis of the seventh moment incomplete. Nevertheless, i
clear that all these alternative ways of normalization sh
substantial decay. It is hard to be precise about the rate
decay, partly because of the large scatter and partly bec
of the incomplete manner in which the seventh mome
have been analyzed, but it is conceivable that increasin
high-order moments, within a given normalizing scheme,
cay more slowly. At the least, a careful discussion of t
restoration of anisotropy requires the proper inclusion of
termittency effects. This is our first point.

III. SHEAR EFFECTS IN TWO LIMITING CASES

It is reasonable to suppose that, to a first approximat
the mean shearS and the viscosityn determine the gross
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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87Phys. Fluids, Vol. 15, No. 1, January 2003 Derivative moments in turbulent shear flows
state of the flow. Expressing time units in terms ofS21,
length units in terms of the integral length scaleL, and the
mean profile asU5Syex , we get

]v

]t
1~v•“ !v1y

]v

]x
1vex52“p1

1

Res
“

2v1f, ~5!

“•v50, ~6!

where v5(u,v,w) and ex is unit vector in the streamwis
direction x. The volume forcing is denoted byf. The two
parameters may be expected to set the steady state flu
tion level and energy dissipation rate. It also follows that
derived parametersRl and S* adjust themselves dynam
cally, in ways that are understood only partially, to the i
posed values ofn andS. We then expect

Rl5g1~n,S!5g1~Res!,
~7!

S* 5g2~n,S!5g2~Res!,

whereg1 andg2 are unknown functions of their argument
All the homogeneous shear experiments to be discus

below have been done in air. This fixes the viscosity to
approximately constant, so we can test the dependence oS*
andRl on the shear rateS. The relevant plots@Figs. 5~a! and
5~b!# show no obvious trend but only large scatter. This sc
ter may be related in part to the fact thatP/eÞ1 in some of
the experiments, leading to nonstationarity. HereP is the
production of turbulent kinetic energy, defined
P52^uv&S for homogeneous shear. In part, it demonstra
that the flow might depend additionally on initial condition
^v2& t50 , or the type of driving of small-scale fluctuation
characterized globally by an energy input. From Eq.~5!, the
latter is given by

e in5^v"f&. ~8!

We then get more complex relations such as

FIG. 5. ~a! The dependence of the shear parameterS* on the shear rateS for
fixed kinematic viscosity,n5nair . ~b! Dependence of the Taylor-microsca
Reynolds numberRl on S for fixed n. Unfilled symbols are the same as
Fig. 1. Additional shear flow studies have been included, though they did
focus on derivative moments explicitly~filled symbols!. The additions are:
RO, Rose~Ref. 26!; ML, Mulhearn and Luxton~Ref. 27!; HC, Harris,
Graham, and Corrsin~Ref. 28!; TC, Tavoularis and Corrsin~Ref. 29!; TK,
Tavoularis and Karnik~Ref. 30!; SV, Saddoughi and Veeravalli~Ref. 31!.
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Rl5g̃1~n,S,e in!5g̃1~Res ,e in!,

S* 5g̃2~n,S,e in!5g̃2~Res ,e in!. ~9!

If we add to Figs. 5 the atmospheric data from Refs
and 10, the situation becomes even more complex. Howe
it is likely that, in such inhomogeneous flows, one has to ta
into account secondary factors such as convective eff
~though conditions in which they are modest can always
chosen carefully!. In laboratory experiments, secondary e
fects might arise from the use of specific passive or ac
grids for the generation of turbulence. Further differenc
can arise when measuring at a fixed point instead of follo
ing the downstream evolution. This discussion merely und
lines the inadequacy ofRl as the sole indicator of the state o
the flow. At the least, we have to possess some knowledg
the other parameters influencing the state of the flow be
drawing firm conclusions on the recovery of isotropy.

To keep matters simple, we will focus below on hom
geneously sheared flows. Because the initial conditions
not known in all quantifiable details, we shall tentative
stipulate a simple generalization of Eq.~1! in the form

M35 f̃ ~Rl ,S* !, ~10!

and regard other effects as superimposed ‘‘noise.’’15 If so, we
should investigate the behavior of the derivative moments
keeping one of the two parameters fixed while varying
other, for example by fixingS* and varyingRl . This is the
topic of the next section. However, it is useful to preface t
consideration by examining two limiting behaviors in whic
some inequalities betweenRl andS* can be established.

A. Large shear case

Consider the case of large shear rate for which the c
pling of the mean shear to the small-scale flow dominates
the rapid distortion limit, namelyS→`, Eq. ~5! becomes
linear because the viscous term as well as the (v•“)v term
can be dropped, so that any shear rate dependence ca
eliminated by the rescaling of the variables, e.g.,t→St.

Our dimensional estimates are related to large but fin
shear rates. For this case, the term representing the cou
of the turbulent velocity component to the mean shear
important and large in comparison to the nonlinear advec
transport. Our situation corresponds to the case in which

Uv i

]U j

]xi
U@Uv i

]v j

]xi
U. ~11!

For the homogeneous shear flow, we get for the left-ha
side of this equation

Uv ]U

]y U5uvuS;^v2&1/2S<^u2&1/2S. ~12!

In the last step above, we have used the fact that the r
mean-square velocity in the streamwise direction is lar
than that in the shear direction, as has been found in
numerical and physical experiments. The term on the ri
hand side can be estimated roughly as^u2&/, where the scale

ot
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



an
m

.

he

py

is

n

ot

s
t-
in
ts
nu
io
rg
o
-

le
lcu
s

ple

nt
the
rent
y to

an

d for
at

r

vou-

may

88 Phys. Fluids, Vol. 15, No. 1, January 2003 Schumacher, Sreenivasan, and Yeung
, is characteristic of turbulent velocity gradients and c
therefore, be assumed to be of the order of the Taylor
croscale,l. We then require

^u2&1/2S@
^u2&

l
. ~13!

With e5ceu83/L and L/l5ReL
1/2/A10, and the constantce

;O(1) for sufficiently largeRl , we get

S*

Rl
@

A3

A200
'

1

8
. ~14!

In reality, ce depends weakly onS* . For example,
Sreenivasan16 has examined the data and concluded thatce

'coexp(2aS* ), where a'0.03, is a good empirical fit
Since this dependence is quite weak, we have takence to be
a constant for simplicity. Presumably, if Eq.~14! holds, the
effects of shear will always be felt no matter how high t
Reynolds number.

B. Local isotropy limit

At the other extreme is the case in which local isotro
can be expected,a priori, to prevail. A suitable criterion~see
Corrsin17! is that a sufficiently large separation should ex
between the shear time scale,S21, and the Kolmogorov time
scale,th5(n/e)1/2. This can be written as

Sth!1, ~15!

or as

Sth5S* Ace ~ 3
2!

1/4 ReL
21/2. ~16!

With ce;O(1) andRl5(20ReL/3)1/2 we obtain

S*

Rl
! S 3

200
D 1/4

'0.35. ~17!

The implication is that local isotropy prevails for allS* /Rl

substantially smaller than 0.35. For all other conditions, o
should expect that the magnitude ofS* will play some role
in determining how high anRl is required for local isotropy
to prevail. This explicit dependence on shear has been n
for passive scalars by Sreenivasan and Tavoularis;18 see their
Figs. 2 and 3.

IV. THE RlÀS* PHASE DIAGRAM

We now plot in Fig. 6 all available data on the skewne
of the transverse derivative,]u/]y, on a phase plane consis
ing of S* andRl . The conventional normalization factors
the definition ofS* are the total turbulent energy and i
dissipation rate. This can be done quite readily for the
merical data, but experiments usually provide informat
only on the streamwise component of the turbulent ene
and on the energy dissipation estimate from the local is
ropy formula,e515n^(]u/]x)2&. The error made in this es
timate for the energy dissipation depends16 on the magni-
tudes of shear andRl , but it appears to be a reasonab
approximation for the present conditions. We have reca
lated for all numerical data the energy dissipation rate a
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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experiments. It is clear from the figure that there is no sim
correlation between the two parametersS* andRl .

We have replotted the same data in Fig. 7. Differe
symbols correspond now to different magnitudes of
skewness, as indicated in the legend, and not to diffe
experiments. Superimposed are islands in shades of gra
obtain a rough idea of the surface plot off̃ (Rl ,S* ). We used
an interpolation routine with local thin plate splines that c

FIG. 6. Operating points of the homogeneous shear flows in theRl2S*
plane. All symbols are the same as in Figs. 1 and 5. Data points LK stan
Lee et al. ~Ref. 32!, corresponding to additional numerical simulations
very high shear rates.

FIG. 7. Derivative skewness and its dependence ofRl and S* . The solid
straight line is for the large shear limitS* /Rl51, the dashed lines are fo
local isotropy limitS* /Rl50.003 and 0.001~left to right!. Underlying gray
scales result from a surface fit. Trends of the data from Ferchichi and Ta
laris ~FT! and Warhaft and co-workers~GW/SW! are indicated by solid
lines. Different symbols indicate different ranges of the skewness, and
represent data from the same source. The data point belowS* 53 is taken
from the numerical experiments of Rogerset al. ~Ref. 25!.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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reconstruct a surface from scattered data.19 The data are
sparse in most of the regions of the plane so any surfa
fitting routine will introduce some peculiarities. For reaso
explained above, we can expect that the derivative skew
will become small in the local isotropy limit~lower right
corner! and that the values will grow above 0.8 in the lar
shear case~upper left corner!. Although the latter fact is no
reflected by the surface fit because the data points are ab
there and almost all data points are in the intermediate
gion, we think that the surface plot is not unreasonable.

This plot offers additional perspectives. For instan
Fig. 1 is just a projection of the data onto theRl axis and
masks the fundamental effect of the applied shear~among
other effects!. We have marked in this figure the trends of t
data sets of Warhaft and co-workers~parabolic solid line
labeled by GW/SW! and of Ferchichi and Tavoulari
~straight line labeled by FT!, respectively. They show tha
the two experiments follow different paths: while th
Ferchichi–Tavoularis data run directly down the ‘‘mounta
range,’’ the Shen–Warhaft data seem to run in a kind
spiral around the ‘‘mountain,’’ presumably resulting in
slower decay of the skewness when projected onto theRl

axis. Finally, the two limiting regimes of Sec. III are als
plotted. The local isotropy limit is not reached for any of t
data. The large shear case is reached for very largeS* . A
thresholdSc* grows whenRl increases; alternatively, loca
isotropy requires largerRl if the shear parameter is larger

V. CONCLUDING REMARKS

Considerable attention has been paid recently to the
that in shear flows the moments of transverse velocity
rivatives do not vanish with Reynolds number as fast as
expected. We have introduced two considerations for in
preting these observations, invoking small-scale interm
tency and the magnitude of the shear parameter. These
effects work in combination with the Reynolds numbers
determining the magnitudes of odd moments of velocity
rivatives. The fact that the odd moments, when normali
by an appropriate power of the variance~a procedure steepe
in studies of Gaussian processes!, decay more slowly than
expected should not be considereda priori as incontrovert-
ible evidence against local isotropy. We believe that
broader perspective of this paper may explain some seem
contradictions that exist in the literature.

The conclusions we draw in this paper would be mo
definitive if the data spanned much higher Reynolds num
range. This can be done with adequate resolution only
atmospheric flows at present. The existing measurement
in conformity with the discussion here, but it is difficult to b
definitive because of the usual problems that often exis
atmospheric measurements. On the other hand, it seems
feasible in numerical simulations to fix the Reynolds num
and vary the shear parameter, even though the Reyn
number range may be limited. Such a study will tell us mo
about the restoration~or otherwise! of small-scale isotropy.

In the recent past, various efforts have been made
understand the effects of anisotropy through an SO~3! de-
composition of structure functions and other tensorial obje
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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~see Ref. 20 for the basic theoretical idea and Refs. 21
for implementations of the idea and further references!. The
method offers a transparent way of determining the degre
anisotropy in turbulent statistics. The relation between t
effort and the present global picture needs to be explore

Note added in proof: With reference to the last stateme
of the text, we wish to call attention to Ref. 33. In this pap
the authors discuss small-scale anisotropy in terms of
intermittency of the anisotropy sectors in the SO~3! decom-
position.
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