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Kolmogorov’s Third Hypothesis and Turbulent Sign Statistics
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The breakdown of turbulent eddies can be characterized by sets of ‘‘multipliers,’’ defined as ratios of
velocity increments at successively smaller scales. These quantities were introduced by Kolmogorov,
who hypothesized their self-similar statistics and independence at distant scales. Here we report
experimental and numerical results on the statistics of these multipliers, for both their magnitude
and sign. We show that the multipliers at adjacent scales are not independent but that their correlations
decay rapidly in scale separation. New scaling laws are thereby predicted and verified for both
roughness and sign of turbulent velocity increments. The sign oscillations per cascade step are found
to decrease at points of increasing roughness or singularity of the velocity.
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Fourier mode forcing [6]. The Taylor microscale Reynolds
number was about 220. The experimental data were ac-

sign change and 0 otherwise. In these new variables,
Kolmogorov’s hypothesis of scale similarity is equivalent
In 1962, Kolmogorov presented a set of hypotheses on
the local structure of turbulence in order to account for
the intermittency phenomena [1]. This work is now per-
haps best known for its hypotheses on the fluctuations of
locally volume-averaged energy dissipation [2]. However,
in the same work, Kolmogorov proposed another formu-
lation of the theory of inertial-range intermittency which,
in his own words, is ‘‘freed from the special selection of
the values of [energy dissipation].’’ In this formulation, he
considered ‘‘multipliers’’ defined by ratios of velocity
increments

wij�x; ‘; ‘0� � �ivj�x; ‘�=�ivj�x; ‘0�: (1)

Here �ivj�x; ‘� � vj�x� ‘ei� � vj�x� is the increment
of the jth component of the velocity vector v along the
unit vector ei. Kolmogorov hypothesized that, at very
high Reynolds number, these multipliers should have dis-
tributions which are universal functions only of the scale
ratio ‘=‘0 and not of the absolute scale. He postulated
further that multipliers corresponding to widely sepa-
rated scales should be statistically independent. This is
what Kolmogorov referred to as his third hypothesis. Sur-
prisingly, the alternative formulation based upon the third
hypothesis has received only a little subsequent atten-
tion [3–5].

Here we report results on statistics of the Kolmogorov
multipliers, determined using data from a direct numeri-
cal simulation (DNS) of the three-dimensional incom-
pressible Navier-Stokes equation, as well as hot-wire data
taken in a nominally steady atmospheric boundary layer.
For the DNS, isotropic turbulence was simulated in a box
with 5123 mesh points under periodic boundary condi-
tions. A statistically steady state was obtained using a low
0031-9007=03=90(25)=254501(4)$20.00 
quired at a height of 6 m above the smooth ground on a
field in the Utah desert [7]. The Taylor microscale
Reynolds number was about 10 500.

Not only the amplitude of the turbulent velocity incre-
ment is of interest, but also its sign. For example, the
third-order skewness of longitudinal velocity increments
must be negative to ensure a forward energy transfer
(Ref. [5], Chap. 6). The statistics of sign as well as am-
plitude were implicit in Kolmogorov’s definition of multi-
pliers in Eq. (1), but we shall make explicit these two
distinct aspects. For simplicity, we consider here multi-
pliers defined only for longitudinal velocity increments,
�kv�x; ‘� � �ivi�x; ‘�. We shall also employ for con-
venience a velocity increment normalized by the
Kolmogorov 1941 prediction: �u�‘� � �kv�‘�=�"‘�

1=3,
where " is the mean of the rate of dissipation per unit
volume. We then define the multiplier w�‘; ‘0� �
�u�‘�=�u�‘0� as a slight modification of Kolmogorov’s.
We shall generally consider just a discrete sequence of
length scales, ‘n � 2�n‘0, where ‘0 is a chosen large
scale, e.g., the integral scale. Thus, n is the number of
‘‘cascade steps’’ by factors of 2 from ‘0 down to ‘n. We
then define the multiplier for one cascade step by wn �
w�‘n; ‘n�1�. Of course, w�‘n; ‘n0 � �

Qn
k�n0�1wk. To un-

ravel the separate dependencies on magnitude and sign we
now define jwnj � e�n and sgn�wn� � ��1��n where �n is
real and �n � 0 or 1. In that case, jw�‘n; ‘n0 �j �
exp�

P
n
k�n0�1 �k� and sgn	w�‘n; ‘n0 �
 � ��1�

P
n
k�n0�1

�k . We
have defined the new variables via exponentiation so that
they are ‘‘additive,’’ i.e., sums of terms rather than prod-
ucts. If we plot lnj�u�‘n�j versus ‘n, then �n is the slope
between points ‘n�1 and ‘n. The integer variable �n, on
the other hand, just indicates whether there was a change
of sign in �u�‘n� between ‘n�1 and ‘n: it is 1 if there was a
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to statistical homogeneity under discrete translations in
the variable n. The third hypothesis of Kolmogorov is
stated, somewhat loosely, as the requirement that �n0 ; �n0
should be statistically independent of �n; �n for jn0 �
nj � 1.

Our first result is the probability density function
(PDF) of the multiplier wn in the inertial range, plotted
in Fig. 1 for DNS n � 4; 5 and experiment n � 11; 14. We
see that these distributions collapse quite well for differ-
ent values of n, verifying the ‘‘translation-invariance’’
assumption or scale-similarity hypothesis made by
Kolmogorov [1].We also find that the plotted distributions
are very close to those for multipliers defined for incre-
ments of fractional Brownian motion (FBM) with Hurst
or Hölder exponent h � 1

3 . Such an agreement with FBM
has been found previously for statistics of the ratio of a
velocity increment and locally averaged dissipation,
which appears in Kolmogorov’s refined similarity hy-
pothesis [8]. The multiplier distributions for increments
of FBM are Cauchy, P�w� � b

�
1

�w�a�2�b2
, with a � 2h�1

and a2 � b2 � 1. Kolmogorov himself had proposed that
the distribution of the turbulence multipliers would be log
normal [1], but this is clearly not so. The distributions are
also strikingly different from those of the multipliers for
volume-averaged dissipations [9], which, by definition,
are compactly supported on the interval 	0; 1
. Because of
the Cauchy-like tails �w�2 for jwj � 1, the distribution
P�w� has infinite moments hjwjpi for all p � 1. This has
the important implication that, to determine scaling ex-
ponents of velocity structure functions, correlations be-
tween multipliers may not be neglected. Indeed, if
multipliers wn for distinct n were independent, then there
would be scaling for the velocity structure functions
hj�kv�‘n�j

pi � ‘
�p
n with �p � p

3 � log2hjwj
pi (Ref. [5],

Sec. 8.6.3). Our results in Fig. 1 clearly rule out the
validity for p � 1 of such a formula, implied by inde-
pendence. We shall see below that the scaling exponents
can be inferred from the statistics of the Kolmogorov
: n=4(DNS)
: n=5(DNS)
: n=14(Exp.)
: n=11(Exp.)
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FIG. 1. Probabilities for wn showing collapse for DNS, ex-
perimental data, and FBM.
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multipliers, but only from the joint statistics of multipliers
at many scales and not from those at a single scale.

The results above have direct implications for the
statistics of the sign and roughness variables. The proba-
bility for turbulent velocity differences to experience a
sign change over one cascade step in the inertial range is
P��n � 1� � 0:27� 0:0054 from experiment and DNS.
This is very close to the value for FBM, P��n � 1� �
1
2 �

1
� arctan�

a
b� � 0:283 with h � 1=3. In Fig. 2 we plot

the conditional distributions P��nj�n� for the same cases
as in Fig. 1. Except for a small nonzero mean value (see
below), these distributions are also fitted rather well by
the formula calculated for FBM with h � 1

3 : P��j�� �
b

2�p�

1
cosh����1��a where p� � P��n � ��. In particular,

both distributions in Fig. 2 seem to consist of symmetric
exponential tails �e�j�j for j�j � 1. These appear as the
long straight lines with slopes �1 in the log-PDF plotted
in Figs. 2(a) and 2(b), and correspond to �w�2; jwj !
�1 and �w0; jwj ! 0 for the distribution in Fig. 1.
The symmetric tails can be easily explained, since they
arise from the same events, namely, the ‘‘near-zero
crossings’’ of the velocity increments. Because �n �
lnj�u�‘n�=�u�‘n�1�j, the left tail for �n � �1 arises
from events with j�u�‘n�j � 1 and j�u�‘n�1�j � O�1�
while the right tail for �n � 1 arises from events with
j�u�‘n�1�j � 1 and j�u�‘n�j � O�1�. The statistics of
such near-zero crossings can be inferred from the con-
stancy of the PDF of velocity increments, P��u� � const,
near �u � 0 [10].

Despite the fact that there can be no strict independence
of the random fields �n; �n, there is quite a significant
decay of correlations. We define correlation functions
C���n; k� � h�n�n�ki � h�nih�n�ki with �; � � �; �.
These are plotted in Fig. 3 for n � 4 in DNS
and n � 11 in experiment. It is evident that the
:n=14(Exp.)
:n=11(Exp.)
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FIG. 2. Log-linear plots of the conditional distributions,
(a) P��nj�n � 0� and (b) P��nj�n � 1�.
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FIG. 3. The correlation functions C���4; k�, C���4; k�, and
C���4; k� for DNS and C���11; k�, C���11; k�, and C���11; k�
from experiment.
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FIG. 4. Structure functions (a) Zn�0; 1� (b) Zn�0;�1� from
experimental data. The dotted lines are the fitting curves.

FIG. 5. ‘‘Gibbs free energy’’ g�p;�� from experimental data.
The line is for � � 0, g�p; 0� � ln2��p � p=3�. The concavity
in the p direction is different from FBM, for which g�p;�� is
linear in p for each fixed �.
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high-Reynolds-number results in experiment agree very
well with the low-Reynolds-number results in DNS. It
may be seen that the correlations decay quite rapidly,
exponentially or as a large inverse power. This is similar
to the behavior observed for another type of multiplier
defined as ratios of the locally averaged dissipations [11].

Multifractal scaling laws for velocity structure func-
tions will hold even if there are correlations between
multipliers, so long as those decay sufficiently rapidly
[3]. This may be seen from a standard thermodynamic
analogy for multifractals (Ref. [5], Sec. 8.6.4; Ref. [12]).
Indeed, hj�kv�‘n�jpi � ‘1=3n Zn�p; 0� in terms of a ‘‘parti-
tion function’’ Zn�p;�� � hj�kv�‘0�jp exp	

P
n
k�1 �p�k �

��k�
i. If correlations decay rapidly, there should exist a
‘‘Gibbs free energy’’ defined by a thermodynamic limit

g�p;�� � � lim
n!1

�1=n� lnZn�p;��: (2)

The existence of such a limit is equivalent to validity of a
multifractal scaling law, with exponents g�p;��. For
example, when � � 0, then hj�kv�‘n�j

pi � ‘
�p
n , recover-

ing the standard scaling law for amplitudes with �p �
p
3 �

g�p;0�
ln2 . The partition function above is a generalized

structure function involving also sign statistics. The limit
(2) holds if and only if there is a scaling law Zn�p;�� �
‘���p;��
n for ���p;�� � g�p;��= ln2.
As evidence of scaling, we present in Fig. 4 two typical

partition functions (or structure functions) Zn�0; 1� and
Zn�0;�1� plotted versus ‘n. The power-law inertial
ranges can be easily identified for both curves. We have
determined the generalized scaling exponent from the
experimental data, by means of the extended self-simi-
larity procedure [13], in which ‘1=3n Zn�p;�� was plotted
versus hj�kv�‘n�j3i. In Fig. 5 we show g�p;��. This
generalized scaling exponent or ‘‘free energy’’ contains
information not only about the decrement in magnitude
of velocity differences with decreasing space separations
254501-3
‘n but also about the oscillations in sign. It therefore
encompasses several exponents previously defined. For
example, the ‘‘cancellation exponent’’ � of longitudinal
velocity derivatives that was defined and measured in [14]
may be expressed as � � 2

3 �
g�1;0�
ln2 . Likewise, the scaling

exponents �p of signed velocity structure functions
h��kv�‘n��pi are given as �p � p

3 �
g�p;ip��

ln2 , by an analyti-
cal continuation to imaginary � � ip�.

The concavity of g�p;�� along the p direction has
implications for the PDF of the ‘‘spin’’ �. Although
P��� from Fig. 2 appears to be symmetrical under the
spin flip � ! ��, we shall show that there is a small but
nonvanishing mean h�i. A direct determination from the
experimental and DNS data gives h�i � �0:034� 0:011.
In fact, this nonzero average is simply related to the fact
254501-3



FIG. 6. Generalized multifractal spectrum f�m;"� and con-
ditional frequency of sign oscillations "��m� from experiment.
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that Kolmogorov’s 1941 mean-field scaling of pth-order
structure functions is not exact in the limit p � 0 [15].
The relation is easy to see from the thermodynamic
analogy for the scaling exponents. Indeed, the average
‘‘magnetizations’’ should be obtained from the free en-
ergy by the derivative formulas @g

@p jp���0 � �h�i and
@g
@� jp���0 � �h�i. Thus, the derivative with respect to
p gives the average slope m � h�i, while the derivative
with respect to � gives " � h�i, the average fraction of
cascade steps n at which �v�‘n� changes sign. In particu-
lar, the first of the above equations connects the nonzero
mean h�i to the anomalous scaling exponent at p � 0. A
check of the equations by finite-difference approximation
of the derivatives of g gives h�i � �0:044� 0:021, h�i �
0:29� 0:073. Clearly, the thermodynamic calculation of
the averages is consistent with the direct one (where
h�i � p1, given earlier).

More precise information can be obtained from the
convex Legendre transformed function f�m;"� �
supp;�fmp�"�� g�p;��g, which corresponds thermo-
dynamically to ‘‘Helmholtz free energy.’’ One has the
following ‘‘fluctuation formula’’

P rob

�
1

n

Xn
k�1

�k � m;
1

n

Xn
k�1

�k � "
�
�e�nf�m;"�; (3)

which gives the probability to observe an empirical aver-
age slope m and the fraction of sign changes " in the limit
of a large number of cascade steps n. Note that f�m;"�
has its minimum value ( � 0) at m � h�i; " � h�i so that
those are overwhelmingly the most probable values to
observe as n increases. However, other values of m;"
can occur, and f�m;"� gives the (exponentially small)
probability for that to happen. Notice that this Helmholtz
free energy is a generalization of the usual Cramér func-
tion or f�$� spectrum in the multifractal formalism [5],
with Hölder exponent $ � 1

3 �
m
ln2 . In Fig. 6 we plot the

Helmholtz free energy corresponding to the Gibbs free
energy shown above. The generalized multifractal spec-
trum f�m;"� contains information not only about the
local scaling j�v�‘n�j � ‘$n but also about the frequency
of local oscillations in sign of �v�‘n�. For example,
consider the function "��m� plotted on the right in
Fig. 6, which gives the minimizer of f�m;"� at fixed m.
It represents the frequency of sign oscillations condi-
254501-4
tioned on the value of the local Hölder exponent.
Surprisingly, it is a decreasing function, indicating less
frequent oscillations for more singular velocities. In this
respect, turbulence is quite different from FBM, for
which increasing roughness is instead associated with
more frequent oscillations.

We tentatively interpret this result as a sign of the
greater coherence of more singular structures in turbulent
flow, such as intense vortex filaments. As one test of this
idea we have randomized the phases in our DNS velocity
field. This does not change the energy spectrum, but it
eliminates all the coherent vortex structures. We have
found that the scaling results for the phase-randomized
turbulent field and for FBM are identical. In particular,
the decreasing "��m� curve in Fig. 6 disappears.
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