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Derivative moments in turbulent shear flows

J. Schumacher
Fachbereich Physik, Philipps-UniversiteD-35032 Marburg, Germany

K. R. Sreenivasan
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

P. K. Yeung
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 31 January 2002; accepted 7 October 2002; published 4 Decembger 2002

We propose a generalized perspective on the behavior of high-order derivative moments in turbulent
shear flows by taking account of the roles of small-scale intermittency and mean sheatr, in addition
to the Reynolds number. Two asymptotic regimes are discussed with respect to shear effects. By
these means, some existing disagreements on the Reynolds number dependence of derivative
moments can be explained. That odd-order moments of transverse velocity derivatives tend not to
vanish as expected from elementary scaling considerations does not necessarily imply that
small-scale anisotropy persists at all Reynolds numbers20@3 American Institute of Physics.
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I. INTRODUCTION does not by itself stipulate this rate, simple estimates can be
_ o . . made by retaining the spirit of local isotropy and making

_ The postulate of local |sotroﬁy|mp_lle_s an invarnance  f,rther assumptions. Let us assume that the nondimensional
with respect to spatial rotations of teatisticalproperties of momentsM.,, ., depend on some powas of the shear,
small scales of turbulence. Even though the large scales ajgnich is the ultimate source of anisotropy in homogeneous

anisotropic in all practical flows, it is thought that the small o4, flows, and nondimensionalize the shear dependence by
scales at high Reynolds numbers are shielded from anisof e scale formed by the energy dissipation agand fluid

ropy because of their separation by a wide range of intermeg;geosity 1 this nondimensionalization accords with Kol-
diate scales. At any finite Reynolds number, some residug},oq4roys first hypothesis that small-scale properties depend

effects of small-scale anisotropy may linger, but all PrOP€lsyiely one and ». We may then write
measures of anisotropy are expected to decrease rapidly with

Reynolds number. An understanding of the rate at which Mo 1(du/dy)=SPf(e,»)~R, P, 2
small scales tend towards isotropy is a basic building block, «re it is further assumed thst= O(u'/L) andL is the

in turbulence theory. _ _ large scale of turbulence. Lumlggonsidered a linear depen-
A particularly appealing manner of generating large-gence on the sheéire.,p=1). This yields an inverse power
scale anisotropy is by a homogeneous shear characterized gy R, for the decay of all odd moments. The choige 1

a constant shear rag=dU/dy, whereU(y) is the mean  ,ccounts for the dependence of the sign of the odd moments
velocity in the streamwise directiog andy is the direction ., ihe sign ofSin a simple manner.

of the shear. During the last few years, nearly homogeneous 11,4 existing experimental and numerical data on the

- - b7
shear flows, both experimerftaf and numerical, " have ex- gy o\ness of the transverse velocity derivative are collected

amined the rate at which local isotropy is recovered with;, Fig. 1. Data from any given source seem to fit a power-law
respect to the Taylor microscale Reynolds numbey,. of the form

The notation is standardR,=u’\/v, u is the velocity fluc- .

tuation in the longitudinal directionx, u’=\(u?), \? Mg(au/dy)~Ry\ ™, 3

_ 2 2 . . . . .

=(U9/((aul9x)%), v is the kinematic viscosity an@) de- \ith m differing from one set of data to another. Though the
notes a suitably defined average. The discussion has oftefy ver.jaw is not a particularly good fit for the totality of the
been focused on the behavior of normalized odd moments ‘:Hata, the average roll-off at large Reynolds number seems to

transverse velocity derivatives defined as be compatible with the inverse power discussed above. At-
<((9u/(9y)2n+1> mospheric data at much higher Reynolds numb€rare
Man1(duldy) = (1) also consistent with this slower rate of decay.

= <(au/(9y)2>(2n+1)/2' The situafi k )

e situation with respect to the hyperskewndds, is
wheren is a positive integer. The velocity derivatives are as follows. Two independent laboratory experiments in
small-scale quantities, and symmetry considerations of locatearly homogeneous shear fléWsdraw different conclu-
isotropy demand that the odd moments of transverse velocitgions on theR, behavior ofMs. On the one hand, Shen and
derivatives be zero. In practice, they should decreaseRyjith Warhaff find no dependence d®, in the range between 10
relatively rapidly. Though the postulate of local isotropy and 1§. On the other hand, Ferchichi and Tavoufrigard

1070-6631/2003/15(1)/84/7/$20.00 84 © 2003 American Institute of Physics

Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 1, January 2003 Derivative moments in turbulent shear flows 85

10

Ms(au/ay)

107
10

FIG. 1. The dependence of the skewness of the transverse velocity deriva-
tive on the Taylor microscale Reynolds number. The solid line indicates the
R, scaling expected to hold on the basis of Lumley’s dimensional consid-
erations(see text Notation in the legend stands for: PU, PurtiRef. 5;

YE, Yeung, for details of whose shear flow simulations, see Ref. 24; RM,
Rogerset al. (Ref. 25; SE, Schumacher and Eckhat&efs. 6 and ¥, GW,

Garg and WarhaftRef. 2; SW, Shen and WarhafRef. 4; FT, Ferchichi

and TavoularigRef. 3.

their data to be essentially consistent with expectations of
local isotropy.(For one perspective on this difference, see
Warhaft and Sheft) A collection of all known data is given

in Fig. 2. The overall impression from the figure is that,

while there is a decreasing trend f&;>300, the hyper- FIG. 3. The ratio of the normalized momentdl,,. (du/dy) and

skewness does not diminish perceptibly even wRers as ~ Man.1(du/dx) for n = 1, 2, and 3 versus the Taylor microscale Reynolds
number. Quantitiet,,, , are defined in Eq(1). The notation in the legend
is the same as in Fig. 1. Here and in the next figure, data from Ref. 4 have

been read from published graphs.

high as 1000. Shen and WarHfafteasured the seventh nor-
malized moment of the velocity derivative and found that it
increased withR, instead of decreasing.

Such findings have been interpret@dg., Refs. 4 and)5
to mean that, in the presence of large-scale shear, small-scale
anisotropy persists to very high Reynolds numbers. The in-
tent of this paper is to clarify, at least partially, the simulta-
neous role played by shear, intermittency and the Reynolds
number—all of which have an impact on trends displayed by
odd derivative moments.

We now consider in Sec. Il the issue of intermittency
versus anisotropy. In Sec. lll, we highlight the effects of
shear by discussing the limiting cases of large shear and locall
: : R AR isotropy, and argue tha&, determines the state of the flow

10° 10° only partially. In Sec. IV the derivative skewness data are
Ry plotted in the plane spanned by the nondimensional shear
R{arametels* andR, , where we use the definition

FIG. 2. The dependence of the hyperskewness of the transverse veloci
derivative on the Taylor microscale Reynolds number. The notation in the )
legend is the same as in Fig. 1. S*=Su“/e. (4)
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FIG. 4. Third, fifth, and seventh-order transverse derivative moments with different normalizations, plotted RgaiSguares are normalized by the
moment of preceding even order, circles by the succeeding even order. Triangles are normalized by the geometric mean of both orders Wezilglgend
stands forgu/dy. The data are from Yeun@ef. 24, Schumacher—Eckhar@Refs. 6 and Yand Shen—WarhafRef. 4). Solid lines with attached numbers
indicate fits to possible algebraic power laws. Each symbol corresponds to a different normalization, and includes all the data just cited.

This broader perspective may help resolve some seeminglyumber. The odd-moments in Fig. 3 are normalized by pow-
contradictory claims on the recovery of isotropy of smallers of their respective variances. It would have been desir-
scales. able to plot ratios of unnormalized, or “bare,” moments of
the two derivatives, but Ref. 4 does not include those data. In
any case, this should not make much difference because

A large number of measurements have shown convincé(&umx)2>/<(&U/ay)2> is essentially a constant at high Rey-

: : nolds numbers.
ingly that high-ordereven moments of small-scale features . . . .
. . ) L This same issue can be rephrased and reexamined in a
of turbulence increase witR, . Consider the longitudinal . : .
. S . somewhat different light. When we consider the moments
velocity derivativedu/dx. The product of its second moment .
S o . ..~ such as skewness and hyperskewness, we usually normalize
and fluid viscosity is essentially the energy dissipation

which is known to remain independent Bf whenR, ex- them by the appropriate power of the variance of the vari-

: able. This is perfectly reasonable for Gaussian or near-
ceeds some moderately high valisee Refs. 12 and 130n Gaussian variables, but not so for intermittent quantities with

the other hand, all high-order moments of longitudinal veloc-,_. . .
) : . ..~~~ highly stretched tails. Perhaps a more reasonable alternative
ity gradients grow withR, (see, for example, the compilation . . . :
: . is to consider how an odd moment of a certain order varies
in Ref. 14 of the data on the flatness factowaf dx). Sixth- . . .

with respect to the even moment just below or just above, or

and higher-order moments increase at increasingly fast%e geometric mean of those just below and just above. We
rates withR, . These growths are attributed to the intermit- . . . . : ;
illustrate the results of this consideration for the third, fifth
tency of small-scale turbulence. At the present level of oufrand seventh order moments 66/3y(=x) in Fig. 4. The
understanding, intermittency is independent of anisotropy e Tack of data on the eighth moment aii/ 9y makes the analy-

fects. Therefore, just as the growth of high-order even mo-_. ) o
o . . . .. sis of the seventh moment incomplete. Nevertheless, it is
ments with increasindR, is unrelated to anisotropy, it is

legitimate to ask f, at least in part, the slower-than-expecte&lear that all these alternative ways of normalization show

Substantial decay. It is hard to be precise about the rates of
decay—or even modest growth—of odd moments, may bé

. . decay, partly because of the large scatter and partly because
related to intermittency.

. . . of the incomplete manner in which the seventh moments
To separate intermittency effects from those of anisot; o . . .

. ; o have been analyzed, but it is conceivable that increasingly
ropy, at least in some approximate way, it is useful to plot th

(atio — Mo, 1(9U/3y)/ Mo 1(2Ul2%). It is plausible to as- enlgh-order moments, within a given normalizing scheme, de-

sume that theR,-growth due to intermittency effects is the cay more sIowa_. At the Ieasfc, a careful d|s<_:u55|o_n of t_he
restoration of anisotropy requires the proper inclusion of in-
same for the moments aofu/dx and for the moments of

auldy, so the intermittency effects of odd momentsiaf gy termittency effects. This is our first point.

are cancelled in these ratl_os_ by thoseﬂumx._Though this _lIl. SHEAR EFFECTS IN TWO LIMITING CASES

not a rigorous statement, it is useful to see its outcome. Fig-

ure 3 shows the results. It is clear, despite large scatter, that It is reasonable to suppose that, to a first approximation,
all the moments show a tendency to diminish with Reynoldg¢he mean shea$ and the viscosityr determine the gross

II. INTERMITTENCY VERSUS ANISOTROPY
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ILa SV' 4> .t : > x If we add to Figs. 5 the atmospheric data from Refs. 9
¢ % . o« and 10, the situation becomes even more complex. However,
o B b <, T Do, it is likely that, in such inhomogeneous flows, one has to take
5 B o™ b oy * into account secondary factors such as convective effects
> > (though conditions in which they are modest can always be
4 » >a B * chosen carefully In laboratory experiments, secondary ef-
Aa . . s fects might arise from the use of specific passive or active
, @ 1077 (®) grids for the generation of turbulence. Further differences
1 10 100 1 10 100 can arise when measuring at a fixed point instead of follow-
Sins™ Sins™ ing the downstream evolution. This discussion merely under-
FIG. 5. (a) The dependence of the shear param8teon the shear rasfor  lin€s the inadequacy &, as the sole indicator of the state of

fixed kinematic viscosityy= v,;. (b) Dependence of the Taylor-microscale the flow. At the least, we have to possess some knowledge of
Reynolds numbeR, on Sfor fixed ». Unfilled symbols are the same as in the other parameters influencing the state of the flow before

Fig. 1. Additional shear flow studies have been included, though they did no ; ; ; :
focus on derivative moments explicitljilled symbolg. The additions are: Hrawmg firm conclusions on the recovery of Isotropy.

RO, Rose(Ref. 26; ML, Mulhearn and Luxton(Ref. 27; HC, Harris, To keep matters simple, we will fOCU_S_k?eIOW on _homo'
Graham, and CorrsifRef. 28; TC, Tavoularis and CorrsitRef. 29; TK, geneously sheared flows. Because the initial conditions are
Tavoularis and KarniKRef. 30; SV, Saddoughi and VeeravalRef. 3. not known in all quantifiable details, we shall tentatively

stipulate a simple generalization of EG) in the form

state of the flow. Expressing time units in terms $f?, Ms=f(R,.S), (10

Iength units in terms of the integral Iength scéleand the and regard other effects as Superimposed “noilédf”so, we
mean profile asdJ=Syg,, we get should investigate the behavior of the derivative moments by
v oV 1 keeping one of the two parameters fixed while varying the
EHV' V)v+ya—x +ve=—-Vp+ R—V2v+f, (5) other, for example by fixing* and varyingR, . This is the
& topic of the next section. However, it is useful to preface this
V.v=0, (6)  consideration by examining two limiting behaviors in which

. . ) ~some inequalities betwed®, andS* can be established.
wherev=(u,v,w) and e, is unit vector in the streamwise

direction x. The volume forcing is denoted by The two A Large shear case
parameters may be expected to set the steady state fluctua-

tion level and energy dissipation rate. It also follows that the  Consider the case of large shear rate for which the cou-
derived parameter®, and S* adjust themselves dynami- pling of the mean shear to the small-scale flow dominates. In

cally, in ways that are understood only partially, to the im-the rapid distortion limit, nameh6—<, Eq. (5 becomes

posed values of andS. We then expect linear because the viscous term as well as theV(v term
can be dropped, so that any shear rate dependence can be
R\=01(»,S)=0;(Rey), eliminated by the rescaling of the variables, etg-St

S S)—a.(R (7) Our dimensional estimates are related to large but finite
92(7.5)=02(Re), shear rates. For this case, the term representing the coupling
whereg,; andg, are unknown functions of their arguments. of the turbulent velocity component to the mean shear is
All the homogeneous shear experiments to be discussdthportant and large in comparison to the nonlinear advective
below have been done in air. This fixes the viscosity to bdransport. Our situation corresponds to the case in which
approximately constant, so we can test the dependensg of
andR, on the shear ratg The relevant plot§Figs. 5a) and
5(b)] show no obvious trend but only large scatter. This scat-
ter may be related in part to the fact tHate# 1 in some of
the experiments, leading to nonstationarity. H&¥as the
production of turbulent kinetic energy, defined as
P=—(uv)S for homogeneous shear. In part, it demonstrates
that the flow might depend additionally on initial conditions,
(v®)—o, or the type of driving of small-scale fluctuations
characterized globally by an energy input. From E5), the  In the last step above, we have used the fact that the root-

(71)]
vi &Xi

>

9, . (11)

vi L?Xi

For the homogeneous shear flow, we get for the left-hand
side of this equation

Ju
v =|v|S~(v?)Y2s<(u?)¥?s, (12

latter is given by mean-square velocity in the streamwise direction is larger
S— ) than that in the she_zar directi_on, as has been found in_ all
n numerical and physical experiments. The term on the right

We then get more complex relations such as hand side can be estimated roughly a$/¢ where the scale
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¢ is characteristic of turbulent velocity gradients and can,
therefore, be assumed to be of the order of the Taylor mi- B 4+
croscale\. We then require . N + 1
(u?) +
2\1/2
<Ll > S> ~ (13 n
With e=c.u’%/L andL/x=Re¥/10, and the constant, 10' + 5
~ (1) for sufficiently largeR, , we get . * &*@> P xme «X
s 3 1 ‘v ¥ é.;(x S
+ & e <
In reality, c. depends weakly onS*. For example,
Sreenivasaft has examined the data and concluded that
~Cyexp(—aS*), where «~0.03, is a good empirical fit. n
Since this dependence is quite weak, we have taken be .
a constant for simplicity. Presumably, if E(L4) holds, the 107
effects of shear will always be felt no matter how high the
Reynolds number. . g LK
10’ 10° 10°
B. Local isotropy limit Rx

At the other etheme Is the qase m. which I.Oca.l ISOtrOpyFIG. 6. Operating points of the homogeneous shear flows irRfheS*
can b_e sxpecteda, pI’IOI’I., FO prevall. A swtablg C”ter'o'(lsee _plane. All symbols are the same as in Figs. 1 and 5. Data points LK stand for
Corrsint’) is that a sufficiently large separation should existLee et al. (Ref. 32, corresponding to additional numerical simulations at
between the shear time sca®,!, and the Kolmogorov time  very high shear rates.
scale,7,=(v/€)"2 This can be written as

Sr,<1, (15 experiments. It is clear from the figure that there is no simple
correlation between the two paramet&sandR, .
We have replotted the same data in Fig. 7. Different
Sr,=S*\c. ()V4Re V2. (16)  symbols correspond now to different magnitudes of the
) _ 12 , skewness, as indicated in the legend, and not to different
With ¢.~0O(1) andR, = (20R¢ /3)™* we obtain experiments. Superimposed are islands in shades of gray to

or as

S* 3 \ 14 obtain a rough idea of the surface plotf¢R, ,S*). We used
R—)\< ﬂ) ~0.35. 17 an interpolation routine with local thin plate splines that can
The implication is that local isotropy prevails for &f /R,
substantially smaller than 0.35. For all other conditions, one 30 A“k
should expect that the magnitude $f will play some role A 4 3 =
in determining how high aR, is required for local isotropy ' 2 =s
to prevail. This explicit dependence on shear has been noted &
for passive scalars by Sreenivasan and Tavouldssg their 10 08
Figs. 2 and 3.
o) 0.6
IV. THE R,—S* PHASE DIAGRAM . o
We now plot in Fig. 6 all available data on the skewness °
of the transverse derivativéu/dy, on a phase plane consist- J/ 02
ing of S* andR, . The conventional normalization factors in /)
the definition of S* are the total turbulent energy and its F ‘ / ,
dissipation rate. This can be done quite readily for the nu- Yo 30 100 300 1000
merical data, but experiments usually provide information B

Only on the streamw!se. cor.nponer.n of the turbulent engrg¥ G. 7. Derivative skewness and its dependenc®ofind S*. The solid
and on the energy dissipation estimate from th.e Iog:al ISOtgtraight line is for the large shear lin*/R, =1, the dashed lines are for
ropy formula,e= 15v((Ju/ 9x) 2). The error made in this es- local isotropy limitS*/R, =0.003 and 0.004eft to right). Underlying gray
timate for the energy dissipation depei’?den the magni- scales result from a surface fit. Trends of the data from Ferchichi and Tavou-
. laris (FT) and Warhaft and co-worker€GW/SW) are indicated by solid

tudes of shear an®, , but it appears to be a reasonable . R .

. . . lines. Different symbols indicate different ranges of the skewness, and may
approximation for the present conditions. We have recalcuFepresent data from the same source. The data point b8tew3 is taken

lated for all numerical data the energy dissipation rate as ifrom the numerical experiments of Rogeasal. (Ref. 25.
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reconstruct a surface from scattered ddtThe data are (see Ref. 20 for the basic theoretical idea and Refs. 21-23
sparse in most of the regions of the plane so any surfacder implementations of the idea and further referencéhe
fitting routine will introduce some peculiarities. For reasonsmethod offers a transparent way of determining the degree of
explained above, we can expect that the derivative skewnessiisotropy in turbulent statistics. The relation between that
will become small in the local isotropy limilower right  effort and the present global picture needs to be explored.
corne) and that the values will grow above 0.8 in the large Note added in proofwith reference to the last statement
shear caseupper left corner Although the latter fact is not of the text, we wish to call attention to Ref. 33. In this paper,
reflected by the surface fit because the data points are absahe authors discuss small-scale anisotropy in terms of the
there and almost all data points are in the intermediate reintermittency of the anisotropy sectors in the (80decom-
gion, we think that the surface plot is not unreasonable.  position.

This plot offers additional perspectives. For instance,
Fig. 1 is just a projection of the data onto tRg axis and
masks the fundamental effect of the applied sh@anong ACKNOWLEDGMENTS
other effects We have marked in this figure the trends of the We thank A. Pumir and Z. Warhaft for providing raw

data sets of Warhaft and co-workefarabolic solid line  ,mpers for some of their published figures, and acknowl-
labeled by GW/SW and of Ferchichi and Tavoularis eqge fruitful discussions with A. Bershadskii, S. Chen, J.
(straight line labeled by FT respectively. They show that payoudi, B. Eckhardt, R. J. Hill, S. Kurien, S. B. Pope, |.

the two experiments follow different paths: while the procaccigespecially, and Z. Warhaft. J.S. was supported by
Ferchichi—Tavoularis data run directly down the; “moqntalnthe Feodor-Lynen Fellowship Program of the Alexander-von-
range,” the Shen—Warhaft data seem to run in a kind of4,mholdt Foundation and Yale University. The work was
spiral around the “mountain,” presumably resulting in @ supported by the NSF Grant No. DMR-95-29609. Numerical
slower decay of the skewness when projected ontoRfie  cgjcylations were done on a Cray T90 at the John von
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thresholdS; grows whenR, increases; alternatively, local

isotropy requires largeR, if the shear parameter is larger.
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